xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision e00a844a)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_asm.h>
35 #include <asm/kvm_coproc.h>
36 #include <asm/kvm_emulate.h>
37 #include <asm/kvm_host.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41 
42 #include <trace/events/kvm.h>
43 
44 #include "sys_regs.h"
45 
46 #include "trace.h"
47 
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58 
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 				 struct sys_reg_params *params,
61 				 const struct sys_reg_desc *r)
62 {
63 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 	print_sys_reg_instr(params);
65 	kvm_inject_undefined(vcpu);
66 	return false;
67 }
68 
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 			       struct sys_reg_params *params,
71 			       const struct sys_reg_desc *r)
72 {
73 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 	print_sys_reg_instr(params);
75 	kvm_inject_undefined(vcpu);
76 	return false;
77 }
78 
79 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
80 static u32 cache_levels;
81 
82 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
83 #define CSSELR_MAX 12
84 
85 /* Which cache CCSIDR represents depends on CSSELR value. */
86 static u32 get_ccsidr(u32 csselr)
87 {
88 	u32 ccsidr;
89 
90 	/* Make sure noone else changes CSSELR during this! */
91 	local_irq_disable();
92 	write_sysreg(csselr, csselr_el1);
93 	isb();
94 	ccsidr = read_sysreg(ccsidr_el1);
95 	local_irq_enable();
96 
97 	return ccsidr;
98 }
99 
100 /*
101  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
102  */
103 static bool access_dcsw(struct kvm_vcpu *vcpu,
104 			struct sys_reg_params *p,
105 			const struct sys_reg_desc *r)
106 {
107 	if (!p->is_write)
108 		return read_from_write_only(vcpu, p, r);
109 
110 	kvm_set_way_flush(vcpu);
111 	return true;
112 }
113 
114 /*
115  * Generic accessor for VM registers. Only called as long as HCR_TVM
116  * is set. If the guest enables the MMU, we stop trapping the VM
117  * sys_regs and leave it in complete control of the caches.
118  */
119 static bool access_vm_reg(struct kvm_vcpu *vcpu,
120 			  struct sys_reg_params *p,
121 			  const struct sys_reg_desc *r)
122 {
123 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
124 
125 	BUG_ON(!p->is_write);
126 
127 	if (!p->is_aarch32) {
128 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
129 	} else {
130 		if (!p->is_32bit)
131 			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
132 		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
133 	}
134 
135 	kvm_toggle_cache(vcpu, was_enabled);
136 	return true;
137 }
138 
139 /*
140  * Trap handler for the GICv3 SGI generation system register.
141  * Forward the request to the VGIC emulation.
142  * The cp15_64 code makes sure this automatically works
143  * for both AArch64 and AArch32 accesses.
144  */
145 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
146 			   struct sys_reg_params *p,
147 			   const struct sys_reg_desc *r)
148 {
149 	if (!p->is_write)
150 		return read_from_write_only(vcpu, p, r);
151 
152 	vgic_v3_dispatch_sgi(vcpu, p->regval);
153 
154 	return true;
155 }
156 
157 static bool access_gic_sre(struct kvm_vcpu *vcpu,
158 			   struct sys_reg_params *p,
159 			   const struct sys_reg_desc *r)
160 {
161 	if (p->is_write)
162 		return ignore_write(vcpu, p);
163 
164 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
165 	return true;
166 }
167 
168 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169 			struct sys_reg_params *p,
170 			const struct sys_reg_desc *r)
171 {
172 	if (p->is_write)
173 		return ignore_write(vcpu, p);
174 	else
175 		return read_zero(vcpu, p);
176 }
177 
178 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179 			   struct sys_reg_params *p,
180 			   const struct sys_reg_desc *r)
181 {
182 	if (p->is_write) {
183 		return ignore_write(vcpu, p);
184 	} else {
185 		p->regval = (1 << 3);
186 		return true;
187 	}
188 }
189 
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191 				   struct sys_reg_params *p,
192 				   const struct sys_reg_desc *r)
193 {
194 	if (p->is_write) {
195 		return ignore_write(vcpu, p);
196 	} else {
197 		p->regval = read_sysreg(dbgauthstatus_el1);
198 		return true;
199 	}
200 }
201 
202 /*
203  * We want to avoid world-switching all the DBG registers all the
204  * time:
205  *
206  * - If we've touched any debug register, it is likely that we're
207  *   going to touch more of them. It then makes sense to disable the
208  *   traps and start doing the save/restore dance
209  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
210  *   then mandatory to save/restore the registers, as the guest
211  *   depends on them.
212  *
213  * For this, we use a DIRTY bit, indicating the guest has modified the
214  * debug registers, used as follow:
215  *
216  * On guest entry:
217  * - If the dirty bit is set (because we're coming back from trapping),
218  *   disable the traps, save host registers, restore guest registers.
219  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
220  *   set the dirty bit, disable the traps, save host registers,
221  *   restore guest registers.
222  * - Otherwise, enable the traps
223  *
224  * On guest exit:
225  * - If the dirty bit is set, save guest registers, restore host
226  *   registers and clear the dirty bit. This ensure that the host can
227  *   now use the debug registers.
228  */
229 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
230 			    struct sys_reg_params *p,
231 			    const struct sys_reg_desc *r)
232 {
233 	if (p->is_write) {
234 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
235 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
236 	} else {
237 		p->regval = vcpu_sys_reg(vcpu, r->reg);
238 	}
239 
240 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
241 
242 	return true;
243 }
244 
245 /*
246  * reg_to_dbg/dbg_to_reg
247  *
248  * A 32 bit write to a debug register leave top bits alone
249  * A 32 bit read from a debug register only returns the bottom bits
250  *
251  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
252  * hyp.S code switches between host and guest values in future.
253  */
254 static void reg_to_dbg(struct kvm_vcpu *vcpu,
255 		       struct sys_reg_params *p,
256 		       u64 *dbg_reg)
257 {
258 	u64 val = p->regval;
259 
260 	if (p->is_32bit) {
261 		val &= 0xffffffffUL;
262 		val |= ((*dbg_reg >> 32) << 32);
263 	}
264 
265 	*dbg_reg = val;
266 	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
267 }
268 
269 static void dbg_to_reg(struct kvm_vcpu *vcpu,
270 		       struct sys_reg_params *p,
271 		       u64 *dbg_reg)
272 {
273 	p->regval = *dbg_reg;
274 	if (p->is_32bit)
275 		p->regval &= 0xffffffffUL;
276 }
277 
278 static bool trap_bvr(struct kvm_vcpu *vcpu,
279 		     struct sys_reg_params *p,
280 		     const struct sys_reg_desc *rd)
281 {
282 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
283 
284 	if (p->is_write)
285 		reg_to_dbg(vcpu, p, dbg_reg);
286 	else
287 		dbg_to_reg(vcpu, p, dbg_reg);
288 
289 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
290 
291 	return true;
292 }
293 
294 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
295 		const struct kvm_one_reg *reg, void __user *uaddr)
296 {
297 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
298 
299 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
300 		return -EFAULT;
301 	return 0;
302 }
303 
304 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
305 	const struct kvm_one_reg *reg, void __user *uaddr)
306 {
307 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
308 
309 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
310 		return -EFAULT;
311 	return 0;
312 }
313 
314 static void reset_bvr(struct kvm_vcpu *vcpu,
315 		      const struct sys_reg_desc *rd)
316 {
317 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
318 }
319 
320 static bool trap_bcr(struct kvm_vcpu *vcpu,
321 		     struct sys_reg_params *p,
322 		     const struct sys_reg_desc *rd)
323 {
324 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
325 
326 	if (p->is_write)
327 		reg_to_dbg(vcpu, p, dbg_reg);
328 	else
329 		dbg_to_reg(vcpu, p, dbg_reg);
330 
331 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
332 
333 	return true;
334 }
335 
336 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
337 		const struct kvm_one_reg *reg, void __user *uaddr)
338 {
339 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
340 
341 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
342 		return -EFAULT;
343 
344 	return 0;
345 }
346 
347 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
348 	const struct kvm_one_reg *reg, void __user *uaddr)
349 {
350 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
351 
352 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
353 		return -EFAULT;
354 	return 0;
355 }
356 
357 static void reset_bcr(struct kvm_vcpu *vcpu,
358 		      const struct sys_reg_desc *rd)
359 {
360 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
361 }
362 
363 static bool trap_wvr(struct kvm_vcpu *vcpu,
364 		     struct sys_reg_params *p,
365 		     const struct sys_reg_desc *rd)
366 {
367 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
368 
369 	if (p->is_write)
370 		reg_to_dbg(vcpu, p, dbg_reg);
371 	else
372 		dbg_to_reg(vcpu, p, dbg_reg);
373 
374 	trace_trap_reg(__func__, rd->reg, p->is_write,
375 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
376 
377 	return true;
378 }
379 
380 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
381 		const struct kvm_one_reg *reg, void __user *uaddr)
382 {
383 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
384 
385 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
386 		return -EFAULT;
387 	return 0;
388 }
389 
390 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
391 	const struct kvm_one_reg *reg, void __user *uaddr)
392 {
393 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
394 
395 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
396 		return -EFAULT;
397 	return 0;
398 }
399 
400 static void reset_wvr(struct kvm_vcpu *vcpu,
401 		      const struct sys_reg_desc *rd)
402 {
403 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
404 }
405 
406 static bool trap_wcr(struct kvm_vcpu *vcpu,
407 		     struct sys_reg_params *p,
408 		     const struct sys_reg_desc *rd)
409 {
410 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
411 
412 	if (p->is_write)
413 		reg_to_dbg(vcpu, p, dbg_reg);
414 	else
415 		dbg_to_reg(vcpu, p, dbg_reg);
416 
417 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
418 
419 	return true;
420 }
421 
422 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
423 		const struct kvm_one_reg *reg, void __user *uaddr)
424 {
425 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
426 
427 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
428 		return -EFAULT;
429 	return 0;
430 }
431 
432 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
433 	const struct kvm_one_reg *reg, void __user *uaddr)
434 {
435 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
436 
437 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
438 		return -EFAULT;
439 	return 0;
440 }
441 
442 static void reset_wcr(struct kvm_vcpu *vcpu,
443 		      const struct sys_reg_desc *rd)
444 {
445 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
446 }
447 
448 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
449 {
450 	vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
451 }
452 
453 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
454 {
455 	u64 mpidr;
456 
457 	/*
458 	 * Map the vcpu_id into the first three affinity level fields of
459 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
460 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
461 	 * of the GICv3 to be able to address each CPU directly when
462 	 * sending IPIs.
