xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision d170e938f01fc8c5c41f8a12f0c12491580829ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 #include "trace.h"
37 
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43 
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 				 struct sys_reg_params *params,
48 				 const struct sys_reg_desc *r)
49 {
50 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 	print_sys_reg_instr(params);
52 	kvm_inject_undefined(vcpu);
53 	return false;
54 }
55 
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 			       struct sys_reg_params *params,
58 			       const struct sys_reg_desc *r)
59 {
60 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 	print_sys_reg_instr(params);
62 	kvm_inject_undefined(vcpu);
63 	return false;
64 }
65 
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68 	u64 val = 0x8badf00d8badf00d;
69 
70 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
71 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
72 		return val;
73 
74 	return __vcpu_sys_reg(vcpu, reg);
75 }
76 
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
80 	    __vcpu_write_sys_reg_to_cpu(val, reg))
81 		return;
82 
83 	__vcpu_sys_reg(vcpu, reg) = val;
84 }
85 
86 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
87 #define CSSELR_MAX 14
88 
89 /*
90  * Returns the minimum line size for the selected cache, expressed as
91  * Log2(bytes).
92  */
93 static u8 get_min_cache_line_size(bool icache)
94 {
95 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
96 	u8 field;
97 
98 	if (icache)
99 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
100 	else
101 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
102 
103 	/*
104 	 * Cache line size is represented as Log2(words) in CTR_EL0.
105 	 * Log2(bytes) can be derived with the following:
106 	 *
107 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
108 	 * 		   = Log2(bytes) - 2 + 2
109 	 * 		   = Log2(bytes)
110 	 */
111 	return field + 2;
112 }
113 
114 /* Which cache CCSIDR represents depends on CSSELR value. */
115 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
116 {
117 	u8 line_size;
118 
119 	if (vcpu->arch.ccsidr)
120 		return vcpu->arch.ccsidr[csselr];
121 
122 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
123 
124 	/*
125 	 * Fabricate a CCSIDR value as the overriding value does not exist.
126 	 * The real CCSIDR value will not be used as it can vary by the
127 	 * physical CPU which the vcpu currently resides in.
128 	 *
129 	 * The line size is determined with get_min_cache_line_size(), which
130 	 * should be valid for all CPUs even if they have different cache
131 	 * configuration.
132 	 *
133 	 * The associativity bits are cleared, meaning the geometry of all data
134 	 * and unified caches (which are guaranteed to be PIPT and thus
135 	 * non-aliasing) are 1 set and 1 way.
136 	 * Guests should not be doing cache operations by set/way at all, and
137 	 * for this reason, we trap them and attempt to infer the intent, so
138 	 * that we can flush the entire guest's address space at the appropriate
139 	 * time. The exposed geometry minimizes the number of the traps.
140 	 * [If guests should attempt to infer aliasing properties from the
141 	 * geometry (which is not permitted by the architecture), they would
142 	 * only do so for virtually indexed caches.]
143 	 *
144 	 * We don't check if the cache level exists as it is allowed to return
145 	 * an UNKNOWN value if not.
146 	 */
147 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
148 }
149 
150 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
151 {
152 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
153 	u32 *ccsidr = vcpu->arch.ccsidr;
154 	u32 i;
155 
156 	if ((val & CCSIDR_EL1_RES0) ||
157 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
158 		return -EINVAL;
159 
160 	if (!ccsidr) {
161 		if (val == get_ccsidr(vcpu, csselr))
162 			return 0;
163 
164 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
165 		if (!ccsidr)
166 			return -ENOMEM;
167 
168 		for (i = 0; i < CSSELR_MAX; i++)
169 			ccsidr[i] = get_ccsidr(vcpu, i);
170 
171 		vcpu->arch.ccsidr = ccsidr;
172 	}
173 
174 	ccsidr[csselr] = val;
175 
176 	return 0;
177 }
178 
179 static bool access_rw(struct kvm_vcpu *vcpu,
180 		      struct sys_reg_params *p,
181 		      const struct sys_reg_desc *r)
182 {
183 	if (p->is_write)
184 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
185 	else
186 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
187 
188 	return true;
189 }
190 
191 /*
192  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
193  */
194 static bool access_dcsw(struct kvm_vcpu *vcpu,
195 			struct sys_reg_params *p,
196 			const struct sys_reg_desc *r)
197 {
198 	if (!p->is_write)
199 		return read_from_write_only(vcpu, p, r);
200 
201 	/*
202 	 * Only track S/W ops if we don't have FWB. It still indicates
203 	 * that the guest is a bit broken (S/W operations should only
204 	 * be done by firmware, knowing that there is only a single
205 	 * CPU left in the system, and certainly not from non-secure
206 	 * software).
