xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50 
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52 				 struct sys_reg_params *params,
53 				 const struct sys_reg_desc *r)
54 {
55 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56 	print_sys_reg_instr(params);
57 	kvm_inject_undefined(vcpu);
58 	return false;
59 }
60 
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62 			       struct sys_reg_params *params,
63 			       const struct sys_reg_desc *r)
64 {
65 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66 	print_sys_reg_instr(params);
67 	kvm_inject_undefined(vcpu);
68 	return false;
69 }
70 
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73 	u64 val = 0x8badf00d8badf00d;
74 
75 	if (vcpu->arch.sysregs_loaded_on_cpu &&
76 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
77 		return val;
78 
79 	return __vcpu_sys_reg(vcpu, reg);
80 }
81 
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84 	if (vcpu->arch.sysregs_loaded_on_cpu &&
85 	    __vcpu_write_sys_reg_to_cpu(val, reg))
86 		return;
87 
88 	 __vcpu_sys_reg(vcpu, reg) = val;
89 }
90 
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93 
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96 
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100 	u32 ccsidr;
101 
102 	/* Make sure noone else changes CSSELR during this! */
103 	local_irq_disable();
104 	write_sysreg(csselr, csselr_el1);
105 	isb();
106 	ccsidr = read_sysreg(ccsidr_el1);
107 	local_irq_enable();
108 
109 	return ccsidr;
110 }
111 
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116 			struct sys_reg_params *p,
117 			const struct sys_reg_desc *r)
118 {
119 	if (!p->is_write)
120 		return read_from_write_only(vcpu, p, r);
121 
122 	/*
123 	 * Only track S/W ops if we don't have FWB. It still indicates
124 	 * that the guest is a bit broken (S/W operations should only
125 	 * be done by firmware, knowing that there is only a single
126 	 * CPU left in the system, and certainly not from non-secure
127 	 * software).
128 	 */
129 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130 		kvm_set_way_flush(vcpu);
131 
132 	return true;
133 }
134 
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137 	switch (r->aarch32_map) {
138 	case AA32_LO:
139 		*mask = GENMASK_ULL(31, 0);
140 		*shift = 0;
141 		break;
142 	case AA32_HI:
143 		*mask = GENMASK_ULL(63, 32);
144 		*shift = 32;
145 		break;
146 	default:
147 		*mask = GENMASK_ULL(63, 0);
148 		*shift = 0;
149 		break;
150 	}
151 }
152 
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159 			  struct sys_reg_params *p,
160 			  const struct sys_reg_desc *r)
161 {
162 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
163 	u64 val, mask, shift;
164 
165 	BUG_ON(!p->is_write);
166 
167 	get_access_mask(r, &mask, &shift);
168 
169 	if (~mask) {
170 		val = vcpu_read_sys_reg(vcpu, r->reg);
171 		val &= ~mask;
172 	} else {
173 		val = 0;
174 	}
175 
176 	val |= (p->regval & (mask >> shift)) << shift;
177 	vcpu_write_sys_reg(vcpu, val, r->reg);
178 
179 	kvm_toggle_cache(vcpu, was_enabled);
180 	return true;
181 }
182 
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184 			 struct sys_reg_params *p,
185 			 const struct sys_reg_desc *r)
186 {
187 	u64 mask, shift;
188 
189 	if (p->is_write)
190 		return ignore_write(vcpu, p);
191 
192 	get_access_mask(r, &mask, &shift);
193 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194 
195 	return true;
196 }
197 
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205 			   struct sys_reg_params *p,
206 			   const struct sys_reg_desc *r)
207 {
208 	bool g1;
209 
210 	if (!p->is_write)
211 		return read_from_write_only(vcpu, p, r);
212 
213 	/*
214 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218 	 * group.
219 	 */
220 	if (p->Op0 == 0) {		/* AArch32 */
221 		switch (p->Op1) {
222 		default:		/* Keep GCC quiet */
223 		case 0:			/* ICC_SGI1R */
224 			g1 = true;
225 			break;
226 		case 1:			/* ICC_ASGI1R */
227 		case 2:			/* ICC_SGI0R */
228 			g1 = false;
229 			break;
230 		}
231 	} else {			/* AArch64 */
232 		switch (p->Op2) {
233 		default:		/* Keep GCC quiet */
234 		case 5:			/* ICC_SGI1R_EL1 */
235 			g1 = true;
236 			break;
237 		case 6:			/* ICC_ASGI1R_EL1 */
238 		case 7:			/* ICC_SGI0R_EL1 */
239 			g1 = false;
240 			break;
241 		}
242 	}
243 
244 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245 
246 	return true;
247 }
248 
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250 			   struct sys_reg_params *p,
251 			   const struct sys_reg_desc *r)
252 {
253 	if (p->is_write)
254 		return ignore_write(vcpu, p);
255 
256 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257 	return true;
258 }
259 
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261 			struct sys_reg_params *p,
262 			const struct sys_reg_desc *r)
263 {
264 	if (p->is_write)
265 		return ignore_write(vcpu, p);
266 	else
267 		return read_zero(vcpu, p);
268 }
269 
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277 			  struct sys_reg_params *p,
278 			  const struct sys_reg_desc *r)
279 {
280 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281 	u32 sr = reg_to_encoding(r);
282 
283 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284 		kvm_inject_undefined(vcpu);
285 		return false;
286 	}
287 
288 	if (p->is_write && sr == SYS_LORID_EL1)
289 		return write_to_read_only(vcpu, p, r);
290 
291 	return trap_raz_wi(vcpu, p, r);
292 }
293 
294 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295 			   struct sys_reg_params *p,
296 			   const struct sys_reg_desc *r)
297 {
298 	u64 oslsr;
299 
300 	if (!p->is_write)
301 		return read_from_write_only(vcpu, p, r);
302 
303 	/* Forward the OSLK bit to OSLSR */
304 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305 	if (p->regval & SYS_OSLAR_OSLK)
306 		oslsr |= SYS_OSLSR_OSLK;
307 
308 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309 	return true;
310 }
311 
312 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
313 			   struct sys_reg_params *p,
314 			   const struct sys_reg_desc *r)
315 {
316 	if (p->is_write)
317 		return write_to_read_only(vcpu, p, r);
318 
319 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
320 	return true;
321 }
322 
323 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 			 const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326 	u64 id = sys_reg_to_index(rd);
327 	u64 val;
328 	int err;
329 
330 	err = reg_from_user(&val, uaddr, id);
331 	if (err)
332 		return err;
333 
334 	/*
335 	 * The only modifiable bit is the OSLK bit. Refuse the write if
336 	 * userspace attempts to change any other bit in the register.
337 	 */
338 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
339 		return -EINVAL;
340 
341 	__vcpu_sys_reg(vcpu, rd->reg) = val;
342 	return 0;
343 }
344 
345 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
346 				   struct sys_reg_params *p,
347 				   const struct sys_reg_desc *r)
348 {
349 	if (p->is_write) {
350 		return ignore_write(vcpu, p);
351 	} else {
352 		p->regval = read_sysreg(dbgauthstatus_el1);
353 		return true;
354 	}
355 }
356 
357 /*
358  * We want to avoid world-switching all the DBG registers all the
359  * time:
360  *
361  * - If we've touched any debug register, it is likely that we're
362  *   going to touch more of them. It then makes sense to disable the
363  *   traps and start doing the save/restore dance
364  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365  *   then mandatory to save/restore the registers, as the guest
366  *   depends on them.
367  *
368  * For this, we use a DIRTY bit, indicating the guest has modified the
369  * debug registers, used as follow:
370  *
371  * On guest entry:
372  * - If the dirty bit is set (because we're coming back from trapping),
373  *   disable the traps, save host registers, restore guest registers.
374  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375  *   set the dirty bit, disable the traps, save host registers,
376  *   restore guest registers.
377  * - Otherwise, enable the traps
378  *
379  * On guest exit:
380  * - If the dirty bit is set, save guest registers, restore host
381  *   registers and clear the dirty bit. This ensure that the host can
382  *   now use the debug registers.
383  */
384 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
385 			    struct sys_reg_params *p,
386 			    const struct sys_reg_desc *r)
387 {
388 	if (p->is_write) {
389 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
390 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
391 	} else {
392 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393 	}
394 
395 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
396 
397 	return true;
398 }
399 
400 /*
401  * reg_to_dbg/dbg_to_reg
402  *
403  * A 32 bit write to a debug register leave top bits alone
404  * A 32 bit read from a debug register only returns the bottom bits
405  *
406  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407  * hyp.S code switches between host and guest values in future.