463 	 */
464 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
465 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
466 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
467 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
468 }
469 
470 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
471 {
472 	u64 pmcr, val;
473 
474 	pmcr = read_sysreg(pmcr_el0);
475 	/*
476 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
477 	 * except PMCR.E resetting to zero.
478 	 */
479 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
480 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
481 	vcpu_sys_reg(vcpu, PMCR_EL0) = val;
482 }
483 
484 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
485 {
486 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
487 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
488 
489 	if (!enabled)
490 		kvm_inject_undefined(vcpu);
491 
492 	return !enabled;
493 }
494 
495 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
496 {
497 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
498 }
499 
500 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
501 {
502 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
503 }
504 
505 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
506 {
507 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
508 }
509 
510 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
511 {
512 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
513 }
514 
515 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
516 			const struct sys_reg_desc *r)
517 {
518 	u64 val;
519 
520 	if (!kvm_arm_pmu_v3_ready(vcpu))
521 		return trap_raz_wi(vcpu, p, r);
522 
523 	if (pmu_access_el0_disabled(vcpu))
524 		return false;
525 
526 	if (p->is_write) {
527 		/* Only update writeable bits of PMCR */
528 		val = vcpu_sys_reg(vcpu, PMCR_EL0);
529 		val &= ~ARMV8_PMU_PMCR_MASK;
530 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
531 		vcpu_sys_reg(vcpu, PMCR_EL0) = val;
532 		kvm_pmu_handle_pmcr(vcpu, val);
533 	} else {
534 		/* PMCR.P & PMCR.C are RAZ */
535 		val = vcpu_sys_reg(vcpu, PMCR_EL0)
536 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
537 		p->regval = val;
538 	}
539 
540 	return true;
541 }
542 
543 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
544 			  const struct sys_reg_desc *r)
545 {
546 	if (!kvm_arm_pmu_v3_ready(vcpu))
547 		return trap_raz_wi(vcpu, p, r);
548 
549 	if (pmu_access_event_counter_el0_disabled(vcpu))
550 		return false;
551 
552 	if (p->is_write)
553 		vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
554 	else
555 		/* return PMSELR.SEL field */
556 		p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
557 			    & ARMV8_PMU_COUNTER_MASK;
558 
559 	return true;
560 }
561 
562 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
563 			  const struct sys_reg_desc *r)
564 {
565 	u64 pmceid;
566 
567 	if (!kvm_arm_pmu_v3_ready(vcpu))
568 		return trap_raz_wi(vcpu, p, r);
569 
570 	BUG_ON(p->is_write);
571 
572 	if (pmu_access_el0_disabled(vcpu))
573 		return false;
574 
575 	if (!(p->Op2 & 1))
576 		pmceid = read_sysreg(pmceid0_el0);
577 	else
578 		pmceid = read_sysreg(pmceid1_el0);
579 
580 	p->regval = pmceid;
581 
582 	return true;
583 }
584 
585 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
586 {
587 	u64 pmcr, val;
588 
589 	pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
590 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
591 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
592 		kvm_inject_undefined(vcpu);
593 		return false;
594 	}
595 
596 	return true;
597 }
598 
599 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
600 			      struct sys_reg_params *p,
601 			      const struct sys_reg_desc *r)
602 {
603 	u64 idx;
604 
605 	if (!kvm_arm_pmu_v3_ready(vcpu))
606 		return trap_raz_wi(vcpu, p, r);
607 
608 	if (r->CRn == 9 && r->CRm == 13) {
609 		if (r->Op2 == 2) {
610 			/* PMXEVCNTR_EL0 */
611 			if (pmu_access_event_counter_el0_disabled(vcpu))
612 				return false;
613 
614 			idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
615 			      & ARMV8_PMU_COUNTER_MASK;
616 		} else if (r->Op2 == 0) {
617 			/* PMCCNTR_EL0 */
618 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
619 				return false;
620 
621 			idx = ARMV8_PMU_CYCLE_IDX;
622 		} else {
623 			return false;
624 		}
625 	} else if (r->CRn == 0 && r->CRm == 9) {
626 		/* PMCCNTR */
627 		if (pmu_access_event_counter_el0_disabled(vcpu))
628 			return false;
629 
630 		idx = ARMV8_PMU_CYCLE_IDX;
631 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
632 		/* PMEVCNTRn_EL0 */
633 		if (pmu_access_event_counter_el0_disabled(vcpu))
634 			return false;
635 
636 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
637 	} else {
638 		return false;
639 	}
640 
641 	if (!pmu_counter_idx_valid(vcpu, idx))
642 		return false;
643 
644 	if (p->is_write) {
645 		if (pmu_access_el0_disabled(vcpu))
646 			return false;
647 
648 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
649 	} else {
650 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
651 	}
652 
653 	return true;
654 }
655 
656 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
657 			       const struct sys_reg_desc *r)
658 {
659 	u64 idx, reg;
660 
661 	if (!kvm_arm_pmu_v3_ready(vcpu))
662 		return trap_raz_wi(vcpu, p, r);
663 
664 	if (pmu_access_el0_disabled(vcpu))
665 		return false;
666 
667 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
668 		/* PMXEVTYPER_EL0 */
669 		idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
670 		reg = PMEVTYPER0_EL0 + idx;
671 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
672 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
673 		if (idx == ARMV8_PMU_CYCLE_IDX)
674 			reg = PMCCFILTR_EL0;
675 		else
676 			/* PMEVTYPERn_EL0 */
677 			reg = PMEVTYPER0_EL0 + idx;
678 	} else {
679 		BUG();
680 	}
681 
682 	if (!pmu_counter_idx_valid(vcpu, idx))
683 		return false;
684 
685 	if (p->is_write) {
686 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
687 		vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
688 	} else {
689 		p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
690 	}
691 
692 	return true;
693 }
694 
695 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
696 			   const struct sys_reg_desc *r)
697 {
698 	u64 val, mask;
699 
700 	if (!kvm_arm_pmu_v3_ready(vcpu))
701 		return trap_raz_wi(vcpu, p, r);
702 
703 	if (pmu_access_el0_disabled(vcpu))
704 		return false;
705 
706 	mask = kvm_pmu_valid_counter_mask(vcpu);
707 	if (p->is_write) {
708 		val = p->regval & mask;
709 		if (r->Op2 & 0x1) {
710 			/* accessing PMCNTENSET_EL0 */
711 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
712 			kvm_pmu_enable_counter(vcpu, val);
713 		} else {
714 			/* accessing PMCNTENCLR_EL0 */
715 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
716 			kvm_pmu_disable_counter(vcpu, val);
717 		}
718 	} else {
719 		p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
720 	}
721 
722 	return true;
723 }
724 
725 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
726 			   const struct sys_reg_desc *r)
727 {
728 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
729 
730 	if (!kvm_arm_pmu_v3_ready(vcpu))
731 		return trap_raz_wi(vcpu, p, r);
732 
733 	if (!vcpu_mode_priv(vcpu)) {
734 		kvm_inject_undefined(vcpu);
735 		return false;
736 	}
737 
738 	if (p->is_write) {
739 		u64 val = p->regval & mask;
740 
741 		if (r->Op2 & 0x1)
742 			/* accessing PMINTENSET_EL1 */
743 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
744 		else
745 			/* accessing PMINTENCLR_EL1 */
746 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
747 	} else {
748 		p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
749 	}
750 
751 	return true;
752 }
753 
754 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
755 			 const struct sys_reg_desc *r)
756 {
