xref: /openbmc/linux/arch/arm64/kvm/va_layout.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14 #include <asm/memory.h>
15 
16 /*
17  * The LSB of the HYP VA tag
18  */
19 static u8 tag_lsb;
20 /*
21  * The HYP VA tag value with the region bit
22  */
23 static u64 tag_val;
24 static u64 va_mask;
25 
26 /*
27  * Compute HYP VA by using the same computation as kern_hyp_va().
28  */
29 static u64 __early_kern_hyp_va(u64 addr)
30 {
31 	addr &= va_mask;
32 	addr |= tag_val << tag_lsb;
33 	return addr;
34 }
35 
36 /*
37  * Store a hyp VA <-> PA offset into a EL2-owned variable.
38  */
39 static void init_hyp_physvirt_offset(void)
40 {
41 	u64 kern_va, hyp_va;
42 
43 	/* Compute the offset from the hyp VA and PA of a random symbol. */
44 	kern_va = (u64)lm_alias(__hyp_text_start);
45 	hyp_va = __early_kern_hyp_va(kern_va);
46 	hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
47 }
48 
49 /*
50  * We want to generate a hyp VA with the following format (with V ==
51  * vabits_actual):
52  *
53  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
54  *  ---------------------------------------------------------
55  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
56  *           |--------- tag_val -----------|----- va_mask ---|
57  *
58  * which does not conflict with the idmap regions.
59  */
60 __init void kvm_compute_layout(void)
61 {
62 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
63 	u64 hyp_va_msb;
64 
65 	/* Where is my RAM region? */
66 	hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
67 	hyp_va_msb ^= BIT(vabits_actual - 1);
68 
69 	tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
70 			(u64)(high_memory - 1));
71 
72 	va_mask = GENMASK_ULL(tag_lsb - 1, 0);
73 	tag_val = hyp_va_msb;
74 
75 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
76 		/* We have some free bits to insert a random tag. */
77 		tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
78 	}
79 	tag_val >>= tag_lsb;
80 
81 	init_hyp_physvirt_offset();
82 }
83 
84 static u32 compute_instruction(int n, u32 rd, u32 rn)
85 {
86 	u32 insn = AARCH64_BREAK_FAULT;
87 
88 	switch (n) {
89 	case 0:
90 		insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
91 							  AARCH64_INSN_VARIANT_64BIT,
92 							  rn, rd, va_mask);
93 		break;
94 
95 	case 1:
96 		/* ROR is a variant of EXTR with Rm = Rn */
97 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
98 					     rn, rn, rd,
99 					     tag_lsb);
100 		break;
101 
102 	case 2:
103 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
104 						    tag_val & GENMASK(11, 0),
105 						    AARCH64_INSN_VARIANT_64BIT,
106 						    AARCH64_INSN_ADSB_ADD);
107 		break;
108 
109 	case 3:
110 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
111 						    tag_val & GENMASK(23, 12),
112 						    AARCH64_INSN_VARIANT_64BIT,
113 						    AARCH64_INSN_ADSB_ADD);
114 		break;
115 
116 	case 4:
117 		/* ROR is a variant of EXTR with Rm = Rn */
118 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
119 					     rn, rn, rd, 64 - tag_lsb);
120 		break;
121 	}
122 
123 	return insn;
124 }
125 
126 void __init kvm_update_va_mask(struct alt_instr *alt,
127 			       __le32 *origptr, __le32 *updptr, int nr_inst)
128 {
129 	int i;
130 
131 	BUG_ON(nr_inst != 5);
132 
133 	for (i = 0; i < nr_inst; i++) {
134 		u32 rd, rn, insn, oinsn;
135 
136 		/*
137 		 * VHE doesn't need any address translation, let's NOP
138 		 * everything.
139 		 *
140 		 * Alternatively, if the tag is zero (because the layout
141 		 * dictates it and we don't have any spare bits in the
142 		 * address), NOP everything after masking the kernel VA.