408  */
409 static void reg_to_dbg(struct kvm_vcpu *vcpu,
410 		       struct sys_reg_params *p,
411 		       const struct sys_reg_desc *rd,
412 		       u64 *dbg_reg)
413 {
414 	u64 mask, shift, val;
415 
416 	get_access_mask(rd, &mask, &shift);
417 
418 	val = *dbg_reg;
419 	val &= ~mask;
420 	val |= (p->regval & (mask >> shift)) << shift;
421 	*dbg_reg = val;
422 
423 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
424 }
425 
426 static void dbg_to_reg(struct kvm_vcpu *vcpu,
427 		       struct sys_reg_params *p,
428 		       const struct sys_reg_desc *rd,
429 		       u64 *dbg_reg)
430 {
431 	u64 mask, shift;
432 
433 	get_access_mask(rd, &mask, &shift);
434 	p->regval = (*dbg_reg & mask) >> shift;
435 }
436 
437 static bool trap_bvr(struct kvm_vcpu *vcpu,
438 		     struct sys_reg_params *p,
439 		     const struct sys_reg_desc *rd)
440 {
441 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
442 
443 	if (p->is_write)
444 		reg_to_dbg(vcpu, p, rd, dbg_reg);
445 	else
446 		dbg_to_reg(vcpu, p, rd, dbg_reg);
447 
448 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
449 
450 	return true;
451 }
452 
453 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 		const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
457 
458 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 	const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
467 
468 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 static void reset_bvr(struct kvm_vcpu *vcpu,
474 		      const struct sys_reg_desc *rd)
475 {
476 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
477 }
478 
479 static bool trap_bcr(struct kvm_vcpu *vcpu,
480 		     struct sys_reg_params *p,
481 		     const struct sys_reg_desc *rd)
482 {
483 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
484 
485 	if (p->is_write)
486 		reg_to_dbg(vcpu, p, rd, dbg_reg);
487 	else
488 		dbg_to_reg(vcpu, p, rd, dbg_reg);
489 
490 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
491 
492 	return true;
493 }
494 
495 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 		const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
499 
500 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
501 		return -EFAULT;
502 
503 	return 0;
504 }
505 
506 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 	const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510 
511 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 		return -EFAULT;
513 	return 0;
514 }
515 
516 static void reset_bcr(struct kvm_vcpu *vcpu,
517 		      const struct sys_reg_desc *rd)
518 {
519 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
520 }
521 
522 static bool trap_wvr(struct kvm_vcpu *vcpu,
523 		     struct sys_reg_params *p,
524 		     const struct sys_reg_desc *rd)
525 {
526 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
527 
528 	if (p->is_write)
529 		reg_to_dbg(vcpu, p, rd, dbg_reg);
530 	else
531 		dbg_to_reg(vcpu, p, rd, dbg_reg);
532 
533 	trace_trap_reg(__func__, rd->CRm, p->is_write,
534 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
535 
536 	return true;
537 }
538 
539 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540 		const struct kvm_one_reg *reg, void __user *uaddr)
541 {
542 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
543 
544 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
545 		return -EFAULT;
546 	return 0;
547 }
548 
549 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550 	const struct kvm_one_reg *reg, void __user *uaddr)
551 {
552 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553 
554 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555 		return -EFAULT;
556 	return 0;
557 }
558 
559 static void reset_wvr(struct kvm_vcpu *vcpu,
560 		      const struct sys_reg_desc *rd)
561 {
562 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
563 }
564 
565 static bool trap_wcr(struct kvm_vcpu *vcpu,
566 		     struct sys_reg_params *p,
567 		     const struct sys_reg_desc *rd)
568 {
569 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
570 
571 	if (p->is_write)
572 		reg_to_dbg(vcpu, p, rd, dbg_reg);
573 	else
574 		dbg_to_reg(vcpu, p, rd, dbg_reg);
575 
576 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577 
578 	return true;
579 }
580 
581 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 		const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
585 
586 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
587 		return -EFAULT;
588 	return 0;
589 }
590 
591 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592 	const struct kvm_one_reg *reg, void __user *uaddr)
593 {
594 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
595 
596 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597 		return -EFAULT;
598 	return 0;
599 }
600 
601 static void reset_wcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
605 }
606 
607 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 amair = read_sysreg(amair_el1);
610 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
611 }
612 
613 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614 {
615 	u64 actlr = read_sysreg(actlr_el1);
616 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617 }
618 
619 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621 	u64 mpidr;
622 
623 	/*
624 	 * Map the vcpu_id into the first three affinity level fields of
625 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
626 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627 	 * of the GICv3 to be able to address each CPU directly when
628 	 * sending IPIs.
629 	 */
630 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
633 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
634 }
635 
636 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637 				   const struct sys_reg_desc *r)
638 {
639 	if (kvm_vcpu_has_pmu(vcpu))
640 		return 0;
641 
642 	return REG_HIDDEN;
643 }
644 
645 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648 
649 	/* No PMU available, any PMU reg may UNDEF... */
650 	if (!kvm_arm_support_pmu_v3())
651 		return;
652 
653 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654 	n &= ARMV8_PMU_PMCR_N_MASK;
655 	if (n)
656 		mask |= GENMASK(n - 1, 0);
657 
658 	reset_unknown(vcpu, r);
659 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
660 }
661 
662 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 	reset_unknown(vcpu, r);
665 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666 }
667 
668 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670 	reset_unknown(vcpu, r);
671 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672 }
673 
674 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675 {
676 	reset_unknown(vcpu, r);
677 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678 }
679 
680 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681 {
682 	u64 pmcr, val;
683 
684 	/* No PMU available, PMCR_EL0 may UNDEF... */
685 	if (!kvm_arm_support_pmu_v3())
686 		return;
687 
688 	pmcr = read_sysreg(pmcr_el0);
689 	/*
690 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
691 	 * except PMCR.E resetting to zero.
692 	 */
693 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
695 	if (!system_supports_32bit_el0())
696 		val |= ARMV8_PMU_PMCR_LC;
697 	__vcpu_sys_reg(vcpu, r->reg) = val;
698 }
699 
700 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
701 {
702 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
703 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
704 
705 	if (!enabled)
706 		kvm_inject_undefined(vcpu);
707 
708 	return !enabled;
709 }
710 
711 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
712 {
713 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714 }
715 
716 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717 {
718 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
719 }
720 
721 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722 {
723 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
724 }
725 
726 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727 {
728 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
729 }
730 
731 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732 			const struct sys_reg_desc *r)
733 {
734 	u64 val;
735 
736 	if (pmu_access_el0_disabled(vcpu))
737 		return false;
738 
739 	if (p->is_write) {
740 		/* Only update writeable bits of PMCR */
741 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
742 		val &= ~ARMV8_PMU_PMCR_MASK;
743 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
744 		if (!system_supports_32bit_el0())
745 			val |= ARMV8_PMU_PMCR_LC;
746 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
747 		kvm_pmu_handle_pmcr(vcpu, val);
748 		kvm_vcpu_pmu_restore_guest(vcpu);
749 	} else {
750 		/* PMCR.P & PMCR.C are RAZ */
751 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
752 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753 		p->regval = val;
754 	}
755 
756 	return true;
757 }
758 
759 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 			  const struct sys_reg_desc *r)
761 {
762 	if (pmu_access_event_counter_el0_disabled(vcpu))
763 		return false;
764 
765 	if (p->is_write)
766 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
767 	else
768 		/* return PMSELR.SEL field */
769 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770 			    & ARMV8_PMU_COUNTER_MASK;
771 
772 	return true;
773 }
774 
775 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776 			  const struct sys_reg_desc *r)
777 {
778 	u64 pmceid, mask, shift;
779 
780 	BUG_ON(p->is_write);
781 
782 	if (pmu_access_el0_disabled(vcpu))
783 		return false;
784 
785 	get_access_mask(r, &mask, &shift);
786 
787 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
788 	pmceid &= mask;
789 	pmceid >>= shift;
790 
791 	p->regval = pmceid;
792 
793 	return true;
794 }
795 
796 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797 {
798 	u64 pmcr, val;
799 
800 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
801 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
802 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803 		kvm_inject_undefined(vcpu);
804 		return false;
805 	}
806 
807 	return true;
808 }
809 
810 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811 			      struct sys_reg_params *p,
812 			      const struct sys_reg_desc *r)
813 {
814 	u64 idx = ~0UL;
815 
816 	if (r->CRn == 9 && r->CRm == 13) {
817 		if (r->Op2 == 2) {
818 			/* PMXEVCNTR_EL0 */
819 			if (pmu_access_event_counter_el0_disabled(vcpu))
820 				return false;
821 
822 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
823 			      & ARMV8_PMU_COUNTER_MASK;
824 		} else if (r->Op2 == 0) {
825 			/* PMCCNTR_EL0 */
826 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
827 				return false;
828 
829 			idx = ARMV8_PMU_CYCLE_IDX;
830 		}
831 	} else if (r->CRn == 0 && r->CRm == 9) {
832 		/* PMCCNTR */
833 		if (pmu_access_event_counter_el0_disabled(vcpu))
834 			return false;
835 
836 		idx = ARMV8_PMU_CYCLE_IDX;
837 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838 		/* PMEVCNTRn_EL0 */
839 		if (pmu_access_event_counter_el0_disabled(vcpu))
840 			return false;
841 
842 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843 	}
844 
845 	/* Catch any decoding mistake */
846 	WARN_ON(idx == ~0UL);
847 
848 	if (!pmu_counter_idx_valid(vcpu, idx))
849 		return false;
850 
851 	if (p->is_write) {
852 		if (pmu_access_el0_disabled(vcpu))
853 			return false;
854 
855 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
856 	} else {
857 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
858 	}
859 
860 	return true;
861 }
862 
863 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			       const struct sys_reg_desc *r)
865 {
866 	u64 idx, reg;