757 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
758 
759 	if (!kvm_arm_pmu_v3_ready(vcpu))
760 		return trap_raz_wi(vcpu, p, r);
761 
762 	if (pmu_access_el0_disabled(vcpu))
763 		return false;
764 
765 	if (p->is_write) {
766 		if (r->CRm & 0x2)
767 			/* accessing PMOVSSET_EL0 */
768 			vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
769 		else
770 			/* accessing PMOVSCLR_EL0 */
771 			vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
772 	} else {
773 		p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
774 	}
775 
776 	return true;
777 }
778 
779 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
780 			   const struct sys_reg_desc *r)
781 {
782 	u64 mask;
783 
784 	if (!kvm_arm_pmu_v3_ready(vcpu))
785 		return trap_raz_wi(vcpu, p, r);
786 
787 	if (!p->is_write)
788 		return read_from_write_only(vcpu, p, r);
789 
790 	if (pmu_write_swinc_el0_disabled(vcpu))
791 		return false;
792 
793 	mask = kvm_pmu_valid_counter_mask(vcpu);
794 	kvm_pmu_software_increment(vcpu, p->regval & mask);
795 	return true;
796 }
797 
798 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
799 			     const struct sys_reg_desc *r)
800 {
801 	if (!kvm_arm_pmu_v3_ready(vcpu))
802 		return trap_raz_wi(vcpu, p, r);
803 
804 	if (p->is_write) {
805 		if (!vcpu_mode_priv(vcpu)) {
806 			kvm_inject_undefined(vcpu);
807 			return false;
808 		}
809 
810 		vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
811 						    & ARMV8_PMU_USERENR_MASK;
812 	} else {
813 		p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
814 			    & ARMV8_PMU_USERENR_MASK;
815 	}
816 
817 	return true;
818 }
819 
820 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
821 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
822 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
823 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
824 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
825 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
826 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
827 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
828 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
829 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
830 
831 /* Macro to expand the PMEVCNTRn_EL0 register */
832 #define PMU_PMEVCNTR_EL0(n)						\
833 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
834 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
835 
836 /* Macro to expand the PMEVTYPERn_EL0 register */
837 #define PMU_PMEVTYPER_EL0(n)						\
838 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
839 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
840 
841 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
842 		struct sys_reg_params *p,
843 		const struct sys_reg_desc *r)
844 {
845 	u64 now = kvm_phys_timer_read();
846 	u64 cval;
847 
848 	if (p->is_write) {
849 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
850 				      p->regval + now);
851 	} else {
852 		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
853 		p->regval = cval - now;
854 	}
855 
856 	return true;
857 }
858 
859 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
860 		struct sys_reg_params *p,
861 		const struct sys_reg_desc *r)
862 {
863 	if (p->is_write)
864 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
865 	else
866 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
867 
868 	return true;
869 }
870 
871 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
872 		struct sys_reg_params *p,
873 		const struct sys_reg_desc *r)
874 {
875 	if (p->is_write)
876 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
877 	else
878 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
879 
880 	return true;
881 }
882 
883 /* Read a sanitised cpufeature ID register by sys_reg_desc */
884 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
885 {
886 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
887 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
888 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
889 
890 	if (id == SYS_ID_AA64PFR0_EL1) {
891 		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
892 			pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
893 				    task_pid_nr(current));
894 
895 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
896 	}
897 
898 	return val;
899 }
900 
901 /* cpufeature ID register access trap handlers */
902 
903 static bool __access_id_reg(struct kvm_vcpu *vcpu,
904 			    struct sys_reg_params *p,
905 			    const struct sys_reg_desc *r,
906 			    bool raz)
907 {
908 	if (p->is_write)
909 		return write_to_read_only(vcpu, p, r);
910 
911 	p->regval = read_id_reg(r, raz);
912 	return true;
913 }
914 
915 static bool access_id_reg(struct kvm_vcpu *vcpu,
916 			  struct sys_reg_params *p,
917 			  const struct sys_reg_desc *r)
918 {
919 	return __access_id_reg(vcpu, p, r, false);
920 }
921 
922 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
923 			      struct sys_reg_params *p,
924 			      const struct sys_reg_desc *r)
925 {
926 	return __access_id_reg(vcpu, p, r, true);
927 }
928 
929 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
930 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
931 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
932 
933 /*
934  * cpufeature ID register user accessors
935  *
936  * For now, these registers are immutable for userspace, so no values
937  * are stored, and for set_id_reg() we don't allow the effective value
938  * to be changed.
939  */
940 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
941 			bool raz)
942 {
943 	const u64 id = sys_reg_to_index(rd);
944 	const u64 val = read_id_reg(rd, raz);
945 
946 	return reg_to_user(uaddr, &val, id);
947 }
948 
949 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
950 			bool raz)
951 {
952 	const u64 id = sys_reg_to_index(rd);
953 	int err;
954 	u64 val;
955 
956 	err = reg_from_user(&val, uaddr, id);
957 	if (err)
958 		return err;
959 
960 	/* This is what we mean by invariant: you can't change it. */
961 	if (val != read_id_reg(rd, raz))
962 		return -EINVAL;
963 
964 	return 0;
965 }
966 
967 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
968 		      const struct kvm_one_reg *reg, void __user *uaddr)
969 {
970 	return __get_id_reg(rd, uaddr, false);
971 }
972 
973 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
974 		      const struct kvm_one_reg *reg, void __user *uaddr)
975 {
976 	return __set_id_reg(rd, uaddr, false);
977 }
978 
979 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
980 			  const struct kvm_one_reg *reg, void __user *uaddr)
981 {
982 	return __get_id_reg(rd, uaddr, true);
983 }
984 
985 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
986 			  const struct kvm_one_reg *reg, void __user *uaddr)
987 {
988 	return __set_id_reg(rd, uaddr, true);
989 }
990 
991 /* sys_reg_desc initialiser for known cpufeature ID registers */
992 #define ID_SANITISED(name) {			\
993 	SYS_DESC(SYS_##name),			\
994 	.access	= access_id_reg,		\
995 	.get_user = get_id_reg,			\
996 	.set_user = set_id_reg,			\
997 }
998 
999 /*
1000  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1001  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1002  * (1 <= crm < 8, 0 <= Op2 < 8).
1003  */
1004 #define ID_UNALLOCATED(crm, op2) {			\
1005 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1006 	.access = access_raz_id_reg,			\
1007 	.get_user = get_raz_id_reg,			\
1008 	.set_user = set_raz_id_reg,			\
1009 }
1010 
1011 /*
1012  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1013  * For now, these are exposed just like unallocated ID regs: they appear
1014  * RAZ for the guest.
1015  */
1016 #define ID_HIDDEN(name) {			\
1017 	SYS_DESC(SYS_##name),			\
1018 	.access = access_raz_id_reg,		\
1019 	.get_user = get_raz_id_reg,		\
1020 	.set_user = set_raz_id_reg,		\
1021 }
1022 
1023 /*
1024  * Architected system registers.