207 	 */
208 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
209 		kvm_set_way_flush(vcpu);
210 
211 	return true;
212 }
213 
214 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
215 {
216 	switch (r->aarch32_map) {
217 	case AA32_LO:
218 		*mask = GENMASK_ULL(31, 0);
219 		*shift = 0;
220 		break;
221 	case AA32_HI:
222 		*mask = GENMASK_ULL(63, 32);
223 		*shift = 32;
224 		break;
225 	default:
226 		*mask = GENMASK_ULL(63, 0);
227 		*shift = 0;
228 		break;
229 	}
230 }
231 
232 /*
233  * Generic accessor for VM registers. Only called as long as HCR_TVM
234  * is set. If the guest enables the MMU, we stop trapping the VM
235  * sys_regs and leave it in complete control of the caches.
236  */
237 static bool access_vm_reg(struct kvm_vcpu *vcpu,
238 			  struct sys_reg_params *p,
239 			  const struct sys_reg_desc *r)
240 {
241 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
242 	u64 val, mask, shift;
243 
244 	BUG_ON(!p->is_write);
245 
246 	get_access_mask(r, &mask, &shift);
247 
248 	if (~mask) {
249 		val = vcpu_read_sys_reg(vcpu, r->reg);
250 		val &= ~mask;
251 	} else {
252 		val = 0;
253 	}
254 
255 	val |= (p->regval & (mask >> shift)) << shift;
256 	vcpu_write_sys_reg(vcpu, val, r->reg);
257 
258 	kvm_toggle_cache(vcpu, was_enabled);
259 	return true;
260 }
261 
262 static bool access_actlr(struct kvm_vcpu *vcpu,
263 			 struct sys_reg_params *p,
264 			 const struct sys_reg_desc *r)
265 {
266 	u64 mask, shift;
267 
268 	if (p->is_write)
269 		return ignore_write(vcpu, p);
270 
271 	get_access_mask(r, &mask, &shift);
272 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
273 
274 	return true;
275 }
276 
277 /*
278  * Trap handler for the GICv3 SGI generation system register.
279  * Forward the request to the VGIC emulation.
280  * The cp15_64 code makes sure this automatically works
281  * for both AArch64 and AArch32 accesses.
282  */
283 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
284 			   struct sys_reg_params *p,
285 			   const struct sys_reg_desc *r)
286 {
287 	bool g1;
288 
289 	if (!p->is_write)
290 		return read_from_write_only(vcpu, p, r);
291 
292 	/*
293 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
294 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
295 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
296 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
297 	 * group.
298 	 */
299 	if (p->Op0 == 0) {		/* AArch32 */
300 		switch (p->Op1) {
301 		default:		/* Keep GCC quiet */
302 		case 0:			/* ICC_SGI1R */
303 			g1 = true;
304 			break;
305 		case 1:			/* ICC_ASGI1R */
306 		case 2:			/* ICC_SGI0R */
307 			g1 = false;
308 			break;
309 		}
310 	} else {			/* AArch64 */
311 		switch (p->Op2) {
312 		default:		/* Keep GCC quiet */
313 		case 5:			/* ICC_SGI1R_EL1 */
314 			g1 = true;
315 			break;
316 		case 6:			/* ICC_ASGI1R_EL1 */
317 		case 7:			/* ICC_SGI0R_EL1 */
318 			g1 = false;
319 			break;
320 		}
321 	}
322 
323 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
324 
325 	return true;
326 }
327 
328 static bool access_gic_sre(struct kvm_vcpu *vcpu,
329 			   struct sys_reg_params *p,
330 			   const struct sys_reg_desc *r)
331 {
332 	if (p->is_write)
333 		return ignore_write(vcpu, p);
334 
335 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
336 	return true;
337 }
338 
339 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
340 			struct sys_reg_params *p,
341 			const struct sys_reg_desc *r)
342 {
343 	if (p->is_write)
344 		return ignore_write(vcpu, p);
345 	else
346 		return read_zero(vcpu, p);
347 }
348 
349 static bool trap_undef(struct kvm_vcpu *vcpu,
350 		       struct sys_reg_params *p,
351 		       const struct sys_reg_desc *r)
352 {
353 	kvm_inject_undefined(vcpu);
354 	return false;
355 }
356 
357 /*
358  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
359  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
360  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
361  * treat it separately.
362  */
363 static bool trap_loregion(struct kvm_vcpu *vcpu,
364 			  struct sys_reg_params *p,
365 			  const struct sys_reg_desc *r)
366 {
367 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
368 	u32 sr = reg_to_encoding(r);
369 
370 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
371 		kvm_inject_undefined(vcpu);
372 		return false;
373 	}
374 
375 	if (p->is_write && sr == SYS_LORID_EL1)
376 		return write_to_read_only(vcpu, p, r);
377 
378 	return trap_raz_wi(vcpu, p, r);
379 }
380 
381 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
382 			   struct sys_reg_params *p,
383 			   const struct sys_reg_desc *r)
384 {
385 	u64 oslsr;
386 
387 	if (!p->is_write)
388 		return read_from_write_only(vcpu, p, r);
389 
390 	/* Forward the OSLK bit to OSLSR */
391 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
392 	if (p->regval & SYS_OSLAR_OSLK)
393 		oslsr |= SYS_OSLSR_OSLK;
394 
395 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
396 	return true;
397 }
398 
399 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
400 			   struct sys_reg_params *p,
401 			   const struct sys_reg_desc *r)
402 {
403 	if (p->is_write)
404 		return write_to_read_only(vcpu, p, r);
405 
406 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
407 	return true;
408 }
409 
410 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 			 u64 val)
412 {
413 	/*
414 	 * The only modifiable bit is the OSLK bit. Refuse the write if
415 	 * userspace attempts to change any other bit in the register.
