xref: /openbmc/linux/arch/arm64/kvm/vgic/vgic-init.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14 
15 /*
16  * Initialization rules: there are multiple stages to the vgic
17  * initialization, both for the distributor and the CPU interfaces.  The basic
18  * idea is that even though the VGIC is not functional or not requested from
19  * user space, the critical path of the run loop can still call VGIC functions
20  * that just won't do anything, without them having to check additional
21  * initialization flags to ensure they don't look at uninitialized data
22  * structures.
23  *
24  * Distributor:
25  *
26  * - kvm_vgic_early_init(): initialization of static data that doesn't
27  *   depend on any sizing information or emulation type. No allocation
28  *   is allowed there.
29  *
30  * - vgic_init(): allocation and initialization of the generic data
31  *   structures that depend on sizing information (number of CPUs,
32  *   number of interrupts). Also initializes the vcpu specific data
33  *   structures. Can be executed lazily for GICv2.
34  *
35  * CPU Interface:
36  *
37  * - kvm_vgic_vcpu_init(): initialization of static data that
38  *   doesn't depend on any sizing information or emulation type. No
39  *   allocation is allowed there.
40  */
41 
42 /* EARLY INIT */
43 
44 /**
45  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46  * @kvm: The VM whose VGIC districutor should be initialized
47  *
48  * Only do initialization of static structures that don't require any
49  * allocation or sizing information from userspace.  vgic_init() called
50  * kvm_vgic_dist_init() which takes care of the rest.
51  */
52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54 	struct vgic_dist *dist = &kvm->arch.vgic;
55 
56 	INIT_LIST_HEAD(&dist->lpi_list_head);
57 	INIT_LIST_HEAD(&dist->lpi_translation_cache);
58 	raw_spin_lock_init(&dist->lpi_list_lock);
59 }
60 
61 /* CREATION */
62 
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 	struct kvm_vcpu *vcpu;
74 	unsigned long i;
75 	int ret;
76 
77 	if (irqchip_in_kernel(kvm))
78 		return -EEXIST;
79 
80 	/*
81 	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
82 	 * which had no chance yet to check the availability of the GICv2
83 	 * emulation. So check this here again. KVM_CREATE_DEVICE does
84 	 * the proper checks already.
85 	 */
86 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
87 		!kvm_vgic_global_state.can_emulate_gicv2)
88 		return -ENODEV;
89 
90 	ret = -EBUSY;
91 	if (!lock_all_vcpus(kvm))
92 		return ret;
93 
94 	kvm_for_each_vcpu(i, vcpu, kvm) {
95 		if (vcpu_has_run_once(vcpu))
96 			goto out_unlock;
97 	}
98 	ret = 0;
99 
100 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
101 		kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
102 	else
103 		kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
104 
105 	if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
106 		ret = -E2BIG;
107 		goto out_unlock;
108 	}
109 
110 	kvm->arch.vgic.in_kernel = true;
111 	kvm->arch.vgic.vgic_model = type;
112 
113 	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
114 
115 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
116 		kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
117 	else
118 		INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
119 
120 out_unlock:
121 	unlock_all_vcpus(kvm);
122 	return ret;
123 }
124 
125 /* INIT/DESTROY */
126 
127 /**
128  * kvm_vgic_dist_init: initialize the dist data structures
129  * @kvm: kvm struct pointer
130  * @nr_spis: number of spis, frozen by caller
131  */
132 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
133 {
134 	struct vgic_dist *dist = &kvm->arch.vgic;
135 	struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
136 	int i;
137 
138 	dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
139 	if (!dist->spis)
140 		return  -ENOMEM;
141 
142 	/*
143 	 * In the following code we do not take the irq struct lock since
144 	 * no other action on irq structs can happen while the VGIC is
145 	 * not initialized yet:
146 	 * If someone wants to inject an interrupt or does a MMIO access, we
147 	 * require prior initialization in case of a virtual GICv3 or trigger
148 	 * initialization when using a virtual GICv2.