1025  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1026  *
1027  * Debug handling: We do trap most, if not all debug related system
1028  * registers. The implementation is good enough to ensure that a guest
1029  * can use these with minimal performance degradation. The drawback is
1030  * that we don't implement any of the external debug, none of the
1031  * OSlock protocol. This should be revisited if we ever encounter a
1032  * more demanding guest...
1033  */
1034 static const struct sys_reg_desc sys_reg_descs[] = {
1035 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1036 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1037 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1038 
1039 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1040 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1041 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1042 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1043 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1044 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1045 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1046 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1047 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1048 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1049 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1050 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1051 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1052 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1053 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1054 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1055 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1056 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1057 
1058 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1059 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1060 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1061 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1062 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1063 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1064 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1065 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1066 
1067 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1068 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1069 	// DBGDTR[TR]X_EL0 share the same encoding
1070 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1071 
1072 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1073 
1074 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1075 
1076 	/*
1077 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1078 	 * entries in arm64_ftr_regs[].
1079 	 */
1080 
1081 	/* AArch64 mappings of the AArch32 ID registers */
1082 	/* CRm=1 */
1083 	ID_SANITISED(ID_PFR0_EL1),
1084 	ID_SANITISED(ID_PFR1_EL1),
1085 	ID_SANITISED(ID_DFR0_EL1),
1086 	ID_HIDDEN(ID_AFR0_EL1),
1087 	ID_SANITISED(ID_MMFR0_EL1),
1088 	ID_SANITISED(ID_MMFR1_EL1),
1089 	ID_SANITISED(ID_MMFR2_EL1),
1090 	ID_SANITISED(ID_MMFR3_EL1),
1091 
1092 	/* CRm=2 */
1093 	ID_SANITISED(ID_ISAR0_EL1),
1094 	ID_SANITISED(ID_ISAR1_EL1),
1095 	ID_SANITISED(ID_ISAR2_EL1),
1096 	ID_SANITISED(ID_ISAR3_EL1),
1097 	ID_SANITISED(ID_ISAR4_EL1),
1098 	ID_SANITISED(ID_ISAR5_EL1),
1099 	ID_SANITISED(ID_MMFR4_EL1),
1100 	ID_UNALLOCATED(2,7),
1101 
1102 	/* CRm=3 */
1103 	ID_SANITISED(MVFR0_EL1),
1104 	ID_SANITISED(MVFR1_EL1),
1105 	ID_SANITISED(MVFR2_EL1),
1106 	ID_UNALLOCATED(3,3),
1107 	ID_UNALLOCATED(3,4),
1108 	ID_UNALLOCATED(3,5),
1109 	ID_UNALLOCATED(3,6),
1110 	ID_UNALLOCATED(3,7),
1111 
1112 	/* AArch64 ID registers */
1113 	/* CRm=4 */
1114 	ID_SANITISED(ID_AA64PFR0_EL1),
1115 	ID_SANITISED(ID_AA64PFR1_EL1),
1116 	ID_UNALLOCATED(4,2),
1117 	ID_UNALLOCATED(4,3),
1118 	ID_UNALLOCATED(4,4),
1119 	ID_UNALLOCATED(4,5),
1120 	ID_UNALLOCATED(4,6),
1121 	ID_UNALLOCATED(4,7),
1122 
1123 	/* CRm=5 */
1124 	ID_SANITISED(ID_AA64DFR0_EL1),
1125 	ID_SANITISED(ID_AA64DFR1_EL1),
1126 	ID_UNALLOCATED(5,2),
1127 	ID_UNALLOCATED(5,3),
1128 	ID_HIDDEN(ID_AA64AFR0_EL1),
1129 	ID_HIDDEN(ID_AA64AFR1_EL1),
1130 	ID_UNALLOCATED(5,6),
1131 	ID_UNALLOCATED(5,7),
1132 
1133 	/* CRm=6 */
1134 	ID_SANITISED(ID_AA64ISAR0_EL1),
1135 	ID_SANITISED(ID_AA64ISAR1_EL1),
1136 	ID_UNALLOCATED(6,2),
1137 	ID_UNALLOCATED(6,3),
1138 	ID_UNALLOCATED(6,4),
1139 	ID_UNALLOCATED(6,5),
1140 	ID_UNALLOCATED(6,6),
1141 	ID_UNALLOCATED(6,7),
1142 
1143 	/* CRm=7 */
1144 	ID_SANITISED(ID_AA64MMFR0_EL1),
1145 	ID_SANITISED(ID_AA64MMFR1_EL1),
1146 	ID_SANITISED(ID_AA64MMFR2_EL1),
1147 	ID_UNALLOCATED(7,3),
1148 	ID_UNALLOCATED(7,4),
1149 	ID_UNALLOCATED(7,5),
1150 	ID_UNALLOCATED(7,6),
1151 	ID_UNALLOCATED(7,7),
1152 
1153 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1154 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1155 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1156 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1157 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1158 
1159 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1160 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1161 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1162 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1163 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1164 
1165 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1166 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1167 
1168 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1169 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1170 
1171 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1172 
1173 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1174 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1175 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1176 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1177 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1178 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1179 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1180 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1181 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1182 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1183 
1184 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1185 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1186 
1187 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1188 
1189 	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1190 
1191 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1192 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1193 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1194 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1195 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1196 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1197 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1198 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1199 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1200 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1201 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1202 	/*
1203 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1204 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1205 	 */
1206 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1207 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1208 
1209 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1210 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1211 
1212 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1213 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1214 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1215 
1216 	/* PMEVCNTRn_EL0 */
1217 	PMU_PMEVCNTR_EL0(0),
1218 	PMU_PMEVCNTR_EL0(1),
1219 	PMU_PMEVCNTR_EL0(2),
1220 	PMU_PMEVCNTR_EL0(3),
1221 	PMU_PMEVCNTR_EL0(4),
1222 	PMU_PMEVCNTR_EL0(5),
1223 	PMU_PMEVCNTR_EL0(6),
1224 	PMU_PMEVCNTR_EL0(7),
1225 	PMU_PMEVCNTR_EL0(8),
1226 	PMU_PMEVCNTR_EL0(9),
1227 	PMU_PMEVCNTR_EL0(10),
1228 	PMU_PMEVCNTR_EL0(11),
1229 	PMU_PMEVCNTR_EL0(12),
1230 	PMU_PMEVCNTR_EL0(13),
1231 	PMU_PMEVCNTR_EL0(14),
1232 	PMU_PMEVCNTR_EL0(15),
1233 	PMU_PMEVCNTR_EL0(16),
1234 	PMU_PMEVCNTR_EL0(17),
1235 	PMU_PMEVCNTR_EL0(18),
1236 	PMU_PMEVCNTR_EL0(19),
1237 	PMU_PMEVCNTR_EL0(20),
1238 	PMU_PMEVCNTR_EL0(21),
1239 	PMU_PMEVCNTR_EL0(22),
1240 	PMU_PMEVCNTR_EL0(23),
1241 	PMU_PMEVCNTR_EL0(24),
1242 	PMU_PMEVCNTR_EL0(25),
1243 	PMU_PMEVCNTR_EL0(26),
1244 	PMU_PMEVCNTR_EL0(27),
1245 	PMU_PMEVCNTR_EL0(28),
1246 	PMU_PMEVCNTR_EL0(29),
1247 	PMU_PMEVCNTR_EL0(30),
1248 	/* PMEVTYPERn_EL0 */
1249 	PMU_PMEVTYPER_EL0(0),
1250 	PMU_PMEVTYPER_EL0(1),
1251 	PMU_PMEVTYPER_EL0(2),
1252 	PMU_PMEVTYPER_EL0(3),
1253 	PMU_PMEVTYPER_EL0(4),
1254 	PMU_PMEVTYPER_EL0(5),
1255 	PMU_PMEVTYPER_EL0(6),
1256 	PMU_PMEVTYPER_EL0(7),
1257 	PMU_PMEVTYPER_EL0(8),
1258 	PMU_PMEVTYPER_EL0(9),
1259 	PMU_PMEVTYPER_EL0(10),
1260 	PMU_PMEVTYPER_EL0(11),
1261 	PMU_PMEVTYPER_EL0(12),
1262 	PMU_PMEVTYPER_EL0(13),
1263 	PMU_PMEVTYPER_EL0(14),
1264 	PMU_PMEVTYPER_EL0(15),
1265 	PMU_PMEVTYPER_EL0(16),
1266 	PMU_PMEVTYPER_EL0(17),
1267 	PMU_PMEVTYPER_EL0(18),
1268 	PMU_PMEVTYPER_EL0(19),
1269 	PMU_PMEVTYPER_EL0(20),
1270 	PMU_PMEVTYPER_EL0(21),
1271 	PMU_PMEVTYPER_EL0(22),
1272 	PMU_PMEVTYPER_EL0(23),
1273 	PMU_PMEVTYPER_EL0(24),
1274 	PMU_PMEVTYPER_EL0(25),
1275 	PMU_PMEVTYPER_EL0(26),
1276 	PMU_PMEVTYPER_EL0(27),
1277 	PMU_PMEVTYPER_EL0(28),
1278 	PMU_PMEVTYPER_EL0(29),
1279 	PMU_PMEVTYPER_EL0(30),
1280 	/*
1281 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1282 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1283 	 */
1284 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1285 
1286 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1287 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1288 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1289 };
1290 
1291 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1292 			struct sys_reg_params *p,
1293 			const struct sys_reg_desc *r)
1294 {
1295 	if (p->is_write) {
1296 		return ignore_write(vcpu, p);
1297 	} else {
1298 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1299 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1300 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1301 
1302 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1303 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1304 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1305 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1306 		return true;
1307 	}
1308 }
1309 
1310 static bool trap_debug32(struct kvm_vcpu *vcpu,
1311 			 struct sys_reg_params *p,
1312 			 const struct sys_reg_desc *r)
1313 {
1314 	if (p->is_write) {
1315 		vcpu_cp14(vcpu, r->reg) = p->regval;
1316 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1317 	} else {
1318 		p->regval = vcpu_cp14(vcpu, r->reg);
1319 	}
1320 
1321 	return true;
1322 }
1323 
1324 /* AArch32 debug register mappings
1325  *
1326  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1327  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1328  *
1329  * All control registers and watchpoint value registers are mapped to
1330  * the lower 32 bits of their AArch64 equivalents. We share the trap
1331  * handlers with the above AArch64 code which checks what mode the
1332  * system is in.