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 		/* PMXEVTYPER_EL0 */
873 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874 		reg = PMEVTYPER0_EL0 + idx;
875 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 		if (idx == ARMV8_PMU_CYCLE_IDX)
878 			reg = PMCCFILTR_EL0;
879 		else
880 			/* PMEVTYPERn_EL0 */
881 			reg = PMEVTYPER0_EL0 + idx;
882 	} else {
883 		BUG();
884 	}
885 
886 	if (!pmu_counter_idx_valid(vcpu, idx))
887 		return false;
888 
889 	if (p->is_write) {
890 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892 		kvm_vcpu_pmu_restore_guest(vcpu);
893 	} else {
894 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895 	}
896 
897 	return true;
898 }
899 
900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 			   const struct sys_reg_desc *r)
902 {
903 	u64 val, mask;
904 
905 	if (pmu_access_el0_disabled(vcpu))
906 		return false;
907 
908 	mask = kvm_pmu_valid_counter_mask(vcpu);
909 	if (p->is_write) {
910 		val = p->regval & mask;
911 		if (r->Op2 & 0x1) {
912 			/* accessing PMCNTENSET_EL0 */
913 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
914 			kvm_pmu_enable_counter_mask(vcpu, val);
915 			kvm_vcpu_pmu_restore_guest(vcpu);
916 		} else {
917 			/* accessing PMCNTENCLR_EL0 */
918 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
919 			kvm_pmu_disable_counter_mask(vcpu, val);
920 		}
921 	} else {
922 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
923 	}
924 
925 	return true;
926 }
927 
928 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929 			   const struct sys_reg_desc *r)
930 {
931 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932 
933 	if (check_pmu_access_disabled(vcpu, 0))
934 		return false;
935 
936 	if (p->is_write) {
937 		u64 val = p->regval & mask;
938 
939 		if (r->Op2 & 0x1)
940 			/* accessing PMINTENSET_EL1 */
941 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
942 		else
943 			/* accessing PMINTENCLR_EL1 */
944 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
945 	} else {
946 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
947 	}
948 
949 	return true;
950 }
951 
952 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953 			 const struct sys_reg_desc *r)
954 {
955 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956 
957 	if (pmu_access_el0_disabled(vcpu))
958 		return false;
959 
960 	if (p->is_write) {
961 		if (r->CRm & 0x2)
962 			/* accessing PMOVSSET_EL0 */
963 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
964 		else
965 			/* accessing PMOVSCLR_EL0 */
966 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
967 	} else {
968 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
969 	}
970 
971 	return true;
972 }
973 
974 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975 			   const struct sys_reg_desc *r)
976 {
977 	u64 mask;
978 
979 	if (!p->is_write)
980 		return read_from_write_only(vcpu, p, r);
981 
982 	if (pmu_write_swinc_el0_disabled(vcpu))
983 		return false;
984 
985 	mask = kvm_pmu_valid_counter_mask(vcpu);
986 	kvm_pmu_software_increment(vcpu, p->regval & mask);
987 	return true;
988 }
989 
990 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991 			     const struct sys_reg_desc *r)
992 {
993 	if (p->is_write) {
994 		if (!vcpu_mode_priv(vcpu)) {
995 			kvm_inject_undefined(vcpu);
996 			return false;
997 		}
998 
999 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000 			       p->regval & ARMV8_PMU_USERENR_MASK;
1001 	} else {
1002 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1003 			    & ARMV8_PMU_USERENR_MASK;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1011 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1012 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1013 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1014 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1015 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1016 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1017 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1018 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1019 
1020 #define PMU_SYS_REG(r)						\
1021 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1022 
1023 /* Macro to expand the PMEVCNTRn_EL0 register */
1024 #define PMU_PMEVCNTR_EL0(n)						\
1025 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1026 	  .reset = reset_pmevcntr,					\
1027 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1028 
1029 /* Macro to expand the PMEVTYPERn_EL0 register */
1030 #define PMU_PMEVTYPER_EL0(n)						\
1031 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1032 	  .reset = reset_pmevtyper,					\
1033 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1034 
1035 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036 			 const struct sys_reg_desc *r)
1037 {
1038 	kvm_inject_undefined(vcpu);
1039 
1040 	return false;
1041 }
1042 
1043 /* Macro to expand the AMU counter and type registers*/
1044 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1048 
1049 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050 			const struct sys_reg_desc *rd)
1051 {
1052 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1053 }
1054 
1055 /*
1056  * If we land here on a PtrAuth access, that is because we didn't
1057  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058  * way this happens is when the guest does not have PtrAuth support
1059  * enabled.
1060  */
1061 #define __PTRAUTH_KEY(k)						\
1062 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1063 	.visibility = ptrauth_visibility}
1064 
1065 #define PTRAUTH_KEY(k)							\
1066 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1067 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1068 
1069 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070 			      struct sys_reg_params *p,
1071 			      const struct sys_reg_desc *r)
1072 {
1073 	enum kvm_arch_timers tmr;
1074 	enum kvm_arch_timer_regs treg;
1075 	u64 reg = reg_to_encoding(r);
1076 
1077 	switch (reg) {
1078 	case SYS_CNTP_TVAL_EL0:
1079 	case SYS_AARCH32_CNTP_TVAL:
1080 		tmr = TIMER_PTIMER;
1081 		treg = TIMER_REG_TVAL;
1082 		break;
1083 	case SYS_CNTP_CTL_EL0:
1084 	case SYS_AARCH32_CNTP_CTL:
1085 		tmr = TIMER_PTIMER;
1086 		treg = TIMER_REG_CTL;
1087 		break;
1088 	case SYS_CNTP_CVAL_EL0:
1089 	case SYS_AARCH32_CNTP_CVAL:
1090 		tmr = TIMER_PTIMER;
1091 		treg = TIMER_REG_CVAL;
1092 		break;
1093 	default:
1094 		BUG();
1095 	}
1096 
1097 	if (p->is_write)
1098 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1099 	else
1100 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1101 
1102 	return true;
1103 }
1104 
1105 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1106 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107 		struct sys_reg_desc const *r, bool raz)
1108 {
1109 	u32 id = reg_to_encoding(r);
1110 	u64 val;
1111 
1112 	if (raz)
1113 		return 0;
1114 
1115 	val = read_sanitised_ftr_reg(id);
1116 
1117 	switch (id) {
1118 	case SYS_ID_AA64PFR0_EL1:
1119 		if (!vcpu_has_sve(vcpu))
1120 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1126 		if (kvm_vgic_global_state.type == VGIC_V3) {
1127 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1128 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1129 		}
1130 		break;
1131 	case SYS_ID_AA64PFR1_EL1:
1132 		if (!kvm_has_mte(vcpu->kvm))
1133 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1134 
1135 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1136 		break;
1137 	case SYS_ID_AA64ISAR1_EL1:
1138 		if (!vcpu_has_ptrauth(vcpu))
1139 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1140 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1141 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1142 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1143 		break;
1144 	case SYS_ID_AA64ISAR2_EL1:
1145 		if (!vcpu_has_ptrauth(vcpu))
1146 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1147 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1148 		break;
1149 	case SYS_ID_AA64DFR0_EL1:
1150 		/* Limit debug to ARMv8.0 */
1151 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1152 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1153 		/* Limit guests to PMUv3 for ARMv8.4 */
1154 		val = cpuid_feature_cap_perfmon_field(val,
1155 						      ID_AA64DFR0_PMUVER_SHIFT,
1156 						      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1157 		/* Hide SPE from guests */
1158 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1159 		break;
1160 	case SYS_ID_DFR0_EL1:
1161 		/* Limit guests to PMUv3 for ARMv8.4 */
1162 		val = cpuid_feature_cap_perfmon_field(val,
1163 						      ID_DFR0_PERFMON_SHIFT,
1164 						      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1165 		break;
1166 	}
1167 
1168 	return val;
1169 }
1170 
1171 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1172 				  const struct sys_reg_desc *r)
1173 {
1174 	u32 id = reg_to_encoding(r);
1175 
1176 	switch (id) {
1177 	case SYS_ID_AA64ZFR0_EL1:
1178 		if (!vcpu_has_sve(vcpu))
1179 			return REG_RAZ;
1180 		break;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 /* cpufeature ID register access trap handlers */
1187 
1188 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1189 			    struct sys_reg_params *p,
1190 			    const struct sys_reg_desc *r,
1191 			    bool raz)
1192 {
1193 	if (p->is_write)
1194 		return write_to_read_only(vcpu, p, r);
1195 
1196 	p->regval = read_id_reg(vcpu, r, raz);
1197 	return true;
1198 }
1199 
1200 static bool access_id_reg(struct kvm_vcpu *vcpu,
1201 			  struct sys_reg_params *p,
1202 			  const struct sys_reg_desc *r)
1203 {
1204 	bool raz = sysreg_visible_as_raz(vcpu, r);
1205 
1206 	return __access_id_reg(vcpu, p, r, raz);
1207 }
1208 
1209 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1210 			      struct sys_reg_params *p,
1211 			      const struct sys_reg_desc *r)
1212 {
1213 	return __access_id_reg(vcpu, p, r, true);
1214 }
1215 
1216 /* Visibility overrides for SVE-specific control registers */
1217 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1218 				   const struct sys_reg_desc *rd)
1219 {
1220 	if (vcpu_has_sve(vcpu))
1221 		return 0;
1222 
1223 	return REG_HIDDEN;
1224 }
1225 
1226 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1227 			       const struct sys_reg_desc *rd,
1228 			       const struct kvm_one_reg *reg, void __user *uaddr)
1229 {
1230 	const u64 id = sys_reg_to_index(rd);
1231 	u8 csv2, csv3;
1232 	int err;
1233 	u64 val;
1234 
1235 	err = reg_from_user(&val, uaddr, id);
1236 	if (err)
1237 		return err;
1238 
1239 	/*
1240 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1241 	 * it doesn't promise more than what is actually provided (the
1242 	 * guest could otherwise be covered in ectoplasmic residue).
1243 	 */
1244 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1245 	if (csv2 > 1 ||
1246 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1247 		return -EINVAL;
1248 
1249 	/* Same thing for CSV3 */
1250 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1251 	if (csv3 > 1 ||
1252 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1253 		return -EINVAL;
1254 
1255 	/* We can only differ with CSV[23], and anything else is an error */
1256 	val ^= read_id_reg(vcpu, rd, false);
1257 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1258 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1259 	if (val)
1260 		return -EINVAL;
1261 
1262 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1263 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * cpufeature ID register user accessors
1270  *
1271  * For now, these registers are immutable for userspace, so no values
1272  * are stored, and for set_id_reg() we don't allow the effective value
1273  * to be changed.
