xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40 
41 #include <trace/events/kvm.h>
42 
43 #include "sys_regs.h"
44 
45 #include "trace.h"
46 
47 /*
48  * All of this file is extremly similar to the ARM coproc.c, but the
49  * types are different. My gut feeling is that it should be pretty
50  * easy to merge, but that would be an ABI breakage -- again. VFP
51  * would also need to be abstracted.
52  *
53  * For AArch32, we only take care of what is being trapped. Anything
54  * that has to do with init and userspace access has to go via the
55  * 64bit interface.
56  */
57 
58 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59 static u32 cache_levels;
60 
61 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
62 #define CSSELR_MAX 12
63 
64 /* Which cache CCSIDR represents depends on CSSELR value. */
65 static u32 get_ccsidr(u32 csselr)
66 {
67 	u32 ccsidr;
68 
69 	/* Make sure noone else changes CSSELR during this! */
70 	local_irq_disable();
71 	write_sysreg(csselr, csselr_el1);
72 	isb();
73 	ccsidr = read_sysreg(ccsidr_el1);
74 	local_irq_enable();
75 
76 	return ccsidr;
77 }
78 
79 /*
80  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
81  */
82 static bool access_dcsw(struct kvm_vcpu *vcpu,
83 			struct sys_reg_params *p,
84 			const struct sys_reg_desc *r)
85 {
86 	if (!p->is_write)
87 		return read_from_write_only(vcpu, p);
88 
89 	kvm_set_way_flush(vcpu);
90 	return true;
91 }
92 
93 /*
94  * Generic accessor for VM registers. Only called as long as HCR_TVM
95  * is set. If the guest enables the MMU, we stop trapping the VM
96  * sys_regs and leave it in complete control of the caches.
97  */
98 static bool access_vm_reg(struct kvm_vcpu *vcpu,
99 			  struct sys_reg_params *p,
100 			  const struct sys_reg_desc *r)
101 {
102 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
103 
104 	BUG_ON(!p->is_write);
105 
106 	if (!p->is_aarch32) {
107 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
108 	} else {
109 		if (!p->is_32bit)
110 			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111 		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112 	}
113 
114 	kvm_toggle_cache(vcpu, was_enabled);
115 	return true;
116 }
117 
118 /*
119  * Trap handler for the GICv3 SGI generation system register.
120  * Forward the request to the VGIC emulation.
121  * The cp15_64 code makes sure this automatically works
122  * for both AArch64 and AArch32 accesses.
123  */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125 			   struct sys_reg_params *p,
126 			   const struct sys_reg_desc *r)
127 {
128 	if (!p->is_write)
129 		return read_from_write_only(vcpu, p);
130 
131 	vgic_v3_dispatch_sgi(vcpu, p->regval);
132 
133 	return true;
134 }
135 
136 static bool access_gic_sre(struct kvm_vcpu *vcpu,
137 			   struct sys_reg_params *p,
138 			   const struct sys_reg_desc *r)
139 {
140 	if (p->is_write)
141 		return ignore_write(vcpu, p);
142 
143 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
144 	return true;
145 }
146 
147 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148 			struct sys_reg_params *p,
149 			const struct sys_reg_desc *r)
150 {
151 	if (p->is_write)
152 		return ignore_write(vcpu, p);
153 	else
154 		return read_zero(vcpu, p);
155 }
156 
157 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158 			   struct sys_reg_params *p,
159 			   const struct sys_reg_desc *r)
160 {
161 	if (p->is_write) {
162 		return ignore_write(vcpu, p);
163 	} else {
164 		p->regval = (1 << 3);
165 		return true;
166 	}
167 }
168 
169 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170 				   struct sys_reg_params *p,
171 				   const struct sys_reg_desc *r)
172 {
173 	if (p->is_write) {
174 		return ignore_write(vcpu, p);
175 	} else {
176 		p->regval = read_sysreg(dbgauthstatus_el1);
177 		return true;
178 	}
179 }
180 
181 /*
182  * We want to avoid world-switching all the DBG registers all the
183  * time:
184  *
185  * - If we've touched any debug register, it is likely that we're
186  *   going to touch more of them. It then makes sense to disable the
187  *   traps and start doing the save/restore dance
188  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189  *   then mandatory to save/restore the registers, as the guest
190  *   depends on them.
191  *
192  * For this, we use a DIRTY bit, indicating the guest has modified the
193  * debug registers, used as follow:
194  *
195  * On guest entry:
196  * - If the dirty bit is set (because we're coming back from trapping),
197  *   disable the traps, save host registers, restore guest registers.
198  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199  *   set the dirty bit, disable the traps, save host registers,
200  *   restore guest registers.
201  * - Otherwise, enable the traps
202  *
203  * On guest exit:
204  * - If the dirty bit is set, save guest registers, restore host
205  *   registers and clear the dirty bit. This ensure that the host can
206  *   now use the debug registers.
207  */
208 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209 			    struct sys_reg_params *p,
210 			    const struct sys_reg_desc *r)
211 {
212 	if (p->is_write) {
213 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
214 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
215 	} else {
216 		p->regval = vcpu_sys_reg(vcpu, r->reg);
217 	}
218 
219 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
220 
221 	return true;
222 }
223 
224 /*
225  * reg_to_dbg/dbg_to_reg
226  *
227  * A 32 bit write to a debug register leave top bits alone
228  * A 32 bit read from a debug register only returns the bottom bits
229  *
230  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231  * hyp.S code switches between host and guest values in future.
232  */
233 static void reg_to_dbg(struct kvm_vcpu *vcpu,
234 		       struct sys_reg_params *p,
235 		       u64 *dbg_reg)
236 {
237 	u64 val = p->regval;
238 
239 	if (p->is_32bit) {
240 		val &= 0xffffffffUL;
241 		val |= ((*dbg_reg >> 32) << 32);
242 	}
243 
244 	*dbg_reg = val;
245 	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
246 }
247 
248 static void dbg_to_reg(struct kvm_vcpu *vcpu,
249 		       struct sys_reg_params *p,
250 		       u64 *dbg_reg)
251 {
252 	p->regval = *dbg_reg;
253 	if (p->is_32bit)
254 		p->regval &= 0xffffffffUL;
255 }
256 
257 static bool trap_bvr(struct kvm_vcpu *vcpu,
258 		     struct sys_reg_params *p,
259 		     const struct sys_reg_desc *rd)
260 {
261 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
262 
263 	if (p->is_write)
264 		reg_to_dbg(vcpu, p, dbg_reg);
265 	else
266 		dbg_to_reg(vcpu, p, dbg_reg);
267 
268 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
269 
270 	return true;
271 }
272 
273 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 		const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277 
278 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
279 		return -EFAULT;
280 	return 0;
281 }
282 
283 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284 	const struct kvm_one_reg *reg, void __user *uaddr)
285 {
286 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287 
288 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
289 		return -EFAULT;
290 	return 0;
291 }
292 
293 static void reset_bvr(struct kvm_vcpu *vcpu,
294 		      const struct sys_reg_desc *rd)
295 {
296 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
297 }
298 
299 static bool trap_bcr(struct kvm_vcpu *vcpu,
300 		     struct sys_reg_params *p,
301 		     const struct sys_reg_desc *rd)
302 {
303 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
304 
305 	if (p->is_write)
306 		reg_to_dbg(vcpu, p, dbg_reg);
307 	else
308 		dbg_to_reg(vcpu, p, dbg_reg);
309 
310 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
311 
312 	return true;
313 }
314 
315 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316 		const struct kvm_one_reg *reg, void __user *uaddr)
317 {
318 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319 
320 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
321 		return -EFAULT;
322 
323 	return 0;
324 }
325 
326 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327 	const struct kvm_one_reg *reg, void __user *uaddr)
328 {
329 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
330 
331 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
332 		return -EFAULT;
333 	return 0;
334 }
335 
336 static void reset_bcr(struct kvm_vcpu *vcpu,
337 		      const struct sys_reg_desc *rd)
338 {
339 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
340 }
341 
342 static bool trap_wvr(struct kvm_vcpu *vcpu,
343 		     struct sys_reg_params *p,
344 		     const struct sys_reg_desc *rd)
345 {
346 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
347 
348 	if (p->is_write)
349 		reg_to_dbg(vcpu, p, dbg_reg);
350 	else
351 		dbg_to_reg(vcpu, p, dbg_reg);
352 
353 	trace_trap_reg(__func__, rd->reg, p->is_write,
354 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
355 
356 	return true;
357 }
358 
359 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 		const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363 
364 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
365 		return -EFAULT;
366 	return 0;
367 }
368 
369 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370 	const struct kvm_one_reg *reg, void __user *uaddr)
371 {
372 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373 
374 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
375 		return -EFAULT;
376 	return 0;
377 }
378 
379 static void reset_wvr(struct kvm_vcpu *vcpu,
380 		      const struct sys_reg_desc *rd)
381 {
382 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
383 }
384 
385 static bool trap_wcr(struct kvm_vcpu *vcpu,
386 		     struct sys_reg_params *p,
387 		     const struct sys_reg_desc *rd)
388 {
389 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
390 
391 	if (p->is_write)
392 		reg_to_dbg(vcpu, p, dbg_reg);
393 	else
394 		dbg_to_reg(vcpu, p, dbg_reg);
395 
396 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
397 
398 	return true;
399 }
400 
401 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 		const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405 
406 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
407 		return -EFAULT;
408 	return 0;
409 }
410 
411 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412 	const struct kvm_one_reg *reg, void __user *uaddr)
413 {
414 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415 
416 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
417 		return -EFAULT;
418 	return 0;
419 }
420 
421 static void reset_wcr(struct kvm_vcpu *vcpu,
422 		      const struct sys_reg_desc *rd)
423 {
424 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
425 }
426 
427 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429 	vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
430 }
431 
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434 	u64 mpidr;
435 
436 	/*
437 	 * Map the vcpu_id into the first three affinity level fields of
438 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 	 * of the GICv3 to be able to address each CPU directly when
441 	 * sending IPIs.