1333  */
1334 
1335 static bool trap_xvr(struct kvm_vcpu *vcpu,
1336 		     struct sys_reg_params *p,
1337 		     const struct sys_reg_desc *rd)
1338 {
1339 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1340 
1341 	if (p->is_write) {
1342 		u64 val = *dbg_reg;
1343 
1344 		val &= 0xffffffffUL;
1345 		val |= p->regval << 32;
1346 		*dbg_reg = val;
1347 
1348 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1349 	} else {
1350 		p->regval = *dbg_reg >> 32;
1351 	}
1352 
1353 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1354 
1355 	return true;
1356 }
1357 
1358 #define DBG_BCR_BVR_WCR_WVR(n)						\
1359 	/* DBGBVRn */							\
1360 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1361 	/* DBGBCRn */							\
1362 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1363 	/* DBGWVRn */							\
1364 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1365 	/* DBGWCRn */							\
1366 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1367 
1368 #define DBGBXVR(n)							\
1369 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1370 
1371 /*
1372  * Trapped cp14 registers. We generally ignore most of the external
1373  * debug, on the principle that they don't really make sense to a
1374  * guest. Revisit this one day, would this principle change.
1375  */
1376 static const struct sys_reg_desc cp14_regs[] = {
1377 	/* DBGIDR */
1378 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1379 	/* DBGDTRRXext */
1380 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1381 
1382 	DBG_BCR_BVR_WCR_WVR(0),
1383 	/* DBGDSCRint */
1384 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1385 	DBG_BCR_BVR_WCR_WVR(1),
1386 	/* DBGDCCINT */
1387 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1388 	/* DBGDSCRext */
1389 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1390 	DBG_BCR_BVR_WCR_WVR(2),
1391 	/* DBGDTR[RT]Xint */
1392 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1393 	/* DBGDTR[RT]Xext */
1394 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1395 	DBG_BCR_BVR_WCR_WVR(3),
1396 	DBG_BCR_BVR_WCR_WVR(4),
1397 	DBG_BCR_BVR_WCR_WVR(5),
1398 	/* DBGWFAR */
1399 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1400 	/* DBGOSECCR */
1401 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1402 	DBG_BCR_BVR_WCR_WVR(6),
1403 	/* DBGVCR */
1404 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1405 	DBG_BCR_BVR_WCR_WVR(7),
1406 	DBG_BCR_BVR_WCR_WVR(8),
1407 	DBG_BCR_BVR_WCR_WVR(9),
1408 	DBG_BCR_BVR_WCR_WVR(10),
1409 	DBG_BCR_BVR_WCR_WVR(11),
1410 	DBG_BCR_BVR_WCR_WVR(12),
1411 	DBG_BCR_BVR_WCR_WVR(13),
1412 	DBG_BCR_BVR_WCR_WVR(14),
1413 	DBG_BCR_BVR_WCR_WVR(15),
1414 
1415 	/* DBGDRAR (32bit) */
1416 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1417 
1418 	DBGBXVR(0),
1419 	/* DBGOSLAR */
1420 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1421 	DBGBXVR(1),
1422 	/* DBGOSLSR */
1423 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1424 	DBGBXVR(2),
1425 	DBGBXVR(3),
1426 	/* DBGOSDLR */
1427 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1428 	DBGBXVR(4),
1429 	/* DBGPRCR */
1430 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1431 	DBGBXVR(5),
1432 	DBGBXVR(6),
1433 	DBGBXVR(7),
1434 	DBGBXVR(8),
1435 	DBGBXVR(9),
1436 	DBGBXVR(10),
1437 	DBGBXVR(11),
1438 	DBGBXVR(12),
1439 	DBGBXVR(13),
1440 	DBGBXVR(14),
1441 	DBGBXVR(15),
1442 
1443 	/* DBGDSAR (32bit) */
1444 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1445 
1446 	/* DBGDEVID2 */
1447 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1448 	/* DBGDEVID1 */
1449 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1450 	/* DBGDEVID */
1451 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1452 	/* DBGCLAIMSET */
1453 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1454 	/* DBGCLAIMCLR */
1455 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1456 	/* DBGAUTHSTATUS */
1457 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1458 };
1459 
1460 /* Trapped cp14 64bit registers */
1461 static const struct sys_reg_desc cp14_64_regs[] = {
1462 	/* DBGDRAR (64bit) */
1463 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1464 
1465 	/* DBGDSAR (64bit) */
1466 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1467 };
1468 
1469 /* Macro to expand the PMEVCNTRn register */
1470 #define PMU_PMEVCNTR(n)							\
1471 	/* PMEVCNTRn */							\
1472 	{ Op1(0), CRn(0b1110),						\
1473 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1474 	  access_pmu_evcntr }
1475 
1476 /* Macro to expand the PMEVTYPERn register */
1477 #define PMU_PMEVTYPER(n)						\
1478 	/* PMEVTYPERn */						\
1479 	{ Op1(0), CRn(0b1110),						\
1480 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1481 	  access_pmu_evtyper }
1482 
1483 /*
1484  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1485  * depending on the way they are accessed (as a 32bit or a 64bit
1486  * register).