149 	 */
150 	for (i = 0; i < nr_spis; i++) {
151 		struct vgic_irq *irq = &dist->spis[i];
152 
153 		irq->intid = i + VGIC_NR_PRIVATE_IRQS;
154 		INIT_LIST_HEAD(&irq->ap_list);
155 		raw_spin_lock_init(&irq->irq_lock);
156 		irq->vcpu = NULL;
157 		irq->target_vcpu = vcpu0;
158 		kref_init(&irq->refcount);
159 		switch (dist->vgic_model) {
160 		case KVM_DEV_TYPE_ARM_VGIC_V2:
161 			irq->targets = 0;
162 			irq->group = 0;
163 			break;
164 		case KVM_DEV_TYPE_ARM_VGIC_V3:
165 			irq->mpidr = 0;
166 			irq->group = 1;
167 			break;
168 		default:
169 			kfree(dist->spis);
170 			dist->spis = NULL;
171 			return -EINVAL;
172 		}
173 	}
174 	return 0;
175 }
176 
177 /**
178  * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
179  * structures and register VCPU-specific KVM iodevs
180  *
181  * @vcpu: pointer to the VCPU being created and initialized
182  *
183  * Only do initialization, but do not actually enable the
184  * VGIC CPU interface
185  */
186 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
187 {
188 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
189 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
190 	int ret = 0;
191 	int i;
192 
193 	vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
194 
195 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
196 	raw_spin_lock_init(&vgic_cpu->ap_list_lock);
197 	atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
198 
199 	/*
200 	 * Enable and configure all SGIs to be edge-triggered and
201 	 * configure all PPIs as level-triggered.
202 	 */
203 	for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
204 		struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
205 
206 		INIT_LIST_HEAD(&irq->ap_list);
207 		raw_spin_lock_init(&irq->irq_lock);
208 		irq->intid = i;
209 		irq->vcpu = NULL;
210 		irq->target_vcpu = vcpu;
211 		kref_init(&irq->refcount);
212 		if (vgic_irq_is_sgi(i)) {
213 			/* SGIs */
214 			irq->enabled = 1;
215 			irq->config = VGIC_CONFIG_EDGE;
216 		} else {
217 			/* PPIs */
218 			irq->config = VGIC_CONFIG_LEVEL;
219 		}
220 	}
221 
222 	if (!irqchip_in_kernel(vcpu->kvm))
223 		return 0;
224 
225 	/*
226 	 * If we are creating a VCPU with a GICv3 we must also register the
227 	 * KVM io device for the redistributor that belongs to this VCPU.
228 	 */
229 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
230 		mutex_lock(&vcpu->kvm->lock);
231 		ret = vgic_register_redist_iodev(vcpu);
232 		mutex_unlock(&vcpu->kvm->lock);
233 	}
234 	return ret;
235 }
236 
237 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
238 {
239 	if (kvm_vgic_global_state.type == VGIC_V2)
240 		vgic_v2_enable(vcpu);
241 	else
242 		vgic_v3_enable(vcpu);
243 }
244 
245 /*
246  * vgic_init: allocates and initializes dist and vcpu data structures
247  * depending on two dimensioning parameters:
248  * - the number of spis
249  * - the number of vcpus
250  * The function is generally called when nr_spis has been explicitly set
251  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
252  * vgic_initialized() returns true when this function has succeeded.
253  * Must be called with kvm->lock held!
254  */
255 int vgic_init(struct kvm *kvm)
256 {
257 	struct vgic_dist *dist = &kvm->arch.vgic;
258 	struct kvm_vcpu *vcpu;
259 	int ret = 0, i;
260 	unsigned long idx;
261 
262 	if (vgic_initialized(kvm))
263 		return 0;
264 
265 	/* Are we also in the middle of creating a VCPU? */
266 	if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
267 		return -EBUSY;
268 
269 	/* freeze the number of spis */
270 	if (!dist->nr_spis)
271 		dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
272 
273 	ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
274 	if (ret)
275 		goto out;
276 
277 	/* Initialize groups on CPUs created before the VGIC type was known */
278 	kvm_for_each_vcpu(idx, vcpu, kvm) {
279 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
280 
281 		for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
282 			struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
283 			switch (dist->vgic_model) {
284 			case KVM_DEV_TYPE_ARM_VGIC_V3:
285 				irq->group = 1;
286 				irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
287 				break;
288 			case KVM_DEV_TYPE_ARM_VGIC_V2:
289 				irq->group = 0;
290 				irq->targets = 1U << idx;
291 				break;
292 			default:
293 				ret = -EINVAL;
294 				goto out;
295 			}
296 		}
297 	}
298 
299 	if (vgic_has_its(kvm))
300 		vgic_lpi_translation_cache_init(kvm);
301 
302 	/*
303 	 * If we have GICv4.1 enabled, unconditionnaly request enable the
304 	 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
305 	 * enable it if we present a virtual ITS to the guest.