442 	 */
443 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448 
449 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
450 {
451 	u64 pmcr, val;
452 
453 	pmcr = read_sysreg(pmcr_el0);
454 	/*
455 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456 	 * except PMCR.E resetting to zero.
457 	 */
458 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460 	vcpu_sys_reg(vcpu, PMCR_EL0) = val;
461 }
462 
463 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
464 {
465 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466 
467 	return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
468 }
469 
470 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
471 {
472 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
473 
474 	return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475 		 || vcpu_mode_priv(vcpu));
476 }
477 
478 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
479 {
480 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
481 
482 	return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483 		 || vcpu_mode_priv(vcpu));
484 }
485 
486 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
487 {
488 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
489 
490 	return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491 		 || vcpu_mode_priv(vcpu));
492 }
493 
494 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495 			const struct sys_reg_desc *r)
496 {
497 	u64 val;
498 
499 	if (!kvm_arm_pmu_v3_ready(vcpu))
500 		return trap_raz_wi(vcpu, p, r);
501 
502 	if (pmu_access_el0_disabled(vcpu))
503 		return false;
504 
505 	if (p->is_write) {
506 		/* Only update writeable bits of PMCR */
507 		val = vcpu_sys_reg(vcpu, PMCR_EL0);
508 		val &= ~ARMV8_PMU_PMCR_MASK;
509 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
510 		vcpu_sys_reg(vcpu, PMCR_EL0) = val;
511 		kvm_pmu_handle_pmcr(vcpu, val);
512 	} else {
513 		/* PMCR.P & PMCR.C are RAZ */
514 		val = vcpu_sys_reg(vcpu, PMCR_EL0)
515 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
516 		p->regval = val;
517 	}
518 
519 	return true;
520 }
521 
522 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523 			  const struct sys_reg_desc *r)
524 {
525 	if (!kvm_arm_pmu_v3_ready(vcpu))
526 		return trap_raz_wi(vcpu, p, r);
527 
528 	if (pmu_access_event_counter_el0_disabled(vcpu))
529 		return false;
530 
531 	if (p->is_write)
532 		vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
533 	else
534 		/* return PMSELR.SEL field */
535 		p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536 			    & ARMV8_PMU_COUNTER_MASK;
537 
538 	return true;
539 }
540 
541 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542 			  const struct sys_reg_desc *r)
543 {
544 	u64 pmceid;
545 
546 	if (!kvm_arm_pmu_v3_ready(vcpu))
547 		return trap_raz_wi(vcpu, p, r);
548 
549 	BUG_ON(p->is_write);
550 
551 	if (pmu_access_el0_disabled(vcpu))
552 		return false;
553 
554 	if (!(p->Op2 & 1))
555 		pmceid = read_sysreg(pmceid0_el0);
556 	else
557 		pmceid = read_sysreg(pmceid1_el0);
558 
559 	p->regval = pmceid;
560 
561 	return true;
562 }
563 
564 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
565 {
566 	u64 pmcr, val;
567 
568 	pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
571 		return false;
572 
573 	return true;
574 }
575 
576 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577 			      struct sys_reg_params *p,
578 			      const struct sys_reg_desc *r)
579 {
580 	u64 idx;
581 
582 	if (!kvm_arm_pmu_v3_ready(vcpu))
583 		return trap_raz_wi(vcpu, p, r);
584 
585 	if (r->CRn == 9 && r->CRm == 13) {
586 		if (r->Op2 == 2) {
587 			/* PMXEVCNTR_EL0 */
588 			if (pmu_access_event_counter_el0_disabled(vcpu))
589 				return false;
590 
591 			idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592 			      & ARMV8_PMU_COUNTER_MASK;
593 		} else if (r->Op2 == 0) {
594 			/* PMCCNTR_EL0 */
595 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
596 				return false;
597 
598 			idx = ARMV8_PMU_CYCLE_IDX;
599 		} else {
600 			BUG();
601 		}
602 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
603 		/* PMEVCNTRn_EL0 */
604 		if (pmu_access_event_counter_el0_disabled(vcpu))
605 			return false;
606 
607 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
608 	} else {
609 		BUG();
610 	}
611 
612 	if (!pmu_counter_idx_valid(vcpu, idx))
613 		return false;
614 
615 	if (p->is_write) {
616 		if (pmu_access_el0_disabled(vcpu))
617 			return false;
618 
619 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
620 	} else {
621 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
622 	}
623 
624 	return true;
625 }
626 
627 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
628 			       const struct sys_reg_desc *r)
629 {
630 	u64 idx, reg;
631 
632 	if (!kvm_arm_pmu_v3_ready(vcpu))
633 		return trap_raz_wi(vcpu, p, r);
634 
635 	if (pmu_access_el0_disabled(vcpu))
636 		return false;
637 
638 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
639 		/* PMXEVTYPER_EL0 */
640 		idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
641 		reg = PMEVTYPER0_EL0 + idx;
642 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
643 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
644 		if (idx == ARMV8_PMU_CYCLE_IDX)
645 			reg = PMCCFILTR_EL0;
646 		else
647 			/* PMEVTYPERn_EL0 */
648 			reg = PMEVTYPER0_EL0 + idx;
649 	} else {
650 		BUG();
651 	}
652 
653 	if (!pmu_counter_idx_valid(vcpu, idx))
654 		return false;
655 
656 	if (p->is_write) {
657 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
658 		vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
659 	} else {
660 		p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
661 	}
662 
663 	return true;
664 }
665 
666 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
667 			   const struct sys_reg_desc *r)
668 {
669 	u64 val, mask;
670 
671 	if (!kvm_arm_pmu_v3_ready(vcpu))
672 		return trap_raz_wi(vcpu, p, r);
673 
674 	if (pmu_access_el0_disabled(vcpu))
675 		return false;
676 
677 	mask = kvm_pmu_valid_counter_mask(vcpu);
678 	if (p->is_write) {
679 		val = p->regval & mask;
680 		if (r->Op2 & 0x1) {
681 			/* accessing PMCNTENSET_EL0 */
682 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
683 			kvm_pmu_enable_counter(vcpu, val);
684 		} else {
685 			/* accessing PMCNTENCLR_EL0 */
686 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
687 			kvm_pmu_disable_counter(vcpu, val);
688 		}
689 	} else {
690 		p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
691 	}
692 
693 	return true;
694 }
695 
696 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
697 			   const struct sys_reg_desc *r)
698 {
699 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
700 
701 	if (!kvm_arm_pmu_v3_ready(vcpu))
702 		return trap_raz_wi(vcpu, p, r);
703 
704 	if (!vcpu_mode_priv(vcpu))
705 		return false;
706 
707 	if (p->is_write) {
708 		u64 val = p->regval & mask;
709 
710 		if (r->Op2 & 0x1)
711 			/* accessing PMINTENSET_EL1 */
712 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
713 		else
714 			/* accessing PMINTENCLR_EL1 */
715 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
716 	} else {
717 		p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
718 	}
719 
720 	return true;
721 }
722 
723 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
724 			 const struct sys_reg_desc *r)
725 {
