xref: /openbmc/linux/arch/arm64/kvm/va_layout.c (revision 1a59d1b8)
1 /*
2  * Copyright (C) 2017 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/random.h>
20 #include <linux/memblock.h>
21 #include <asm/alternative.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/insn.h>
24 #include <asm/kvm_mmu.h>
25 
26 /*
27  * The LSB of the random hyp VA tag or 0 if no randomization is used.
28  */
29 static u8 tag_lsb;
30 /*
31  * The random hyp VA tag value with the region bit if hyp randomization is used
32  */
33 static u64 tag_val;
34 static u64 va_mask;
35 
36 static void compute_layout(void)
37 {
38 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
39 	u64 hyp_va_msb;
40 	int kva_msb;
41 
42 	/* Where is my RAM region? */
43 	hyp_va_msb  = idmap_addr & BIT(VA_BITS - 1);
44 	hyp_va_msb ^= BIT(VA_BITS - 1);
45 
46 	kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
47 			(u64)(high_memory - 1));
48 
49 	if (kva_msb == (VA_BITS - 1)) {
50 		/*
51 		 * No space in the address, let's compute the mask so
52 		 * that it covers (VA_BITS - 1) bits, and the region
53 		 * bit. The tag stays set to zero.
54 		 */
55 		va_mask  = BIT(VA_BITS - 1) - 1;
56 		va_mask |= hyp_va_msb;
57 	} else {
58 		/*
59 		 * We do have some free bits to insert a random tag.
60 		 * Hyp VAs are now created from kernel linear map VAs
61 		 * using the following formula (with V == VA_BITS):
62 		 *
63 		 *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
64 		 *  ---------------------------------------------------------
65 		 * | 0000000 | hyp_va_msb |    random tag  |  kern linear VA |
66 		 */
67 		tag_lsb = kva_msb;
68 		va_mask = GENMASK_ULL(tag_lsb - 1, 0);
69 		tag_val = get_random_long() & GENMASK_ULL(VA_BITS - 2, tag_lsb);
70 		tag_val |= hyp_va_msb;
71 		tag_val >>= tag_lsb;
72 	}
73 }
74 
75 static u32 compute_instruction(int n, u32 rd, u32 rn)
76 {
77 	u32 insn = AARCH64_BREAK_FAULT;
78 
79 	switch (n) {
80 	case 0:
81 		insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
82 							  AARCH64_INSN_VARIANT_64BIT,
83 							  rn, rd, va_mask);
84 		break;
85 
86 	case 1:
87 		/* ROR is a variant of EXTR with Rm = Rn */
88 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
89 					     rn, rn, rd,
90 					     tag_lsb);
91 		break;
92 
93 	case 2:
94 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
95 						    tag_val & GENMASK(11, 0),
96 						    AARCH64_INSN_VARIANT_64BIT,
97 						    AARCH64_INSN_ADSB_ADD);
98 		break;
99 
100 	case 3:
101 		insn = aarch64_insn_gen_add_sub_imm(rd, rn,
102 						    tag_val & GENMASK(23, 12),
103 						    AARCH64_INSN_VARIANT_64BIT,
104 						    AARCH64_INSN_ADSB_ADD);
105 		break;
106 
107 	case 4:
108 		/* ROR is a variant of EXTR with Rm = Rn */
109 		insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
110 					     rn, rn, rd, 64 - tag_lsb);
111 		break;
112 	}
113 
114 	return insn;
115 }
116 
117 void __init kvm_update_va_mask(struct alt_instr *alt,
118 			       __le32 *origptr, __le32 *updptr, int nr_inst)
119 {
120 	int i;
121 
122 	BUG_ON(nr_inst != 5);
123 
124 	if (!has_vhe() && !va_mask)
125 		compute_layout();
126 
127 	for (i = 0; i < nr_inst; i++) {
128 		u32 rd, rn, insn, oinsn;
129 
130 		/*
131 		 * VHE doesn't need any address translation, let's NOP
132 		 * everything.
133 		 *
134 		 * Alternatively, if we don't have any spare bits in
135 		 * the address, NOP everything after masking that
136 		 * kernel VA.
137 		 */
138 		if (has_vhe() || (!tag_lsb && i > 0)) {
139 			updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
140 			continue;
141 		}
142 
143 		oinsn = le32_to_cpu(origptr[i]);
144 		rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
145 		rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
146 
147 		insn = compute_instruction(i, rd, rn);
148 		BUG_ON(insn == AARCH64_BREAK_FAULT);
149 
150 		updptr[i] = cpu_to_le32(insn);
151 	}
152 }
153 
154 void *__kvm_bp_vect_base;
155 int __kvm_harden_el2_vector_slot;
156 
157 void kvm_patch_vector_branch(struct alt_instr *alt,
158 			     __le32 *origptr, __le32 *updptr, int nr_inst)
159 {
160 	u64 addr;
161 	u32 insn;
162 
163 	BUG_ON(nr_inst != 5);
164 
165 	if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
166 		WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS));
167 		return;
168 	}
169 
170 	if (!va_mask)
171 		compute_layout();
172 
173 	/*
174 	 * Compute HYP VA by using the same computation as kern_hyp_va()
175 	 */
176 	addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector);
177 	addr &= va_mask;
178 	addr |= tag_val << tag_lsb;
179 
180 	/* Use PC[10:7] to branch to the same vector in KVM */
181 	addr |= ((u64)origptr & GENMASK_ULL(10, 7));
182 
183 	/*
184 	 * Branch to the second instruction in the vectors in order to
185 	 * avoid the initial store on the stack (which we already
186 	 * perform in the hardening vectors).
187 	 */
188 	addr += AARCH64_INSN_SIZE;
189 
190 	/* stp x0, x1, [sp, #-16]! */
191 	insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0,
192 						AARCH64_INSN_REG_1,
193 						AARCH64_INSN_REG_SP,
194 						-16,
195 						AARCH64_INSN_VARIANT_64BIT,
196 						AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX);
197 	*updptr++ = cpu_to_le32(insn);
198 
199 	/* movz x0, #(addr & 0xffff) */
200 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
201 					 (u16)addr,
202 					 0,
203 					 AARCH64_INSN_VARIANT_64BIT,
204 					 AARCH64_INSN_MOVEWIDE_ZERO);
205 	*updptr++ = cpu_to_le32(insn);
206 
207 	/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
208 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
209 					 (u16)(addr >> 16),
210 					 16,
211 					 AARCH64_INSN_VARIANT_64BIT,
212 					 AARCH64_INSN_MOVEWIDE_KEEP);
213 	*updptr++ = cpu_to_le32(insn);
214 
215 	/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
216 	insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
217 					 (u16)(addr >> 32),
218 					 32,
219 					 AARCH64_INSN_VARIANT_64BIT,
220 					 AARCH64_INSN_MOVEWIDE_KEEP);
221 	*updptr++ = cpu_to_le32(insn);
222 
223 	/* br x0 */
224 	insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
225 					   AARCH64_INSN_BRANCH_NOLINK);
226 	*updptr++ = cpu_to_le32(insn);
227 }
228