416 	 */
417 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
418 		return -EINVAL;
419 
420 	__vcpu_sys_reg(vcpu, rd->reg) = val;
421 	return 0;
422 }
423 
424 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
425 				   struct sys_reg_params *p,
426 				   const struct sys_reg_desc *r)
427 {
428 	if (p->is_write) {
429 		return ignore_write(vcpu, p);
430 	} else {
431 		p->regval = read_sysreg(dbgauthstatus_el1);
432 		return true;
433 	}
434 }
435 
436 /*
437  * We want to avoid world-switching all the DBG registers all the
438  * time:
439  *
440  * - If we've touched any debug register, it is likely that we're
441  *   going to touch more of them. It then makes sense to disable the
442  *   traps and start doing the save/restore dance
443  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
444  *   then mandatory to save/restore the registers, as the guest
445  *   depends on them.
446  *
447  * For this, we use a DIRTY bit, indicating the guest has modified the
448  * debug registers, used as follow:
449  *
450  * On guest entry:
451  * - If the dirty bit is set (because we're coming back from trapping),
452  *   disable the traps, save host registers, restore guest registers.
453  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
454  *   set the dirty bit, disable the traps, save host registers,
455  *   restore guest registers.
456  * - Otherwise, enable the traps
457  *
458  * On guest exit:
459  * - If the dirty bit is set, save guest registers, restore host
460  *   registers and clear the dirty bit. This ensure that the host can
461  *   now use the debug registers.
462  */
463 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
464 			    struct sys_reg_params *p,
465 			    const struct sys_reg_desc *r)
466 {
467 	access_rw(vcpu, p, r);
468 	if (p->is_write)
469 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
470 
471 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
472 
473 	return true;
474 }
475 
476 /*
477  * reg_to_dbg/dbg_to_reg
478  *
479  * A 32 bit write to a debug register leave top bits alone
480  * A 32 bit read from a debug register only returns the bottom bits
481  *
482  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
483  * switches between host and guest values in future.
484  */
485 static void reg_to_dbg(struct kvm_vcpu *vcpu,
486 		       struct sys_reg_params *p,
487 		       const struct sys_reg_desc *rd,
488 		       u64 *dbg_reg)
489 {
490 	u64 mask, shift, val;
491 
492 	get_access_mask(rd, &mask, &shift);
493 
494 	val = *dbg_reg;
495 	val &= ~mask;
496 	val |= (p->regval & (mask >> shift)) << shift;
497 	*dbg_reg = val;
498 
499 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
500 }
501 
502 static void dbg_to_reg(struct kvm_vcpu *vcpu,
503 		       struct sys_reg_params *p,
504 		       const struct sys_reg_desc *rd,
505 		       u64 *dbg_reg)
506 {
507 	u64 mask, shift;
508 
509 	get_access_mask(rd, &mask, &shift);
510 	p->regval = (*dbg_reg & mask) >> shift;
511 }
512 
513 static bool trap_bvr(struct kvm_vcpu *vcpu,
514 		     struct sys_reg_params *p,
515 		     const struct sys_reg_desc *rd)
516 {
517 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
518 
519 	if (p->is_write)
520 		reg_to_dbg(vcpu, p, rd, dbg_reg);
521 	else
522 		dbg_to_reg(vcpu, p, rd, dbg_reg);
523 
524 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
525 
526 	return true;
527 }
528 
529 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
530 		   u64 val)
531 {
532 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
533 	return 0;
534 }
535 
536 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
537 		   u64 *val)
538 {
539 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
540 	return 0;
541 }
542 
543 static void reset_bvr(struct kvm_vcpu *vcpu,
544 		      const struct sys_reg_desc *rd)
545 {
546 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
547 }
548 
549 static bool trap_bcr(struct kvm_vcpu *vcpu,
550 		     struct sys_reg_params *p,
551 		     const struct sys_reg_desc *rd)
552 {
553 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
554 
555 	if (p->is_write)
556 		reg_to_dbg(vcpu, p, rd, dbg_reg);
557 	else
558 		dbg_to_reg(vcpu, p, rd, dbg_reg);
559 
560 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
561 
562 	return true;
563 }
564 
565 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 		   u64 val)
567 {
568 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
569 	return 0;
570 }
571 
572 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
573 		   u64 *val)
574 {
575 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576 	return 0;
577 }
578 
579 static void reset_bcr(struct kvm_vcpu *vcpu,
580 		      const struct sys_reg_desc *rd)
581 {
582 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
583 }
584 
585 static bool trap_wvr(struct kvm_vcpu *vcpu,
586 		     struct sys_reg_params *p,
587 		     const struct sys_reg_desc *rd)
588 {
589 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
590 
591 	if (p->is_write)
592 		reg_to_dbg(vcpu, p, rd, dbg_reg);
593 	else
594 		dbg_to_reg(vcpu, p, rd, dbg_reg);
595 
596 	trace_trap_reg(__func__, rd->CRm, p->is_write,
597 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
598 
599 	return true;
600 }
601 
602 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
