xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 #include "vgic/vgic.h"
36 
37 #include "trace.h"
38 
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44 
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 		      u64 val);
48 
49 static bool read_from_write_only(struct kvm_vcpu *vcpu,
50 				 struct sys_reg_params *params,
51 				 const struct sys_reg_desc *r)
52 {
53 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
54 	print_sys_reg_instr(params);
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
59 static bool write_to_read_only(struct kvm_vcpu *vcpu,
60 			       struct sys_reg_params *params,
61 			       const struct sys_reg_desc *r)
62 {
63 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
64 	print_sys_reg_instr(params);
65 	kvm_inject_undefined(vcpu);
66 	return false;
67 }
68 
69 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
70 {
71 	u64 val = 0x8badf00d8badf00d;
72 
73 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
74 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
75 		return val;
76 
77 	return __vcpu_sys_reg(vcpu, reg);
78 }
79 
80 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
81 {
82 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
83 	    __vcpu_write_sys_reg_to_cpu(val, reg))
84 		return;
85 
86 	__vcpu_sys_reg(vcpu, reg) = val;
87 }
88 
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91 
92 /*
93  * Returns the minimum line size for the selected cache, expressed as
94  * Log2(bytes).
95  */
96 static u8 get_min_cache_line_size(bool icache)
97 {
98 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
99 	u8 field;
100 
101 	if (icache)
102 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
103 	else
104 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
105 
106 	/*
107 	 * Cache line size is represented as Log2(words) in CTR_EL0.
108 	 * Log2(bytes) can be derived with the following:
109 	 *
110 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
111 	 * 		   = Log2(bytes) - 2 + 2
112 	 * 		   = Log2(bytes)
113 	 */
114 	return field + 2;
115 }
116 
117 /* Which cache CCSIDR represents depends on CSSELR value. */
118 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
119 {
120 	u8 line_size;
121 
122 	if (vcpu->arch.ccsidr)
123 		return vcpu->arch.ccsidr[csselr];
124 
125 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
126 
127 	/*
128 	 * Fabricate a CCSIDR value as the overriding value does not exist.
129 	 * The real CCSIDR value will not be used as it can vary by the
130 	 * physical CPU which the vcpu currently resides in.
131 	 *
132 	 * The line size is determined with get_min_cache_line_size(), which
133 	 * should be valid for all CPUs even if they have different cache
134 	 * configuration.
135 	 *
136 	 * The associativity bits are cleared, meaning the geometry of all data
137 	 * and unified caches (which are guaranteed to be PIPT and thus
138 	 * non-aliasing) are 1 set and 1 way.
139 	 * Guests should not be doing cache operations by set/way at all, and
140 	 * for this reason, we trap them and attempt to infer the intent, so
141 	 * that we can flush the entire guest's address space at the appropriate
142 	 * time. The exposed geometry minimizes the number of the traps.
143 	 * [If guests should attempt to infer aliasing properties from the
144 	 * geometry (which is not permitted by the architecture), they would
145 	 * only do so for virtually indexed caches.]
146 	 *
147 	 * We don't check if the cache level exists as it is allowed to return
148 	 * an UNKNOWN value if not.
149 	 */
150 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
151 }
152 
153 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
154 {
155 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
156 	u32 *ccsidr = vcpu->arch.ccsidr;
157 	u32 i;
158 
159 	if ((val & CCSIDR_EL1_RES0) ||
160 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
161 		return -EINVAL;
162 
163 	if (!ccsidr) {
164 		if (val == get_ccsidr(vcpu, csselr))
165 			return 0;
166 
167 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
168 		if (!ccsidr)
169 			return -ENOMEM;
170 
171 		for (i = 0; i < CSSELR_MAX; i++)
172 			ccsidr[i] = get_ccsidr(vcpu, i);
173 
174 		vcpu->arch.ccsidr = ccsidr;
175 	}
176 
177 	ccsidr[csselr] = val;
178 
179 	return 0;
180 }
181 
182 static bool access_rw(struct kvm_vcpu *vcpu,
183 		      struct sys_reg_params *p,
184 		      const struct sys_reg_desc *r)
185 {
186 	if (p->is_write)
187 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
188 	else
189 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
190 
191 	return true;
192 }
193 
194 /*
195  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196  */
197 static bool access_dcsw(struct kvm_vcpu *vcpu,
198 			struct sys_reg_params *p,
199 			const struct sys_reg_desc *r)
200 {
201 	if (!p->is_write)
202 		return read_from_write_only(vcpu, p, r);
203 
204 	/*
205 	 * Only track S/W ops if we don't have FWB. It still indicates
206 	 * that the guest is a bit broken (S/W operations should only
207 	 * be done by firmware, knowing that there is only a single
208 	 * CPU left in the system, and certainly not from non-secure
209 	 * software).
210 	 */
211 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
212 		kvm_set_way_flush(vcpu);
213 
214 	return true;
215 }
216 
217 static bool access_dcgsw(struct kvm_vcpu *vcpu,
218 			 struct sys_reg_params *p,
219 			 const struct sys_reg_desc *r)
220 {
221 	if (!kvm_has_mte(vcpu->kvm)) {
222 		kvm_inject_undefined(vcpu);
223 		return false;
224 	}
225 
226 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
227 	return access_dcsw(vcpu, p, r);
228 }
229 
230 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
231 {
232 	switch (r->aarch32_map) {
233 	case AA32_LO:
234 		*mask = GENMASK_ULL(31, 0);
235 		*shift = 0;
236 		break;
237 	case AA32_HI:
238 		*mask = GENMASK_ULL(63, 32);
239 		*shift = 32;
240 		break;
241 	default:
242 		*mask = GENMASK_ULL(63, 0);
243 		*shift = 0;
244 		break;
245 	}
246 }
247 
248 /*
249  * Generic accessor for VM registers. Only called as long as HCR_TVM
250  * is set. If the guest enables the MMU, we stop trapping the VM
251  * sys_regs and leave it in complete control of the caches.
252  */
253 static bool access_vm_reg(struct kvm_vcpu *vcpu,
254 			  struct sys_reg_params *p,
255 			  const struct sys_reg_desc *r)
256 {
257 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
258 	u64 val, mask, shift;
259 
260 	BUG_ON(!p->is_write);
261 
262 	get_access_mask(r, &mask, &shift);
263 
264 	if (~mask) {
265 		val = vcpu_read_sys_reg(vcpu, r->reg);
266 		val &= ~mask;
267 	} else {
268 		val = 0;
269 	}
270 
271 	val |= (p->regval & (mask >> shift)) << shift;
272 	vcpu_write_sys_reg(vcpu, val, r->reg);
273 
274 	kvm_toggle_cache(vcpu, was_enabled);
275 	return true;
276 }
277 
278 static bool access_actlr(struct kvm_vcpu *vcpu,
279 			 struct sys_reg_params *p,
280 			 const struct sys_reg_desc *r)
281 {
282 	u64 mask, shift;
283 
284 	if (p->is_write)
285 		return ignore_write(vcpu, p);
286 
287 	get_access_mask(r, &mask, &shift);
288 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
289 
290 	return true;
291 }
292 
293 /*
294  * Trap handler for the GICv3 SGI generation system register.
295  * Forward the request to the VGIC emulation.
296  * The cp15_64 code makes sure this automatically works
297  * for both AArch64 and AArch32 accesses.
298  */
299 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
300 			   struct sys_reg_params *p,
301 			   const struct sys_reg_desc *r)
302 {
303 	bool g1;
304 
305 	if (!kvm_has_gicv3(vcpu->kvm)) {
306 		kvm_inject_undefined(vcpu);
307 		return false;
308 	}
309 
310 	if (!p->is_write)
311 		return read_from_write_only(vcpu, p, r);
312 
313 	/*
314 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
315 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
316 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
317 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
318 	 * group.
319 	 */
320 	if (p->Op0 == 0) {		/* AArch32 */
321 		switch (p->Op1) {
322 		default:		/* Keep GCC quiet */
323 		case 0:			/* ICC_SGI1R */
324 			g1 = true;
325 			break;
326 		case 1:			/* ICC_ASGI1R */
327 		case 2:			/* ICC_SGI0R */
328 			g1 = false;
329 			break;
330 		}
331 	} else {			/* AArch64 */
332 		switch (p->Op2) {
333 		default:		/* Keep GCC quiet */
334 		case 5:			/* ICC_SGI1R_EL1 */
335 			g1 = true;
336 			break;
337 		case 6:			/* ICC_ASGI1R_EL1 */
338 		case 7:			/* ICC_SGI0R_EL1 */
339 			g1 = false;
340 			break;
341 		}
342 	}
343 
344 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
345 
346 	return true;
347 }
348 
349 static bool access_gic_sre(struct kvm_vcpu *vcpu,
350 			   struct sys_reg_params *p,
351 			   const struct sys_reg_desc *r)
352 {
353 	if (p->is_write)
354 		return ignore_write(vcpu, p);
355 
356 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
357 	return true;
358 }
359 
360 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
361 			struct sys_reg_params *p,
362 			const struct sys_reg_desc *r)
363 {
364 	if (p->is_write)
365 		return ignore_write(vcpu, p);
366 	else
367 		return read_zero(vcpu, p);
368 }
369 
370 static bool trap_undef(struct kvm_vcpu *vcpu,
371 		       struct sys_reg_params *p,
372 		       const struct sys_reg_desc *r)
373 {
374 	kvm_inject_undefined(vcpu);
375 	return false;
376 }
377 
378 /*
379  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
380  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
381  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
382  * treat it separately.
383  */
384 static bool trap_loregion(struct kvm_vcpu *vcpu,
385 			  struct sys_reg_params *p,
386 			  const struct sys_reg_desc *r)
387 {
388 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
389 	u32 sr = reg_to_encoding(r);
390 
391 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
392 		kvm_inject_undefined(vcpu);
393 		return false;
394 	}
395 
396 	if (p->is_write && sr == SYS_LORID_EL1)
397 		return write_to_read_only(vcpu, p, r);
398 
399 	return trap_raz_wi(vcpu, p, r);
400 }
401 
402 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
403 			   struct sys_reg_params *p,
404 			   const struct sys_reg_desc *r)
405 {
406 	u64 oslsr;
407 
408 	if (!p->is_write)
409 		return read_from_write_only(vcpu, p, r);
410 
411 	/* Forward the OSLK bit to OSLSR */
412 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
413 	if (p->regval & OSLAR_EL1_OSLK)
414 		oslsr |= OSLSR_EL1_OSLK;
415 
416 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
417 	return true;
418 }
419 
420 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
421 			   struct sys_reg_params *p,
422 			   const struct sys_reg_desc *r)
423 {
424 	if (p->is_write)
425 		return write_to_read_only(vcpu, p, r);
426 
427 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
428 	return true;
429 }
430 
431 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
432 			 u64 val)
433 {
434 	/*
435 	 * The only modifiable bit is the OSLK bit. Refuse the write if
436 	 * userspace attempts to change any other bit in the register.
437 	 */
438 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
439 		return -EINVAL;
440 
441 	__vcpu_sys_reg(vcpu, rd->reg) = val;
442 	return 0;
443 }
444 
445 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
446 				   struct sys_reg_params *p,
447 				   const struct sys_reg_desc *r)
448 {
449 	if (p->is_write) {
450 		return ignore_write(vcpu, p);
451 	} else {
452 		p->regval = read_sysreg(dbgauthstatus_el1);
453 		return true;
454 	}
455 }
456 
457 /*
458  * We want to avoid world-switching all the DBG registers all the
459  * time:
460  *
461  * - If we've touched any debug register, it is likely that we're
462  *   going to touch more of them. It then makes sense to disable the
463  *   traps and start doing the save/restore dance
464  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
465  *   then mandatory to save/restore the registers, as the guest
466  *   depends on them.
467  *
468  * For this, we use a DIRTY bit, indicating the guest has modified the
469  * debug registers, used as follow:
470  *
471  * On guest entry:
472  * - If the dirty bit is set (because we're coming back from trapping),
473  *   disable the traps, save host registers, restore guest registers.
474  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
475  *   set the dirty bit, disable the traps, save host registers,
476  *   restore guest registers.
477  * - Otherwise, enable the traps
478  *
479  * On guest exit:
480  * - If the dirty bit is set, save guest registers, restore host
481  *   registers and clear the dirty bit. This ensure that the host can
482  *   now use the debug registers.