1487  */
1488 static const struct sys_reg_desc cp15_regs[] = {
1489 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1490 
1491 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1492 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1493 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1494 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1495 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1496 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1497 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1498 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1499 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1500 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1501 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1502 
1503 	/*
1504 	 * DC{C,I,CI}SW operations:
1505 	 */
1506 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1507 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1508 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1509 
1510 	/* PMU */
1511 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1512 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1513 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1514 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1515 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1516 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1517 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1518 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1519 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1520 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1521 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1522 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1523 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1524 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1525 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1526 
1527 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1528 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1529 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1530 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1531 
1532 	/* ICC_SRE */
1533 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1534 
1535 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1536 
1537 	/* PMEVCNTRn */
1538 	PMU_PMEVCNTR(0),
1539 	PMU_PMEVCNTR(1),
1540 	PMU_PMEVCNTR(2),
1541 	PMU_PMEVCNTR(3),
1542 	PMU_PMEVCNTR(4),
1543 	PMU_PMEVCNTR(5),
1544 	PMU_PMEVCNTR(6),
1545 	PMU_PMEVCNTR(7),
1546 	PMU_PMEVCNTR(8),
1547 	PMU_PMEVCNTR(9),
1548 	PMU_PMEVCNTR(10),
1549 	PMU_PMEVCNTR(11),
1550 	PMU_PMEVCNTR(12),
1551 	PMU_PMEVCNTR(13),
1552 	PMU_PMEVCNTR(14),
1553 	PMU_PMEVCNTR(15),
1554 	PMU_PMEVCNTR(16),
1555 	PMU_PMEVCNTR(17),
1556 	PMU_PMEVCNTR(18),
1557 	PMU_PMEVCNTR(19),
1558 	PMU_PMEVCNTR(20),
1559 	PMU_PMEVCNTR(21),
1560 	PMU_PMEVCNTR(22),
1561 	PMU_PMEVCNTR(23),
1562 	PMU_PMEVCNTR(24),
1563 	PMU_PMEVCNTR(25),
1564 	PMU_PMEVCNTR(26),
1565 	PMU_PMEVCNTR(27),
1566 	PMU_PMEVCNTR(28),
1567 	PMU_PMEVCNTR(29),
1568 	PMU_PMEVCNTR(30),
1569 	/* PMEVTYPERn */
1570 	PMU_PMEVTYPER(0),
1571 	PMU_PMEVTYPER(1),
1572 	PMU_PMEVTYPER(2),
1573 	PMU_PMEVTYPER(3),
1574 	PMU_PMEVTYPER(4),
1575 	PMU_PMEVTYPER(5),
1576 	PMU_PMEVTYPER(6),
1577 	PMU_PMEVTYPER(7),
1578 	PMU_PMEVTYPER(8),
1579 	PMU_PMEVTYPER(9),
1580 	PMU_PMEVTYPER(10),
1581 	PMU_PMEVTYPER(11),
1582 	PMU_PMEVTYPER(12),
1583 	PMU_PMEVTYPER(13),
1584 	PMU_PMEVTYPER(14),
1585 	PMU_PMEVTYPER(15),
1586 	PMU_PMEVTYPER(16),
1587 	PMU_PMEVTYPER(17),
1588 	PMU_PMEVTYPER(18),
1589 	PMU_PMEVTYPER(19),
1590 	PMU_PMEVTYPER(20),
1591 	PMU_PMEVTYPER(21),
1592 	PMU_PMEVTYPER(22),
1593 	PMU_PMEVTYPER(23),
1594 	PMU_PMEVTYPER(24),
1595 	PMU_PMEVTYPER(25),
1596 	PMU_PMEVTYPER(26),
1597 	PMU_PMEVTYPER(27),
1598 	PMU_PMEVTYPER(28),
1599 	PMU_PMEVTYPER(29),
1600 	PMU_PMEVTYPER(30),
1601 	/* PMCCFILTR */
1602 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1603 };
1604 
1605 static const struct sys_reg_desc cp15_64_regs[] = {
1606 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1607 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1608 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1609 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1610 };
1611 
1612 /* Target specific emulation tables */
1613 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1614 
1615 void kvm_register_target_sys_reg_table(unsigned int target,
1616 				       struct kvm_sys_reg_target_table *table)
1617 {
1618 	target_tables[target] = table;
1619 }
1620 
1621 /* Get specific register table for this target. */
1622 static const struct sys_reg_desc *get_target_table(unsigned target,
1623 						   bool mode_is_64,
1624 						   size_t *num)
1625 {
1626 	struct kvm_sys_reg_target_table *table;
1627 
1628 	table = target_tables[target];
1629 	if (mode_is_64) {
1630 		*num = table->table64.num;
1631 		return table->table64.table;
1632 	} else {
1633 		*num = table->table32.num;
1634 		return table->table32.table;
1635 	}
1636 }
1637 
1638 #define reg_to_match_value(x)						\
1639 	({								\
1640 		unsigned long val;					\
1641 		val  = (x)->Op0 << 14;					\
1642 		val |= (x)->Op1 << 11;					\
1643 		val |= (x)->CRn << 7;					\
1644 		val |= (x)->CRm << 3;					\
1645 		val |= (x)->Op2;					\
1646 		val;							\
1647 	 })
1648 
1649 static int match_sys_reg(const void *key, const void *elt)
1650 {
1651 	const unsigned long pval = (unsigned long)key;
1652 	const struct sys_reg_desc *r = elt;
1653 
1654 	return pval - reg_to_match_value(r);
1655 }
1656 
1657 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1658 					 const struct sys_reg_desc table[],
1659 					 unsigned int num)
1660 {
1661 	unsigned long pval = reg_to_match_value(params);
1662 
1663 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1664 }
1665 
1666 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1667 {
1668 	kvm_inject_undefined(vcpu);
1669 	return 1;
1670 }
1671 
1672 static void perform_access(struct kvm_vcpu *vcpu,
1673 			   struct sys_reg_params *params,
1674 			   const struct sys_reg_desc *r)
1675 {
1676 	/*
1677 	 * Not having an accessor means that we have configured a trap
1678 	 * that we don't know how to handle. This certainly qualifies
1679 	 * as a gross bug that should be fixed right away.
1680 	 */
1681 	BUG_ON(!r->access);
1682 
1683 	/* Skip instruction if instructed so */
1684 	if (likely(r->access(vcpu, params, r)))
1685 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1686 }
1687 
1688 /*
1689  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1690  *                call the corresponding trap handler.
1691  *
1692  * @params: pointer to the descriptor of the access
1693  * @table: array of trap descriptors
1694  * @num: size of the trap descriptor array
1695  *
1696  * Return 0 if the access has been handled, and -1 if not.
1697  */
1698 static int emulate_cp(struct kvm_vcpu *vcpu,
1699 		      struct sys_reg_params *params,
1700 		      const struct sys_reg_desc *table,
1701 		      size_t num)
1702 {
1703 	const struct sys_reg_desc *r;
1704 
1705 	if (!table)
1706 		return -1;	/* Not handled */
1707 
1708 	r = find_reg(params, table, num);
1709 
1710 	if (r) {
1711 		perform_access(vcpu, params, r);
1712 		return 0;
1713 	}
1714 
1715 	/* Not handled */
1716 	return -1;
1717 }
1718 
1719 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1720 				struct sys_reg_params *params)
1721 {
1722 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1723 	int cp = -1;
1724 
1725 	switch(hsr_ec) {
1726 	case ESR_ELx_EC_CP15_32:
1727 	case ESR_ELx_EC_CP15_64:
1728 		cp = 15;
1729 		break;
1730 	case ESR_ELx_EC_CP14_MR:
1731 	case ESR_ELx_EC_CP14_64:
1732 		cp = 14;
1733 		break;
1734 	default:
1735 		WARN_ON(1);
1736 	}
1737 
1738 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1739 		cp, *vcpu_pc(vcpu));
1740 	print_sys_reg_instr(params);
1741 	kvm_inject_undefined(vcpu);
1742 }
1743 
1744 /**
1745  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1746  * @vcpu: The VCPU pointer
1747  * @run:  The kvm_run struct
1748  */
1749 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1750 			    const struct sys_reg_desc *global,
1751 			    size_t nr_global,
1752 			    const struct sys_reg_desc *target_specific,
1753 			    size_t nr_specific)
1754 {
1755 	struct sys_reg_params params;
1756 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1757 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1758 	int Rt2 = (hsr >> 10) & 0x1f;
1759 
1760 	params.is_aarch32 = true;
1761 	params.is_32bit = false;
1762 	params.CRm = (hsr >> 1) & 0xf;
1763 	params.is_write = ((hsr & 1) == 0);
1764 
1765 	params.Op0 = 0;
1766 	params.Op1 = (hsr >> 16) & 0xf;
1767 	params.Op2 = 0;
1768 	params.CRn = 0;
1769 
1770 	/*
1771 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1772 	 * backends between AArch32 and AArch64, we get away with it.
1773 	 */
1774 	if (params.is_write) {
1775 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1776 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1777 	}
1778 
1779 	/*
1780 	 * Try to emulate the coprocessor access using the target
1781 	 * specific table first, and using the global table afterwards.
1782 	 * If either of the tables contains a handler, handle the
1783 	 * potential register operation in the case of a read and return
1784 	 * with success.