603 		   u64 val)
604 {
605 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
606 	return 0;
607 }
608 
609 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
610 		   u64 *val)
611 {
612 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613 	return 0;
614 }
615 
616 static void reset_wvr(struct kvm_vcpu *vcpu,
617 		      const struct sys_reg_desc *rd)
618 {
619 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
620 }
621 
622 static bool trap_wcr(struct kvm_vcpu *vcpu,
623 		     struct sys_reg_params *p,
624 		     const struct sys_reg_desc *rd)
625 {
626 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
627 
628 	if (p->is_write)
629 		reg_to_dbg(vcpu, p, rd, dbg_reg);
630 	else
631 		dbg_to_reg(vcpu, p, rd, dbg_reg);
632 
633 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
634 
635 	return true;
636 }
637 
638 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
639 		   u64 val)
640 {
641 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
642 	return 0;
643 }
644 
645 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
646 		   u64 *val)
647 {
648 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
649 	return 0;
650 }
651 
652 static void reset_wcr(struct kvm_vcpu *vcpu,
653 		      const struct sys_reg_desc *rd)
654 {
655 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
656 }
657 
658 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
659 {
660 	u64 amair = read_sysreg(amair_el1);
661 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
662 }
663 
664 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
665 {
666 	u64 actlr = read_sysreg(actlr_el1);
667 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
668 }
669 
670 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
671 {
672 	u64 mpidr;
673 
674 	/*
675 	 * Map the vcpu_id into the first three affinity level fields of
676 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
677 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
678 	 * of the GICv3 to be able to address each CPU directly when
679 	 * sending IPIs.
680 	 */
681 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
682 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
683 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
684 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
685 }
686 
687 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
688 				   const struct sys_reg_desc *r)
689 {
690 	if (kvm_vcpu_has_pmu(vcpu))
691 		return 0;
692 
693 	return REG_HIDDEN;
694 }
695 
696 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
697 {
698 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
699 
700 	/* No PMU available, any PMU reg may UNDEF... */
701 	if (!kvm_arm_support_pmu_v3())
702 		return;
703 
704 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
705 	n &= ARMV8_PMU_PMCR_N_MASK;
706 	if (n)
707 		mask |= GENMASK(n - 1, 0);
708 
709 	reset_unknown(vcpu, r);
710 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
711 }
712 
713 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
714 {
715 	reset_unknown(vcpu, r);
716 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
717 }
718 
719 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
720 {
721 	reset_unknown(vcpu, r);
722 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
723 }
724 
725 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
726 {
727 	reset_unknown(vcpu, r);
728 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
729 }
730 
731 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
732 {
733 	u64 pmcr;
734 
735 	/* No PMU available, PMCR_EL0 may UNDEF... */
736 	if (!kvm_arm_support_pmu_v3())
737 		return;
738 
739 	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
740 	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
741 	if (!kvm_supports_32bit_el0())
742 		pmcr |= ARMV8_PMU_PMCR_LC;
743 
744 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
745 }
746 
747 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
748 {
749 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
750 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
751 
752 	if (!enabled)
753 		kvm_inject_undefined(vcpu);
754 
755 	return !enabled;
756 }
757 
758 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
759 {
760 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
761 }
762 
763 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
764 {
765 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
766 }
767 
768 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
769 {
770 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
771 }
772 
773 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
774 {
775 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
776 }
777 
778 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779 			const struct sys_reg_desc *r)
780 {
781 	u64 val;
782 
783 	if (pmu_access_el0_disabled(vcpu))
784 		return false;
785 
786 	if (p->is_write) {
787 		/*
788 		 * Only update writeable bits of PMCR (continuing into
789 		 * kvm_pmu_handle_pmcr() as well)
790 		 */
791 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
792 		val &= ~ARMV8_PMU_PMCR_MASK;
793 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
794 		if (!kvm_supports_32bit_el0())
795 			val |= ARMV8_PMU_PMCR_LC;