483  */
484 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
485 			    struct sys_reg_params *p,
486 			    const struct sys_reg_desc *r)
487 {
488 	access_rw(vcpu, p, r);
489 	if (p->is_write)
490 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
491 
492 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
493 
494 	return true;
495 }
496 
497 /*
498  * reg_to_dbg/dbg_to_reg
499  *
500  * A 32 bit write to a debug register leave top bits alone
501  * A 32 bit read from a debug register only returns the bottom bits
502  *
503  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
504  * switches between host and guest values in future.
505  */
506 static void reg_to_dbg(struct kvm_vcpu *vcpu,
507 		       struct sys_reg_params *p,
508 		       const struct sys_reg_desc *rd,
509 		       u64 *dbg_reg)
510 {
511 	u64 mask, shift, val;
512 
513 	get_access_mask(rd, &mask, &shift);
514 
515 	val = *dbg_reg;
516 	val &= ~mask;
517 	val |= (p->regval & (mask >> shift)) << shift;
518 	*dbg_reg = val;
519 
520 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
521 }
522 
523 static void dbg_to_reg(struct kvm_vcpu *vcpu,
524 		       struct sys_reg_params *p,
525 		       const struct sys_reg_desc *rd,
526 		       u64 *dbg_reg)
527 {
528 	u64 mask, shift;
529 
530 	get_access_mask(rd, &mask, &shift);
531 	p->regval = (*dbg_reg & mask) >> shift;
532 }
533 
534 static bool trap_bvr(struct kvm_vcpu *vcpu,
535 		     struct sys_reg_params *p,
536 		     const struct sys_reg_desc *rd)
537 {
538 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
539 
540 	if (p->is_write)
541 		reg_to_dbg(vcpu, p, rd, dbg_reg);
542 	else
543 		dbg_to_reg(vcpu, p, rd, dbg_reg);
544 
545 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
546 
547 	return true;
548 }
549 
550 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
551 		   u64 val)
552 {
553 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
554 	return 0;
555 }
556 
557 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
558 		   u64 *val)
559 {
560 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
561 	return 0;
562 }
563 
564 static u64 reset_bvr(struct kvm_vcpu *vcpu,
565 		      const struct sys_reg_desc *rd)
566 {
567 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
568 	return rd->val;
569 }
570 
571 static bool trap_bcr(struct kvm_vcpu *vcpu,
572 		     struct sys_reg_params *p,
573 		     const struct sys_reg_desc *rd)
574 {
575 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576 
577 	if (p->is_write)
578 		reg_to_dbg(vcpu, p, rd, dbg_reg);
579 	else
580 		dbg_to_reg(vcpu, p, rd, dbg_reg);
581 
582 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
583 
584 	return true;
585 }
586 
587 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
588 		   u64 val)
589 {
590 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
591 	return 0;
592 }
593 
594 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
595 		   u64 *val)
596 {
597 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
598 	return 0;
599 }
600 
601 static u64 reset_bcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
605 	return rd->val;
606 }
607 
608 static bool trap_wvr(struct kvm_vcpu *vcpu,
609 		     struct sys_reg_params *p,
610 		     const struct sys_reg_desc *rd)
611 {
612 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613 
614 	if (p->is_write)
615 		reg_to_dbg(vcpu, p, rd, dbg_reg);
616 	else
617 		dbg_to_reg(vcpu, p, rd, dbg_reg);
618 
619 	trace_trap_reg(__func__, rd->CRm, p->is_write,
620 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
621 
622 	return true;
623 }
624 
625 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
626 		   u64 val)
627 {
628 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
629 	return 0;
630 }
631 
632 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
633 		   u64 *val)
634 {
635 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
636 	return 0;
637 }
638 
639 static u64 reset_wvr(struct kvm_vcpu *vcpu,
640 		      const struct sys_reg_desc *rd)
641 {
642 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
643 	return rd->val;
644 }
645 
646 static bool trap_wcr(struct kvm_vcpu *vcpu,
647 		     struct sys_reg_params *p,
648 		     const struct sys_reg_desc *rd)
649 {
650 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
651 
652 	if (p->is_write)
653 		reg_to_dbg(vcpu, p, rd, dbg_reg);
654 	else
655 		dbg_to_reg(vcpu, p, rd, dbg_reg);
656 
657 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
658 
659 	return true;
660 }
661 
662 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
663 		   u64 val)
664 {
665 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
666 	return 0;
667 }
668 
669 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
670 		   u64 *val)
671 {
672 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
673 	return 0;
674 }
675 
676 static u64 reset_wcr(struct kvm_vcpu *vcpu,
677 		      const struct sys_reg_desc *rd)
678 {
679 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
680 	return rd->val;
681 }
682 
683 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
684 {
685 	u64 amair = read_sysreg(amair_el1);
686 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
687 	return amair;
688 }
689 
690 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
691 {
692 	u64 actlr = read_sysreg(actlr_el1);
693 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
694 	return actlr;
695 }
696 
697 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
698 {
699 	u64 mpidr;
700 
701 	/*
702 	 * Map the vcpu_id into the first three affinity level fields of
703 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
704 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
705 	 * of the GICv3 to be able to address each CPU directly when
706 	 * sending IPIs.
707 	 */
708 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
709 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
710 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
711 	mpidr |= (1ULL << 31);
712 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
713 
714 	return mpidr;
715 }
716 
717 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
718 				   const struct sys_reg_desc *r)
719 {
720 	if (kvm_vcpu_has_pmu(vcpu))
721 		return 0;
722 
723 	return REG_HIDDEN;
724 }
725 
726 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
727 {
728 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
729 
730 	/* No PMU available, any PMU reg may UNDEF... */
731 	if (!kvm_arm_support_pmu_v3())
732 		return 0;
733 
734 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
735 	n &= ARMV8_PMU_PMCR_N_MASK;
736 	if (n)
737 		mask |= GENMASK(n - 1, 0);
738 
739 	reset_unknown(vcpu, r);
740 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
741 
742 	return __vcpu_sys_reg(vcpu, r->reg);
743 }
744 
745 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
746 {
747 	reset_unknown(vcpu, r);
748 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
749 
750 	return __vcpu_sys_reg(vcpu, r->reg);
751 }
752 
753 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
754 {
755 	reset_unknown(vcpu, r);
756 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
757 
758 	return __vcpu_sys_reg(vcpu, r->reg);
759 }
760 
761 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
762 {
763 	reset_unknown(vcpu, r);
764 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
765 
766 	return __vcpu_sys_reg(vcpu, r->reg);
767 }
768 
769 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
770 {
771 	u64 pmcr;
772 
773 	/* No PMU available, PMCR_EL0 may UNDEF... */
774 	if (!kvm_arm_support_pmu_v3())
775 		return 0;
776 
777 	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
778 	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
779 	if (!kvm_supports_32bit_el0())
780 		pmcr |= ARMV8_PMU_PMCR_LC;
781 
782 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
783 
784 	return __vcpu_sys_reg(vcpu, r->reg);
785 }
786 
787 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
788 {
789 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
790 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
791 
792 	if (!enabled)
793 		kvm_inject_undefined(vcpu);
794 
795 	return !enabled;
796 }
797 
798 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
799 {
800 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
801 }
802 
803 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
804 {
805 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
806 }
807 
808 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
809 {
810 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
811 }
812 
813 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
814 {
815 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
816 }
817 
818 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
819 			const struct sys_reg_desc *r)
820 {
821 	u64 val;
822 
823 	if (pmu_access_el0_disabled(vcpu))
824 		return false;
825 
826 	if (p->is_write) {
827 		/*
828 		 * Only update writeable bits of PMCR (continuing into
829 		 * kvm_pmu_handle_pmcr() as well)
830 		 */
831 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
832 		val &= ~ARMV8_PMU_PMCR_MASK;
833 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
834 		if (!kvm_supports_32bit_el0())
835 			val |= ARMV8_PMU_PMCR_LC;
836 		kvm_pmu_handle_pmcr(vcpu, val);
837 	} else {
838 		/* PMCR.P & PMCR.C are RAZ */
839 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
840 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
841 		p->regval = val;
842 	}
843 
844 	return true;
845 }
846 
847 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
848 			  const struct sys_reg_desc *r)
849 {
850 	if (pmu_access_event_counter_el0_disabled(vcpu))
851 		return false;
852 
853 	if (p->is_write)
854 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
855 	else
856 		/* return PMSELR.SEL field */
857 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
858 			    & ARMV8_PMU_COUNTER_MASK;
859 
860 	return true;
861 }
862 
863 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			  const struct sys_reg_desc *r)
865 {
866 	u64 pmceid, mask, shift;
867 
868 	BUG_ON(p->is_write);
869 
870 	if (pmu_access_el0_disabled(vcpu))
871 		return false;
872 
873 	get_access_mask(r, &mask, &shift);
874 
875 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
876 	pmceid &= mask;
877 	pmceid >>= shift;
878 
879 	p->regval = pmceid;
880 
881 	return true;
882 }
883 
884 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
885 {
886 	u64 pmcr, val;
887 
888 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
889 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
890 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
891 		kvm_inject_undefined(vcpu);
892 		return false;
893 	}
894 
895 	return true;
896 }
897 
898 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
899 			  u64 *val)
900 {
901 	u64 idx;
902 
903 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
904 		/* PMCCNTR_EL0 */
905 		idx = ARMV8_PMU_CYCLE_IDX;
906 	else
907 		/* PMEVCNTRn_EL0 */
908 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
909 
910 	*val = kvm_pmu_get_counter_value(vcpu, idx);
911 	return 0;
912 }
913 
914 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
915 			      struct sys_reg_params *p,
916 			      const struct sys_reg_desc *r)
917 {
918 	u64 idx = ~0UL;
919 
920 	if (r->CRn == 9 && r->CRm == 13) {
921 		if (r->Op2 == 2) {
922 			/* PMXEVCNTR_EL0 */
923 			if (pmu_access_event_counter_el0_disabled(vcpu))
924 				return false;
925 
926 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
927 			      & ARMV8_PMU_COUNTER_MASK;
928 		} else if (r->Op2 == 0) {
929 			/* PMCCNTR_EL0 */
930 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
931 				return false;
932 
933 			idx = ARMV8_PMU_CYCLE_IDX;
934 		}
935 	} else if (r->CRn == 0 && r->CRm == 9) {
936 		/* PMCCNTR */
937 		if (pmu_access_event_counter_el0_disabled(vcpu))
938 			return false;
939 
940 		idx = ARMV8_PMU_CYCLE_IDX;
941 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
942 		/* PMEVCNTRn_EL0 */
943 		if (pmu_access_event_counter_el0_disabled(vcpu))
944 			return false;
945 
946 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
947 	}
948 
949 	/* Catch any decoding mistake */
950 	WARN_ON(idx == ~0UL);
951 
952 	if (!pmu_counter_idx_valid(vcpu, idx))
953 		return false;
954 
955 	if (p->is_write) {
956 		if (pmu_access_el0_disabled(vcpu))
957 			return false;
958 
959 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
960 	} else {
961 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
962 	}
963 
964 	return true;
965 }
966 
967 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
968 			       const struct sys_reg_desc *r)
969 {
970 	u64 idx, reg;
971 
972 	if (pmu_access_el0_disabled(vcpu))
973 		return false;
974 
975 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
976 		/* PMXEVTYPER_EL0 */
977 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
978 		reg = PMEVTYPER0_EL0 + idx;
979 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
980 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
981 		if (idx == ARMV8_PMU_CYCLE_IDX)
982 			reg = PMCCFILTR_EL0;
983 		else
984 			/* PMEVTYPERn_EL0 */
985 			reg = PMEVTYPER0_EL0 + idx;
986 	} else {
987 		BUG();
988 	}
989 
990 	if (!pmu_counter_idx_valid(vcpu, idx))
991 		return false;
992 
993 	if (p->is_write) {
994 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
995 		kvm_vcpu_pmu_restore_guest(vcpu);
996 	} else {
997 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
998 	}
999 
1000 	return true;
1001 }
1002 
1003 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1004 			   const struct sys_reg_desc *r)
1005 {