726 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
727 
728 	if (!kvm_arm_pmu_v3_ready(vcpu))
729 		return trap_raz_wi(vcpu, p, r);
730 
731 	if (pmu_access_el0_disabled(vcpu))
732 		return false;
733 
734 	if (p->is_write) {
735 		if (r->CRm & 0x2)
736 			/* accessing PMOVSSET_EL0 */
737 			kvm_pmu_overflow_set(vcpu, p->regval & mask);
738 		else
739 			/* accessing PMOVSCLR_EL0 */
740 			vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
741 	} else {
742 		p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
743 	}
744 
745 	return true;
746 }
747 
748 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
749 			   const struct sys_reg_desc *r)
750 {
751 	u64 mask;
752 
753 	if (!kvm_arm_pmu_v3_ready(vcpu))
754 		return trap_raz_wi(vcpu, p, r);
755 
756 	if (pmu_write_swinc_el0_disabled(vcpu))
757 		return false;
758 
759 	if (p->is_write) {
760 		mask = kvm_pmu_valid_counter_mask(vcpu);
761 		kvm_pmu_software_increment(vcpu, p->regval & mask);
762 		return true;
763 	}
764 
765 	return false;
766 }
767 
768 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
769 			     const struct sys_reg_desc *r)
770 {
771 	if (!kvm_arm_pmu_v3_ready(vcpu))
772 		return trap_raz_wi(vcpu, p, r);
773 
774 	if (p->is_write) {
775 		if (!vcpu_mode_priv(vcpu))
776 			return false;
777 
778 		vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
779 						    & ARMV8_PMU_USERENR_MASK;
780 	} else {
781 		p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
782 			    & ARMV8_PMU_USERENR_MASK;
783 	}
784 
785 	return true;
786 }
787 
788 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
789 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
790 	/* DBGBVRn_EL1 */						\
791 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
792 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
793 	/* DBGBCRn_EL1 */						\
794 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
795 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
796 	/* DBGWVRn_EL1 */						\
797 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
798 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
799 	/* DBGWCRn_EL1 */						\
800 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
801 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
802 
803 /* Macro to expand the PMEVCNTRn_EL0 register */
804 #define PMU_PMEVCNTR_EL0(n)						\
805 	/* PMEVCNTRn_EL0 */						\
806 	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
807 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
808 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
809 
810 /* Macro to expand the PMEVTYPERn_EL0 register */
811 #define PMU_PMEVTYPER_EL0(n)						\
812 	/* PMEVTYPERn_EL0 */						\
813 	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
814 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
815 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
816 
817 /*
818  * Architected system registers.
819  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
820  *
821  * Debug handling: We do trap most, if not all debug related system
822  * registers. The implementation is good enough to ensure that a guest
823  * can use these with minimal performance degradation. The drawback is
824  * that we don't implement any of the external debug, none of the
825  * OSlock protocol. This should be revisited if we ever encounter a
826  * more demanding guest...
827  */
828 static const struct sys_reg_desc sys_reg_descs[] = {
829 	/* DC ISW */
830 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
831 	  access_dcsw },
832 	/* DC CSW */
833 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
834 	  access_dcsw },
835 	/* DC CISW */
836 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
837 	  access_dcsw },
838 
839 	DBG_BCR_BVR_WCR_WVR_EL1(0),
840 	DBG_BCR_BVR_WCR_WVR_EL1(1),
841 	/* MDCCINT_EL1 */
842 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
843 	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
844 	/* MDSCR_EL1 */
845 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
846 	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
847 	DBG_BCR_BVR_WCR_WVR_EL1(2),
848 	DBG_BCR_BVR_WCR_WVR_EL1(3),
849 	DBG_BCR_BVR_WCR_WVR_EL1(4),
850 	DBG_BCR_BVR_WCR_WVR_EL1(5),
851 	DBG_BCR_BVR_WCR_WVR_EL1(6),
852 	DBG_BCR_BVR_WCR_WVR_EL1(7),
853 	DBG_BCR_BVR_WCR_WVR_EL1(8),
854 	DBG_BCR_BVR_WCR_WVR_EL1(9),
855 	DBG_BCR_BVR_WCR_WVR_EL1(10),
856 	DBG_BCR_BVR_WCR_WVR_EL1(11),
857 	DBG_BCR_BVR_WCR_WVR_EL1(12),
858 	DBG_BCR_BVR_WCR_WVR_EL1(13),
859 	DBG_BCR_BVR_WCR_WVR_EL1(14),
860 	DBG_BCR_BVR_WCR_WVR_EL1(15),
861 
862 	/* MDRAR_EL1 */
863 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
864 	  trap_raz_wi },
865 	/* OSLAR_EL1 */
866 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
867 	  trap_raz_wi },
868 	/* OSLSR_EL1 */
869 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
870 	  trap_oslsr_el1 },
871 	/* OSDLR_EL1 */
872 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
873 	  trap_raz_wi },
874 	/* DBGPRCR_EL1 */
875 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
876 	  trap_raz_wi },
877 	/* DBGCLAIMSET_EL1 */
878 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
879 	  trap_raz_wi },
880 	/* DBGCLAIMCLR_EL1 */
881 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
882 	  trap_raz_wi },
883 	/* DBGAUTHSTATUS_EL1 */
884 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
885 	  trap_dbgauthstatus_el1 },
886 
887 	/* MDCCSR_EL1 */
888 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
889 	  trap_raz_wi },
890 	/* DBGDTR_EL0 */
891 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
892 	  trap_raz_wi },
893 	/* DBGDTR[TR]X_EL0 */
894 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
895 	  trap_raz_wi },
896 
897 	/* DBGVCR32_EL2 */
898 	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
899 	  NULL, reset_val, DBGVCR32_EL2, 0 },
900 
901 	/* MPIDR_EL1 */
902 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
903 	  NULL, reset_mpidr, MPIDR_EL1 },
904 	/* SCTLR_EL1 */
905 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
906 	  access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
907 	/* CPACR_EL1 */
908 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
909 	  NULL, reset_val, CPACR_EL1, 0 },
910 	/* TTBR0_EL1 */
911 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
912 	  access_vm_reg, reset_unknown, TTBR0_EL1 },
913 	/* TTBR1_EL1 */
914 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
915 	  access_vm_reg, reset_unknown, TTBR1_EL1 },
916 	/* TCR_EL1 */
917 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
918 	  access_vm_reg, reset_val, TCR_EL1, 0 },
919 
920 	/* AFSR0_EL1 */
921 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
922 	  access_vm_reg, reset_unknown, AFSR0_EL1 },
923 	/* AFSR1_EL1 */
924 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
925 	  access_vm_reg, reset_unknown, AFSR1_EL1 },
926 	/* ESR_EL1 */
927 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
928 	  access_vm_reg, reset_unknown, ESR_EL1 },
929 	/* FAR_EL1 */
930 	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
931 	  access_vm_reg, reset_unknown, FAR_EL1 },
932 	/* PAR_EL1 */
933 	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
934 	  NULL, reset_unknown, PAR_EL1 },
935 
936 	/* PMINTENSET_EL1 */
937 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