796 		kvm_pmu_handle_pmcr(vcpu, val);
797 		kvm_vcpu_pmu_restore_guest(vcpu);
798 	} else {
799 		/* PMCR.P & PMCR.C are RAZ */
800 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
801 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
802 		p->regval = val;
803 	}
804 
805 	return true;
806 }
807 
808 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
809 			  const struct sys_reg_desc *r)
810 {
811 	if (pmu_access_event_counter_el0_disabled(vcpu))
812 		return false;
813 
814 	if (p->is_write)
815 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
816 	else
817 		/* return PMSELR.SEL field */
818 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
819 			    & ARMV8_PMU_COUNTER_MASK;
820 
821 	return true;
822 }
823 
824 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
825 			  const struct sys_reg_desc *r)
826 {
827 	u64 pmceid, mask, shift;
828 
829 	BUG_ON(p->is_write);
830 
831 	if (pmu_access_el0_disabled(vcpu))
832 		return false;
833 
834 	get_access_mask(r, &mask, &shift);
835 
836 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
837 	pmceid &= mask;
838 	pmceid >>= shift;
839 
840 	p->regval = pmceid;
841 
842 	return true;
843 }
844 
845 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
846 {
847 	u64 pmcr, val;
848 
849 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
850 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
851 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
852 		kvm_inject_undefined(vcpu);
853 		return false;
854 	}
855 
856 	return true;
857 }
858 
859 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
860 			      struct sys_reg_params *p,
861 			      const struct sys_reg_desc *r)
862 {
863 	u64 idx = ~0UL;
864 
865 	if (r->CRn == 9 && r->CRm == 13) {
866 		if (r->Op2 == 2) {
867 			/* PMXEVCNTR_EL0 */
868 			if (pmu_access_event_counter_el0_disabled(vcpu))
869 				return false;
870 
871 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
872 			      & ARMV8_PMU_COUNTER_MASK;
873 		} else if (r->Op2 == 0) {
874 			/* PMCCNTR_EL0 */
875 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
876 				return false;
877 
878 			idx = ARMV8_PMU_CYCLE_IDX;
879 		}
880 	} else if (r->CRn == 0 && r->CRm == 9) {
881 		/* PMCCNTR */
882 		if (pmu_access_event_counter_el0_disabled(vcpu))
883 			return false;
884 
885 		idx = ARMV8_PMU_CYCLE_IDX;
886 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
887 		/* PMEVCNTRn_EL0 */
888 		if (pmu_access_event_counter_el0_disabled(vcpu))
889 			return false;
890 
891 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
892 	}
893 
894 	/* Catch any decoding mistake */
895 	WARN_ON(idx == ~0UL);
896 
897 	if (!pmu_counter_idx_valid(vcpu, idx))
898 		return false;
899 
900 	if (p->is_write) {
901 		if (pmu_access_el0_disabled(vcpu))
902 			return false;
903 
904 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
905 	} else {
906 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
907 	}
908 
909 	return true;
910 }
911 
912 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
913 			       const struct sys_reg_desc *r)
914 {
915 	u64 idx, reg;
916 
917 	if (pmu_access_el0_disabled(vcpu))
918 		return false;
919 
920 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
921 		/* PMXEVTYPER_EL0 */
922 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
923 		reg = PMEVTYPER0_EL0 + idx;
924 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
925 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
926 		if (idx == ARMV8_PMU_CYCLE_IDX)
927 			reg = PMCCFILTR_EL0;
928 		else
929 			/* PMEVTYPERn_EL0 */
930 			reg = PMEVTYPER0_EL0 + idx;
931 	} else {
932 		BUG();
933 	}
934 
935 	if (!pmu_counter_idx_valid(vcpu, idx))
936 		return false;
937 
938 	if (p->is_write) {
939 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
940 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
941 		kvm_vcpu_pmu_restore_guest(vcpu);
942 	} else {
943 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
944 	}
945 
946 	return true;
947 }
948 
949 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
950 			   const struct sys_reg_desc *r)
951 {
952 	u64 val, mask;
953 
954 	if (pmu_access_el0_disabled(vcpu))
955 		return false;
956 
957 	mask = kvm_pmu_valid_counter_mask(vcpu);
958 	if (p->is_write) {
959 		val = p->regval & mask;
960 		if (r->Op2 & 0x1) {
961 			/* accessing PMCNTENSET_EL0 */
962 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
963 			kvm_pmu_enable_counter_mask(vcpu, val);
964 			kvm_vcpu_pmu_restore_guest(vcpu);
965 		} else {
966 			/* accessing PMCNTENCLR_EL0 */
967 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
968 			kvm_pmu_disable_counter_mask(vcpu, val);
969 		}
970 	} else {
971 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
972 	}
973 
974 	return true;
975 }
976 
977 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
978 			   const struct sys_reg_desc *r)
979 {
980 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
981 
982 	if (check_pmu_access_disabled(vcpu, 0))
983 		return false;
984 
985 	if (p->is_write) {
986 		u64 val = p->regval & mask;
987 
988 		if (r->Op2 & 0x1)
989 			/* accessing PMINTENSET_EL1 */
990 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
991 		else
992 			/* accessing PMINTENCLR_EL1 */
993 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