1006 	u64 val, mask;
1007 
1008 	if (pmu_access_el0_disabled(vcpu))
1009 		return false;
1010 
1011 	mask = kvm_pmu_valid_counter_mask(vcpu);
1012 	if (p->is_write) {
1013 		val = p->regval & mask;
1014 		if (r->Op2 & 0x1) {
1015 			/* accessing PMCNTENSET_EL0 */
1016 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1017 			kvm_pmu_enable_counter_mask(vcpu, val);
1018 			kvm_vcpu_pmu_restore_guest(vcpu);
1019 		} else {
1020 			/* accessing PMCNTENCLR_EL0 */
1021 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1022 			kvm_pmu_disable_counter_mask(vcpu, val);
1023 		}
1024 	} else {
1025 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1026 	}
1027 
1028 	return true;
1029 }
1030 
1031 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1032 			   const struct sys_reg_desc *r)
1033 {
1034 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1035 
1036 	if (check_pmu_access_disabled(vcpu, 0))
1037 		return false;
1038 
1039 	if (p->is_write) {
1040 		u64 val = p->regval & mask;
1041 
1042 		if (r->Op2 & 0x1)
1043 			/* accessing PMINTENSET_EL1 */
1044 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1045 		else
1046 			/* accessing PMINTENCLR_EL1 */
1047 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1048 	} else {
1049 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1050 	}
1051 
1052 	return true;
1053 }
1054 
1055 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1056 			 const struct sys_reg_desc *r)
1057 {
1058 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1059 
1060 	if (pmu_access_el0_disabled(vcpu))
1061 		return false;
1062 
1063 	if (p->is_write) {
1064 		if (r->CRm & 0x2)
1065 			/* accessing PMOVSSET_EL0 */
1066 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1067 		else
1068 			/* accessing PMOVSCLR_EL0 */
1069 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1070 	} else {
1071 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1072 	}
1073 
1074 	return true;
1075 }
1076 
1077 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1078 			   const struct sys_reg_desc *r)
1079 {
1080 	u64 mask;
1081 
1082 	if (!p->is_write)
1083 		return read_from_write_only(vcpu, p, r);
1084 
1085 	if (pmu_write_swinc_el0_disabled(vcpu))
1086 		return false;
1087 
1088 	mask = kvm_pmu_valid_counter_mask(vcpu);
1089 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1090 	return true;
1091 }
1092 
1093 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1094 			     const struct sys_reg_desc *r)
1095 {
1096 	if (p->is_write) {
1097 		if (!vcpu_mode_priv(vcpu)) {
1098 			kvm_inject_undefined(vcpu);
1099 			return false;
1100 		}
1101 
1102 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1103 			       p->regval & ARMV8_PMU_USERENR_MASK;
1104 	} else {
1105 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1106 			    & ARMV8_PMU_USERENR_MASK;
1107 	}
1108 
1109 	return true;
1110 }
1111 
1112 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1113 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1114 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1115 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1116 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1117 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1118 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1119 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1120 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1121 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1122 
1123 #define PMU_SYS_REG(name)						\
1124 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1125 	.visibility = pmu_visibility
1126 
1127 /* Macro to expand the PMEVCNTRn_EL0 register */
1128 #define PMU_PMEVCNTR_EL0(n)						\
1129 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1130 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1131 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1132 
1133 /* Macro to expand the PMEVTYPERn_EL0 register */
1134 #define PMU_PMEVTYPER_EL0(n)						\
1135 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1136 	  .reset = reset_pmevtyper,					\
1137 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1138 
1139 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1140 			 const struct sys_reg_desc *r)
1141 {
1142 	kvm_inject_undefined(vcpu);
1143 
1144 	return false;
1145 }
1146 
1147 /* Macro to expand the AMU counter and type registers*/
1148 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1149 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1150 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1151 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1152 
1153 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1154 			const struct sys_reg_desc *rd)
1155 {
1156 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1157 }
1158 
1159 /*
1160  * If we land here on a PtrAuth access, that is because we didn't
1161  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1162  * way this happens is when the guest does not have PtrAuth support
1163  * enabled.
1164  */
1165 #define __PTRAUTH_KEY(k)						\
1166 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1167 	.visibility = ptrauth_visibility}
1168 
1169 #define PTRAUTH_KEY(k)							\
1170 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1171 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1172 
1173 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1174 			      struct sys_reg_params *p,
1175 			      const struct sys_reg_desc *r)
1176 {
1177 	enum kvm_arch_timers tmr;
1178 	enum kvm_arch_timer_regs treg;
1179 	u64 reg = reg_to_encoding(r);
1180 
1181 	switch (reg) {
1182 	case SYS_CNTP_TVAL_EL0:
1183 	case SYS_AARCH32_CNTP_TVAL:
1184 		tmr = TIMER_PTIMER;
1185 		treg = TIMER_REG_TVAL;
1186 		break;
1187 	case SYS_CNTP_CTL_EL0:
1188 	case SYS_AARCH32_CNTP_CTL:
1189 		tmr = TIMER_PTIMER;
1190 		treg = TIMER_REG_CTL;
1191 		break;
1192 	case SYS_CNTP_CVAL_EL0:
1193 	case SYS_AARCH32_CNTP_CVAL:
1194 		tmr = TIMER_PTIMER;
1195 		treg = TIMER_REG_CVAL;
1196 		break;
1197 	case SYS_CNTPCT_EL0:
1198 	case SYS_CNTPCTSS_EL0:
1199 	case SYS_AARCH32_CNTPCT:
1200 		tmr = TIMER_PTIMER;
1201 		treg = TIMER_REG_CNT;
1202 		break;
1203 	default:
1204 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1205 		kvm_inject_undefined(vcpu);
1206 		return false;
1207 	}
1208 
1209 	if (p->is_write)
1210 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1211 	else
1212 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1213 
1214 	return true;
1215 }
1216 
1217 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1218 				    s64 new, s64 cur)
1219 {
1220 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1221 
1222 	/* Some features have different safe value type in KVM than host features */
1223 	switch (id) {
1224 	case SYS_ID_AA64DFR0_EL1:
1225 		if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1226 			kvm_ftr.type = FTR_LOWER_SAFE;
1227 		break;
1228 	case SYS_ID_DFR0_EL1:
1229 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1230 			kvm_ftr.type = FTR_LOWER_SAFE;
1231 		break;
1232 	}
1233 
1234 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1235 }
1236 
1237 /**
1238  * arm64_check_features() - Check if a feature register value constitutes
1239  * a subset of features indicated by the idreg's KVM sanitised limit.
1240  *
1241  * This function will check if each feature field of @val is the "safe" value
1242  * against idreg's KVM sanitised limit return from reset() callback.
1243  * If a field value in @val is the same as the one in limit, it is always
1244  * considered the safe value regardless For register fields that are not in
1245  * writable, only the value in limit is considered the safe value.
1246  *
1247  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1248  */
1249 static int arm64_check_features(struct kvm_vcpu *vcpu,
1250 				const struct sys_reg_desc *rd,
1251 				u64 val)
1252 {
1253 	const struct arm64_ftr_reg *ftr_reg;
1254 	const struct arm64_ftr_bits *ftrp = NULL;
1255 	u32 id = reg_to_encoding(rd);
1256 	u64 writable_mask = rd->val;
1257 	u64 limit = rd->reset(vcpu, rd);
1258 	u64 mask = 0;
1259 
1260 	/*
1261 	 * Hidden and unallocated ID registers may not have a corresponding
1262 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1263 	 * only safe value is 0.
1264 	 */
1265 	if (sysreg_visible_as_raz(vcpu, rd))
1266 		return val ? -E2BIG : 0;
1267 
1268 	ftr_reg = get_arm64_ftr_reg(id);
1269 	if (!ftr_reg)
1270 		return -EINVAL;
1271 
1272 	ftrp = ftr_reg->ftr_bits;
1273 
1274 	for (; ftrp && ftrp->width; ftrp++) {
1275 		s64 f_val, f_lim, safe_val;
1276 		u64 ftr_mask;
1277 
1278 		ftr_mask = arm64_ftr_mask(ftrp);
1279 		if ((ftr_mask & writable_mask) != ftr_mask)
1280 			continue;
1281 
1282 		f_val = arm64_ftr_value(ftrp, val);
1283 		f_lim = arm64_ftr_value(ftrp, limit);
1284 		mask |= ftr_mask;
1285 
1286 		if (f_val == f_lim)
1287 			safe_val = f_val;
1288 		else
1289 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1290 
1291 		if (safe_val != f_val)
1292 			return -E2BIG;
1293 	}
1294 
1295 	/* For fields that are not writable, values in limit are the safe values. */
1296 	if ((val & ~mask) != (limit & ~mask))
1297 		return -E2BIG;
1298 
1299 	return 0;
1300 }
1301 
1302 static u8 pmuver_to_perfmon(u8 pmuver)
1303 {
1304 	switch (pmuver) {
1305 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1306 		return ID_DFR0_EL1_PerfMon_PMUv3;
1307 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1308 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1309 	default:
1310 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1311 		return pmuver;
1312 	}
1313 }
1314 
1315 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1316 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1317 				       const struct sys_reg_desc *r)
1318 {
1319 	u32 id = reg_to_encoding(r);
1320 	u64 val;
1321 
1322 	if (sysreg_visible_as_raz(vcpu, r))
1323 		return 0;
1324 
1325 	val = read_sanitised_ftr_reg(id);
1326 
1327 	switch (id) {
1328 	case SYS_ID_AA64PFR1_EL1:
1329 		if (!kvm_has_mte(vcpu->kvm))
1330 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1331 
1332 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1333 		break;
1334 	case SYS_ID_AA64ISAR1_EL1:
1335 		if (!vcpu_has_ptrauth(vcpu))
1336 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1337 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1338 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1339 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1340 		break;
1341 	case SYS_ID_AA64ISAR2_EL1:
1342 		if (!vcpu_has_ptrauth(vcpu))
1343 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1344 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1345 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1346 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1347 		val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
1348 		break;
1349 	case SYS_ID_AA64MMFR2_EL1:
1350 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1351 		break;
1352 	case SYS_ID_MMFR4_EL1:
1353 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1354 		break;
1355 	}
1356 
1357 	return val;
1358 }
1359 
1360 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1361 				     const struct sys_reg_desc *r)
1362 {
1363 	return __kvm_read_sanitised_id_reg(vcpu, r);
1364 }
1365 
1366 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1367 {
1368 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1369 }
1370 
1371 /*
1372  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1373  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1374  */
1375 static inline bool is_id_reg(u32 id)
1376 {
1377 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1378 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1379 		sys_reg_CRm(id) < 8);
1380 }
1381 
1382 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1383 				  const struct sys_reg_desc *r)
1384 {
1385 	u32 id = reg_to_encoding(r);
1386 
1387 	switch (id) {
1388 	case SYS_ID_AA64ZFR0_EL1:
1389 		if (!vcpu_has_sve(vcpu))
1390 			return REG_RAZ;
1391 		break;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1398 				       const struct sys_reg_desc *r)
1399 {
1400 	/*
1401 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1402 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1403 	 * systems.
1404 	 */
1405 	if (!kvm_supports_32bit_el0())
1406 		return REG_RAZ | REG_USER_WI;
1407 
1408 	return id_visibility(vcpu, r);
1409 }
1410 
1411 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1412 				   const struct sys_reg_desc *r)
1413 {
1414 	return REG_RAZ;
1415 }
1416 
1417 /* cpufeature ID register access trap handlers */
1418 
1419 static bool access_id_reg(struct kvm_vcpu *vcpu,
1420 			  struct sys_reg_params *p,
1421 			  const struct sys_reg_desc *r)
1422 {
1423 	if (p->is_write)
1424 		return write_to_read_only(vcpu, p, r);
1425 
1426 	p->regval = read_id_reg(vcpu, r);
1427 	if (vcpu_has_nv(vcpu))
1428 		access_nested_id_reg(vcpu, p, r);
1429 
1430 	return true;
1431 }
1432 
1433 /* Visibility overrides for SVE-specific control registers */
1434 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1435 				   const struct sys_reg_desc *rd)
1436 {
1437 	if (vcpu_has_sve(vcpu))
1438 		return 0;
1439 
1440 	return REG_HIDDEN;
1441 }
1442 
1443 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1444 					  const struct sys_reg_desc *rd)
1445 {
1446 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1447 
1448 	if (!vcpu_has_sve(vcpu))
1449 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1450 
1451 	/*
1452 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1453 	 * Although this is a per-CPU feature, we make it global because
1454 	 * asymmetric systems are just a nuisance.