306 	 */
307 	if (vgic_supports_direct_msis(kvm)) {
308 		ret = vgic_v4_init(kvm);
309 		if (ret)
310 			goto out;
311 	}
312 
313 	kvm_for_each_vcpu(idx, vcpu, kvm)
314 		kvm_vgic_vcpu_enable(vcpu);
315 
316 	ret = kvm_vgic_setup_default_irq_routing(kvm);
317 	if (ret)
318 		goto out;
319 
320 	vgic_debug_init(kvm);
321 
322 	dist->implementation_rev = 2;
323 	dist->initialized = true;
324 
325 out:
326 	return ret;
327 }
328 
329 static void kvm_vgic_dist_destroy(struct kvm *kvm)
330 {
331 	struct vgic_dist *dist = &kvm->arch.vgic;
332 	struct vgic_redist_region *rdreg, *next;
333 
334 	dist->ready = false;
335 	dist->initialized = false;
336 
337 	kfree(dist->spis);
338 	dist->spis = NULL;
339 	dist->nr_spis = 0;
340 	dist->vgic_dist_base = VGIC_ADDR_UNDEF;
341 
342 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
343 		list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list)
344 			vgic_v3_free_redist_region(rdreg);
345 		INIT_LIST_HEAD(&dist->rd_regions);
346 	} else {
347 		dist->vgic_cpu_base = VGIC_ADDR_UNDEF;
348 	}
349 
350 	if (vgic_has_its(kvm))
351 		vgic_lpi_translation_cache_destroy(kvm);
352 
353 	if (vgic_supports_direct_msis(kvm))
354 		vgic_v4_teardown(kvm);
355 }
356 
357 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
360 
361 	/*
362 	 * Retire all pending LPIs on this vcpu anyway as we're
363 	 * going to destroy it.
364 	 */
365 	vgic_flush_pending_lpis(vcpu);
366 
367 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
368 	vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
369 }
370 
371 /* To be called with kvm->lock held */
372 static void __kvm_vgic_destroy(struct kvm *kvm)
373 {
374 	struct kvm_vcpu *vcpu;
375 	unsigned long i;
376 
377 	vgic_debug_destroy(kvm);
378 
379 	kvm_for_each_vcpu(i, vcpu, kvm)
380 		kvm_vgic_vcpu_destroy(vcpu);
381 
382 	kvm_vgic_dist_destroy(kvm);
383 }
384 
385 void kvm_vgic_destroy(struct kvm *kvm)
386 {
387 	mutex_lock(&kvm->lock);
388 	__kvm_vgic_destroy(kvm);
389 	mutex_unlock(&kvm->lock);
390 }
391 
392 /**
393  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
394  * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
395  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
396  * @kvm: kvm struct pointer
397  */
398 int vgic_lazy_init(struct kvm *kvm)
399 {
400 	int ret = 0;
401 
402 	if (unlikely(!vgic_initialized(kvm))) {
403 		/*
404 		 * We only provide the automatic initialization of the VGIC
405 		 * for the legacy case of a GICv2. Any other type must
406 		 * be explicitly initialized once setup with the respective
407 		 * KVM device call.
408 		 */
409 		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
410 			return -EBUSY;
411 
412 		mutex_lock(&kvm->lock);
413 		ret = vgic_init(kvm);
414 		mutex_unlock(&kvm->lock);
415 	}
416 
417 	return ret;
418 }
419 
420 /* RESOURCE MAPPING */
421 
422 /**
423  * Map the MMIO regions depending on the VGIC model exposed to the guest
424  * called on the first VCPU run.
425  * Also map the virtual CPU interface into the VM.
426  * v2 calls vgic_init() if not already done.
427  * v3 and derivatives return an error if the VGIC is not initialized.
428  * vgic_ready() returns true if this function has succeeded.