938 	  access_pminten, reset_unknown, PMINTENSET_EL1 },
939 	/* PMINTENCLR_EL1 */
940 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
941 	  access_pminten, NULL, PMINTENSET_EL1 },
942 
943 	/* MAIR_EL1 */
944 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
945 	  access_vm_reg, reset_unknown, MAIR_EL1 },
946 	/* AMAIR_EL1 */
947 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
948 	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
949 
950 	/* VBAR_EL1 */
951 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
952 	  NULL, reset_val, VBAR_EL1, 0 },
953 
954 	/* ICC_SGI1R_EL1 */
955 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
956 	  access_gic_sgi },
957 	/* ICC_SRE_EL1 */
958 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
959 	  access_gic_sre },
960 
961 	/* CONTEXTIDR_EL1 */
962 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
963 	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
964 	/* TPIDR_EL1 */
965 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
966 	  NULL, reset_unknown, TPIDR_EL1 },
967 
968 	/* CNTKCTL_EL1 */
969 	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
970 	  NULL, reset_val, CNTKCTL_EL1, 0},
971 
972 	/* CSSELR_EL1 */
973 	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
974 	  NULL, reset_unknown, CSSELR_EL1 },
975 
976 	/* PMCR_EL0 */
977 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
978 	  access_pmcr, reset_pmcr, },
979 	/* PMCNTENSET_EL0 */
980 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
981 	  access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
982 	/* PMCNTENCLR_EL0 */
983 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
984 	  access_pmcnten, NULL, PMCNTENSET_EL0 },
985 	/* PMOVSCLR_EL0 */
986 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
987 	  access_pmovs, NULL, PMOVSSET_EL0 },
988 	/* PMSWINC_EL0 */
989 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
990 	  access_pmswinc, reset_unknown, PMSWINC_EL0 },
991 	/* PMSELR_EL0 */
992 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
993 	  access_pmselr, reset_unknown, PMSELR_EL0 },
994 	/* PMCEID0_EL0 */
995 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
996 	  access_pmceid },
997 	/* PMCEID1_EL0 */
998 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
999 	  access_pmceid },
1000 	/* PMCCNTR_EL0 */
1001 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1002 	  access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1003 	/* PMXEVTYPER_EL0 */
1004 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1005 	  access_pmu_evtyper },
1006 	/* PMXEVCNTR_EL0 */
1007 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1008 	  access_pmu_evcntr },
1009 	/* PMUSERENR_EL0
1010 	 * This register resets as unknown in 64bit mode while it resets as zero
1011 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1012 	 */
1013 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1014 	  access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1015 	/* PMOVSSET_EL0 */
1016 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1017 	  access_pmovs, reset_unknown, PMOVSSET_EL0 },
1018 
1019 	/* TPIDR_EL0 */
1020 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1021 	  NULL, reset_unknown, TPIDR_EL0 },
1022 	/* TPIDRRO_EL0 */
1023 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1024 	  NULL, reset_unknown, TPIDRRO_EL0 },
1025 
1026 	/* PMEVCNTRn_EL0 */
1027 	PMU_PMEVCNTR_EL0(0),
1028 	PMU_PMEVCNTR_EL0(1),
1029 	PMU_PMEVCNTR_EL0(2),
1030 	PMU_PMEVCNTR_EL0(3),
1031 	PMU_PMEVCNTR_EL0(4),
1032 	PMU_PMEVCNTR_EL0(5),
1033 	PMU_PMEVCNTR_EL0(6),
1034 	PMU_PMEVCNTR_EL0(7),
1035 	PMU_PMEVCNTR_EL0(8),
1036 	PMU_PMEVCNTR_EL0(9),
1037 	PMU_PMEVCNTR_EL0(10),
1038 	PMU_PMEVCNTR_EL0(11),
1039 	PMU_PMEVCNTR_EL0(12),
1040 	PMU_PMEVCNTR_EL0(13),
1041 	PMU_PMEVCNTR_EL0(14),
1042 	PMU_PMEVCNTR_EL0(15),
1043 	PMU_PMEVCNTR_EL0(16),
1044 	PMU_PMEVCNTR_EL0(17),
1045 	PMU_PMEVCNTR_EL0(18),
1046 	PMU_PMEVCNTR_EL0(19),
1047 	PMU_PMEVCNTR_EL0(20),
1048 	PMU_PMEVCNTR_EL0(21),
1049 	PMU_PMEVCNTR_EL0(22),
1050 	PMU_PMEVCNTR_EL0(23),
1051 	PMU_PMEVCNTR_EL0(24),
1052 	PMU_PMEVCNTR_EL0(25),
1053 	PMU_PMEVCNTR_EL0(26),
1054 	PMU_PMEVCNTR_EL0(27),
1055 	PMU_PMEVCNTR_EL0(28),
1056 	PMU_PMEVCNTR_EL0(29),
1057 	PMU_PMEVCNTR_EL0(30),
1058 	/* PMEVTYPERn_EL0 */
1059 	PMU_PMEVTYPER_EL0(0),
1060 	PMU_PMEVTYPER_EL0(1),
1061 	PMU_PMEVTYPER_EL0(2),
1062 	PMU_PMEVTYPER_EL0(3),
1063 	PMU_PMEVTYPER_EL0(4),
1064 	PMU_PMEVTYPER_EL0(5),
1065 	PMU_PMEVTYPER_EL0(6),
1066 	PMU_PMEVTYPER_EL0(7),
1067 	PMU_PMEVTYPER_EL0(8),
1068 	PMU_PMEVTYPER_EL0(9),
1069 	PMU_PMEVTYPER_EL0(10),
1070 	PMU_PMEVTYPER_EL0(11),
1071 	PMU_PMEVTYPER_EL0(12),
1072 	PMU_PMEVTYPER_EL0(13),
1073 	PMU_PMEVTYPER_EL0(14),
1074 	PMU_PMEVTYPER_EL0(15),
1075 	PMU_PMEVTYPER_EL0(16),
1076 	PMU_PMEVTYPER_EL0(17),
1077 	PMU_PMEVTYPER_EL0(18),
1078 	PMU_PMEVTYPER_EL0(19),
1079 	PMU_PMEVTYPER_EL0(20),
1080 	PMU_PMEVTYPER_EL0(21),
1081 	PMU_PMEVTYPER_EL0(22),
1082 	PMU_PMEVTYPER_EL0(23),
1083 	PMU_PMEVTYPER_EL0(24),
1084 	PMU_PMEVTYPER_EL0(25),
1085 	PMU_PMEVTYPER_EL0(26),
1086 	PMU_PMEVTYPER_EL0(27),
1087 	PMU_PMEVTYPER_EL0(28),
1088 	PMU_PMEVTYPER_EL0(29),
1089 	PMU_PMEVTYPER_EL0(30),
1090 	/* PMCCFILTR_EL0
1091 	 * This register resets as unknown in 64bit mode while it resets as zero
1092 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1093 	 */
1094 	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1095 	  access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1096 
1097 	/* DACR32_EL2 */
1098 	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1099 	  NULL, reset_unknown, DACR32_EL2 },
1100 	/* IFSR32_EL2 */
1101 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1102 	  NULL, reset_unknown, IFSR32_EL2 },
1103 	/* FPEXC32_EL2 */
1104 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1105 	  NULL, reset_val, FPEXC32_EL2, 0x70 },
1106 };
1107 
1108 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1109 			struct sys_reg_params *p,
1110 			const struct sys_reg_desc *r)
1111 {
1112 	if (p->is_write) {
1113 		return ignore_write(vcpu, p);
1114 	} else {
1115 		u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1116 		u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1117 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1118 
1119 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1120 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1121 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1122 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1123 		return true;
1124 	}
1125 }
1126 
1127 static bool trap_debug32(struct kvm_vcpu *vcpu,
1128 			 struct sys_reg_params *p,
1129 			 const struct sys_reg_desc *r)
1130 {
1131 	if (p->is_write) {
1132 		vcpu_cp14(vcpu, r->reg) = p->regval;
1133 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1134 	} else {
1135 		p->regval = vcpu_cp14(vcpu, r->reg);
1136 	}
1137 
1138 	return true;
1139 }
1140 
1141 /* AArch32 debug register mappings
1142  *
1143  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1144  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1145  *
1146  * All control registers and watchpoint value registers are mapped to
1147  * the lower 32 bits of their AArch64 equivalents. We share the trap
1148  * handlers with the above AArch64 code which checks what mode the
1149  * system is in.