1785 	 */
1786 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1787 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1788 		/* Split up the value between registers for the read side */
1789 		if (!params.is_write) {
1790 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1791 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1792 		}
1793 
1794 		return 1;
1795 	}
1796 
1797 	unhandled_cp_access(vcpu, &params);
1798 	return 1;
1799 }
1800 
1801 /**
1802  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1803  * @vcpu: The VCPU pointer
1804  * @run:  The kvm_run struct
1805  */
1806 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1807 			    const struct sys_reg_desc *global,
1808 			    size_t nr_global,
1809 			    const struct sys_reg_desc *target_specific,
1810 			    size_t nr_specific)
1811 {
1812 	struct sys_reg_params params;
1813 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1814 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1815 
1816 	params.is_aarch32 = true;
1817 	params.is_32bit = true;
1818 	params.CRm = (hsr >> 1) & 0xf;
1819 	params.regval = vcpu_get_reg(vcpu, Rt);
1820 	params.is_write = ((hsr & 1) == 0);
1821 	params.CRn = (hsr >> 10) & 0xf;
1822 	params.Op0 = 0;
1823 	params.Op1 = (hsr >> 14) & 0x7;
1824 	params.Op2 = (hsr >> 17) & 0x7;
1825 
1826 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1827 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1828 		if (!params.is_write)
1829 			vcpu_set_reg(vcpu, Rt, params.regval);
1830 		return 1;
1831 	}
1832 
1833 	unhandled_cp_access(vcpu, &params);
1834 	return 1;
1835 }
1836 
1837 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1838 {
1839 	const struct sys_reg_desc *target_specific;
1840 	size_t num;
1841 
1842 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1843 	return kvm_handle_cp_64(vcpu,
1844 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1845 				target_specific, num);
1846 }
1847 
1848 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1849 {
1850 	const struct sys_reg_desc *target_specific;
1851 	size_t num;
1852 
1853 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1854 	return kvm_handle_cp_32(vcpu,
1855 				cp15_regs, ARRAY_SIZE(cp15_regs),
1856 				target_specific, num);
1857 }
1858 
1859 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1860 {
1861 	return kvm_handle_cp_64(vcpu,
1862 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1863 				NULL, 0);
1864 }
1865 
1866 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1867 {
1868 	return kvm_handle_cp_32(vcpu,
1869 				cp14_regs, ARRAY_SIZE(cp14_regs),
1870 				NULL, 0);
1871 }
1872 
1873 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1874 			   struct sys_reg_params *params)
1875 {
1876 	size_t num;
1877 	const struct sys_reg_desc *table, *r;
1878 
1879 	table = get_target_table(vcpu->arch.target, true, &num);
1880 
1881 	/* Search target-specific then generic table. */
1882 	r = find_reg(params, table, num);
1883 	if (!r)
1884 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1885 
1886 	if (likely(r)) {
1887 		perform_access(vcpu, params, r);
1888 	} else {
1889 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
1890 			*vcpu_pc(vcpu));
1891 		print_sys_reg_instr(params);
1892 		kvm_inject_undefined(vcpu);
1893 	}
1894 	return 1;
1895 }
1896 
1897 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1898 			      const struct sys_reg_desc *table, size_t num)
1899 {
1900 	unsigned long i;
1901 
1902 	for (i = 0; i < num; i++)
1903 		if (table[i].reset)
1904 			table[i].reset(vcpu, &table[i]);
1905 }
1906 
1907 /**
1908  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1909  * @vcpu: The VCPU pointer
1910  * @run:  The kvm_run struct
1911  */
1912 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1913 {
1914 	struct sys_reg_params params;
1915 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1916 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1917 	int ret;
1918 
1919 	trace_kvm_handle_sys_reg(esr);
1920 
1921 	params.is_aarch32 = false;
1922 	params.is_32bit = false;
1923 	params.Op0 = (esr >> 20) & 3;
1924 	params.Op1 = (esr >> 14) & 0x7;
1925 	params.CRn = (esr >> 10) & 0xf;
1926 	params.CRm = (esr >> 1) & 0xf;
1927 	params.Op2 = (esr >> 17) & 0x7;
1928 	params.regval = vcpu_get_reg(vcpu, Rt);
1929 	params.is_write = !(esr & 1);
1930 
1931 	ret = emulate_sys_reg(vcpu, &params);
1932 
1933 	if (!params.is_write)
1934 		vcpu_set_reg(vcpu, Rt, params.regval);
1935 	return ret;
1936 }
1937 
1938 /******************************************************************************
1939  * Userspace API
1940  *****************************************************************************/
1941 
1942 static bool index_to_params(u64 id, struct sys_reg_params *params)
1943 {
1944 	switch (id & KVM_REG_SIZE_MASK) {
1945 	case KVM_REG_SIZE_U64:
1946 		/* Any unused index bits means it's not valid. */
1947 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1948 			      | KVM_REG_ARM_COPROC_MASK
1949 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
1950 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
1951 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
1952 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
1953 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
1954 			return false;
1955 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1956 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1957 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1958 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1959 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1960 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1961 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1962 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1963 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1964 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1965 		return true;
1966 	default:
1967 		return false;
1968 	}
1969 }
1970 
1971 const struct sys_reg_desc *find_reg_by_id(u64 id,
1972 					  struct sys_reg_params *params,
1973 					  const struct sys_reg_desc table[],
1974 					  unsigned int num)
1975 {
1976 	if (!index_to_params(id, params))
1977 		return NULL;
1978 
1979 	return find_reg(params, table, num);
1980 }
1981 
1982 /* Decode an index value, and find the sys_reg_desc entry. */
1983 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1984 						    u64 id)
1985 {
1986 	size_t num;
1987 	const struct sys_reg_desc *table, *r;
1988 	struct sys_reg_params params;
1989 
1990 	/* We only do sys_reg for now. */
1991 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1992 		return NULL;
1993 
1994 	table = get_target_table(vcpu->arch.target, true, &num);
1995 	r = find_reg_by_id(id, &params, table, num);
1996 	if (!r)
1997 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1998 
1999 	/* Not saved in the sys_reg array and not otherwise accessible? */
2000 	if (r && !(r->reg || r->get_user))
2001 		r = NULL;
2002 
2003 	return r;
2004 }
2005 
2006 /*
2007  * These are the invariant sys_reg registers: we let the guest see the
2008  * host versions of these, so they're part of the guest state.
2009  *
2010  * A future CPU may provide a mechanism to present different values to
2011  * the guest, or a future kvm may trap them.