994 	} else {
995 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
996 	}
997 
998 	return true;
999 }
1000 
1001 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1002 			 const struct sys_reg_desc *r)
1003 {
1004 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1005 
1006 	if (pmu_access_el0_disabled(vcpu))
1007 		return false;
1008 
1009 	if (p->is_write) {
1010 		if (r->CRm & 0x2)
1011 			/* accessing PMOVSSET_EL0 */
1012 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1013 		else
1014 			/* accessing PMOVSCLR_EL0 */
1015 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1016 	} else {
1017 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1018 	}
1019 
1020 	return true;
1021 }
1022 
1023 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1024 			   const struct sys_reg_desc *r)
1025 {
1026 	u64 mask;
1027 
1028 	if (!p->is_write)
1029 		return read_from_write_only(vcpu, p, r);
1030 
1031 	if (pmu_write_swinc_el0_disabled(vcpu))
1032 		return false;
1033 
1034 	mask = kvm_pmu_valid_counter_mask(vcpu);
1035 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1036 	return true;
1037 }
1038 
1039 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1040 			     const struct sys_reg_desc *r)
1041 {
1042 	if (p->is_write) {
1043 		if (!vcpu_mode_priv(vcpu)) {
1044 			kvm_inject_undefined(vcpu);
1045 			return false;
1046 		}
1047 
1048 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1049 			       p->regval & ARMV8_PMU_USERENR_MASK;
1050 	} else {
1051 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1052 			    & ARMV8_PMU_USERENR_MASK;
1053 	}
1054 
1055 	return true;
1056 }
1057 
1058 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1059 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1060 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1061 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1062 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1063 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1064 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1065 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1066 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1067 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1068 
1069 #define PMU_SYS_REG(r)						\
1070 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1071 
1072 /* Macro to expand the PMEVCNTRn_EL0 register */
1073 #define PMU_PMEVCNTR_EL0(n)						\
1074 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1075 	  .reset = reset_pmevcntr,					\
1076 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1077 
1078 /* Macro to expand the PMEVTYPERn_EL0 register */
1079 #define PMU_PMEVTYPER_EL0(n)						\
1080 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1081 	  .reset = reset_pmevtyper,					\
1082 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1083 
1084 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085 			 const struct sys_reg_desc *r)
1086 {
1087 	kvm_inject_undefined(vcpu);
1088 
1089 	return false;
1090 }
1091 
1092 /* Macro to expand the AMU counter and type registers*/
1093 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1094 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1095 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1096 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1097 
1098 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1099 			const struct sys_reg_desc *rd)
1100 {
1101 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1102 }
1103 
1104 /*
1105  * If we land here on a PtrAuth access, that is because we didn't
1106  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1107  * way this happens is when the guest does not have PtrAuth support
1108  * enabled.
1109  */
1110 #define __PTRAUTH_KEY(k)						\
1111 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1112 	.visibility = ptrauth_visibility}
1113 
1114 #define PTRAUTH_KEY(k)							\
1115 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1116 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1117 
1118 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1119 			      struct sys_reg_params *p,
1120 			      const struct sys_reg_desc *r)
1121 {
1122 	enum kvm_arch_timers tmr;
1123 	enum kvm_arch_timer_regs treg;
1124 	u64 reg = reg_to_encoding(r);
1125 
1126 	switch (reg) {
1127 	case SYS_CNTP_TVAL_EL0:
1128 	case SYS_AARCH32_CNTP_TVAL:
1129 		tmr = TIMER_PTIMER;
1130 		treg = TIMER_REG_TVAL;
1131 		break;
1132 	case SYS_CNTP_CTL_EL0:
1133 	case SYS_AARCH32_CNTP_CTL:
1134 		tmr = TIMER_PTIMER;
1135 		treg = TIMER_REG_CTL;
1136 		break;
1137 	case SYS_CNTP_CVAL_EL0:
1138 	case SYS_AARCH32_CNTP_CVAL:
1139 		tmr = TIMER_PTIMER;
1140 		treg = TIMER_REG_CVAL;
1141 		break;
1142 	default:
1143 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1144 		kvm_inject_undefined(vcpu);
1145 		return false;
1146 	}
1147 
1148 	if (p->is_write)
1149 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1150 	else
1151 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1152 
1153 	return true;
1154 }
1155 
1156 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1157 {
1158 	if (kvm_vcpu_has_pmu(vcpu))
1159 		return vcpu->kvm->arch.dfr0_pmuver.imp;
1160 
1161 	return vcpu->kvm->arch.dfr0_pmuver.unimp;
1162 }
1163 
1164 static u8 perfmon_to_pmuver(u8 perfmon)