1150  */
1151 
1152 static bool trap_xvr(struct kvm_vcpu *vcpu,
1153 		     struct sys_reg_params *p,
1154 		     const struct sys_reg_desc *rd)
1155 {
1156 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1157 
1158 	if (p->is_write) {
1159 		u64 val = *dbg_reg;
1160 
1161 		val &= 0xffffffffUL;
1162 		val |= p->regval << 32;
1163 		*dbg_reg = val;
1164 
1165 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1166 	} else {
1167 		p->regval = *dbg_reg >> 32;
1168 	}
1169 
1170 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1171 
1172 	return true;
1173 }
1174 
1175 #define DBG_BCR_BVR_WCR_WVR(n)						\
1176 	/* DBGBVRn */							\
1177 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1178 	/* DBGBCRn */							\
1179 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1180 	/* DBGWVRn */							\
1181 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1182 	/* DBGWCRn */							\
1183 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1184 
1185 #define DBGBXVR(n)							\
1186 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1187 
1188 /*
1189  * Trapped cp14 registers. We generally ignore most of the external
1190  * debug, on the principle that they don't really make sense to a
1191  * guest. Revisit this one day, would this principle change.
1192  */
1193 static const struct sys_reg_desc cp14_regs[] = {
1194 	/* DBGIDR */
1195 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1196 	/* DBGDTRRXext */
1197 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1198 
1199 	DBG_BCR_BVR_WCR_WVR(0),
1200 	/* DBGDSCRint */
1201 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1202 	DBG_BCR_BVR_WCR_WVR(1),
1203 	/* DBGDCCINT */
1204 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1205 	/* DBGDSCRext */
1206 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1207 	DBG_BCR_BVR_WCR_WVR(2),
1208 	/* DBGDTR[RT]Xint */
1209 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1210 	/* DBGDTR[RT]Xext */
1211 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1212 	DBG_BCR_BVR_WCR_WVR(3),
1213 	DBG_BCR_BVR_WCR_WVR(4),
1214 	DBG_BCR_BVR_WCR_WVR(5),
1215 	/* DBGWFAR */
1216 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1217 	/* DBGOSECCR */
1218 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1219 	DBG_BCR_BVR_WCR_WVR(6),
1220 	/* DBGVCR */
1221 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1222 	DBG_BCR_BVR_WCR_WVR(7),
1223 	DBG_BCR_BVR_WCR_WVR(8),
1224 	DBG_BCR_BVR_WCR_WVR(9),
1225 	DBG_BCR_BVR_WCR_WVR(10),
1226 	DBG_BCR_BVR_WCR_WVR(11),
1227 	DBG_BCR_BVR_WCR_WVR(12),
1228 	DBG_BCR_BVR_WCR_WVR(13),
1229 	DBG_BCR_BVR_WCR_WVR(14),
1230 	DBG_BCR_BVR_WCR_WVR(15),
1231 
1232 	/* DBGDRAR (32bit) */
1233 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1234 
1235 	DBGBXVR(0),
1236 	/* DBGOSLAR */
1237 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1238 	DBGBXVR(1),
1239 	/* DBGOSLSR */
1240 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1241 	DBGBXVR(2),
1242 	DBGBXVR(3),
1243 	/* DBGOSDLR */
1244 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1245 	DBGBXVR(4),
1246 	/* DBGPRCR */
1247 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1248 	DBGBXVR(5),
1249 	DBGBXVR(6),
1250 	DBGBXVR(7),
1251 	DBGBXVR(8),
1252 	DBGBXVR(9),
1253 	DBGBXVR(10),
1254 	DBGBXVR(11),
1255 	DBGBXVR(12),
1256 	DBGBXVR(13),
1257 	DBGBXVR(14),
1258 	DBGBXVR(15),
1259 
1260 	/* DBGDSAR (32bit) */
1261 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1262 
1263 	/* DBGDEVID2 */
1264 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1265 	/* DBGDEVID1 */
1266 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1267 	/* DBGDEVID */
1268 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1269 	/* DBGCLAIMSET */
1270 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1271 	/* DBGCLAIMCLR */
1272 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1273 	/* DBGAUTHSTATUS */
1274 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1275 };
1276 
1277 /* Trapped cp14 64bit registers */
1278 static const struct sys_reg_desc cp14_64_regs[] = {
1279 	/* DBGDRAR (64bit) */
1280 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1281 
1282 	/* DBGDSAR (64bit) */
1283 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1284 };
1285 
1286 /* Macro to expand the PMEVCNTRn register */
1287 #define PMU_PMEVCNTR(n)							\
1288 	/* PMEVCNTRn */							\
1289 	{ Op1(0), CRn(0b1110),						\
1290 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1291 	  access_pmu_evcntr }
1292 
1293 /* Macro to expand the PMEVTYPERn register */
1294 #define PMU_PMEVTYPER(n)						\
1295 	/* PMEVTYPERn */						\
1296 	{ Op1(0), CRn(0b1110),						\
1297 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1298 	  access_pmu_evtyper }
1299 
1300 /*
1301  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1302  * depending on the way they are accessed (as a 32bit or a 64bit
1303  * register).
1304  */
1305 static const struct sys_reg_desc cp15_regs[] = {
1306 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1307 
1308 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1309 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1310 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1311 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1312 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1313 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1314 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1315 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1316 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1317 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1318 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1319 
1320 	/*
1321 	 * DC{C,I,CI}SW operations:
1322 	 */
1323 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1324 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1325 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1326 
1327 	/* PMU */
1328 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1329 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1330 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1331 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1332 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1333 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1334 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1335 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1336 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1337 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1338 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1339 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1340 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1341 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1342 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1343 
1344 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1345 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1346 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1347 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1348 
1349 	/* ICC_SRE */
1350 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1351 
1352 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1353 
1354 	/* PMEVCNTRn */
1355 	PMU_PMEVCNTR(0),
1356 	PMU_PMEVCNTR(1),
1357 	PMU_PMEVCNTR(2),
1358 	PMU_PMEVCNTR(3),
1359 	PMU_PMEVCNTR(4),
1360 	PMU_PMEVCNTR(5),
1361 	PMU_PMEVCNTR(6),
1362 	PMU_PMEVCNTR(7),
1363 	PMU_PMEVCNTR(8),
1364 	PMU_PMEVCNTR(9),
1365 	PMU_PMEVCNTR(10),
1366 	PMU_PMEVCNTR(11),
1367 	PMU_PMEVCNTR(12),
1368 	PMU_PMEVCNTR(13),
1369 	PMU_PMEVCNTR(14),
1370 	PMU_PMEVCNTR(15),
1371 	PMU_PMEVCNTR(16),
1372 	PMU_PMEVCNTR(17),
1373 	PMU_PMEVCNTR(18),
1374 	PMU_PMEVCNTR(19),
1375 	PMU_PMEVCNTR(20),
1376 	PMU_PMEVCNTR(21),
1377 	PMU_PMEVCNTR(22),
1378 	PMU_PMEVCNTR(23),
1379 	PMU_PMEVCNTR(24),
1380 	PMU_PMEVCNTR(25),
1381 	PMU_PMEVCNTR(26),
1382 	PMU_PMEVCNTR(27),
1383 	PMU_PMEVCNTR(28),
1384 	PMU_PMEVCNTR(29),
1385 	PMU_PMEVCNTR(30),
1386 	/* PMEVTYPERn */
1387 	PMU_PMEVTYPER(0),
1388 	PMU_PMEVTYPER(1),
1389 	PMU_PMEVTYPER(2),
1390 	PMU_PMEVTYPER(3),
1391 	PMU_PMEVTYPER(4),
1392 	PMU_PMEVTYPER(5),
1393 	PMU_PMEVTYPER(6),
1394 	PMU_PMEVTYPER(7),
1395 	PMU_PMEVTYPER(8),
1396 	PMU_PMEVTYPER(9),
1397 	PMU_PMEVTYPER(10),
1398 	PMU_PMEVTYPER(11),
1399 	PMU_PMEVTYPER(12),
1400 	PMU_PMEVTYPER(13),
1401 	PMU_PMEVTYPER(14),
1402 	PMU_PMEVTYPER(15),
1403 	PMU_PMEVTYPER(16),
1404 	PMU_PMEVTYPER(17),
1405 	PMU_PMEVTYPER(18),
1406 	PMU_PMEVTYPER(19),
1407 	PMU_PMEVTYPER(20),
1408 	PMU_PMEVTYPER(21),
1409 	PMU_PMEVTYPER(22),
1410 	PMU_PMEVTYPER(23),
1411 	PMU_PMEVTYPER(24),
1412 	PMU_PMEVTYPER(25),
1413 	PMU_PMEVTYPER(26),
1414 	PMU_PMEVTYPER(27),
1415 	PMU_PMEVTYPER(28),
1416 	PMU_PMEVTYPER(29),
1417 	PMU_PMEVTYPER(30),
1418 	/* PMCCFILTR */
1419 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1420 };
1421 
1422 static const struct sys_reg_desc cp15_64_regs[] = {
1423 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1424 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1425 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1426 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1427 };
1428 
1429 /* Target specific emulation tables */
1430 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1431 
1432 void kvm_register_target_sys_reg_table(unsigned int target,
1433 				       struct kvm_sys_reg_target_table *table)
1434 {
1435 	target_tables[target] = table;
1436 }
1437 
1438 /* Get specific register table for this target. */
1439 static const struct sys_reg_desc *get_target_table(unsigned target,
1440 						   bool mode_is_64,
1441 						   size_t *num)
1442 {
1443 	struct kvm_sys_reg_target_table *table;
1444 
1445 	table = target_tables[target];
1446 	if (mode_is_64) {
1447 		*num = table->table64.num;
1448 		return table->table64.table;
1449 	} else {
1450 		*num = table->table32.num;
1451 		return table->table32.table;
1452 	}
1453 }
1454 
1455 #define reg_to_match_value(x)						\
1456 	({								\
1457 		unsigned long val;					\
1458 		val  = (x)->Op0 << 14;					\
1459 		val |= (x)->Op1 << 11;					\
1460 		val |= (x)->CRn << 7;					\
1461 		val |= (x)->CRm << 3;					\
1462 		val |= (x)->Op2;					\
1463 		val;							\
1464 	 })
1465 
1466 static int match_sys_reg(const void *key, const void *elt)
1467 {
1468 	const unsigned long pval = (unsigned long)key;
1469 	const struct sys_reg_desc *r = elt;
1470 
1471 	return pval - reg_to_match_value(r);
1472 }
1473 
1474 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1475 					 const struct sys_reg_desc table[],
1476 					 unsigned int num)
1477 {
1478 	unsigned long pval = reg_to_match_value(params);
1479 
1480 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1481 }
1482 
1483 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1484 {
1485 	kvm_inject_undefined(vcpu);
1486 	return 1;
1487 }
1488 
1489 /*
1490  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1491  *                call the corresponding trap handler.