1274  */
1275 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1276 			const struct sys_reg_desc *rd, void __user *uaddr,
1277 			bool raz)
1278 {
1279 	const u64 id = sys_reg_to_index(rd);
1280 	const u64 val = read_id_reg(vcpu, rd, raz);
1281 
1282 	return reg_to_user(uaddr, &val, id);
1283 }
1284 
1285 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1286 			const struct sys_reg_desc *rd, void __user *uaddr,
1287 			bool raz)
1288 {
1289 	const u64 id = sys_reg_to_index(rd);
1290 	int err;
1291 	u64 val;
1292 
1293 	err = reg_from_user(&val, uaddr, id);
1294 	if (err)
1295 		return err;
1296 
1297 	/* This is what we mean by invariant: you can't change it. */
1298 	if (val != read_id_reg(vcpu, rd, raz))
1299 		return -EINVAL;
1300 
1301 	return 0;
1302 }
1303 
1304 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1305 		      const struct kvm_one_reg *reg, void __user *uaddr)
1306 {
1307 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1308 
1309 	return __get_id_reg(vcpu, rd, uaddr, raz);
1310 }
1311 
1312 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1313 		      const struct kvm_one_reg *reg, void __user *uaddr)
1314 {
1315 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1316 
1317 	return __set_id_reg(vcpu, rd, uaddr, raz);
1318 }
1319 
1320 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1321 			  const struct kvm_one_reg *reg, void __user *uaddr)
1322 {
1323 	return __set_id_reg(vcpu, rd, uaddr, true);
1324 }
1325 
1326 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1327 		       const struct kvm_one_reg *reg, void __user *uaddr)
1328 {
1329 	const u64 id = sys_reg_to_index(rd);
1330 	const u64 val = 0;
1331 
1332 	return reg_to_user(uaddr, &val, id);
1333 }
1334 
1335 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1336 		      const struct kvm_one_reg *reg, void __user *uaddr)
1337 {
1338 	int err;
1339 	u64 val;
1340 
1341 	/* Perform the access even if we are going to ignore the value */
1342 	err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1343 	if (err)
1344 		return err;
1345 
1346 	return 0;
1347 }
1348 
1349 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1350 		       const struct sys_reg_desc *r)
1351 {
1352 	if (p->is_write)
1353 		return write_to_read_only(vcpu, p, r);
1354 
1355 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1356 	return true;
1357 }
1358 
1359 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1360 			 const struct sys_reg_desc *r)
1361 {
1362 	if (p->is_write)
1363 		return write_to_read_only(vcpu, p, r);
1364 
1365 	p->regval = read_sysreg(clidr_el1);
1366 	return true;
1367 }
1368 
1369 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1370 			  const struct sys_reg_desc *r)
1371 {
1372 	int reg = r->reg;
1373 
1374 	if (p->is_write)
1375 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1376 	else
1377 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1378 	return true;
1379 }
1380 
1381 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1382 			  const struct sys_reg_desc *r)
1383 {
1384 	u32 csselr;
1385 
1386 	if (p->is_write)
1387 		return write_to_read_only(vcpu, p, r);
1388 
1389 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1390 	p->regval = get_ccsidr(csselr);
1391 
1392 	/*
1393 	 * Guests should not be doing cache operations by set/way at all, and
1394 	 * for this reason, we trap them and attempt to infer the intent, so
1395 	 * that we can flush the entire guest's address space at the appropriate
1396 	 * time.
1397 	 * To prevent this trapping from causing performance problems, let's
1398 	 * expose the geometry of all data and unified caches (which are
1399 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1400 	 * [If guests should attempt to infer aliasing properties from the
1401 	 * geometry (which is not permitted by the architecture), they would
1402 	 * only do so for virtually indexed caches.]
1403 	 */
1404 	if (!(csselr & 1)) // data or unified cache
1405 		p->regval &= ~GENMASK(27, 3);
1406 	return true;
1407 }
1408 
1409 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1410 				   const struct sys_reg_desc *rd)
1411 {
1412 	if (kvm_has_mte(vcpu->kvm))
1413 		return 0;
1414 
1415 	return REG_HIDDEN;
1416 }
1417 
1418 #define MTE_REG(name) {				\
1419 	SYS_DESC(SYS_##name),			\
1420 	.access = undef_access,			\
1421 	.reset = reset_unknown,			\
1422 	.reg = name,				\
1423 	.visibility = mte_visibility,		\
1424 }
1425 
1426 /* sys_reg_desc initialiser for known cpufeature ID registers */
1427 #define ID_SANITISED(name) {			\
1428 	SYS_DESC(SYS_##name),			\
1429 	.access	= access_id_reg,		\
1430 	.get_user = get_id_reg,			\
1431 	.set_user = set_id_reg,			\
1432 	.visibility = id_visibility,		\
1433 }
1434 
1435 /*
1436  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1437  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1438  * (1 <= crm < 8, 0 <= Op2 < 8).
1439  */
1440 #define ID_UNALLOCATED(crm, op2) {			\
1441 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1442 	.access = access_raz_id_reg,			\
1443 	.get_user = get_raz_reg,			\
1444 	.set_user = set_raz_id_reg,			\
1445 }
1446 
1447 /*
1448  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1449  * For now, these are exposed just like unallocated ID regs: they appear
1450  * RAZ for the guest.
1451  */
1452 #define ID_HIDDEN(name) {			\
1453 	SYS_DESC(SYS_##name),			\
1454 	.access = access_raz_id_reg,		\
1455 	.get_user = get_raz_reg,		\
1456 	.set_user = set_raz_id_reg,		\
1457 }
1458 
1459 /*
1460  * Architected system registers.
1461  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1462  *
1463  * Debug handling: We do trap most, if not all debug related system
1464  * registers. The implementation is good enough to ensure that a guest
1465  * can use these with minimal performance degradation. The drawback is
1466  * that we don't implement any of the external debug architecture.
1467  * This should be revisited if we ever encounter a more demanding
1468  * guest...
1469  */
1470 static const struct sys_reg_desc sys_reg_descs[] = {
1471 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1472 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1473 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1474 
1475 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1476 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1477 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1478 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1479 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1480 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1481 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1482 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1483 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1484 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1485 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1486 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1487 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1488 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1489 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1490 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1491 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1492 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1493 
1494 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1495 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1496 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1497 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1498 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1499 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1500 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1501 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1502 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1503 
1504 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1505 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1506 	// DBGDTR[TR]X_EL0 share the same encoding
1507 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1508 
1509 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1510 
1511 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1512 
1513 	/*
1514 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1515 	 * entries in arm64_ftr_regs[].
1516 	 */
1517 
1518 	/* AArch64 mappings of the AArch32 ID registers */
1519 	/* CRm=1 */
1520 	ID_SANITISED(ID_PFR0_EL1),
1521 	ID_SANITISED(ID_PFR1_EL1),
1522 	ID_SANITISED(ID_DFR0_EL1),
1523 	ID_HIDDEN(ID_AFR0_EL1),
1524 	ID_SANITISED(ID_MMFR0_EL1),
1525 	ID_SANITISED(ID_MMFR1_EL1),
1526 	ID_SANITISED(ID_MMFR2_EL1),
1527 	ID_SANITISED(ID_MMFR3_EL1),
1528 
1529 	/* CRm=2 */
1530 	ID_SANITISED(ID_ISAR0_EL1),
1531 	ID_SANITISED(ID_ISAR1_EL1),
1532 	ID_SANITISED(ID_ISAR2_EL1),
1533 	ID_SANITISED(ID_ISAR3_EL1),
1534 	ID_SANITISED(ID_ISAR4_EL1),
1535 	ID_SANITISED(ID_ISAR5_EL1),
1536 	ID_SANITISED(ID_MMFR4_EL1),
1537 	ID_SANITISED(ID_ISAR6_EL1),
1538 
1539 	/* CRm=3 */
1540 	ID_SANITISED(MVFR0_EL1),
1541 	ID_SANITISED(MVFR1_EL1),
1542 	ID_SANITISED(MVFR2_EL1),
1543 	ID_UNALLOCATED(3,3),
1544 	ID_SANITISED(ID_PFR2_EL1),
1545 	ID_HIDDEN(ID_DFR1_EL1),
1546 	ID_SANITISED(ID_MMFR5_EL1),
1547 	ID_UNALLOCATED(3,7),
1548 
1549 	/* AArch64 ID registers */
1550 	/* CRm=4 */
1551 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1552 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1553 	ID_SANITISED(ID_AA64PFR1_EL1),
1554 	ID_UNALLOCATED(4,2),
1555 	ID_UNALLOCATED(4,3),
1556 	ID_SANITISED(ID_AA64ZFR0_EL1),
1557 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1558 	ID_UNALLOCATED(4,6),
1559 	ID_UNALLOCATED(4,7),
1560 
1561 	/* CRm=5 */
1562 	ID_SANITISED(ID_AA64DFR0_EL1),
1563 	ID_SANITISED(ID_AA64DFR1_EL1),
1564 	ID_UNALLOCATED(5,2),
1565 	ID_UNALLOCATED(5,3),
1566 	ID_HIDDEN(ID_AA64AFR0_EL1),
1567 	ID_HIDDEN(ID_AA64AFR1_EL1),
1568 	ID_UNALLOCATED(5,6),
1569 	ID_UNALLOCATED(5,7),
1570 
1571 	/* CRm=6 */
1572 	ID_SANITISED(ID_AA64ISAR0_EL1),
1573 	ID_SANITISED(ID_AA64ISAR1_EL1),
1574 	ID_SANITISED(ID_AA64ISAR2_EL1),
1575 	ID_UNALLOCATED(6,3),
1576 	ID_UNALLOCATED(6,4),
1577 	ID_UNALLOCATED(6,5),
1578 	ID_UNALLOCATED(6,6),
1579 	ID_UNALLOCATED(6,7),
1580 
1581 	/* CRm=7 */
1582 	ID_SANITISED(ID_AA64MMFR0_EL1),
1583 	ID_SANITISED(ID_AA64MMFR1_EL1),
1584 	ID_SANITISED(ID_AA64MMFR2_EL1),
1585 	ID_UNALLOCATED(7,3),
1586 	ID_UNALLOCATED(7,4),
1587 	ID_UNALLOCATED(7,5),
1588 	ID_UNALLOCATED(7,6),
1589 	ID_UNALLOCATED(7,7),
1590 
1591 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1592 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1593 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1594 
1595 	MTE_REG(RGSR_EL1),
1596 	MTE_REG(GCR_EL1),
1597 
1598 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1599 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1600 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1601 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1602 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1603 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1604 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1605 
1606 	PTRAUTH_KEY(APIA),
1607 	PTRAUTH_KEY(APIB),
1608 	PTRAUTH_KEY(APDA),
1609 	PTRAUTH_KEY(APDB),
1610 	PTRAUTH_KEY(APGA),
1611 
1612 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1613 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1614 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1615 
1616 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1617 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1618 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1619 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1620 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1621 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1622 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1623 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1624 
1625 	MTE_REG(TFSR_EL1),
1626 	MTE_REG(TFSRE0_EL1),
1627 
1628 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1629 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1630 
1631 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1632 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1633 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1634 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1635 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1636 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1637 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1638 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1639 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1640 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1641 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1642 	/* PMBIDR_EL1 is not trapped */
1643 
1644 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1645 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1646 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1647 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1648 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1649 
1650 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1651 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1652 
1653 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1654 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1655 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1656 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1657 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1658 
1659 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1660 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1661 
1662 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1663 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1664 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1665 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1666 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1667 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1668 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1669 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1670 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1671 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1672 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1673 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1674 
1675 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1676 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1677 
1678 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1679 
1680 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1681 
1682 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1683 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1684 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1685 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1686 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1687 	{ SYS_DESC(SYS_SVCR), undef_access },
1688 
1689 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1690 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1691 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1692 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1693 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1694 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1695 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1696 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1697 	/*
1698 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1699 	 * previously (and pointlessly) advertised in the past...