1455 	 *
1456 	 * Userspace can override this as long as it doesn't promise
1457 	 * the impossible.
1458 	 */
1459 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1460 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1461 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1462 	}
1463 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1464 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1465 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1466 	}
1467 
1468 	if (kvm_vgic_global_state.type == VGIC_V3) {
1469 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1470 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1471 	}
1472 
1473 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1474 
1475 	return val;
1476 }
1477 
1478 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1479 					  const struct sys_reg_desc *rd)
1480 {
1481 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1482 
1483 	/* Limit debug to ARMv8.0 */
1484 	val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1485 	val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1486 
1487 	/*
1488 	 * Only initialize the PMU version if the vCPU was configured with one.
1489 	 */
1490 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1491 	if (kvm_vcpu_has_pmu(vcpu))
1492 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1493 				      kvm_arm_pmu_get_pmuver_limit());
1494 
1495 	/* Hide SPE from guests */
1496 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1497 
1498 	return val;
1499 }
1500 
1501 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1502 			       const struct sys_reg_desc *rd,
1503 			       u64 val)
1504 {
1505 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1506 
1507 	/*
1508 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1509 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1510 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1511 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1512 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1513 	 *
1514 	 * At minimum, we're on the hook to allow values that were given to
1515 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1516 	 * with a more sensible NI. The value of an ID register changing under
1517 	 * the nose of the guest is unfortunate, but is certainly no more
1518 	 * surprising than an ill-guided PMU driver poking at impdef system
1519 	 * registers that end in an UNDEF...
1520 	 */
1521 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1522 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1523 
1524 	return set_id_reg(vcpu, rd, val);
1525 }
1526 
1527 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1528 				      const struct sys_reg_desc *rd)
1529 {
1530 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1531 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1532 
1533 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1534 	if (kvm_vcpu_has_pmu(vcpu))
1535 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1536 
1537 	return val;
1538 }
1539 
1540 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1541 			   const struct sys_reg_desc *rd,
1542 			   u64 val)
1543 {
1544 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1545 
1546 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1547 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1548 		perfmon = 0;
1549 	}
1550 
1551 	/*
1552 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1553 	 * it doesn't promise more than what the HW gives us on the
1554 	 * AArch64 side (as everything is emulated with that), and
1555 	 * that this is a PMUv3.
1556 	 */
1557 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1558 		return -EINVAL;
1559 
1560 	return set_id_reg(vcpu, rd, val);
1561 }
1562 
1563 /*
1564  * cpufeature ID register user accessors
1565  *
1566  * For now, these registers are immutable for userspace, so no values
1567  * are stored, and for set_id_reg() we don't allow the effective value
1568  * to be changed.
1569  */
1570 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1571 		      u64 *val)
1572 {
1573 	/*
1574 	 * Avoid locking if the VM has already started, as the ID registers are
1575 	 * guaranteed to be invariant at that point.
1576 	 */
1577 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1578 		*val = read_id_reg(vcpu, rd);
1579 		return 0;
1580 	}
1581 
1582 	mutex_lock(&vcpu->kvm->arch.config_lock);
1583 	*val = read_id_reg(vcpu, rd);
1584 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1585 
1586 	return 0;
1587 }
1588 
1589 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1590 		      u64 val)
1591 {
1592 	u32 id = reg_to_encoding(rd);
1593 	int ret;
1594 
1595 	mutex_lock(&vcpu->kvm->arch.config_lock);
1596 
1597 	/*
1598 	 * Once the VM has started the ID registers are immutable. Reject any
1599 	 * write that does not match the final register value.
1600 	 */
1601 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1602 		if (val != read_id_reg(vcpu, rd))
1603 			ret = -EBUSY;
1604 		else
1605 			ret = 0;
1606 
1607 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1608 		return ret;
1609 	}
1610 
1611 	ret = arm64_check_features(vcpu, rd, val);
1612 	if (!ret)
1613 		IDREG(vcpu->kvm, id) = val;
1614 
1615 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1616 
1617 	/*
1618 	 * arm64_check_features() returns -E2BIG to indicate the register's
1619 	 * feature set is a superset of the maximally-allowed register value.
1620 	 * While it would be nice to precisely describe this to userspace, the
1621 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1622 	 * writes return -EINVAL.
1623 	 */
1624 	if (ret == -E2BIG)
1625 		ret = -EINVAL;
1626 	return ret;
1627 }
1628 
1629 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1630 		       u64 *val)
1631 {
1632 	*val = 0;
1633 	return 0;
1634 }
1635 
1636 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1637 		      u64 val)
1638 {
1639 	return 0;
1640 }
1641 
1642 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1643 		       const struct sys_reg_desc *r)
1644 {
1645 	if (p->is_write)
1646 		return write_to_read_only(vcpu, p, r);
1647 
1648 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1649 	return true;
1650 }
1651 
1652 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1653 			 const struct sys_reg_desc *r)
1654 {
1655 	if (p->is_write)
1656 		return write_to_read_only(vcpu, p, r);
1657 
1658 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1659 	return true;
1660 }
1661 
1662 /*
1663  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1664  * by the physical CPU which the vcpu currently resides in.
1665  */
1666 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1667 {
1668 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1669 	u64 clidr;
1670 	u8 loc;
1671 
1672 	if ((ctr_el0 & CTR_EL0_IDC)) {
1673 		/*
1674 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1675 		 * will not be set and a unified cache, which will be marked as
1676 		 * LoC, will be added.
1677 		 *
1678 		 * If not DIC, let the unified cache L2 so that an instruction
1679 		 * cache can be added as L1 later.
1680 		 */
1681 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1682 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1683 	} else {
1684 		/*
1685 		 * Data cache clean to the PoU is required so let L1 have a data
1686 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1687 		 * it can be marked as LoC too.
1688 		 */
1689 		loc = 1;
1690 		clidr = 1 << CLIDR_LOUU_SHIFT;
1691 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1692 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1693 	}
1694 
1695 	/*
1696 	 * Instruction cache invalidation to the PoU is required so let L1 have
1697 	 * an instruction cache. If L1 already has a data cache, it will be
1698 	 * CACHE_TYPE_SEPARATE.
1699 	 */
1700 	if (!(ctr_el0 & CTR_EL0_DIC))
1701 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1702 
1703 	clidr |= loc << CLIDR_LOC_SHIFT;
1704 
1705 	/*
1706 	 * Add tag cache unified to data cache. Allocation tags and data are
1707 	 * unified in a cache line so that it looks valid even if there is only
1708 	 * one cache line.
1709 	 */
1710 	if (kvm_has_mte(vcpu->kvm))
1711 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1712 
1713 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1714 
1715 	return __vcpu_sys_reg(vcpu, r->reg);
1716 }
1717 
1718 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1719 		      u64 val)
1720 {
1721 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1722 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1723 
1724 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1725 		return -EINVAL;
1726 
1727 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1728 
1729 	return 0;
1730 }
1731 
1732 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1733 			  const struct sys_reg_desc *r)
1734 {
1735 	int reg = r->reg;
1736 
1737 	if (p->is_write)
1738 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1739 	else
1740 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1741 	return true;
1742 }
1743 
1744 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1745 			  const struct sys_reg_desc *r)
1746 {
1747 	u32 csselr;
1748 
1749 	if (p->is_write)
1750 		return write_to_read_only(vcpu, p, r);
1751 
1752 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1753 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1754 	if (csselr < CSSELR_MAX)
1755 		p->regval = get_ccsidr(vcpu, csselr);
1756 
1757 	return true;
1758 }
1759 
1760 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1761 				   const struct sys_reg_desc *rd)
1762 {
1763 	if (kvm_has_mte(vcpu->kvm))
1764 		return 0;
1765 
1766 	return REG_HIDDEN;
1767 }
1768 
1769 #define MTE_REG(name) {				\
1770 	SYS_DESC(SYS_##name),			\
1771 	.access = undef_access,			\
1772 	.reset = reset_unknown,			\
1773 	.reg = name,				\
1774 	.visibility = mte_visibility,		\
1775 }
1776 
1777 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1778 				   const struct sys_reg_desc *rd)
1779 {
1780 	if (vcpu_has_nv(vcpu))
1781 		return 0;
1782 
1783 	return REG_HIDDEN;
1784 }
1785 
1786 #define EL2_REG(name, acc, rst, v) {		\
1787 	SYS_DESC(SYS_##name),			\
1788 	.access = acc,				\
1789 	.reset = rst,				\
1790 	.reg = name,				\
1791 	.visibility = el2_visibility,		\
1792 	.val = v,				\
1793 }
1794 
1795 /*
1796  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1797  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1798  * handling traps. Given that, they are always hidden from userspace.
1799  */
1800 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1801 				    const struct sys_reg_desc *rd)
1802 {
1803 	return REG_HIDDEN_USER;
1804 }
1805 
1806 #define EL12_REG(name, acc, rst, v) {		\
1807 	SYS_DESC(SYS_##name##_EL12),		\
1808 	.access = acc,				\
1809 	.reset = rst,				\
1810 	.reg = name##_EL1,			\
1811 	.val = v,				\
1812 	.visibility = elx2_visibility,		\
1813 }
1814 
1815 /*
1816  * Since reset() callback and field val are not used for idregs, they will be
1817  * used for specific purposes for idregs.
1818  * The reset() would return KVM sanitised register value. The value would be the
1819  * same as the host kernel sanitised value if there is no KVM sanitisation.
1820  * The val would be used as a mask indicating writable fields for the idreg.
1821  * Only bits with 1 are writable from userspace. This mask might not be
1822  * necessary in the future whenever all ID registers are enabled as writable
1823  * from userspace.
1824  */
1825 
1826 /* sys_reg_desc initialiser for known cpufeature ID registers */
1827 #define ID_SANITISED(name) {			\
1828 	SYS_DESC(SYS_##name),			\
1829 	.access	= access_id_reg,		\
1830 	.get_user = get_id_reg,			\
1831 	.set_user = set_id_reg,			\
1832 	.visibility = id_visibility,		\
1833 	.reset = kvm_read_sanitised_id_reg,	\
1834 	.val = 0,				\
1835 }
1836 
1837 /* sys_reg_desc initialiser for known cpufeature ID registers */
1838 #define AA32_ID_SANITISED(name) {		\
1839 	SYS_DESC(SYS_##name),			\
1840 	.access	= access_id_reg,		\
1841 	.get_user = get_id_reg,			\
1842 	.set_user = set_id_reg,			\
1843 	.visibility = aa32_id_visibility,	\
1844 	.reset = kvm_read_sanitised_id_reg,	\
1845 	.val = 0,				\
1846 }
1847 
1848 /*
1849  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1850  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1851  * (1 <= crm < 8, 0 <= Op2 < 8).
1852  */
1853 #define ID_UNALLOCATED(crm, op2) {			\
1854 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1855 	.access = access_id_reg,			\
1856 	.get_user = get_id_reg,				\
1857 	.set_user = set_id_reg,				\
1858 	.visibility = raz_visibility,			\
1859 	.reset = kvm_read_sanitised_id_reg,		\
1860 	.val = 0,					\
1861 }
1862 
1863 /*
1864  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1865  * For now, these are exposed just like unallocated ID regs: they appear
1866  * RAZ for the guest.
1867  */
1868 #define ID_HIDDEN(name) {			\
1869 	SYS_DESC(SYS_##name),			\
1870 	.access = access_id_reg,		\
1871 	.get_user = get_id_reg,			\
1872 	.set_user = set_id_reg,			\
1873 	.visibility = raz_visibility,		\
1874 	.reset = kvm_read_sanitised_id_reg,	\
1875 	.val = 0,				\
1876 }
1877 
1878 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1879 			  struct sys_reg_params *p,
1880 			  const struct sys_reg_desc *r)
1881 {
1882 	if (p->is_write)
1883 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1884 	else
1885 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1886 
1887 	return true;
1888 }
1889 
1890 static bool access_elr(struct kvm_vcpu *vcpu,
1891 		       struct sys_reg_params *p,
1892 		       const struct sys_reg_desc *r)
1893 {
1894 	if (p->is_write)
1895 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1896 	else
1897 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1898 
1899 	return true;
1900 }
1901 
1902 static bool access_spsr(struct kvm_vcpu *vcpu,
1903 			struct sys_reg_params *p,
1904 			const struct sys_reg_desc *r)
1905 {
1906 	if (p->is_write)
1907 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1908 	else
1909 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1910 
1911 	return true;
1912 }
1913 
1914 /*
1915  * Architected system registers.