1492  *
1493  * @params: pointer to the descriptor of the access
1494  * @table: array of trap descriptors
1495  * @num: size of the trap descriptor array
1496  *
1497  * Return 0 if the access has been handled, and -1 if not.
1498  */
1499 static int emulate_cp(struct kvm_vcpu *vcpu,
1500 		      struct sys_reg_params *params,
1501 		      const struct sys_reg_desc *table,
1502 		      size_t num)
1503 {
1504 	const struct sys_reg_desc *r;
1505 
1506 	if (!table)
1507 		return -1;	/* Not handled */
1508 
1509 	r = find_reg(params, table, num);
1510 
1511 	if (r) {
1512 		/*
1513 		 * Not having an accessor means that we have
1514 		 * configured a trap that we don't know how to
1515 		 * handle. This certainly qualifies as a gross bug
1516 		 * that should be fixed right away.
1517 		 */
1518 		BUG_ON(!r->access);
1519 
1520 		if (likely(r->access(vcpu, params, r))) {
1521 			/* Skip instruction, since it was emulated */
1522 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1523 			/* Handled */
1524 			return 0;
1525 		}
1526 	}
1527 
1528 	/* Not handled */
1529 	return -1;
1530 }
1531 
1532 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1533 				struct sys_reg_params *params)
1534 {
1535 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1536 	int cp = -1;
1537 
1538 	switch(hsr_ec) {
1539 	case ESR_ELx_EC_CP15_32:
1540 	case ESR_ELx_EC_CP15_64:
1541 		cp = 15;
1542 		break;
1543 	case ESR_ELx_EC_CP14_MR:
1544 	case ESR_ELx_EC_CP14_64:
1545 		cp = 14;
1546 		break;
1547 	default:
1548 		WARN_ON(1);
1549 	}
1550 
1551 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1552 		cp, *vcpu_pc(vcpu));
1553 	print_sys_reg_instr(params);
1554 	kvm_inject_undefined(vcpu);
1555 }
1556 
1557 /**
1558  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1559  * @vcpu: The VCPU pointer
1560  * @run:  The kvm_run struct
1561  */
1562 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1563 			    const struct sys_reg_desc *global,
1564 			    size_t nr_global,
1565 			    const struct sys_reg_desc *target_specific,
1566 			    size_t nr_specific)
1567 {
1568 	struct sys_reg_params params;
1569 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1570 	int Rt = (hsr >> 5) & 0xf;
1571 	int Rt2 = (hsr >> 10) & 0xf;
1572 
1573 	params.is_aarch32 = true;
1574 	params.is_32bit = false;
1575 	params.CRm = (hsr >> 1) & 0xf;
1576 	params.is_write = ((hsr & 1) == 0);
1577 
1578 	params.Op0 = 0;
1579 	params.Op1 = (hsr >> 16) & 0xf;
1580 	params.Op2 = 0;
1581 	params.CRn = 0;
1582 
1583 	/*
1584 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1585 	 * backends between AArch32 and AArch64, we get away with it.
1586 	 */
1587 	if (params.is_write) {
1588 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1589 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1590 	}
1591 
1592 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1593 		goto out;
1594 	if (!emulate_cp(vcpu, &params, global, nr_global))
1595 		goto out;
1596 
1597 	unhandled_cp_access(vcpu, &params);
1598 
1599 out:
1600 	/* Split up the value between registers for the read side */
1601 	if (!params.is_write) {
1602 		vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1603 		vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1604 	}
1605 
1606 	return 1;
1607 }
1608 
1609 /**
1610  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1611  * @vcpu: The VCPU pointer
1612  * @run:  The kvm_run struct
1613  */
1614 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1615 			    const struct sys_reg_desc *global,
1616 			    size_t nr_global,
1617 			    const struct sys_reg_desc *target_specific,
1618 			    size_t nr_specific)
1619 {
1620 	struct sys_reg_params params;
1621 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1622 	int Rt  = (hsr >> 5) & 0xf;
1623 
1624 	params.is_aarch32 = true;
1625 	params.is_32bit = true;
1626 	params.CRm = (hsr >> 1) & 0xf;
1627 	params.regval = vcpu_get_reg(vcpu, Rt);
1628 	params.is_write = ((hsr & 1) == 0);
1629 	params.CRn = (hsr >> 10) & 0xf;
1630 	params.Op0 = 0;
1631 	params.Op1 = (hsr >> 14) & 0x7;
1632 	params.Op2 = (hsr >> 17) & 0x7;
1633 
1634 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1635 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1636 		if (!params.is_write)
1637 			vcpu_set_reg(vcpu, Rt, params.regval);
1638 		return 1;
1639 	}
1640 
1641 	unhandled_cp_access(vcpu, &params);
1642 	return 1;
1643 }
1644 
1645 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1646 {
1647 	const struct sys_reg_desc *target_specific;
1648 	size_t num;
1649 
1650 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1651 	return kvm_handle_cp_64(vcpu,
1652 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1653 				target_specific, num);
1654 }
1655 
1656 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1657 {
1658 	const struct sys_reg_desc *target_specific;
1659 	size_t num;
1660 
1661 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1662 	return kvm_handle_cp_32(vcpu,
1663 				cp15_regs, ARRAY_SIZE(cp15_regs),
1664 				target_specific, num);
1665 }
1666 
1667 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1668 {
1669 	return kvm_handle_cp_64(vcpu,
1670 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1671 				NULL, 0);
1672 }
1673 
1674 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1675 {
1676 	return kvm_handle_cp_32(vcpu,
1677 				cp14_regs, ARRAY_SIZE(cp14_regs),
1678 				NULL, 0);
1679 }
1680 
1681 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1682 			   struct sys_reg_params *params)
1683 {
1684 	size_t num;
1685 	const struct sys_reg_desc *table, *r;
1686 
1687 	table = get_target_table(vcpu->arch.target, true, &num);
1688 
1689 	/* Search target-specific then generic table. */
1690 	r = find_reg(params, table, num);
1691 	if (!r)
1692 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1693 
1694 	if (likely(r)) {
1695 		/*
1696 		 * Not having an accessor means that we have
1697 		 * configured a trap that we don't know how to
1698 		 * handle. This certainly qualifies as a gross bug
1699 		 * that should be fixed right away.