1700 	 */
1701 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1702 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1703 	  .access = access_pmswinc, .reset = NULL },
1704 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1705 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1706 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1707 	  .access = access_pmceid, .reset = NULL },
1708 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1709 	  .access = access_pmceid, .reset = NULL },
1710 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1711 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1712 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1713 	  .access = access_pmu_evtyper, .reset = NULL },
1714 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1715 	  .access = access_pmu_evcntr, .reset = NULL },
1716 	/*
1717 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1718 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1719 	 */
1720 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1721 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1722 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1723 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1724 
1725 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1726 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1727 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1728 
1729 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1730 
1731 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1732 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1733 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1734 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1735 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1736 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1737 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1738 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1739 	AMU_AMEVCNTR0_EL0(0),
1740 	AMU_AMEVCNTR0_EL0(1),
1741 	AMU_AMEVCNTR0_EL0(2),
1742 	AMU_AMEVCNTR0_EL0(3),
1743 	AMU_AMEVCNTR0_EL0(4),
1744 	AMU_AMEVCNTR0_EL0(5),
1745 	AMU_AMEVCNTR0_EL0(6),
1746 	AMU_AMEVCNTR0_EL0(7),
1747 	AMU_AMEVCNTR0_EL0(8),
1748 	AMU_AMEVCNTR0_EL0(9),
1749 	AMU_AMEVCNTR0_EL0(10),
1750 	AMU_AMEVCNTR0_EL0(11),
1751 	AMU_AMEVCNTR0_EL0(12),
1752 	AMU_AMEVCNTR0_EL0(13),
1753 	AMU_AMEVCNTR0_EL0(14),
1754 	AMU_AMEVCNTR0_EL0(15),
1755 	AMU_AMEVTYPER0_EL0(0),
1756 	AMU_AMEVTYPER0_EL0(1),
1757 	AMU_AMEVTYPER0_EL0(2),
1758 	AMU_AMEVTYPER0_EL0(3),
1759 	AMU_AMEVTYPER0_EL0(4),
1760 	AMU_AMEVTYPER0_EL0(5),
1761 	AMU_AMEVTYPER0_EL0(6),
1762 	AMU_AMEVTYPER0_EL0(7),
1763 	AMU_AMEVTYPER0_EL0(8),
1764 	AMU_AMEVTYPER0_EL0(9),
1765 	AMU_AMEVTYPER0_EL0(10),
1766 	AMU_AMEVTYPER0_EL0(11),
1767 	AMU_AMEVTYPER0_EL0(12),
1768 	AMU_AMEVTYPER0_EL0(13),
1769 	AMU_AMEVTYPER0_EL0(14),
1770 	AMU_AMEVTYPER0_EL0(15),
1771 	AMU_AMEVCNTR1_EL0(0),
1772 	AMU_AMEVCNTR1_EL0(1),
1773 	AMU_AMEVCNTR1_EL0(2),
1774 	AMU_AMEVCNTR1_EL0(3),
1775 	AMU_AMEVCNTR1_EL0(4),
1776 	AMU_AMEVCNTR1_EL0(5),
1777 	AMU_AMEVCNTR1_EL0(6),
1778 	AMU_AMEVCNTR1_EL0(7),
1779 	AMU_AMEVCNTR1_EL0(8),
1780 	AMU_AMEVCNTR1_EL0(9),
1781 	AMU_AMEVCNTR1_EL0(10),
1782 	AMU_AMEVCNTR1_EL0(11),
1783 	AMU_AMEVCNTR1_EL0(12),
1784 	AMU_AMEVCNTR1_EL0(13),
1785 	AMU_AMEVCNTR1_EL0(14),
1786 	AMU_AMEVCNTR1_EL0(15),
1787 	AMU_AMEVTYPER1_EL0(0),
1788 	AMU_AMEVTYPER1_EL0(1),
1789 	AMU_AMEVTYPER1_EL0(2),
1790 	AMU_AMEVTYPER1_EL0(3),
1791 	AMU_AMEVTYPER1_EL0(4),
1792 	AMU_AMEVTYPER1_EL0(5),
1793 	AMU_AMEVTYPER1_EL0(6),
1794 	AMU_AMEVTYPER1_EL0(7),
1795 	AMU_AMEVTYPER1_EL0(8),
1796 	AMU_AMEVTYPER1_EL0(9),
1797 	AMU_AMEVTYPER1_EL0(10),
1798 	AMU_AMEVTYPER1_EL0(11),
1799 	AMU_AMEVTYPER1_EL0(12),
1800 	AMU_AMEVTYPER1_EL0(13),
1801 	AMU_AMEVTYPER1_EL0(14),
1802 	AMU_AMEVTYPER1_EL0(15),
1803 
1804 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1805 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1806 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1807 
1808 	/* PMEVCNTRn_EL0 */
1809 	PMU_PMEVCNTR_EL0(0),
1810 	PMU_PMEVCNTR_EL0(1),
1811 	PMU_PMEVCNTR_EL0(2),
1812 	PMU_PMEVCNTR_EL0(3),
1813 	PMU_PMEVCNTR_EL0(4),
1814 	PMU_PMEVCNTR_EL0(5),
1815 	PMU_PMEVCNTR_EL0(6),
1816 	PMU_PMEVCNTR_EL0(7),
1817 	PMU_PMEVCNTR_EL0(8),
1818 	PMU_PMEVCNTR_EL0(9),
1819 	PMU_PMEVCNTR_EL0(10),
1820 	PMU_PMEVCNTR_EL0(11),
1821 	PMU_PMEVCNTR_EL0(12),
1822 	PMU_PMEVCNTR_EL0(13),
1823 	PMU_PMEVCNTR_EL0(14),
1824 	PMU_PMEVCNTR_EL0(15),
1825 	PMU_PMEVCNTR_EL0(16),
1826 	PMU_PMEVCNTR_EL0(17),
1827 	PMU_PMEVCNTR_EL0(18),
1828 	PMU_PMEVCNTR_EL0(19),
1829 	PMU_PMEVCNTR_EL0(20),
1830 	PMU_PMEVCNTR_EL0(21),
1831 	PMU_PMEVCNTR_EL0(22),
1832 	PMU_PMEVCNTR_EL0(23),
1833 	PMU_PMEVCNTR_EL0(24),
1834 	PMU_PMEVCNTR_EL0(25),
1835 	PMU_PMEVCNTR_EL0(26),
1836 	PMU_PMEVCNTR_EL0(27),
1837 	PMU_PMEVCNTR_EL0(28),
1838 	PMU_PMEVCNTR_EL0(29),
1839 	PMU_PMEVCNTR_EL0(30),
1840 	/* PMEVTYPERn_EL0 */
1841 	PMU_PMEVTYPER_EL0(0),
1842 	PMU_PMEVTYPER_EL0(1),
1843 	PMU_PMEVTYPER_EL0(2),
1844 	PMU_PMEVTYPER_EL0(3),
1845 	PMU_PMEVTYPER_EL0(4),
1846 	PMU_PMEVTYPER_EL0(5),
1847 	PMU_PMEVTYPER_EL0(6),
1848 	PMU_PMEVTYPER_EL0(7),
1849 	PMU_PMEVTYPER_EL0(8),
1850 	PMU_PMEVTYPER_EL0(9),
1851 	PMU_PMEVTYPER_EL0(10),
1852 	PMU_PMEVTYPER_EL0(11),
1853 	PMU_PMEVTYPER_EL0(12),
1854 	PMU_PMEVTYPER_EL0(13),
1855 	PMU_PMEVTYPER_EL0(14),
1856 	PMU_PMEVTYPER_EL0(15),
1857 	PMU_PMEVTYPER_EL0(16),
1858 	PMU_PMEVTYPER_EL0(17),
1859 	PMU_PMEVTYPER_EL0(18),
1860 	PMU_PMEVTYPER_EL0(19),
1861 	PMU_PMEVTYPER_EL0(20),
1862 	PMU_PMEVTYPER_EL0(21),
1863 	PMU_PMEVTYPER_EL0(22),
1864 	PMU_PMEVTYPER_EL0(23),
1865 	PMU_PMEVTYPER_EL0(24),
1866 	PMU_PMEVTYPER_EL0(25),
1867 	PMU_PMEVTYPER_EL0(26),
1868 	PMU_PMEVTYPER_EL0(27),
1869 	PMU_PMEVTYPER_EL0(28),
1870 	PMU_PMEVTYPER_EL0(29),
1871 	PMU_PMEVTYPER_EL0(30),
1872 	/*
1873 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1874 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1875 	 */
1876 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1877 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1878 
1879 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1880 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1881 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1882 };
1883 
1884 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1885 			struct sys_reg_params *p,
1886 			const struct sys_reg_desc *r)
1887 {
1888 	if (p->is_write) {
1889 		return ignore_write(vcpu, p);
1890 	} else {
1891 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1892 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1893 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1894 
1895 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1896 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1897 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1898 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1899 		return true;
1900 	}
1901 }
1902 
1903 /*
1904  * AArch32 debug register mappings
1905  *
1906  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1907  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1908  *
1909  * None of the other registers share their location, so treat them as
1910  * if they were 64bit.