1916  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1917  *
1918  * Debug handling: We do trap most, if not all debug related system
1919  * registers. The implementation is good enough to ensure that a guest
1920  * can use these with minimal performance degradation. The drawback is
1921  * that we don't implement any of the external debug architecture.
1922  * This should be revisited if we ever encounter a more demanding
1923  * guest...
1924  */
1925 static const struct sys_reg_desc sys_reg_descs[] = {
1926 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1927 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1928 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1929 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1930 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1931 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1932 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1933 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1934 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1935 
1936 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1937 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1938 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1939 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1940 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1941 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1942 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1943 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1944 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1945 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1946 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1947 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1948 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1949 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1950 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1951 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1952 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1953 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1954 
1955 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1956 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1957 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1958 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1959 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1960 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1961 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1962 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1963 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1964 
1965 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1966 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1967 	// DBGDTR[TR]X_EL0 share the same encoding
1968 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1969 
1970 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1971 
1972 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1973 
1974 	/*
1975 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1976 	 * entries in arm64_ftr_regs[].
1977 	 */
1978 
1979 	/* AArch64 mappings of the AArch32 ID registers */
1980 	/* CRm=1 */
1981 	AA32_ID_SANITISED(ID_PFR0_EL1),
1982 	AA32_ID_SANITISED(ID_PFR1_EL1),
1983 	{ SYS_DESC(SYS_ID_DFR0_EL1),
1984 	  .access = access_id_reg,
1985 	  .get_user = get_id_reg,
1986 	  .set_user = set_id_dfr0_el1,
1987 	  .visibility = aa32_id_visibility,
1988 	  .reset = read_sanitised_id_dfr0_el1,
1989 	  .val = ID_DFR0_EL1_PerfMon_MASK, },
1990 	ID_HIDDEN(ID_AFR0_EL1),
1991 	AA32_ID_SANITISED(ID_MMFR0_EL1),
1992 	AA32_ID_SANITISED(ID_MMFR1_EL1),
1993 	AA32_ID_SANITISED(ID_MMFR2_EL1),
1994 	AA32_ID_SANITISED(ID_MMFR3_EL1),
1995 
1996 	/* CRm=2 */
1997 	AA32_ID_SANITISED(ID_ISAR0_EL1),
1998 	AA32_ID_SANITISED(ID_ISAR1_EL1),
1999 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2000 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2001 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2002 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2003 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2004 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2005 
2006 	/* CRm=3 */
2007 	AA32_ID_SANITISED(MVFR0_EL1),
2008 	AA32_ID_SANITISED(MVFR1_EL1),
2009 	AA32_ID_SANITISED(MVFR2_EL1),
2010 	ID_UNALLOCATED(3,3),
2011 	AA32_ID_SANITISED(ID_PFR2_EL1),
2012 	ID_HIDDEN(ID_DFR1_EL1),
2013 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2014 	ID_UNALLOCATED(3,7),
2015 
2016 	/* AArch64 ID registers */
2017 	/* CRm=4 */
2018 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2019 	  .access = access_id_reg,
2020 	  .get_user = get_id_reg,
2021 	  .set_user = set_id_reg,
2022 	  .reset = read_sanitised_id_aa64pfr0_el1,
2023 	  .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
2024 	ID_SANITISED(ID_AA64PFR1_EL1),
2025 	ID_UNALLOCATED(4,2),
2026 	ID_UNALLOCATED(4,3),
2027 	ID_SANITISED(ID_AA64ZFR0_EL1),
2028 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2029 	ID_UNALLOCATED(4,6),
2030 	ID_UNALLOCATED(4,7),
2031 
2032 	/* CRm=5 */
2033 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2034 	  .access = access_id_reg,
2035 	  .get_user = get_id_reg,
2036 	  .set_user = set_id_aa64dfr0_el1,
2037 	  .reset = read_sanitised_id_aa64dfr0_el1,
2038 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
2039 	ID_SANITISED(ID_AA64DFR1_EL1),
2040 	ID_UNALLOCATED(5,2),
2041 	ID_UNALLOCATED(5,3),
2042 	ID_HIDDEN(ID_AA64AFR0_EL1),
2043 	ID_HIDDEN(ID_AA64AFR1_EL1),
2044 	ID_UNALLOCATED(5,6),
2045 	ID_UNALLOCATED(5,7),
2046 
2047 	/* CRm=6 */
2048 	ID_SANITISED(ID_AA64ISAR0_EL1),
2049 	ID_SANITISED(ID_AA64ISAR1_EL1),
2050 	ID_SANITISED(ID_AA64ISAR2_EL1),
2051 	ID_UNALLOCATED(6,3),
2052 	ID_UNALLOCATED(6,4),
2053 	ID_UNALLOCATED(6,5),
2054 	ID_UNALLOCATED(6,6),
2055 	ID_UNALLOCATED(6,7),
2056 
2057 	/* CRm=7 */
2058 	ID_SANITISED(ID_AA64MMFR0_EL1),
2059 	ID_SANITISED(ID_AA64MMFR1_EL1),
2060 	ID_SANITISED(ID_AA64MMFR2_EL1),
2061 	ID_SANITISED(ID_AA64MMFR3_EL1),
2062 	ID_UNALLOCATED(7,4),
2063 	ID_UNALLOCATED(7,5),
2064 	ID_UNALLOCATED(7,6),
2065 	ID_UNALLOCATED(7,7),
2066 
2067 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2068 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2069 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2070 
2071 	MTE_REG(RGSR_EL1),
2072 	MTE_REG(GCR_EL1),
2073 
2074 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2075 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2076 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2077 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2078 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2079 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2080 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2081 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2082 
2083 	PTRAUTH_KEY(APIA),
2084 	PTRAUTH_KEY(APIB),
2085 	PTRAUTH_KEY(APDA),
2086 	PTRAUTH_KEY(APDB),
2087 	PTRAUTH_KEY(APGA),
2088 
2089 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2090 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2091 
2092 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2093 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2094 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2095 
2096 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2097 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2098 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2099 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2100 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2101 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2102 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2103 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2104 
2105 	MTE_REG(TFSR_EL1),
2106 	MTE_REG(TFSRE0_EL1),
2107 
2108 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2109 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2110 
2111 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2112 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2113 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2114 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2115 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2116 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2117 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2118 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2119 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2120 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2121 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2122 	/* PMBIDR_EL1 is not trapped */
2123 
2124 	{ PMU_SYS_REG(PMINTENSET_EL1),
2125 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2126 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2127 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
2128 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2129 
2130 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2131 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2132 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2133 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2134 
2135 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2136 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2137 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2138 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2139 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2140 
2141 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2142 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2143 
2144 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2145 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2146 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2147 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2148 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2149 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2150 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2151 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2152 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2153 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2154 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2155 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2156 
2157 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2158 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2159 
2160 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2161 
2162 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2163 
2164 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2165 
2166 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2167 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2168 	  .set_user = set_clidr },
2169 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2170 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2171 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2172 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2173 	{ SYS_DESC(SYS_SVCR), undef_access },
2174 
2175 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
2176 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
2177 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2178 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2179 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2180 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2181 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2182 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2183 	/*
2184 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2185 	 * previously (and pointlessly) advertised in the past...
2186 	 */
2187 	{ PMU_SYS_REG(PMSWINC_EL0),
2188 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2189 	  .access = access_pmswinc, .reset = NULL },
2190 	{ PMU_SYS_REG(PMSELR_EL0),
2191 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2192 	{ PMU_SYS_REG(PMCEID0_EL0),
2193 	  .access = access_pmceid, .reset = NULL },
2194 	{ PMU_SYS_REG(PMCEID1_EL0),
2195 	  .access = access_pmceid, .reset = NULL },
2196 	{ PMU_SYS_REG(PMCCNTR_EL0),
2197 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2198 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2199 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2200 	  .access = access_pmu_evtyper, .reset = NULL },
2201 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2202 	  .access = access_pmu_evcntr, .reset = NULL },
2203 	/*
2204 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2205 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2206 	 */
2207 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2208 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2209 	{ PMU_SYS_REG(PMOVSSET_EL0),
2210 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2211 
2212 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2213 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2214 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2215 
2216 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2217 
2218 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2219 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2220 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2221 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2222 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2223 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2224 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2225 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2226 	AMU_AMEVCNTR0_EL0(0),