1700 		 */
1701 		BUG_ON(!r->access);
1702 
1703 		if (likely(r->access(vcpu, params, r))) {
1704 			/* Skip instruction, since it was emulated */
1705 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1706 			return 1;
1707 		}
1708 		/* If access function fails, it should complain. */
1709 	} else {
1710 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
1711 			*vcpu_pc(vcpu));
1712 		print_sys_reg_instr(params);
1713 	}
1714 	kvm_inject_undefined(vcpu);
1715 	return 1;
1716 }
1717 
1718 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1719 			      const struct sys_reg_desc *table, size_t num)
1720 {
1721 	unsigned long i;
1722 
1723 	for (i = 0; i < num; i++)
1724 		if (table[i].reset)
1725 			table[i].reset(vcpu, &table[i]);
1726 }
1727 
1728 /**
1729  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1730  * @vcpu: The VCPU pointer
1731  * @run:  The kvm_run struct
1732  */
1733 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1734 {
1735 	struct sys_reg_params params;
1736 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1737 	int Rt = (esr >> 5) & 0x1f;
1738 	int ret;
1739 
1740 	trace_kvm_handle_sys_reg(esr);
1741 
1742 	params.is_aarch32 = false;
1743 	params.is_32bit = false;
1744 	params.Op0 = (esr >> 20) & 3;
1745 	params.Op1 = (esr >> 14) & 0x7;
1746 	params.CRn = (esr >> 10) & 0xf;
1747 	params.CRm = (esr >> 1) & 0xf;
1748 	params.Op2 = (esr >> 17) & 0x7;
1749 	params.regval = vcpu_get_reg(vcpu, Rt);
1750 	params.is_write = !(esr & 1);
1751 
1752 	ret = emulate_sys_reg(vcpu, &params);
1753 
1754 	if (!params.is_write)
1755 		vcpu_set_reg(vcpu, Rt, params.regval);
1756 	return ret;
1757 }
1758 
1759 /******************************************************************************
1760  * Userspace API
1761  *****************************************************************************/
1762 
1763 static bool index_to_params(u64 id, struct sys_reg_params *params)
1764 {
1765 	switch (id & KVM_REG_SIZE_MASK) {
1766 	case KVM_REG_SIZE_U64:
1767 		/* Any unused index bits means it's not valid. */
1768 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1769 			      | KVM_REG_ARM_COPROC_MASK
1770 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
1771 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
1772 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
1773 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
1774 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
1775 			return false;
1776 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1777 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1778 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1779 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1780 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1781 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1782 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1783 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1784 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1785 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1786 		return true;
1787 	default:
1788 		return false;
1789 	}
1790 }
1791 
1792 /* Decode an index value, and find the sys_reg_desc entry. */
1793 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1794 						    u64 id)
1795 {
1796 	size_t num;
1797 	const struct sys_reg_desc *table, *r;
1798 	struct sys_reg_params params;
1799 
1800 	/* We only do sys_reg for now. */
1801 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1802 		return NULL;
1803 
1804 	if (!index_to_params(id, &params))
1805 		return NULL;
1806 
1807 	table = get_target_table(vcpu->arch.target, true, &num);
1808 	r = find_reg(&params, table, num);
1809 	if (!r)
1810 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1811 
1812 	/* Not saved in the sys_reg array? */
1813 	if (r && !r->reg)
1814 		r = NULL;
1815 
1816 	return r;
1817 }
1818 
1819 /*
1820  * These are the invariant sys_reg registers: we let the guest see the
1821  * host versions of these, so they're part of the guest state.
1822  *
1823  * A future CPU may provide a mechanism to present different values to
1824  * the guest, or a future kvm may trap them.
1825  */
1826 
1827 #define FUNCTION_INVARIANT(reg)						\
1828 	static void get_##reg(struct kvm_vcpu *v,			\
1829 			      const struct sys_reg_desc *r)		\
1830 	{								\
1831 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
1832 	}
1833 
1834 FUNCTION_INVARIANT(midr_el1)
1835 FUNCTION_INVARIANT(ctr_el0)
1836 FUNCTION_INVARIANT(revidr_el1)
1837 FUNCTION_INVARIANT(id_pfr0_el1)
1838 FUNCTION_INVARIANT(id_pfr1_el1)
1839 FUNCTION_INVARIANT(id_dfr0_el1)
1840 FUNCTION_INVARIANT(id_afr0_el1)
1841 FUNCTION_INVARIANT(id_mmfr0_el1)
1842 FUNCTION_INVARIANT(id_mmfr1_el1)
1843 FUNCTION_INVARIANT(id_mmfr2_el1)
1844 FUNCTION_INVARIANT(id_mmfr3_el1)
1845 FUNCTION_INVARIANT(id_isar0_el1)
1846 FUNCTION_INVARIANT(id_isar1_el1)
1847 FUNCTION_INVARIANT(id_isar2_el1)
1848 FUNCTION_INVARIANT(id_isar3_el1)
1849 FUNCTION_INVARIANT(id_isar4_el1)
1850 FUNCTION_INVARIANT(id_isar5_el1)
1851 FUNCTION_INVARIANT(clidr_el1)
1852 FUNCTION_INVARIANT(aidr_el1)
1853 
1854 /* ->val is filled in by kvm_sys_reg_table_init() */
1855 static struct sys_reg_desc invariant_sys_regs[] = {
1856 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1857 	  NULL, get_midr_el1 },
1858 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1859 	  NULL, get_revidr_el1 },
1860 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1861 	  NULL, get_id_pfr0_el1 },
1862 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1863 	  NULL, get_id_pfr1_el1 },
1864 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1865 	  NULL, get_id_dfr0_el1 },
1866 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1867 	  NULL, get_id_afr0_el1 },
1868 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1869 	  NULL, get_id_mmfr0_el1 },
1870 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1871 	  NULL, get_id_mmfr1_el1 },
1872 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1873 	  NULL, get_id_mmfr2_el1 },
1874 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1875 	  NULL, get_id_mmfr3_el1 },
1876 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1877 	  NULL, get_id_isar0_el1 },
1878 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1879 	  NULL, get_id_isar1_el1 },
1880 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1881 	  NULL, get_id_isar2_el1 },
1882 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1883 	  NULL, get_id_isar3_el1 },
1884 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1885 	  NULL, get_id_isar4_el1 },
1886 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1887 	  NULL, get_id_isar5_el1 },
1888 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1889 	  NULL, get_clidr_el1 },
1890 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1891 	  NULL, get_aidr_el1 },
1892 	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1893 	  NULL, get_ctr_el0 },
1894 };
1895 
1896 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1897 {
1898 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1899 		return -EFAULT;
1900 	return 0;
1901 }
1902 
1903 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1904 {
1905 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1906 		return -EFAULT;
1907 	return 0;
1908 }
1909 
1910 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1911 {
1912 	struct sys_reg_params params;
1913 	const struct sys_reg_desc *r;
1914 
1915 	if (!index_to_params(id, &params))
1916 		return -ENOENT;
1917 
1918 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1919 	if (!r)
1920 		return -ENOENT;
1921 
1922 	return reg_to_user(uaddr, &r->val, id);
1923 }
1924 
1925 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1926 {
1927 	struct sys_reg_params params;
1928 	const struct sys_reg_desc *r;
1929 	int err;
1930 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1931 
1932 	if (!index_to_params(id, &params))
1933 		return -ENOENT;
1934 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1935 	if (!r)
1936 		return -ENOENT;
1937 
1938 	err = reg_from_user(&val, uaddr, id);
1939 	if (err)
1940 		return err;
1941 
1942 	/* This is what we mean by invariant: you can't change it. */
1943 	if (r->val != val)
1944 		return -EINVAL;
1945 
1946 	return 0;
1947 }
1948 
1949 static bool is_valid_cache(u32 val)
1950 {
1951 	u32 level, ctype;
1952 
1953 	if (val >= CSSELR_MAX)
1954 		return false;
1955 
1956 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1957 	level = (val >> 1);
1958 	ctype = (cache_levels >> (level * 3)) & 7;
1959 
1960 	switch (ctype) {
1961 	case 0: /* No cache */
1962 		return false;
1963 	case 1: /* Instruction cache only */
1964 		return (val & 1);
1965 	case 2: /* Data cache only */
1966 	case 4: /* Unified cache */
1967 		return !(val & 1);
1968 	case 3: /* Separate instruction and data caches */
1969 		return true;
1970 	default: /* Reserved: we can't know instruction or data. */
1971 		return false;