1911  */
1912 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1913 	/* DBGBVRn */							      \
1914 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1915 	/* DBGBCRn */							      \
1916 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1917 	/* DBGWVRn */							      \
1918 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1919 	/* DBGWCRn */							      \
1920 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1921 
1922 #define DBGBXVR(n)							      \
1923 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1924 
1925 /*
1926  * Trapped cp14 registers. We generally ignore most of the external
1927  * debug, on the principle that they don't really make sense to a
1928  * guest. Revisit this one day, would this principle change.
1929  */
1930 static const struct sys_reg_desc cp14_regs[] = {
1931 	/* DBGDIDR */
1932 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1933 	/* DBGDTRRXext */
1934 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1935 
1936 	DBG_BCR_BVR_WCR_WVR(0),
1937 	/* DBGDSCRint */
1938 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1939 	DBG_BCR_BVR_WCR_WVR(1),
1940 	/* DBGDCCINT */
1941 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1942 	/* DBGDSCRext */
1943 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1944 	DBG_BCR_BVR_WCR_WVR(2),
1945 	/* DBGDTR[RT]Xint */
1946 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1947 	/* DBGDTR[RT]Xext */
1948 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1949 	DBG_BCR_BVR_WCR_WVR(3),
1950 	DBG_BCR_BVR_WCR_WVR(4),
1951 	DBG_BCR_BVR_WCR_WVR(5),
1952 	/* DBGWFAR */
1953 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1954 	/* DBGOSECCR */
1955 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1956 	DBG_BCR_BVR_WCR_WVR(6),
1957 	/* DBGVCR */
1958 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1959 	DBG_BCR_BVR_WCR_WVR(7),
1960 	DBG_BCR_BVR_WCR_WVR(8),
1961 	DBG_BCR_BVR_WCR_WVR(9),
1962 	DBG_BCR_BVR_WCR_WVR(10),
1963 	DBG_BCR_BVR_WCR_WVR(11),
1964 	DBG_BCR_BVR_WCR_WVR(12),
1965 	DBG_BCR_BVR_WCR_WVR(13),
1966 	DBG_BCR_BVR_WCR_WVR(14),
1967 	DBG_BCR_BVR_WCR_WVR(15),
1968 
1969 	/* DBGDRAR (32bit) */
1970 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1971 
1972 	DBGBXVR(0),
1973 	/* DBGOSLAR */
1974 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1975 	DBGBXVR(1),
1976 	/* DBGOSLSR */
1977 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1978 	DBGBXVR(2),
1979 	DBGBXVR(3),
1980 	/* DBGOSDLR */
1981 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1982 	DBGBXVR(4),
1983 	/* DBGPRCR */
1984 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1985 	DBGBXVR(5),
1986 	DBGBXVR(6),
1987 	DBGBXVR(7),
1988 	DBGBXVR(8),
1989 	DBGBXVR(9),
1990 	DBGBXVR(10),
1991 	DBGBXVR(11),
1992 	DBGBXVR(12),
1993 	DBGBXVR(13),
1994 	DBGBXVR(14),
1995 	DBGBXVR(15),
1996 
1997 	/* DBGDSAR (32bit) */
1998 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1999 
2000 	/* DBGDEVID2 */
2001 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2002 	/* DBGDEVID1 */
2003 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2004 	/* DBGDEVID */
2005 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2006 	/* DBGCLAIMSET */
2007 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2008 	/* DBGCLAIMCLR */
2009 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2010 	/* DBGAUTHSTATUS */
2011 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2012 };
2013 
2014 /* Trapped cp14 64bit registers */
2015 static const struct sys_reg_desc cp14_64_regs[] = {
2016 	/* DBGDRAR (64bit) */
2017 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2018 
2019 	/* DBGDSAR (64bit) */
2020 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2021 };
2022 
2023 /* Macro to expand the PMEVCNTRn register */
2024 #define PMU_PMEVCNTR(n)							\
2025 	/* PMEVCNTRn */							\
2026 	{ Op1(0), CRn(0b1110),						\
2027 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2028 	  access_pmu_evcntr }
2029 
2030 /* Macro to expand the PMEVTYPERn register */
2031 #define PMU_PMEVTYPER(n)						\
2032 	/* PMEVTYPERn */						\
2033 	{ Op1(0), CRn(0b1110),						\
2034 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2035 	  access_pmu_evtyper }
2036 
2037 /*
2038  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2039  * depending on the way they are accessed (as a 32bit or a 64bit
2040  * register).
2041  */
2042 static const struct sys_reg_desc cp15_regs[] = {
2043 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2044 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2045 	/* ACTLR */
2046 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2047 	/* ACTLR2 */
2048 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2049 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2050 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2051 	/* TTBCR */
2052 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2053 	/* TTBCR2 */
2054 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2055 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2056 	/* DFSR */
2057 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2058 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2059 	/* ADFSR */
2060 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2061 	/* AIFSR */
2062 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2063 	/* DFAR */
2064 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2065 	/* IFAR */
2066 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2067 
2068 	/*
2069 	 * DC{C,I,CI}SW operations:
2070 	 */
2071 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2072 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2073 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2074 
2075 	/* PMU */
2076 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2077 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2078 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2079 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2080 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2081 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2082 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2083 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2084 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2085 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2086 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2087 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2088 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2089 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2090 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2091 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2092 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2093 	/* PMMIR */
2094 	{ Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2095 
2096 	/* PRRR/MAIR0 */
2097 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2098 	/* NMRR/MAIR1 */
2099 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2100 	/* AMAIR0 */
2101 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2102 	/* AMAIR1 */
2103 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2104 
2105 	/* ICC_SRE */
2106 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2107 
2108 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2109 
2110 	/* Arch Tmers */
2111 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2112 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2113 
2114 	/* PMEVCNTRn */
2115 	PMU_PMEVCNTR(0),
2116 	PMU_PMEVCNTR(1),
2117 	PMU_PMEVCNTR(2),
2118 	PMU_PMEVCNTR(3),
2119 	PMU_PMEVCNTR(4),
2120 	PMU_PMEVCNTR(5),
2121 	PMU_PMEVCNTR(6),
2122 	PMU_PMEVCNTR(7),
2123 	PMU_PMEVCNTR(8),
2124 	PMU_PMEVCNTR(9),
2125 	PMU_PMEVCNTR(10),
2126 	PMU_PMEVCNTR(11),
2127 	PMU_PMEVCNTR(12),
2128 	PMU_PMEVCNTR(13),
2129 	PMU_PMEVCNTR(14),
2130 	PMU_PMEVCNTR(15),
2131 	PMU_PMEVCNTR(16),
2132 	PMU_PMEVCNTR(17),
2133 	PMU_PMEVCNTR(18),
2134 	PMU_PMEVCNTR(19),
2135 	PMU_PMEVCNTR(20),
2136 	PMU_PMEVCNTR(21),
2137 	PMU_PMEVCNTR(22),
2138 	PMU_PMEVCNTR(23),
2139 	PMU_PMEVCNTR(24),
2140 	PMU_PMEVCNTR(25),
2141 	PMU_PMEVCNTR(26),
2142 	PMU_PMEVCNTR(27),
2143 	PMU_PMEVCNTR(28),
2144 	PMU_PMEVCNTR(29),
2145 	PMU_PMEVCNTR(30),
2146 	/* PMEVTYPERn */
2147 	PMU_PMEVTYPER(0),
2148 	PMU_PMEVTYPER(1),
2149 	PMU_PMEVTYPER(2),
2150 	PMU_PMEVTYPER(3),
2151 	PMU_PMEVTYPER(4),
2152 	PMU_PMEVTYPER(5),
2153 	PMU_PMEVTYPER(6),
2154 	PMU_PMEVTYPER(7),
2155 	PMU_PMEVTYPER(8),
2156 	PMU_PMEVTYPER(9),
2157 	PMU_PMEVTYPER(10),
2158 	PMU_PMEVTYPER(11),
2159 	PMU_PMEVTYPER(12),
2160 	PMU_PMEVTYPER(13),
2161 	PMU_PMEVTYPER(14),
2162 	PMU_PMEVTYPER(15),
2163 	PMU_PMEVTYPER(16),
2164 	PMU_PMEVTYPER(17),
2165 	PMU_PMEVTYPER(18),
2166 	PMU_PMEVTYPER(19),
2167 	PMU_PMEVTYPER(20),
2168 	PMU_PMEVTYPER(21),
2169 	PMU_PMEVTYPER(22),
2170 	PMU_PMEVTYPER(23),
2171 	PMU_PMEVTYPER(24),
2172 	PMU_PMEVTYPER(25),
2173 	PMU_PMEVTYPER(26),
2174 	PMU_PMEVTYPER(27),
2175 	PMU_PMEVTYPER(28),
2176 	PMU_PMEVTYPER(29),
2177 	PMU_PMEVTYPER(30),
2178 	/* PMCCFILTR */
2179 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2180 
2181 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2182 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2183 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2184 };
2185 
2186 static const struct sys_reg_desc cp15_64_regs[] = {
2187 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2188 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2189 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2190 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2191 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2192 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2193 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2194 };
2195 
2196 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2197 			      bool is_32)
2198 {
2199 	unsigned int i;
2200 
2201 	for (i = 0; i < n; i++) {
2202 		if (!is_32 && table[i].reg && !table[i].reset) {
2203 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2204 				table, i);
2205 			return 1;
2206 		}
2207 
2208 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2209 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2210 			return 1;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2218 {
2219 	kvm_inject_undefined(vcpu);
2220 	return 1;
2221 }
2222 
2223 static void perform_access(struct kvm_vcpu *vcpu,
2224 			   struct sys_reg_params *params,
2225 			   const struct sys_reg_desc *r)
2226 {
2227 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2228 
2229 	/* Check for regs disabled by runtime config */
2230 	if (sysreg_hidden(vcpu, r)) {
2231 		kvm_inject_undefined(vcpu);
2232 		return;
2233 	}
2234 
2235 	/*
2236 	 * Not having an accessor means that we have configured a trap
2237 	 * that we don't know how to handle. This certainly qualifies
2238 	 * as a gross bug that should be fixed right away.