2012  */
2013 
2014 #define FUNCTION_INVARIANT(reg)						\
2015 	static void get_##reg(struct kvm_vcpu *v,			\
2016 			      const struct sys_reg_desc *r)		\
2017 	{								\
2018 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2019 	}
2020 
2021 FUNCTION_INVARIANT(midr_el1)
2022 FUNCTION_INVARIANT(ctr_el0)
2023 FUNCTION_INVARIANT(revidr_el1)
2024 FUNCTION_INVARIANT(clidr_el1)
2025 FUNCTION_INVARIANT(aidr_el1)
2026 
2027 /* ->val is filled in by kvm_sys_reg_table_init() */
2028 static struct sys_reg_desc invariant_sys_regs[] = {
2029 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2030 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2031 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2032 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2033 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2034 };
2035 
2036 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2037 {
2038 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2039 		return -EFAULT;
2040 	return 0;
2041 }
2042 
2043 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2044 {
2045 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2046 		return -EFAULT;
2047 	return 0;
2048 }
2049 
2050 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2051 {
2052 	struct sys_reg_params params;
2053 	const struct sys_reg_desc *r;
2054 
2055 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2056 			   ARRAY_SIZE(invariant_sys_regs));
2057 	if (!r)
2058 		return -ENOENT;
2059 
2060 	return reg_to_user(uaddr, &r->val, id);
2061 }
2062 
2063 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2064 {
2065 	struct sys_reg_params params;
2066 	const struct sys_reg_desc *r;
2067 	int err;
2068 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2069 
2070 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2071 			   ARRAY_SIZE(invariant_sys_regs));
2072 	if (!r)
2073 		return -ENOENT;
2074 
2075 	err = reg_from_user(&val, uaddr, id);
2076 	if (err)
2077 		return err;
2078 
2079 	/* This is what we mean by invariant: you can't change it. */
2080 	if (r->val != val)
2081 		return -EINVAL;
2082 
2083 	return 0;
2084 }
2085 
2086 static bool is_valid_cache(u32 val)
2087 {
2088 	u32 level, ctype;
2089 
2090 	if (val >= CSSELR_MAX)
2091 		return false;
2092 
2093 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2094 	level = (val >> 1);
2095 	ctype = (cache_levels >> (level * 3)) & 7;
2096 
2097 	switch (ctype) {
2098 	case 0: /* No cache */
2099 		return false;
2100 	case 1: /* Instruction cache only */
2101 		return (val & 1);
2102 	case 2: /* Data cache only */
2103 	case 4: /* Unified cache */
2104 		return !(val & 1);
2105 	case 3: /* Separate instruction and data caches */
2106 		return true;
2107 	default: /* Reserved: we can't know instruction or data. */
2108 		return false;
2109 	}
2110 }
2111 
2112 static int demux_c15_get(u64 id, void __user *uaddr)
2113 {
2114 	u32 val;
2115 	u32 __user *uval = uaddr;
2116 
2117 	/* Fail if we have unknown bits set. */
2118 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2119 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2120 		return -ENOENT;
2121 
2122 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2123 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2124 		if (KVM_REG_SIZE(id) != 4)
2125 			return -ENOENT;
2126 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2127 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2128 		if (!is_valid_cache(val))
2129 			return -ENOENT;
2130 
2131 		return put_user(get_ccsidr(val), uval);
2132 	default:
2133 		return -ENOENT;
2134 	}
2135 }
2136 
2137 static int demux_c15_set(u64 id, void __user *uaddr)
2138 {
2139 	u32 val, newval;
2140 	u32 __user *uval = uaddr;
2141 
2142 	/* Fail if we have unknown bits set. */
2143 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2144 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2145 		return -ENOENT;
2146 
2147 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2148 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2149 		if (KVM_REG_SIZE(id) != 4)
2150 			return -ENOENT;
2151 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2152 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2153 		if (!is_valid_cache(val))
2154 			return -ENOENT;
2155 
2156 		if (get_user(newval, uval))
2157 			return -EFAULT;
2158 
2159 		/* This is also invariant: you can't change it. */
2160 		if (newval != get_ccsidr(val))
2161 			return -EINVAL;
2162 		return 0;
2163 	default:
2164 		return -ENOENT;
2165 	}
2166 }
2167 
2168 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2169 {
2170 	const struct sys_reg_desc *r;
2171 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2172 
2173 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2174 		return demux_c15_get(reg->id, uaddr);
2175 
2176 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2177 		return -ENOENT;
2178 
2179 	r = index_to_sys_reg_desc(vcpu, reg->id);
2180 	if (!r)
2181 		return get_invariant_sys_reg(reg->id, uaddr);
2182 
2183 	if (r->get_user)
2184 		return (r->get_user)(vcpu, r, reg, uaddr);
2185 
2186 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2187 }
2188 
2189 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2190 {
2191 	const struct sys_reg_desc *r;
2192 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2193 
2194 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2195 		return demux_c15_set(reg->id, uaddr);
2196 
2197 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2198 		return -ENOENT;
2199 
2200 	r = index_to_sys_reg_desc(vcpu, reg->id);
2201 	if (!r)
2202 		return set_invariant_sys_reg(reg->id, uaddr);
2203 
2204 	if (r->set_user)
2205 		return (r->set_user)(vcpu, r, reg, uaddr);
2206 
2207 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2208 }
2209 
2210 static unsigned int num_demux_regs(void)
2211 {
2212 	unsigned int i, count = 0;
2213 
2214 	for (i = 0; i < CSSELR_MAX; i++)
2215 		if (is_valid_cache(i))
2216 			count++;
2217 
2218 	return count;
2219 }
2220 
2221 static int write_demux_regids(u64 __user *uindices)
2222 {
2223 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2224 	unsigned int i;
2225 
2226 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2227 	for (i = 0; i < CSSELR_MAX; i++) {
2228 		if (!is_valid_cache(i))
2229 			continue;
2230 		if (put_user(val | i, uindices))
2231 			return -EFAULT;
2232 		uindices++;
2233 	}
2234 	return 0;
2235 }
2236 
2237 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2238 {
2239 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2240 		KVM_REG_ARM64_SYSREG |
2241 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2242 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2243 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2244 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2245 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2246 }
2247 
2248 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2249 {
2250 	if (!*uind)
2251 		return true;
2252 
2253 	if (put_user(sys_reg_to_index(reg), *uind))
2254 		return false;
2255 
2256 	(*uind)++;
2257 	return true;
2258 }
2259 
2260 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2261 			    u64 __user **uind,
2262 			    unsigned int *total)
2263 {
2264 	/*
2265 	 * Ignore registers we trap but don't save,
2266 	 * and for which no custom user accessor is provided.
2267 	 */
2268 	if (!(rd->reg || rd->get_user))
2269 		return 0;
2270 
2271 	if (!copy_reg_to_user(rd, uind))
2272 		return -EFAULT;
2273 
2274 	(*total)++;
2275 	return 0;
2276 }
2277 
2278 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2279 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2280 {
2281 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2282 	unsigned int total = 0;
2283 	size_t num;
2284 	int err;
2285 
2286 	/* We check for duplicates here, to allow arch-specific overrides. */
2287 	i1 = get_target_table(vcpu->arch.target, true, &num);
2288 	end1 = i1 + num;
2289 	i2 = sys_reg_descs;
2290 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2291 
2292 	BUG_ON(i1 == end1 || i2 == end2);
2293 
2294 	/* Walk carefully, as both tables may refer to the same register. */
2295 	while (i1 || i2) {
2296 		int cmp = cmp_sys_reg(i1, i2);
2297 		/* target-specific overrides generic entry. */
2298 		if (cmp <= 0)
2299 			err = walk_one_sys_reg(i1, &uind, &total);
2300 		else
2301 			err = walk_one_sys_reg(i2, &uind, &total);
2302 
2303 		if (err)
2304 			return err;
2305 
2306 		if (cmp <= 0 && ++i1 == end1)
2307 			i1 = NULL;
2308 		if (cmp >= 0 && ++i2 == end2)
2309 			i2 = NULL;
2310 	}
2311 	return total;
2312 }
2313 
2314 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2315 {
2316 	return ARRAY_SIZE(invariant_sys_regs)
2317 		+ num_demux_regs()
2318 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2319 }
2320 
2321 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2322 {
2323 	unsigned int i;
2324 	int err;
2325 
2326 	/* Then give them all the invariant registers' indices. */
2327 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2328 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2329 			return -EFAULT;
2330 		uindices++;
2331 	}
2332 
2333 	err = walk_sys_regs(vcpu, uindices);
2334 	if (err < 0)
2335 		return err;
2336 	uindices += err;
2337 
2338 	return write_demux_regids(uindices);
2339 }
2340 
2341 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2342 {
2343 	unsigned int i;
2344 
2345 	for (i = 1; i < n; i++) {
2346 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2347 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2348 			return 1;
2349 		}
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 void kvm_sys_reg_table_init(void)
2356 {
2357 	unsigned int i;
2358 	struct sys_reg_desc clidr;
2359 
2360 	/* Make sure tables are unique and in order. */
2361 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2362 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2363 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2364 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2365 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2366 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2367 
2368 	/* We abuse the reset function to overwrite the table itself. */
2369 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2370 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2371 
2372 	/*
2373 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2374 	 *
2375 	 *   If software reads the Cache Type fields from Ctype1
2376 	 *   upwards, once it has seen a value of 0b000, no caches
2377 	 *   exist at further-out levels of the hierarchy. So, for
2378 	 *   example, if Ctype3 is the first Cache Type field with a
2379 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2380 	 *   ignored.
2381 	 */
2382 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2383 	cache_levels = clidr.val;
2384 	for (i = 0; i < 7; i++)
2385 		if (((cache_levels >> (i*3)) & 7) == 0)
2386 			break;
2387 	/* Clear all higher bits. */
2388 	cache_levels &= (1 << (i*3))-1;
2389 }
2390 
2391 /**
2392  * kvm_reset_sys_regs - sets system registers to reset value
2393  * @vcpu: The VCPU pointer
2394  *
2395  * This function finds the right table above and sets the registers on the
2396  * virtual CPU struct to their architecturally defined reset values.
2397  */
2398 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2399 {
2400 	size_t num;
2401 	const struct sys_reg_desc *table;
2402 
2403 	/* Catch someone adding a register without putting in reset entry. */
2404 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2405 
2406 	/* Generic chip reset first (so target could override). */
2407 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2408 
2409 	table = get_target_table(vcpu->arch.target, true, &num);
2410 	reset_sys_reg_descs(vcpu, table, num);
2411 
2412 	for (num = 1; num < NR_SYS_REGS; num++)
2413 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2414 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
2415 }
2416