2227 	AMU_AMEVCNTR0_EL0(1),
2228 	AMU_AMEVCNTR0_EL0(2),
2229 	AMU_AMEVCNTR0_EL0(3),
2230 	AMU_AMEVCNTR0_EL0(4),
2231 	AMU_AMEVCNTR0_EL0(5),
2232 	AMU_AMEVCNTR0_EL0(6),
2233 	AMU_AMEVCNTR0_EL0(7),
2234 	AMU_AMEVCNTR0_EL0(8),
2235 	AMU_AMEVCNTR0_EL0(9),
2236 	AMU_AMEVCNTR0_EL0(10),
2237 	AMU_AMEVCNTR0_EL0(11),
2238 	AMU_AMEVCNTR0_EL0(12),
2239 	AMU_AMEVCNTR0_EL0(13),
2240 	AMU_AMEVCNTR0_EL0(14),
2241 	AMU_AMEVCNTR0_EL0(15),
2242 	AMU_AMEVTYPER0_EL0(0),
2243 	AMU_AMEVTYPER0_EL0(1),
2244 	AMU_AMEVTYPER0_EL0(2),
2245 	AMU_AMEVTYPER0_EL0(3),
2246 	AMU_AMEVTYPER0_EL0(4),
2247 	AMU_AMEVTYPER0_EL0(5),
2248 	AMU_AMEVTYPER0_EL0(6),
2249 	AMU_AMEVTYPER0_EL0(7),
2250 	AMU_AMEVTYPER0_EL0(8),
2251 	AMU_AMEVTYPER0_EL0(9),
2252 	AMU_AMEVTYPER0_EL0(10),
2253 	AMU_AMEVTYPER0_EL0(11),
2254 	AMU_AMEVTYPER0_EL0(12),
2255 	AMU_AMEVTYPER0_EL0(13),
2256 	AMU_AMEVTYPER0_EL0(14),
2257 	AMU_AMEVTYPER0_EL0(15),
2258 	AMU_AMEVCNTR1_EL0(0),
2259 	AMU_AMEVCNTR1_EL0(1),
2260 	AMU_AMEVCNTR1_EL0(2),
2261 	AMU_AMEVCNTR1_EL0(3),
2262 	AMU_AMEVCNTR1_EL0(4),
2263 	AMU_AMEVCNTR1_EL0(5),
2264 	AMU_AMEVCNTR1_EL0(6),
2265 	AMU_AMEVCNTR1_EL0(7),
2266 	AMU_AMEVCNTR1_EL0(8),
2267 	AMU_AMEVCNTR1_EL0(9),
2268 	AMU_AMEVCNTR1_EL0(10),
2269 	AMU_AMEVCNTR1_EL0(11),
2270 	AMU_AMEVCNTR1_EL0(12),
2271 	AMU_AMEVCNTR1_EL0(13),
2272 	AMU_AMEVCNTR1_EL0(14),
2273 	AMU_AMEVCNTR1_EL0(15),
2274 	AMU_AMEVTYPER1_EL0(0),
2275 	AMU_AMEVTYPER1_EL0(1),
2276 	AMU_AMEVTYPER1_EL0(2),
2277 	AMU_AMEVTYPER1_EL0(3),
2278 	AMU_AMEVTYPER1_EL0(4),
2279 	AMU_AMEVTYPER1_EL0(5),
2280 	AMU_AMEVTYPER1_EL0(6),
2281 	AMU_AMEVTYPER1_EL0(7),
2282 	AMU_AMEVTYPER1_EL0(8),
2283 	AMU_AMEVTYPER1_EL0(9),
2284 	AMU_AMEVTYPER1_EL0(10),
2285 	AMU_AMEVTYPER1_EL0(11),
2286 	AMU_AMEVTYPER1_EL0(12),
2287 	AMU_AMEVTYPER1_EL0(13),
2288 	AMU_AMEVTYPER1_EL0(14),
2289 	AMU_AMEVTYPER1_EL0(15),
2290 
2291 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2292 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2293 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2294 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2295 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2296 
2297 	/* PMEVCNTRn_EL0 */
2298 	PMU_PMEVCNTR_EL0(0),
2299 	PMU_PMEVCNTR_EL0(1),
2300 	PMU_PMEVCNTR_EL0(2),
2301 	PMU_PMEVCNTR_EL0(3),
2302 	PMU_PMEVCNTR_EL0(4),
2303 	PMU_PMEVCNTR_EL0(5),
2304 	PMU_PMEVCNTR_EL0(6),
2305 	PMU_PMEVCNTR_EL0(7),
2306 	PMU_PMEVCNTR_EL0(8),
2307 	PMU_PMEVCNTR_EL0(9),
2308 	PMU_PMEVCNTR_EL0(10),
2309 	PMU_PMEVCNTR_EL0(11),
2310 	PMU_PMEVCNTR_EL0(12),
2311 	PMU_PMEVCNTR_EL0(13),
2312 	PMU_PMEVCNTR_EL0(14),
2313 	PMU_PMEVCNTR_EL0(15),
2314 	PMU_PMEVCNTR_EL0(16),
2315 	PMU_PMEVCNTR_EL0(17),
2316 	PMU_PMEVCNTR_EL0(18),
2317 	PMU_PMEVCNTR_EL0(19),
2318 	PMU_PMEVCNTR_EL0(20),
2319 	PMU_PMEVCNTR_EL0(21),
2320 	PMU_PMEVCNTR_EL0(22),
2321 	PMU_PMEVCNTR_EL0(23),
2322 	PMU_PMEVCNTR_EL0(24),
2323 	PMU_PMEVCNTR_EL0(25),
2324 	PMU_PMEVCNTR_EL0(26),
2325 	PMU_PMEVCNTR_EL0(27),
2326 	PMU_PMEVCNTR_EL0(28),
2327 	PMU_PMEVCNTR_EL0(29),
2328 	PMU_PMEVCNTR_EL0(30),
2329 	/* PMEVTYPERn_EL0 */
2330 	PMU_PMEVTYPER_EL0(0),
2331 	PMU_PMEVTYPER_EL0(1),
2332 	PMU_PMEVTYPER_EL0(2),
2333 	PMU_PMEVTYPER_EL0(3),
2334 	PMU_PMEVTYPER_EL0(4),
2335 	PMU_PMEVTYPER_EL0(5),
2336 	PMU_PMEVTYPER_EL0(6),
2337 	PMU_PMEVTYPER_EL0(7),
2338 	PMU_PMEVTYPER_EL0(8),
2339 	PMU_PMEVTYPER_EL0(9),
2340 	PMU_PMEVTYPER_EL0(10),
2341 	PMU_PMEVTYPER_EL0(11),
2342 	PMU_PMEVTYPER_EL0(12),
2343 	PMU_PMEVTYPER_EL0(13),
2344 	PMU_PMEVTYPER_EL0(14),
2345 	PMU_PMEVTYPER_EL0(15),
2346 	PMU_PMEVTYPER_EL0(16),
2347 	PMU_PMEVTYPER_EL0(17),
2348 	PMU_PMEVTYPER_EL0(18),
2349 	PMU_PMEVTYPER_EL0(19),
2350 	PMU_PMEVTYPER_EL0(20),
2351 	PMU_PMEVTYPER_EL0(21),
2352 	PMU_PMEVTYPER_EL0(22),
2353 	PMU_PMEVTYPER_EL0(23),
2354 	PMU_PMEVTYPER_EL0(24),
2355 	PMU_PMEVTYPER_EL0(25),
2356 	PMU_PMEVTYPER_EL0(26),
2357 	PMU_PMEVTYPER_EL0(27),
2358 	PMU_PMEVTYPER_EL0(28),
2359 	PMU_PMEVTYPER_EL0(29),
2360 	PMU_PMEVTYPER_EL0(30),
2361 	/*
2362 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2363 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2364 	 */
2365 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2366 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2367 
2368 	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2369 	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2370 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2371 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2372 	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2373 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2374 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2375 	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2376 	EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2377 	EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2378 	EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
2379 	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2380 
2381 	EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2382 
2383 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2384 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2385 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2386 	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2387 	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2388 
2389 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2390 	EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2391 	EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
2392 	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2393 	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2394 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2395 
2396 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2397 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2398 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2399 	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2400 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2401 
2402 	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2403 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2404 
2405 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2406 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2407 
2408 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2409 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2410 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2411 
2412 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2413 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2414 
2415 	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2416 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2417 
2418 	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2419 	EL12_REG(CPACR, access_rw, reset_val, 0),
2420 	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2421 	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2422 	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2423 	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2424 	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2425 	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2426 	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2427 	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2428 	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2429 	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2430 	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2431 	EL12_REG(VBAR, access_rw, reset_val, 0),
2432 	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2433 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2434 
2435 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2436 };
2437 
2438 static const struct sys_reg_desc *first_idreg;
2439 
2440 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2441 			struct sys_reg_params *p,
2442 			const struct sys_reg_desc *r)
2443 {
2444 	if (p->is_write) {
2445 		return ignore_write(vcpu, p);
2446 	} else {
2447 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2448 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2449 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2450 
2451 		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2452 			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2453 			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2454 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2455 		return true;
2456 	}
2457 }
2458 
2459 /*
2460  * AArch32 debug register mappings
2461  *
2462  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2463  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2464  *
2465  * None of the other registers share their location, so treat them as
2466  * if they were 64bit.
2467  */
2468 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2469 	/* DBGBVRn */							      \
2470 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2471 	/* DBGBCRn */							      \
2472 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2473 	/* DBGWVRn */							      \
2474 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2475 	/* DBGWCRn */							      \
2476 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2477 
2478 #define DBGBXVR(n)							      \
2479 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2480 
2481 /*
2482  * Trapped cp14 registers. We generally ignore most of the external
2483  * debug, on the principle that they don't really make sense to a
2484  * guest. Revisit this one day, would this principle change.
2485  */
2486 static const struct sys_reg_desc cp14_regs[] = {
2487 	/* DBGDIDR */
2488 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2489 	/* DBGDTRRXext */
2490 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2491 
2492 	DBG_BCR_BVR_WCR_WVR(0),
2493 	/* DBGDSCRint */
2494 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2495 	DBG_BCR_BVR_WCR_WVR(1),
2496 	/* DBGDCCINT */
2497 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2498 	/* DBGDSCRext */
2499 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2500 	DBG_BCR_BVR_WCR_WVR(2),
2501 	/* DBGDTR[RT]Xint */
2502 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2503 	/* DBGDTR[RT]Xext */
2504 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2505 	DBG_BCR_BVR_WCR_WVR(3),
2506 	DBG_BCR_BVR_WCR_WVR(4),
2507 	DBG_BCR_BVR_WCR_WVR(5),
2508 	/* DBGWFAR */
2509 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2510 	/* DBGOSECCR */
2511 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2512 	DBG_BCR_BVR_WCR_WVR(6),
2513 	/* DBGVCR */
2514 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2515 	DBG_BCR_BVR_WCR_WVR(7),
2516 	DBG_BCR_BVR_WCR_WVR(8),
2517 	DBG_BCR_BVR_WCR_WVR(9),
2518 	DBG_BCR_BVR_WCR_WVR(10),
2519 	DBG_BCR_BVR_WCR_WVR(11),
2520 	DBG_BCR_BVR_WCR_WVR(12),
2521 	DBG_BCR_BVR_WCR_WVR(13),
2522 	DBG_BCR_BVR_WCR_WVR(14),
2523 	DBG_BCR_BVR_WCR_WVR(15),
2524 
2525 	/* DBGDRAR (32bit) */
2526 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2527 
2528 	DBGBXVR(0),
2529 	/* DBGOSLAR */
2530 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2531 	DBGBXVR(1),
2532 	/* DBGOSLSR */
2533 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2534 	DBGBXVR(2),
2535 	DBGBXVR(3),
2536 	/* DBGOSDLR */
2537 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2538 	DBGBXVR(4),
2539 	/* DBGPRCR */
2540 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2541 	DBGBXVR(5),
2542 	DBGBXVR(6),
2543 	DBGBXVR(7),
2544 	DBGBXVR(8),
2545 	DBGBXVR(9),
2546 	DBGBXVR(10),
2547 	DBGBXVR(11),
2548 	DBGBXVR(12),
2549 	DBGBXVR(13),
2550 	DBGBXVR(14),
2551 	DBGBXVR(15),
2552 
2553 	/* DBGDSAR (32bit) */
2554 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2555 
2556 	/* DBGDEVID2 */
2557 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2558 	/* DBGDEVID1 */
2559 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2560 	/* DBGDEVID */
2561 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2562 	/* DBGCLAIMSET */
2563 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2564 	/* DBGCLAIMCLR */
2565 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2566 	/* DBGAUTHSTATUS */
2567 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2568 };
2569 
2570 /* Trapped cp14 64bit registers */
2571 static const struct sys_reg_desc cp14_64_regs[] = {
2572 	/* DBGDRAR (64bit) */
2573 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2574 
2575 	/* DBGDSAR (64bit) */
2576 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2577 };
2578 
2579 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2580 	AA32(_map),							\
2581 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2582 	.visibility = pmu_visibility
2583 
2584 /* Macro to expand the PMEVCNTRn register */
2585 #define PMU_PMEVCNTR(n)							\
2586 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2587 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2588 	  .access = access_pmu_evcntr }
2589 
2590 /* Macro to expand the PMEVTYPERn register */
2591 #define PMU_PMEVTYPER(n)						\
2592 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2593 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2594 	  .access = access_pmu_evtyper }
2595 /*
2596  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2597  * depending on the way they are accessed (as a 32bit or a 64bit
2598  * register).