1972 	}
1973 }
1974 
1975 static int demux_c15_get(u64 id, void __user *uaddr)
1976 {
1977 	u32 val;
1978 	u32 __user *uval = uaddr;
1979 
1980 	/* Fail if we have unknown bits set. */
1981 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1982 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1983 		return -ENOENT;
1984 
1985 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1986 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1987 		if (KVM_REG_SIZE(id) != 4)
1988 			return -ENOENT;
1989 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1990 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1991 		if (!is_valid_cache(val))
1992 			return -ENOENT;
1993 
1994 		return put_user(get_ccsidr(val), uval);
1995 	default:
1996 		return -ENOENT;
1997 	}
1998 }
1999 
2000 static int demux_c15_set(u64 id, void __user *uaddr)
2001 {
2002 	u32 val, newval;
2003 	u32 __user *uval = uaddr;
2004 
2005 	/* Fail if we have unknown bits set. */
2006 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2007 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2008 		return -ENOENT;
2009 
2010 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2011 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2012 		if (KVM_REG_SIZE(id) != 4)
2013 			return -ENOENT;
2014 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2015 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2016 		if (!is_valid_cache(val))
2017 			return -ENOENT;
2018 
2019 		if (get_user(newval, uval))
2020 			return -EFAULT;
2021 
2022 		/* This is also invariant: you can't change it. */
2023 		if (newval != get_ccsidr(val))
2024 			return -EINVAL;
2025 		return 0;
2026 	default:
2027 		return -ENOENT;
2028 	}
2029 }
2030 
2031 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2032 {
2033 	const struct sys_reg_desc *r;
2034 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2035 
2036 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2037 		return demux_c15_get(reg->id, uaddr);
2038 
2039 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2040 		return -ENOENT;
2041 
2042 	r = index_to_sys_reg_desc(vcpu, reg->id);
2043 	if (!r)
2044 		return get_invariant_sys_reg(reg->id, uaddr);
2045 
2046 	if (r->get_user)
2047 		return (r->get_user)(vcpu, r, reg, uaddr);
2048 
2049 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2050 }
2051 
2052 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2053 {
2054 	const struct sys_reg_desc *r;
2055 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2056 
2057 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2058 		return demux_c15_set(reg->id, uaddr);
2059 
2060 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2061 		return -ENOENT;
2062 
2063 	r = index_to_sys_reg_desc(vcpu, reg->id);
2064 	if (!r)
2065 		return set_invariant_sys_reg(reg->id, uaddr);
2066 
2067 	if (r->set_user)
2068 		return (r->set_user)(vcpu, r, reg, uaddr);
2069 
2070 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2071 }
2072 
2073 static unsigned int num_demux_regs(void)
2074 {
2075 	unsigned int i, count = 0;
2076 
2077 	for (i = 0; i < CSSELR_MAX; i++)
2078 		if (is_valid_cache(i))
2079 			count++;
2080 
2081 	return count;
2082 }
2083 
2084 static int write_demux_regids(u64 __user *uindices)
2085 {
2086 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2087 	unsigned int i;
2088 
2089 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2090 	for (i = 0; i < CSSELR_MAX; i++) {
2091 		if (!is_valid_cache(i))
2092 			continue;
2093 		if (put_user(val | i, uindices))
2094 			return -EFAULT;
2095 		uindices++;
2096 	}
2097 	return 0;
2098 }
2099 
2100 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2101 {
2102 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2103 		KVM_REG_ARM64_SYSREG |
2104 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2105 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2106 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2107 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2108 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2109 }
2110 
2111 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2112 {
2113 	if (!*uind)
2114 		return true;
2115 
2116 	if (put_user(sys_reg_to_index(reg), *uind))
2117 		return false;
2118 
2119 	(*uind)++;
2120 	return true;
2121 }
2122 
2123 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2124 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2125 {
2126 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2127 	unsigned int total = 0;
2128 	size_t num;
2129 
2130 	/* We check for duplicates here, to allow arch-specific overrides. */
2131 	i1 = get_target_table(vcpu->arch.target, true, &num);
2132 	end1 = i1 + num;
2133 	i2 = sys_reg_descs;
2134 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2135 
2136 	BUG_ON(i1 == end1 || i2 == end2);
2137 
2138 	/* Walk carefully, as both tables may refer to the same register. */
2139 	while (i1 || i2) {
2140 		int cmp = cmp_sys_reg(i1, i2);
2141 		/* target-specific overrides generic entry. */
2142 		if (cmp <= 0) {
2143 			/* Ignore registers we trap but don't save. */
2144 			if (i1->reg) {
2145 				if (!copy_reg_to_user(i1, &uind))
2146 					return -EFAULT;
2147 				total++;
2148 			}
2149 		} else {
2150 			/* Ignore registers we trap but don't save. */
2151 			if (i2->reg) {
2152 				if (!copy_reg_to_user(i2, &uind))
2153 					return -EFAULT;
2154 				total++;
2155 			}
2156 		}
2157 
2158 		if (cmp <= 0 && ++i1 == end1)
2159 			i1 = NULL;
2160 		if (cmp >= 0 && ++i2 == end2)
2161 			i2 = NULL;
2162 	}
2163 	return total;
2164 }
2165 
2166 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2167 {
2168 	return ARRAY_SIZE(invariant_sys_regs)
2169 		+ num_demux_regs()
2170 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2171 }
2172 
2173 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2174 {
2175 	unsigned int i;
2176 	int err;
2177 
2178 	/* Then give them all the invariant registers' indices. */
2179 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2180 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2181 			return -EFAULT;
2182 		uindices++;
2183 	}
2184 
2185 	err = walk_sys_regs(vcpu, uindices);
2186 	if (err < 0)
2187 		return err;
2188 	uindices += err;
2189 
2190 	return write_demux_regids(uindices);
2191 }
2192 
2193 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2194 {
2195 	unsigned int i;
2196 
2197 	for (i = 1; i < n; i++) {
2198 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2199 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2200 			return 1;
2201 		}
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 void kvm_sys_reg_table_init(void)
2208 {
2209 	unsigned int i;
2210 	struct sys_reg_desc clidr;
2211 
2212 	/* Make sure tables are unique and in order. */
2213 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2214 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2215 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2216 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2217 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2218 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2219 
2220 	/* We abuse the reset function to overwrite the table itself. */
2221 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2222 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2223 
2224 	/*
2225 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2226 	 *
2227 	 *   If software reads the Cache Type fields from Ctype1
2228 	 *   upwards, once it has seen a value of 0b000, no caches
2229 	 *   exist at further-out levels of the hierarchy. So, for
2230 	 *   example, if Ctype3 is the first Cache Type field with a
2231 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2232 	 *   ignored.
2233 	 */
2234 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2235 	cache_levels = clidr.val;
2236 	for (i = 0; i < 7; i++)
2237 		if (((cache_levels >> (i*3)) & 7) == 0)
2238 			break;
2239 	/* Clear all higher bits. */
2240 	cache_levels &= (1 << (i*3))-1;
2241 }
2242 
2243 /**
2244  * kvm_reset_sys_regs - sets system registers to reset value
2245  * @vcpu: The VCPU pointer
2246  *
2247  * This function finds the right table above and sets the registers on the
2248  * virtual CPU struct to their architecturally defined reset values.
2249  */
2250 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2251 {
2252 	size_t num;
2253 	const struct sys_reg_desc *table;
2254 
2255 	/* Catch someone adding a register without putting in reset entry. */
2256 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2257 
2258 	/* Generic chip reset first (so target could override). */
2259 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2260 
2261 	table = get_target_table(vcpu->arch.target, true, &num);
2262 	reset_sys_reg_descs(vcpu, table, num);
2263 
2264 	for (num = 1; num < NR_SYS_REGS; num++)
2265 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2266 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
2267 }
2268