143 		 */
144 		if (has_vhe() || (!tag_val && i > 0)) {
145 			updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
146 			continue;
147 		}
148 
149 		oinsn = le32_to_cpu(origptr[i]);
150 		rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
151 		rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
152 
153 		insn = compute_instruction(i, rd, rn);
154 		BUG_ON(insn == AARCH64_BREAK_FAULT);
155 
156 		updptr[i] = cpu_to_le32(insn);
157 	}
158 }
159 
160 void kvm_patch_vector_branch(struct alt_instr *alt,
161 			     __le32 *origptr, __le32 *updptr, int nr_inst)
162 {
163 	u64 addr;
164 	u32 insn;
165 
166 	BUG_ON(nr_inst != 4);
167 
168 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A) || WARN_ON_ONCE(has_vhe()))
169 		return;
170 
171 	/*
172 	 * Compute HYP VA by using the same computation as kern_hyp_va()
173 	 */
174 	addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
175 
176 	/* Use PC[10:7] to branch to the same vector in KVM */
177 	addr |= ((u64)origptr & GENMASK_ULL(10, 7));
178 
179 	/*
180 	 * Branch over the preamble in order to avoid the initial store on
181 	 * the stack (which we already perform in the hardening vectors).
182 	 */
183 	addr += KVM_VECTOR_PREAMBLE;
184 
185 	/* movz x0, #(addr & 0xffff) */
186 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
187 					 (u16)addr,
188 					 0,
189 					 AARCH64_INSN_VARIANT_64BIT,
190 					 AARCH64_INSN_MOVEWIDE_ZERO);
191 	*updptr++ = cpu_to_le32(insn);
192 
193 	/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
194 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
195 					 (u16)(addr >> 16),
196 					 16,
197 					 AARCH64_INSN_VARIANT_64BIT,
198 					 AARCH64_INSN_MOVEWIDE_KEEP);
199 	*updptr++ = cpu_to_le32(insn);
200 
201 	/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
202 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
203 					 (u16)(addr >> 32),
204 					 32,
205 					 AARCH64_INSN_VARIANT_64BIT,
206 					 AARCH64_INSN_MOVEWIDE_KEEP);
207 	*updptr++ = cpu_to_le32(insn);
208 
209 	/* br x0 */
210 	insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
211 					   AARCH64_INSN_BRANCH_NOLINK);
212 	*updptr++ = cpu_to_le32(insn);
213 }
214 
215 static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
216 {
217 	u32 insn, oinsn, rd;
218 
219 	BUG_ON(nr_inst != 4);
220 
221 	/* Compute target register */
222 	oinsn = le32_to_cpu(*origptr);
223 	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
224 
225 	/* movz rd, #(val & 0xffff) */
226 	insn = aarch64_insn_gen_movewide(rd,
227 					 (u16)val,
228 					 0,
229 					 AARCH64_INSN_VARIANT_64BIT,
230 					 AARCH64_INSN_MOVEWIDE_ZERO);
231 	*updptr++ = cpu_to_le32(insn);
232 
233 	/* movk rd, #((val >> 16) & 0xffff), lsl #16 */
234 	insn = aarch64_insn_gen_movewide(rd,
235 					 (u16)(val >> 16),
236 					 16,
237 					 AARCH64_INSN_VARIANT_64BIT,
238 					 AARCH64_INSN_MOVEWIDE_KEEP);
239 	*updptr++ = cpu_to_le32(insn);
240 
241 	/* movk rd, #((val >> 32) & 0xffff), lsl #32 */
242 	insn = aarch64_insn_gen_movewide(rd,
243 					 (u16)(val >> 32),
244 					 32,
245 					 AARCH64_INSN_VARIANT_64BIT,
246 					 AARCH64_INSN_MOVEWIDE_KEEP);
247 	*updptr++ = cpu_to_le32(insn);
248 
249 	/* movk rd, #((val >> 48) & 0xffff), lsl #48 */
250 	insn = aarch64_insn_gen_movewide(rd,
251 					 (u16)(val >> 48),
252 					 48,
253 					 AARCH64_INSN_VARIANT_64BIT,
254 					 AARCH64_INSN_MOVEWIDE_KEEP);
255 	*updptr++ = cpu_to_le32(insn);
256 }
257 
258 void kvm_update_kimg_phys_offset(struct alt_instr *alt,
259 				 __le32 *origptr, __le32 *updptr, int nr_inst)
260 {
261 	generate_mov_q(kimage_voffset + PHYS_OFFSET, origptr, updptr, nr_inst);
262 }
263 
264 void kvm_get_kimage_voffset(struct alt_instr *alt,
265 			    __le32 *origptr, __le32 *updptr, int nr_inst)
266 {
267 	generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
268 }
269