2599  */
2600 static const struct sys_reg_desc cp15_regs[] = {
2601 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2602 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2603 	/* ACTLR */
2604 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2605 	/* ACTLR2 */
2606 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2607 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2608 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2609 	/* TTBCR */
2610 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2611 	/* TTBCR2 */
2612 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2613 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2614 	/* DFSR */
2615 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2616 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2617 	/* ADFSR */
2618 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2619 	/* AIFSR */
2620 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2621 	/* DFAR */
2622 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2623 	/* IFAR */
2624 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2625 
2626 	/*
2627 	 * DC{C,I,CI}SW operations:
2628 	 */
2629 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2630 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2631 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2632 
2633 	/* PMU */
2634 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2635 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2636 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2637 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2638 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2639 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2640 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2641 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2642 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2643 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2644 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2645 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2646 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2647 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2648 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2649 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2650 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2651 	/* PMMIR */
2652 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2653 
2654 	/* PRRR/MAIR0 */
2655 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2656 	/* NMRR/MAIR1 */
2657 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2658 	/* AMAIR0 */
2659 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2660 	/* AMAIR1 */
2661 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2662 
2663 	/* ICC_SRE */
2664 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2665 
2666 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2667 
2668 	/* Arch Tmers */
2669 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2670 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2671 
2672 	/* PMEVCNTRn */
2673 	PMU_PMEVCNTR(0),
2674 	PMU_PMEVCNTR(1),
2675 	PMU_PMEVCNTR(2),
2676 	PMU_PMEVCNTR(3),
2677 	PMU_PMEVCNTR(4),
2678 	PMU_PMEVCNTR(5),
2679 	PMU_PMEVCNTR(6),
2680 	PMU_PMEVCNTR(7),
2681 	PMU_PMEVCNTR(8),
2682 	PMU_PMEVCNTR(9),
2683 	PMU_PMEVCNTR(10),
2684 	PMU_PMEVCNTR(11),
2685 	PMU_PMEVCNTR(12),
2686 	PMU_PMEVCNTR(13),
2687 	PMU_PMEVCNTR(14),
2688 	PMU_PMEVCNTR(15),
2689 	PMU_PMEVCNTR(16),
2690 	PMU_PMEVCNTR(17),
2691 	PMU_PMEVCNTR(18),
2692 	PMU_PMEVCNTR(19),
2693 	PMU_PMEVCNTR(20),
2694 	PMU_PMEVCNTR(21),
2695 	PMU_PMEVCNTR(22),
2696 	PMU_PMEVCNTR(23),
2697 	PMU_PMEVCNTR(24),
2698 	PMU_PMEVCNTR(25),
2699 	PMU_PMEVCNTR(26),
2700 	PMU_PMEVCNTR(27),
2701 	PMU_PMEVCNTR(28),
2702 	PMU_PMEVCNTR(29),
2703 	PMU_PMEVCNTR(30),
2704 	/* PMEVTYPERn */
2705 	PMU_PMEVTYPER(0),
2706 	PMU_PMEVTYPER(1),
2707 	PMU_PMEVTYPER(2),
2708 	PMU_PMEVTYPER(3),
2709 	PMU_PMEVTYPER(4),
2710 	PMU_PMEVTYPER(5),
2711 	PMU_PMEVTYPER(6),
2712 	PMU_PMEVTYPER(7),
2713 	PMU_PMEVTYPER(8),
2714 	PMU_PMEVTYPER(9),
2715 	PMU_PMEVTYPER(10),
2716 	PMU_PMEVTYPER(11),
2717 	PMU_PMEVTYPER(12),
2718 	PMU_PMEVTYPER(13),
2719 	PMU_PMEVTYPER(14),
2720 	PMU_PMEVTYPER(15),
2721 	PMU_PMEVTYPER(16),
2722 	PMU_PMEVTYPER(17),
2723 	PMU_PMEVTYPER(18),
2724 	PMU_PMEVTYPER(19),
2725 	PMU_PMEVTYPER(20),
2726 	PMU_PMEVTYPER(21),
2727 	PMU_PMEVTYPER(22),
2728 	PMU_PMEVTYPER(23),
2729 	PMU_PMEVTYPER(24),
2730 	PMU_PMEVTYPER(25),
2731 	PMU_PMEVTYPER(26),
2732 	PMU_PMEVTYPER(27),
2733 	PMU_PMEVTYPER(28),
2734 	PMU_PMEVTYPER(29),
2735 	PMU_PMEVTYPER(30),
2736 	/* PMCCFILTR */
2737 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2738 
2739 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2740 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2741 
2742 	/* CCSIDR2 */
2743 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2744 
2745 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2746 };
2747 
2748 static const struct sys_reg_desc cp15_64_regs[] = {
2749 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2750 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2751 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2752 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
2753 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2754 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2755 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2756 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2757 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2758 };
2759 
2760 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2761 			       bool is_32)
2762 {
2763 	unsigned int i;
2764 
2765 	for (i = 0; i < n; i++) {
2766 		if (!is_32 && table[i].reg && !table[i].reset) {
2767 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2768 			return false;
2769 		}
2770 
2771 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2772 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2773 			return false;
2774 		}
2775 	}
2776 
2777 	return true;
2778 }
2779 
2780 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2781 {
2782 	kvm_inject_undefined(vcpu);
2783 	return 1;
2784 }
2785 
2786 static void perform_access(struct kvm_vcpu *vcpu,
2787 			   struct sys_reg_params *params,
2788 			   const struct sys_reg_desc *r)
2789 {
2790 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2791 
2792 	/* Check for regs disabled by runtime config */
2793 	if (sysreg_hidden(vcpu, r)) {
2794 		kvm_inject_undefined(vcpu);
2795 		return;
2796 	}
2797 
2798 	/*
2799 	 * Not having an accessor means that we have configured a trap
2800 	 * that we don't know how to handle. This certainly qualifies
2801 	 * as a gross bug that should be fixed right away.
2802 	 */
2803 	BUG_ON(!r->access);
2804 
2805 	/* Skip instruction if instructed so */
2806 	if (likely(r->access(vcpu, params, r)))
2807 		kvm_incr_pc(vcpu);
2808 }
2809 
2810 /*
2811  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2812  *                call the corresponding trap handler.
2813  *
2814  * @params: pointer to the descriptor of the access
2815  * @table: array of trap descriptors
2816  * @num: size of the trap descriptor array
2817  *
2818  * Return true if the access has been handled, false if not.
2819  */
2820 static bool emulate_cp(struct kvm_vcpu *vcpu,
2821 		       struct sys_reg_params *params,
2822 		       const struct sys_reg_desc *table,
2823 		       size_t num)
2824 {
2825 	const struct sys_reg_desc *r;
2826 
2827 	if (!table)
2828 		return false;	/* Not handled */
2829 
2830 	r = find_reg(params, table, num);
2831 
2832 	if (r) {
2833 		perform_access(vcpu, params, r);
2834 		return true;
2835 	}
2836 
2837 	/* Not handled */
2838 	return false;
2839 }
2840 
2841 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2842 				struct sys_reg_params *params)
2843 {
2844 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2845 	int cp = -1;
2846 
2847 	switch (esr_ec) {
2848 	case ESR_ELx_EC_CP15_32:
2849 	case ESR_ELx_EC_CP15_64:
2850 		cp = 15;
2851 		break;
2852 	case ESR_ELx_EC_CP14_MR:
2853 	case ESR_ELx_EC_CP14_64:
2854 		cp = 14;
2855 		break;
2856 	default:
2857 		WARN_ON(1);
2858 	}
2859 
2860 	print_sys_reg_msg(params,
2861 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2862 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2863 	kvm_inject_undefined(vcpu);
2864 }
2865 
2866 /**
2867  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2868  * @vcpu: The VCPU pointer
2869  * @run:  The kvm_run struct
2870  */
2871 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2872 			    const struct sys_reg_desc *global,
2873 			    size_t nr_global)
2874 {
2875 	struct sys_reg_params params;
2876 	u64 esr = kvm_vcpu_get_esr(vcpu);
2877 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2878 	int Rt2 = (esr >> 10) & 0x1f;
2879 
2880 	params.CRm = (esr >> 1) & 0xf;
2881 	params.is_write = ((esr & 1) == 0);
2882 
2883 	params.Op0 = 0;
2884 	params.Op1 = (esr >> 16) & 0xf;
2885 	params.Op2 = 0;
2886 	params.CRn = 0;
2887 
2888 	/*
2889 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2890 	 * backends between AArch32 and AArch64, we get away with it.
2891 	 */
2892 	if (params.is_write) {
2893 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2894 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2895 	}
2896 
2897 	/*
2898 	 * If the table contains a handler, handle the
2899 	 * potential register operation in the case of a read and return
2900 	 * with success.
2901 	 */
2902 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2903 		/* Split up the value between registers for the read side */
2904 		if (!params.is_write) {
2905 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2906 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2907 		}
2908 
2909 		return 1;
2910 	}
2911 
2912 	unhandled_cp_access(vcpu, &params);
2913 	return 1;
2914 }
2915 
2916 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2917 
2918 /*
2919  * The CP10 ID registers are architecturally mapped to AArch64 feature
2920  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2921  * from AArch32.
2922  */
2923 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2924 {
2925 	u8 reg_id = (esr >> 10) & 0xf;
2926 	bool valid;
2927 
2928 	params->is_write = ((esr & 1) == 0);
2929 	params->Op0 = 3;
2930 	params->Op1 = 0;
2931 	params->CRn = 0;
2932 	params->CRm = 3;
2933 
2934 	/* CP10 ID registers are read-only */
2935 	valid = !params->is_write;
2936 
2937 	switch (reg_id) {
2938 	/* MVFR0 */
2939 	case 0b0111:
2940 		params->Op2 = 0;
2941 		break;
2942 	/* MVFR1 */
2943 	case 0b0110:
2944 		params->Op2 = 1;
2945 		break;
2946 	/* MVFR2 */
2947 	case 0b0101:
2948 		params->Op2 = 2;
2949 		break;
2950 	default:
2951 		valid = false;
2952 	}
2953 
2954 	if (valid)
2955 		return true;
2956 
2957 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2958 		      params->is_write ? "write" : "read", reg_id);
2959 	return false;
2960 }
2961 
2962 /**
2963  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2964  *			  VFP Register' from AArch32.
2965  * @vcpu: The vCPU pointer
2966  *
2967  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2968  * Work out the correct AArch64 system register encoding and reroute to the
2969  * AArch64 system register emulation.
2970  */
2971 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2972 {
2973 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2974 	u64 esr = kvm_vcpu_get_esr(vcpu);
2975 	struct sys_reg_params params;
2976 
2977 	/* UNDEF on any unhandled register access */
2978 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2979 		kvm_inject_undefined(vcpu);
2980 		return 1;
2981 	}
2982 
2983 	if (emulate_sys_reg(vcpu, &params))
2984 		vcpu_set_reg(vcpu, Rt, params.regval);
2985 
2986 	return 1;
2987 }
2988 
2989 /**
2990  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2991  *			       CRn=0, which corresponds to the AArch32 feature
2992  *			       registers.
2993  * @vcpu: the vCPU pointer
2994  * @params: the system register access parameters.
2995  *
2996  * Our cp15 system register tables do not enumerate the AArch32 feature
2997  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2998  * register encoding can be trivially remapped into the AArch64 for the feature
2999  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3000  *
3001  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3002  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3003  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3004  * treat undefined registers in this range as RAZ.
3005  */
3006 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3007 				   struct sys_reg_params *params)
3008 {
3009 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3010 
3011 	/* Treat impossible writes to RO registers as UNDEFINED */
3012 	if (params->is_write) {
3013 		unhandled_cp_access(vcpu, params);
3014 		return 1;
3015 	}
3016 
3017 	params->Op0 = 3;
3018 
3019 	/*
3020 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3021 	 * Avoid conflicting with future expansion of AArch64 feature registers
3022 	 * and simply treat them as RAZ here.
3023 	 */
3024 	if (params->CRm > 3)
3025 		params->regval = 0;
3026 	else if (!emulate_sys_reg(vcpu, params))
3027 		return 1;
3028 
3029 	vcpu_set_reg(vcpu, Rt, params->regval);
3030 	return 1;
3031 }
3032 
3033 /**
3034  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3035  * @vcpu: The VCPU pointer
3036  * @run:  The kvm_run struct
3037  */
3038 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3039 			    struct sys_reg_params *params,
3040 			    const struct sys_reg_desc *global,
3041 			    size_t nr_global)
3042 {
3043 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3044 
3045 	params->regval = vcpu_get_reg(vcpu, Rt);
3046 
3047 	if (emulate_cp(vcpu, params, global, nr_global)) {
3048 		if (!params->is_write)
3049 			vcpu_set_reg(vcpu, Rt, params->regval);
3050 		return 1;
3051 	}
3052 
3053 	unhandled_cp_access(vcpu, params);
3054 	return 1;
3055 }
3056 
3057 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3058 {
3059 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3060 }
3061 
3062 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3063 {
3064 	struct sys_reg_params params;
3065 
3066 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3067 
3068 	/*
3069 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3070 	 * system register table. Registers in the ID range where CRm=0 are
3071 	 * excluded from this scheme as they do not trivially map into AArch64
3072 	 * system register encodings.
3073 	 */
3074 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3075 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3076 
3077 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3078 }
3079 
3080 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3081 {
3082 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3083 }
3084 
3085 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3086 {
3087 	struct sys_reg_params params;
3088 
3089 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3090 
3091 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3092 }
3093 
3094 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3095 {
3096 	// See ARM DDI 0487E.a, section D12.3.2
3097 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3098 }
3099 
3100 /**
3101  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3102  * @vcpu: The VCPU pointer
3103  * @params: Decoded system register parameters
3104  *
3105  * Return: true if the system register access was successful, false otherwise.