429  * @kvm: kvm struct pointer
430  */
431 int kvm_vgic_map_resources(struct kvm *kvm)
432 {
433 	struct vgic_dist *dist = &kvm->arch.vgic;
434 	int ret = 0;
435 
436 	if (likely(vgic_ready(kvm)))
437 		return 0;
438 
439 	mutex_lock(&kvm->lock);
440 	if (vgic_ready(kvm))
441 		goto out;
442 
443 	if (!irqchip_in_kernel(kvm))
444 		goto out;
445 
446 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
447 		ret = vgic_v2_map_resources(kvm);
448 	else
449 		ret = vgic_v3_map_resources(kvm);
450 
451 	if (ret)
452 		__kvm_vgic_destroy(kvm);
453 	else
454 		dist->ready = true;
455 
456 out:
457 	mutex_unlock(&kvm->lock);
458 	return ret;
459 }
460 
461 /* GENERIC PROBE */
462 
463 static int vgic_init_cpu_starting(unsigned int cpu)
464 {
465 	enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
466 	return 0;
467 }
468 
469 
470 static int vgic_init_cpu_dying(unsigned int cpu)
471 {
472 	disable_percpu_irq(kvm_vgic_global_state.maint_irq);
473 	return 0;
474 }
475 
476 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
477 {
478 	/*
479 	 * We cannot rely on the vgic maintenance interrupt to be
480 	 * delivered synchronously. This means we can only use it to
481 	 * exit the VM, and we perform the handling of EOIed
482 	 * interrupts on the exit path (see vgic_fold_lr_state).
483 	 */
484 	return IRQ_HANDLED;
485 }
486 
487 static struct gic_kvm_info *gic_kvm_info;
488 
489 void __init vgic_set_kvm_info(const struct gic_kvm_info *info)
490 {
491 	BUG_ON(gic_kvm_info != NULL);
492 	gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL);
493 	if (gic_kvm_info)
494 		*gic_kvm_info = *info;
495 }
496 
497 /**
498  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
499  *
500  * For a specific CPU, initialize the GIC VE hardware.
501  */
502 void kvm_vgic_init_cpu_hardware(void)
503 {
504 	BUG_ON(preemptible());
505 
506 	/*
507 	 * We want to make sure the list registers start out clear so that we
508 	 * only have the program the used registers.
509 	 */
510 	if (kvm_vgic_global_state.type == VGIC_V2)
511 		vgic_v2_init_lrs();
512 	else
513 		kvm_call_hyp(__vgic_v3_init_lrs);
514 }
515 
516 /**
517  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
518  * according to the host GIC model. Accordingly calls either
519  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
520  * instantiated by a guest later on .
521  */
522 int kvm_vgic_hyp_init(void)
523 {
524 	bool has_mask;
525 	int ret;
526 
527 	if (!gic_kvm_info)
528 		return -ENODEV;
529 
530 	has_mask = !gic_kvm_info->no_maint_irq_mask;
531 
532 	if (has_mask && !gic_kvm_info->maint_irq) {
533 		kvm_err("No vgic maintenance irq\n");
534 		return -ENXIO;
535 	}
536 
537 	/*
538 	 * If we get one of these oddball non-GICs, taint the kernel,
539 	 * as we have no idea of how they *really* behave.
540 	 */
541 	if (gic_kvm_info->no_hw_deactivation) {
542 		kvm_info("Non-architectural vgic, tainting kernel\n");
543 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
544 		kvm_vgic_global_state.no_hw_deactivation = true;
545 	}
546 
547 	switch (gic_kvm_info->type) {
548 	case GIC_V2:
549 		ret = vgic_v2_probe(gic_kvm_info);
550 		break;
551 	case GIC_V3:
552 		ret = vgic_v3_probe(gic_kvm_info);
553 		if (!ret) {
554 			static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
555 			kvm_info("GIC system register CPU interface enabled\n");
556 		}
557 		break;
558 	default:
559 		ret = -ENODEV;
560 	}
561 
562 	kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
563 
564 	kfree(gic_kvm_info);
565 	gic_kvm_info = NULL;
566 
567 	if (ret)
568 		return ret;
569 
570 	if (!has_mask)
571 		return 0;
572 
573 	ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
574 				 vgic_maintenance_handler,
575 				 "vgic", kvm_get_running_vcpus());
576 	if (ret) {
577 		kvm_err("Cannot register interrupt %d\n",
578 			kvm_vgic_global_state.maint_irq);
579 		return ret;
580 	}
581 
582 	ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
583 				"kvm/arm/vgic:starting",
584 				vgic_init_cpu_starting, vgic_init_cpu_dying);
585 	if (ret) {
586 		kvm_err("Cannot register vgic CPU notifier\n");
587 		goto out_free_irq;
588 	}
589 
590 	kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
591 	return 0;
592 
593 out_free_irq:
594 	free_percpu_irq(kvm_vgic_global_state.maint_irq,
595 			kvm_get_running_vcpus());
596 	return ret;
597 }
598