2239 	 */
2240 	BUG_ON(!r->access);
2241 
2242 	/* Skip instruction if instructed so */
2243 	if (likely(r->access(vcpu, params, r)))
2244 		kvm_incr_pc(vcpu);
2245 }
2246 
2247 /*
2248  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2249  *                call the corresponding trap handler.
2250  *
2251  * @params: pointer to the descriptor of the access
2252  * @table: array of trap descriptors
2253  * @num: size of the trap descriptor array
2254  *
2255  * Return 0 if the access has been handled, and -1 if not.
2256  */
2257 static int emulate_cp(struct kvm_vcpu *vcpu,
2258 		      struct sys_reg_params *params,
2259 		      const struct sys_reg_desc *table,
2260 		      size_t num)
2261 {
2262 	const struct sys_reg_desc *r;
2263 
2264 	if (!table)
2265 		return -1;	/* Not handled */
2266 
2267 	r = find_reg(params, table, num);
2268 
2269 	if (r) {
2270 		perform_access(vcpu, params, r);
2271 		return 0;
2272 	}
2273 
2274 	/* Not handled */
2275 	return -1;
2276 }
2277 
2278 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2279 				struct sys_reg_params *params)
2280 {
2281 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2282 	int cp = -1;
2283 
2284 	switch (esr_ec) {
2285 	case ESR_ELx_EC_CP15_32:
2286 	case ESR_ELx_EC_CP15_64:
2287 		cp = 15;
2288 		break;
2289 	case ESR_ELx_EC_CP14_MR:
2290 	case ESR_ELx_EC_CP14_64:
2291 		cp = 14;
2292 		break;
2293 	default:
2294 		WARN_ON(1);
2295 	}
2296 
2297 	print_sys_reg_msg(params,
2298 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2299 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2300 	kvm_inject_undefined(vcpu);
2301 }
2302 
2303 /**
2304  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2305  * @vcpu: The VCPU pointer
2306  * @run:  The kvm_run struct
2307  */
2308 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2309 			    const struct sys_reg_desc *global,
2310 			    size_t nr_global)
2311 {
2312 	struct sys_reg_params params;
2313 	u64 esr = kvm_vcpu_get_esr(vcpu);
2314 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2315 	int Rt2 = (esr >> 10) & 0x1f;
2316 
2317 	params.CRm = (esr >> 1) & 0xf;
2318 	params.is_write = ((esr & 1) == 0);
2319 
2320 	params.Op0 = 0;
2321 	params.Op1 = (esr >> 16) & 0xf;
2322 	params.Op2 = 0;
2323 	params.CRn = 0;
2324 
2325 	/*
2326 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2327 	 * backends between AArch32 and AArch64, we get away with it.
2328 	 */
2329 	if (params.is_write) {
2330 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2331 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2332 	}
2333 
2334 	/*
2335 	 * If the table contains a handler, handle the
2336 	 * potential register operation in the case of a read and return
2337 	 * with success.
2338 	 */
2339 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2340 		/* Split up the value between registers for the read side */
2341 		if (!params.is_write) {
2342 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2343 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2344 		}
2345 
2346 		return 1;
2347 	}
2348 
2349 	unhandled_cp_access(vcpu, &params);
2350 	return 1;
2351 }
2352 
2353 /**
2354  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2355  * @vcpu: The VCPU pointer
2356  * @run:  The kvm_run struct
2357  */
2358 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2359 			    const struct sys_reg_desc *global,
2360 			    size_t nr_global)
2361 {
2362 	struct sys_reg_params params;
2363 	u64 esr = kvm_vcpu_get_esr(vcpu);
2364 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2365 
2366 	params.CRm = (esr >> 1) & 0xf;
2367 	params.regval = vcpu_get_reg(vcpu, Rt);
2368 	params.is_write = ((esr & 1) == 0);
2369 	params.CRn = (esr >> 10) & 0xf;
2370 	params.Op0 = 0;
2371 	params.Op1 = (esr >> 14) & 0x7;
2372 	params.Op2 = (esr >> 17) & 0x7;
2373 
2374 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2375 		if (!params.is_write)
2376 			vcpu_set_reg(vcpu, Rt, params.regval);
2377 		return 1;
2378 	}
2379 
2380 	unhandled_cp_access(vcpu, &params);
2381 	return 1;
2382 }
2383 
2384 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2385 {
2386 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2387 }
2388 
2389 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2390 {
2391 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2392 }
2393 
2394 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2395 {
2396 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2397 }
2398 
2399 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2400 {
2401 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2402 }
2403 
2404 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2405 {
2406 	// See ARM DDI 0487E.a, section D12.3.2
2407 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2408 }
2409 
2410 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2411 			   struct sys_reg_params *params)
2412 {
2413 	const struct sys_reg_desc *r;
2414 
2415 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2416 
2417 	if (likely(r)) {
2418 		perform_access(vcpu, params, r);
2419 	} else if (is_imp_def_sys_reg(params)) {
2420 		kvm_inject_undefined(vcpu);
2421 	} else {
2422 		print_sys_reg_msg(params,
2423 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2424 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2425 		kvm_inject_undefined(vcpu);
2426 	}
2427 	return 1;
2428 }
2429 
2430 /**
2431  * kvm_reset_sys_regs - sets system registers to reset value
2432  * @vcpu: The VCPU pointer
2433  *
2434  * This function finds the right table above and sets the registers on the
2435  * virtual CPU struct to their architecturally defined reset values.
2436  */
2437 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2438 {
2439 	unsigned long i;
2440 
2441 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2442 		if (sys_reg_descs[i].reset)
2443 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2444 }
2445 
2446 /**
2447  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2448  * @vcpu: The VCPU pointer
2449  */
2450 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2451 {
2452 	struct sys_reg_params params;
2453 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2454 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2455 	int ret;
2456 
2457 	trace_kvm_handle_sys_reg(esr);
2458 
2459 	params = esr_sys64_to_params(esr);
2460 	params.regval = vcpu_get_reg(vcpu, Rt);
2461 
2462 	ret = emulate_sys_reg(vcpu, &params);
2463 
2464 	if (!params.is_write)
2465 		vcpu_set_reg(vcpu, Rt, params.regval);
2466 	return ret;
2467 }
2468 
2469 /******************************************************************************
2470  * Userspace API
2471  *****************************************************************************/
2472 
2473 static bool index_to_params(u64 id, struct sys_reg_params *params)
2474 {
2475 	switch (id & KVM_REG_SIZE_MASK) {
2476 	case KVM_REG_SIZE_U64:
2477 		/* Any unused index bits means it's not valid. */
2478 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2479 			      | KVM_REG_ARM_COPROC_MASK
2480 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2481 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2482 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2483 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2484 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2485 			return false;
2486 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2487 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2488 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2489 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2490 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2491 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2492 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2493 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2494 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2495 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2496 		return true;
2497 	default:
2498 		return false;
2499 	}
2500 }
2501 
2502 const struct sys_reg_desc *find_reg_by_id(u64 id,
2503 					  struct sys_reg_params *params,
2504 					  const struct sys_reg_desc table[],
2505 					  unsigned int num)
2506 {
2507 	if (!index_to_params(id, params))
2508 		return NULL;
2509 
2510 	return find_reg(params, table, num);
2511 }
2512 
2513 /* Decode an index value, and find the sys_reg_desc entry. */
2514 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2515 						    u64 id)
2516 {
2517 	const struct sys_reg_desc *r;
2518 	struct sys_reg_params params;
2519 
2520 	/* We only do sys_reg for now. */
2521 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2522 		return NULL;
2523 
2524 	if (!index_to_params(id, &params))
2525 		return NULL;
2526 
2527 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2528 
2529 	/* Not saved in the sys_reg array and not otherwise accessible? */
2530 	if (r && !(r->reg || r->get_user))
2531 		r = NULL;
2532 
2533 	return r;
2534 }
2535 
2536 /*
2537  * These are the invariant sys_reg registers: we let the guest see the
2538  * host versions of these, so they're part of the guest state.