3106  */
3107 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3108 			   struct sys_reg_params *params)
3109 {
3110 	const struct sys_reg_desc *r;
3111 
3112 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3113 
3114 	if (likely(r)) {
3115 		perform_access(vcpu, params, r);
3116 		return true;
3117 	}
3118 
3119 	if (is_imp_def_sys_reg(params)) {
3120 		kvm_inject_undefined(vcpu);
3121 	} else {
3122 		print_sys_reg_msg(params,
3123 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3124 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3125 		kvm_inject_undefined(vcpu);
3126 	}
3127 	return false;
3128 }
3129 
3130 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3131 {
3132 	const struct sys_reg_desc *idreg = first_idreg;
3133 	u32 id = reg_to_encoding(idreg);
3134 	struct kvm *kvm = vcpu->kvm;
3135 
3136 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3137 		return;
3138 
3139 	lockdep_assert_held(&kvm->arch.config_lock);
3140 
3141 	/* Initialize all idregs */
3142 	while (is_id_reg(id)) {
3143 		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3144 
3145 		idreg++;
3146 		id = reg_to_encoding(idreg);
3147 	}
3148 
3149 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3150 }
3151 
3152 /**
3153  * kvm_reset_sys_regs - sets system registers to reset value
3154  * @vcpu: The VCPU pointer
3155  *
3156  * This function finds the right table above and sets the registers on the
3157  * virtual CPU struct to their architecturally defined reset values.
3158  */
3159 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3160 {
3161 	unsigned long i;
3162 
3163 	kvm_reset_id_regs(vcpu);
3164 
3165 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3166 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3167 
3168 		if (is_id_reg(reg_to_encoding(r)))
3169 			continue;
3170 
3171 		if (r->reset)
3172 			r->reset(vcpu, r);
3173 	}
3174 }
3175 
3176 /**
3177  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3178  * @vcpu: The VCPU pointer
3179  */
3180 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3181 {
3182 	struct sys_reg_params params;
3183 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3184 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3185 
3186 	trace_kvm_handle_sys_reg(esr);
3187 
3188 	if (__check_nv_sr_forward(vcpu))
3189 		return 1;
3190 
3191 	params = esr_sys64_to_params(esr);
3192 	params.regval = vcpu_get_reg(vcpu, Rt);
3193 
3194 	if (!emulate_sys_reg(vcpu, &params))
3195 		return 1;
3196 
3197 	if (!params.is_write)
3198 		vcpu_set_reg(vcpu, Rt, params.regval);
3199 	return 1;
3200 }
3201 
3202 /******************************************************************************
3203  * Userspace API
3204  *****************************************************************************/
3205 
3206 static bool index_to_params(u64 id, struct sys_reg_params *params)
3207 {
3208 	switch (id & KVM_REG_SIZE_MASK) {
3209 	case KVM_REG_SIZE_U64:
3210 		/* Any unused index bits means it's not valid. */
3211 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3212 			      | KVM_REG_ARM_COPROC_MASK
3213 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3214 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3215 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3216 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3217 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3218 			return false;
3219 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3220 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3221 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3222 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3223 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3224 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3225 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3226 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3227 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3228 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3229 		return true;
3230 	default:
3231 		return false;
3232 	}
3233 }
3234 
3235 const struct sys_reg_desc *get_reg_by_id(u64 id,
3236 					 const struct sys_reg_desc table[],
3237 					 unsigned int num)
3238 {
3239 	struct sys_reg_params params;
3240 
3241 	if (!index_to_params(id, &params))
3242 		return NULL;
3243 
3244 	return find_reg(&params, table, num);
3245 }
3246 
3247 /* Decode an index value, and find the sys_reg_desc entry. */
3248 static const struct sys_reg_desc *
3249 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3250 		   const struct sys_reg_desc table[], unsigned int num)
3251 
3252 {
3253 	const struct sys_reg_desc *r;
3254 
3255 	/* We only do sys_reg for now. */
3256 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3257 		return NULL;
3258 
3259 	r = get_reg_by_id(id, table, num);
3260 
3261 	/* Not saved in the sys_reg array and not otherwise accessible? */
3262 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3263 		r = NULL;
3264 
3265 	return r;
3266 }
3267 
3268 /*
3269  * These are the invariant sys_reg registers: we let the guest see the
3270  * host versions of these, so they're part of the guest state.
3271  *
3272  * A future CPU may provide a mechanism to present different values to
3273  * the guest, or a future kvm may trap them.
3274  */
3275 
3276 #define FUNCTION_INVARIANT(reg)						\
3277 	static u64 get_##reg(struct kvm_vcpu *v,			\
3278 			      const struct sys_reg_desc *r)		\
3279 	{								\
3280 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3281 		return ((struct sys_reg_desc *)r)->val;			\
3282 	}
3283 
3284 FUNCTION_INVARIANT(midr_el1)
3285 FUNCTION_INVARIANT(revidr_el1)
3286 FUNCTION_INVARIANT(aidr_el1)
3287 
3288 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3289 {
3290 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3291 	return ((struct sys_reg_desc *)r)->val;
3292 }
3293 
3294 /* ->val is filled in by kvm_sys_reg_table_init() */
3295 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3296 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3297 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3298 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3299 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3300 };
3301 
3302 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3303 {
3304 	const struct sys_reg_desc *r;
3305 
3306 	r = get_reg_by_id(id, invariant_sys_regs,
3307 			  ARRAY_SIZE(invariant_sys_regs));
3308 	if (!r)
3309 		return -ENOENT;
3310 
3311 	return put_user(r->val, uaddr);
3312 }
3313 
3314 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3315 {
3316 	const struct sys_reg_desc *r;
3317 	u64 val;
3318 
3319 	r = get_reg_by_id(id, invariant_sys_regs,
3320 			  ARRAY_SIZE(invariant_sys_regs));
3321 	if (!r)
3322 		return -ENOENT;
3323 
3324 	if (get_user(val, uaddr))
3325 		return -EFAULT;
3326 
3327 	/* This is what we mean by invariant: you can't change it. */
3328 	if (r->val != val)
3329 		return -EINVAL;
3330 
3331 	return 0;
3332 }
3333 
3334 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3335 {
3336 	u32 val;
3337 	u32 __user *uval = uaddr;
3338 
3339 	/* Fail if we have unknown bits set. */
3340 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3341 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3342 		return -ENOENT;
3343 
3344 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3345 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3346 		if (KVM_REG_SIZE(id) != 4)
3347 			return -ENOENT;
3348 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3349 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3350 		if (val >= CSSELR_MAX)
3351 			return -ENOENT;
3352 
3353 		return put_user(get_ccsidr(vcpu, val), uval);
3354 	default:
3355 		return -ENOENT;
3356 	}
3357 }
3358 
3359 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3360 {
3361 	u32 val, newval;
3362 	u32 __user *uval = uaddr;
3363 
3364 	/* Fail if we have unknown bits set. */
3365 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3366 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3367 		return -ENOENT;
3368 
3369 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3370 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3371 		if (KVM_REG_SIZE(id) != 4)
3372 			return -ENOENT;
3373 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3374 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3375 		if (val >= CSSELR_MAX)
3376 			return -ENOENT;
3377 
3378 		if (get_user(newval, uval))
3379 			return -EFAULT;
3380 
3381 		return set_ccsidr(vcpu, val, newval);
3382 	default:
3383 		return -ENOENT;
3384 	}
3385 }
3386 
3387 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3388 			 const struct sys_reg_desc table[], unsigned int num)
3389 {
3390 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3391 	const struct sys_reg_desc *r;
3392 	u64 val;
3393 	int ret;
3394 
3395 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3396 	if (!r || sysreg_hidden_user(vcpu, r))
3397 		return -ENOENT;
3398 
3399 	if (r->get_user) {
3400 		ret = (r->get_user)(vcpu, r, &val);
3401 	} else {
3402 		val = __vcpu_sys_reg(vcpu, r->reg);
3403 		ret = 0;
3404 	}
3405 
3406 	if (!ret)
3407 		ret = put_user(val, uaddr);
3408 
3409 	return ret;
3410 }
3411 
3412 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3413 {
3414 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3415 	int err;
3416 
3417 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3418 		return demux_c15_get(vcpu, reg->id, uaddr);
3419 
3420 	err = get_invariant_sys_reg(reg->id, uaddr);
3421 	if (err != -ENOENT)
3422 		return err;
3423 
3424 	return kvm_sys_reg_get_user(vcpu, reg,
3425 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3426 }
3427 
3428 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3429 			 const struct sys_reg_desc table[], unsigned int num)
3430 {
3431 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3432 	const struct sys_reg_desc *r;
3433 	u64 val;
3434 	int ret;
3435 
3436 	if (get_user(val, uaddr))
3437 		return -EFAULT;
3438 
3439 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3440 	if (!r || sysreg_hidden_user(vcpu, r))
3441 		return -ENOENT;
3442 
3443 	if (sysreg_user_write_ignore(vcpu, r))
3444 		return 0;
3445 
3446 	if (r->set_user) {
3447 		ret = (r->set_user)(vcpu, r, val);
3448 	} else {
3449 		__vcpu_sys_reg(vcpu, r->reg) = val;
3450 		ret = 0;
3451 	}
3452 
3453 	return ret;
3454 }
3455 
3456 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3457 {
3458 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3459 	int err;
3460 
3461 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3462 		return demux_c15_set(vcpu, reg->id, uaddr);
3463 
3464 	err = set_invariant_sys_reg(reg->id, uaddr);
3465 	if (err != -ENOENT)
3466 		return err;
3467 
3468 	return kvm_sys_reg_set_user(vcpu, reg,
3469 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3470 }
3471 
3472 static unsigned int num_demux_regs(void)
3473 {
3474 	return CSSELR_MAX;
3475 }
3476 
3477 static int write_demux_regids(u64 __user *uindices)
3478 {
3479 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3480 	unsigned int i;
3481 
3482 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3483 	for (i = 0; i < CSSELR_MAX; i++) {
3484 		if (put_user(val | i, uindices))
3485 			return -EFAULT;
3486 		uindices++;
3487 	}
3488 	return 0;
3489 }
3490 
3491 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3492 {
3493 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3494 		KVM_REG_ARM64_SYSREG |
3495 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3496 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3497 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3498 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3499 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3500 }
3501 
3502 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3503 {
3504 	if (!*uind)
3505 		return true;
3506 
3507 	if (put_user(sys_reg_to_index(reg), *uind))
3508 		return false;
3509 
3510 	(*uind)++;
3511 	return true;
3512 }
3513 
3514 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3515 			    const struct sys_reg_desc *rd,
3516 			    u64 __user **uind,
3517 			    unsigned int *total)
3518 {
3519 	/*
3520 	 * Ignore registers we trap but don't save,
3521 	 * and for which no custom user accessor is provided.
3522 	 */
3523 	if (!(rd->reg || rd->get_user))
3524 		return 0;
3525 
3526 	if (sysreg_hidden_user(vcpu, rd))
3527 		return 0;
3528 
3529 	if (!copy_reg_to_user(rd, uind))
3530 		return -EFAULT;
3531 
3532 	(*total)++;
3533 	return 0;
3534 }
3535 
3536 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3537 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3538 {
3539 	const struct sys_reg_desc *i2, *end2;
3540 	unsigned int total = 0;
3541 	int err;
3542 
3543 	i2 = sys_reg_descs;
3544 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3545 
3546 	while (i2 != end2) {
3547 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3548 		if (err)
3549 			return err;
3550 	}
3551 	return total;
3552 }
3553 
3554 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3555 {
3556 	return ARRAY_SIZE(invariant_sys_regs)
3557 		+ num_demux_regs()
3558 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3559 }
3560 
3561 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3562 {
3563 	unsigned int i;
3564 	int err;
3565 
3566 	/* Then give them all the invariant registers' indices. */
3567 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3568 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3569 			return -EFAULT;
3570 		uindices++;
3571 	}
3572 
3573 	err = walk_sys_regs(vcpu, uindices);
3574 	if (err < 0)
3575 		return err;
3576 	uindices += err;
3577 
3578 	return write_demux_regids(uindices);
3579 }
3580 
3581 int __init kvm_sys_reg_table_init(void)
3582 {
3583 	struct sys_reg_params params;
3584 	bool valid = true;
3585 	unsigned int i;
3586 
3587 	/* Make sure tables are unique and in order. */
3588 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3589 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3590 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3591 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3592 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3593 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3594 
3595 	if (!valid)
3596 		return -EINVAL;
3597 
3598 	/* We abuse the reset function to overwrite the table itself. */
3599 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3600 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3601 
3602 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3603 	params = encoding_to_params(SYS_ID_PFR0_EL1);
3604 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3605 	if (!first_idreg)
3606 		return -EINVAL;
3607 
3608 	if (kvm_get_mode() == KVM_MODE_NV)
3609 		return populate_nv_trap_config();
3610 
3611 	return 0;
3612 }
3613