1165 {
1166 	switch (perfmon) {
1167 	case ID_DFR0_EL1_PerfMon_PMUv3:
1168 		return ID_AA64DFR0_EL1_PMUVer_IMP;
1169 	case ID_DFR0_EL1_PerfMon_IMPDEF:
1170 		return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1171 	default:
1172 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1173 		return perfmon;
1174 	}
1175 }
1176 
1177 static u8 pmuver_to_perfmon(u8 pmuver)
1178 {
1179 	switch (pmuver) {
1180 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1181 		return ID_DFR0_EL1_PerfMon_PMUv3;
1182 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1183 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1184 	default:
1185 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1186 		return pmuver;
1187 	}
1188 }
1189 
1190 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1191 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1192 {
1193 	u32 id = reg_to_encoding(r);
1194 	u64 val;
1195 
1196 	if (sysreg_visible_as_raz(vcpu, r))
1197 		return 0;
1198 
1199 	val = read_sanitised_ftr_reg(id);
1200 
1201 	switch (id) {
1202 	case SYS_ID_AA64PFR0_EL1:
1203 		if (!vcpu_has_sve(vcpu))
1204 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1205 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1206 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1207 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1208 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1209 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1210 		if (kvm_vgic_global_state.type == VGIC_V3) {
1211 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1212 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1213 		}
1214 		break;
1215 	case SYS_ID_AA64PFR1_EL1:
1216 		if (!kvm_has_mte(vcpu->kvm))
1217 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1218 
1219 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1220 		break;
1221 	case SYS_ID_AA64ISAR1_EL1:
1222 		if (!vcpu_has_ptrauth(vcpu))
1223 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1224 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1225 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1226 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1227 		break;
1228 	case SYS_ID_AA64ISAR2_EL1:
1229 		if (!vcpu_has_ptrauth(vcpu))
1230 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1231 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1232 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1233 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1234 		break;
1235 	case SYS_ID_AA64DFR0_EL1:
1236 		/* Limit debug to ARMv8.0 */
1237 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1238 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1239 		/* Set PMUver to the required version */
1240 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1241 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1242 				  vcpu_pmuver(vcpu));
1243 		/* Hide SPE from guests */
1244 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1245 		break;
1246 	case SYS_ID_DFR0_EL1:
1247 		val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1248 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1249 				  pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1250 		break;
1251 	case SYS_ID_AA64MMFR2_EL1:
1252 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1253 		break;
1254 	case SYS_ID_MMFR4_EL1:
1255 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1256 		break;
1257 	}
1258 
1259 	return val;
1260 }
1261 
1262 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1263 				  const struct sys_reg_desc *r)
1264 {
1265 	u32 id = reg_to_encoding(r);
1266 
1267 	switch (id) {
1268 	case SYS_ID_AA64ZFR0_EL1:
1269 		if (!vcpu_has_sve(vcpu))
1270 			return REG_RAZ;
1271 		break;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1278 				       const struct sys_reg_desc *r)
1279 {
1280 	/*
1281 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1282 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1283 	 * systems.
1284 	 */
1285 	if (!kvm_supports_32bit_el0())
1286 		return REG_RAZ | REG_USER_WI;
1287 
1288 	return id_visibility(vcpu, r);
1289 }
1290 
1291 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1292 				   const struct sys_reg_desc *r)
1293 {
1294 	return REG_RAZ;
1295 }
1296 
1297 /* cpufeature ID register access trap handlers */
1298 
1299 static bool access_id_reg(struct kvm_vcpu *vcpu,
1300 			  struct sys_reg_params *p,
1301 			  const struct sys_reg_desc *r)
1302 {
1303 	if (p->is_write)
1304 		return write_to_read_only(vcpu, p, r);
1305 
1306 	p->regval = read_id_reg(vcpu, r);
1307 	if (vcpu_has_nv(vcpu))
1308 		access_nested_id_reg(vcpu, p, r);
1309 
1310 	return true;
1311 }
1312 
1313 /* Visibility overrides for SVE-specific control registers */
1314 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1315 				   const struct sys_reg_desc *rd)
1316 {
1317 	if (vcpu_has_sve(vcpu))
1318 		return 0;
1319 
1320 	return REG_HIDDEN;
1321 }
1322 
1323 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1324 			       const struct sys_reg_desc *rd,
1325 			       u64 val)
1326 {
1327 	u8 csv2, csv3;
1328 
1329 	/*
1330 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1331 	 * it doesn't promise more than what is actually provided (the
1332 	 * guest could otherwise be covered in ectoplasmic residue).