2539  *
2540  * A future CPU may provide a mechanism to present different values to
2541  * the guest, or a future kvm may trap them.
2542  */
2543 
2544 #define FUNCTION_INVARIANT(reg)						\
2545 	static void get_##reg(struct kvm_vcpu *v,			\
2546 			      const struct sys_reg_desc *r)		\
2547 	{								\
2548 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2549 	}
2550 
2551 FUNCTION_INVARIANT(midr_el1)
2552 FUNCTION_INVARIANT(revidr_el1)
2553 FUNCTION_INVARIANT(clidr_el1)
2554 FUNCTION_INVARIANT(aidr_el1)
2555 
2556 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2557 {
2558 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2559 }
2560 
2561 /* ->val is filled in by kvm_sys_reg_table_init() */
2562 static struct sys_reg_desc invariant_sys_regs[] = {
2563 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2564 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2565 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2566 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2567 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2568 };
2569 
2570 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2571 {
2572 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2573 		return -EFAULT;
2574 	return 0;
2575 }
2576 
2577 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2578 {
2579 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2580 		return -EFAULT;
2581 	return 0;
2582 }
2583 
2584 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2585 {
2586 	struct sys_reg_params params;
2587 	const struct sys_reg_desc *r;
2588 
2589 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2590 			   ARRAY_SIZE(invariant_sys_regs));
2591 	if (!r)
2592 		return -ENOENT;
2593 
2594 	return reg_to_user(uaddr, &r->val, id);
2595 }
2596 
2597 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2598 {
2599 	struct sys_reg_params params;
2600 	const struct sys_reg_desc *r;
2601 	int err;
2602 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2603 
2604 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2605 			   ARRAY_SIZE(invariant_sys_regs));
2606 	if (!r)
2607 		return -ENOENT;
2608 
2609 	err = reg_from_user(&val, uaddr, id);
2610 	if (err)
2611 		return err;
2612 
2613 	/* This is what we mean by invariant: you can't change it. */
2614 	if (r->val != val)
2615 		return -EINVAL;
2616 
2617 	return 0;
2618 }
2619 
2620 static bool is_valid_cache(u32 val)
2621 {
2622 	u32 level, ctype;
2623 
2624 	if (val >= CSSELR_MAX)
2625 		return false;
2626 
2627 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2628 	level = (val >> 1);
2629 	ctype = (cache_levels >> (level * 3)) & 7;
2630 
2631 	switch (ctype) {
2632 	case 0: /* No cache */
2633 		return false;
2634 	case 1: /* Instruction cache only */
2635 		return (val & 1);
2636 	case 2: /* Data cache only */
2637 	case 4: /* Unified cache */
2638 		return !(val & 1);
2639 	case 3: /* Separate instruction and data caches */
2640 		return true;
2641 	default: /* Reserved: we can't know instruction or data. */
2642 		return false;
2643 	}
2644 }
2645 
2646 static int demux_c15_get(u64 id, void __user *uaddr)
2647 {
2648 	u32 val;
2649 	u32 __user *uval = uaddr;
2650 
2651 	/* Fail if we have unknown bits set. */
2652 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2653 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2654 		return -ENOENT;
2655 
2656 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2657 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2658 		if (KVM_REG_SIZE(id) != 4)
2659 			return -ENOENT;
2660 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2661 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2662 		if (!is_valid_cache(val))
2663 			return -ENOENT;
2664 
2665 		return put_user(get_ccsidr(val), uval);
2666 	default:
2667 		return -ENOENT;
2668 	}
2669 }
2670 
2671 static int demux_c15_set(u64 id, void __user *uaddr)
2672 {
2673 	u32 val, newval;
2674 	u32 __user *uval = uaddr;
2675 
2676 	/* Fail if we have unknown bits set. */
2677 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2678 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2679 		return -ENOENT;
2680 
2681 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2682 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2683 		if (KVM_REG_SIZE(id) != 4)
2684 			return -ENOENT;
2685 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2686 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2687 		if (!is_valid_cache(val))
2688 			return -ENOENT;
2689 
2690 		if (get_user(newval, uval))
2691 			return -EFAULT;
2692 
2693 		/* This is also invariant: you can't change it. */
2694 		if (newval != get_ccsidr(val))
2695 			return -EINVAL;
2696 		return 0;
2697 	default:
2698 		return -ENOENT;
2699 	}
2700 }
2701 
2702 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2703 {
2704 	const struct sys_reg_desc *r;
2705 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2706 
2707 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2708 		return demux_c15_get(reg->id, uaddr);
2709 
2710 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2711 		return -ENOENT;
2712 
2713 	r = index_to_sys_reg_desc(vcpu, reg->id);
2714 	if (!r)
2715 		return get_invariant_sys_reg(reg->id, uaddr);
2716 
2717 	/* Check for regs disabled by runtime config */
2718 	if (sysreg_hidden(vcpu, r))
2719 		return -ENOENT;
2720 
2721 	if (r->get_user)
2722 		return (r->get_user)(vcpu, r, reg, uaddr);
2723 
2724 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2725 }
2726 
2727 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2728 {
2729 	const struct sys_reg_desc *r;
2730 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2731 
2732 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2733 		return demux_c15_set(reg->id, uaddr);
2734 
2735 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2736 		return -ENOENT;
2737 
2738 	r = index_to_sys_reg_desc(vcpu, reg->id);
2739 	if (!r)
2740 		return set_invariant_sys_reg(reg->id, uaddr);
2741 
2742 	/* Check for regs disabled by runtime config */
2743 	if (sysreg_hidden(vcpu, r))
2744 		return -ENOENT;
2745 
2746 	if (r->set_user)
2747 		return (r->set_user)(vcpu, r, reg, uaddr);
2748 
2749 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2750 }
2751 
2752 static unsigned int num_demux_regs(void)
2753 {
2754 	unsigned int i, count = 0;
2755 
2756 	for (i = 0; i < CSSELR_MAX; i++)
2757 		if (is_valid_cache(i))
2758 			count++;
2759 
2760 	return count;
2761 }
2762 
2763 static int write_demux_regids(u64 __user *uindices)
2764 {
2765 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2766 	unsigned int i;
2767 
2768 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2769 	for (i = 0; i < CSSELR_MAX; i++) {
2770 		if (!is_valid_cache(i))
2771 			continue;
2772 		if (put_user(val | i, uindices))
2773 			return -EFAULT;
2774 		uindices++;
2775 	}
2776 	return 0;
2777 }
2778 
2779 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2780 {
2781 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2782 		KVM_REG_ARM64_SYSREG |
2783 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2784 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2785 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2786 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2787 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2788 }
2789 
2790 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2791 {
2792 	if (!*uind)
2793 		return true;
2794 
2795 	if (put_user(sys_reg_to_index(reg), *uind))
2796 		return false;
2797 
2798 	(*uind)++;
2799 	return true;
2800 }
2801 
2802 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2803 			    const struct sys_reg_desc *rd,
2804 			    u64 __user **uind,
2805 			    unsigned int *total)
2806 {
2807 	/*
2808 	 * Ignore registers we trap but don't save,
2809 	 * and for which no custom user accessor is provided.
2810 	 */
2811 	if (!(rd->reg || rd->get_user))
2812 		return 0;
2813 
2814 	if (sysreg_hidden(vcpu, rd))
2815 		return 0;
2816 
2817 	if (!copy_reg_to_user(rd, uind))
2818 		return -EFAULT;
2819 
2820 	(*total)++;
2821 	return 0;
2822 }
2823 
2824 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2825 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2826 {
2827 	const struct sys_reg_desc *i2, *end2;
2828 	unsigned int total = 0;
2829 	int err;
2830 
2831 	i2 = sys_reg_descs;
2832 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2833 
2834 	while (i2 != end2) {
2835 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2836 		if (err)
2837 			return err;
2838 	}
2839 	return total;
2840 }
2841 
2842 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2843 {
2844 	return ARRAY_SIZE(invariant_sys_regs)
2845 		+ num_demux_regs()
2846 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2847 }
2848 
2849 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2850 {
2851 	unsigned int i;
2852 	int err;
2853 
2854 	/* Then give them all the invariant registers' indices. */
2855 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2856 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2857 			return -EFAULT;
2858 		uindices++;
2859 	}
2860 
2861 	err = walk_sys_regs(vcpu, uindices);
2862 	if (err < 0)
2863 		return err;
2864 	uindices += err;
2865 
2866 	return write_demux_regids(uindices);
2867 }
2868 
2869 void kvm_sys_reg_table_init(void)
2870 {
2871 	unsigned int i;
2872 	struct sys_reg_desc clidr;
2873 
2874 	/* Make sure tables are unique and in order. */
2875 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2876 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2877 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2878 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2879 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2880 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2881 
2882 	/* We abuse the reset function to overwrite the table itself. */
2883 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2884 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2885 
2886 	/*
2887 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2888 	 *
2889 	 *   If software reads the Cache Type fields from Ctype1
2890 	 *   upwards, once it has seen a value of 0b000, no caches
2891 	 *   exist at further-out levels of the hierarchy. So, for
2892 	 *   example, if Ctype3 is the first Cache Type field with a
2893 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2894 	 *   ignored.
2895 	 */
2896 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2897 	cache_levels = clidr.val;
2898 	for (i = 0; i < 7; i++)
2899 		if (((cache_levels >> (i*3)) & 7) == 0)
2900 			break;
2901 	/* Clear all higher bits. */
2902 	cache_levels &= (1 << (i*3))-1;
2903 }
2904