1333 	 */
1334 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1335 	if (csv2 > 1 ||
1336 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1337 		return -EINVAL;
1338 
1339 	/* Same thing for CSV3 */
1340 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1341 	if (csv3 > 1 ||
1342 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1343 		return -EINVAL;
1344 
1345 	/* We can only differ with CSV[23], and anything else is an error */
1346 	val ^= read_id_reg(vcpu, rd);
1347 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1348 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1349 	if (val)
1350 		return -EINVAL;
1351 
1352 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1353 	vcpu->kvm->arch.pfr0_csv3 = csv3;
1354 
1355 	return 0;
1356 }
1357 
1358 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1359 			       const struct sys_reg_desc *rd,
1360 			       u64 val)
1361 {
1362 	u8 pmuver, host_pmuver;
1363 	bool valid_pmu;
1364 
1365 	host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1366 
1367 	/*
1368 	 * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1369 	 * as it doesn't promise more than what the HW gives us. We
1370 	 * allow an IMPDEF PMU though, only if no PMU is supported
1371 	 * (KVM backward compatibility handling).
1372 	 */
1373 	pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1374 	if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1375 		return -EINVAL;
1376 
1377 	valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1378 
1379 	/* Make sure view register and PMU support do match */
1380 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1381 		return -EINVAL;
1382 
1383 	/* We can only differ with PMUver, and anything else is an error */
1384 	val ^= read_id_reg(vcpu, rd);
1385 	val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1386 	if (val)
1387 		return -EINVAL;
1388 
1389 	if (valid_pmu)
1390 		vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1391 	else
1392 		vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1393 
1394 	return 0;
1395 }
1396 
1397 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1398 			   const struct sys_reg_desc *rd,
1399 			   u64 val)
1400 {
1401 	u8 perfmon, host_perfmon;
1402 	bool valid_pmu;
1403 
1404 	host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1405 
1406 	/*
1407 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1408 	 * it doesn't promise more than what the HW gives us on the
1409 	 * AArch64 side (as everything is emulated with that), and
1410 	 * that this is a PMUv3.
1411 	 */
1412 	perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1413 	if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1414 	    (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1415 		return -EINVAL;
1416 
1417 	valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1418 
1419 	/* Make sure view register and PMU support do match */
1420 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1421 		return -EINVAL;
1422 
1423 	/* We can only differ with PerfMon, and anything else is an error */
1424 	val ^= read_id_reg(vcpu, rd);
1425 	val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1426 	if (val)
1427 		return -EINVAL;
1428 
1429 	if (valid_pmu)
1430 		vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1431 	else
1432 		vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * cpufeature ID register user accessors
1439  *
1440  * For now, these registers are immutable for userspace, so no values
1441  * are stored, and for set_id_reg() we don't allow the effective value
1442  * to be changed.
1443  */
1444 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1445 		      u64 *val)
1446 {
1447 	*val = read_id_reg(vcpu, rd);
1448 	return 0;
1449 }
1450 
1451 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1452 		      u64 val)
1453 {
1454 	/* This is what we mean by invariant: you can't change it. */
1455 	if (val != read_id_reg(vcpu, rd))
1456 		return -EINVAL;
1457 
1458 	return 0;
1459 }
1460 
1461 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1462 		       u64 *val)
1463 {
1464 	*val = 0;
1465 	return 0;
1466 }
1467 
1468 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1469 		      u64 val)
1470 {
1471 	return 0;
1472 }
1473 
1474 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1475 		       const struct sys_reg_desc *r)
1476 {
1477 	if (p->is_write)
1478 		return write_to_read_only(vcpu, p, r);
1479 
1480 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1481 	return true;
1482 }
1483 
1484 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1485 			 const struct sys_reg_desc *r)
1486 {
1487 	if (p->is_write)
1488 		return write_to_read_only(vcpu, p, r);
1489 
1490 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1491 	return true;
1492 }
1493 
1494 /*
1495  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1496  * by the physical CPU which the vcpu currently resides in.
1497  */
1498 static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1499 {
1500 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1501 	u64 clidr;
1502 	u8 loc;
1503 
1504 	if ((ctr_el0 & CTR_EL0_IDC)) {
1505 		/*
1506 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1507 		 * will not be set and a unified cache, which will be marked as
1508 		 * LoC, will be added.
1509 		 *
1510 		 * If not DIC, let the unified cache L2 so that an instruction
1511 		 * cache can be added as L1 later.
1512 		 */
1513 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1514 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1515 	} else {
1516 		/*
1517 		 * Data cache clean to the PoU is required so let L1 have a data
1518 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1519 		 * it can be marked as LoC too.
1520 		 */
1521 		loc = 1;
1522 		clidr = 1 << CLIDR_LOUU_SHIFT;
1523 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1524 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1525 	}
1526 
1527 	/*
1528 	 * Instruction cache invalidation to the PoU is required so let L1 have
1529 	 * an instruction cache. If L1 already has a data cache, it will be
1530 	 * CACHE_TYPE_SEPARATE.
1531 	 */
1532 	if (!(ctr_el0 & CTR_EL0_DIC))
1533 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1534 
1535 	clidr |= loc << CLIDR_LOC_SHIFT;
1536 
1537 	/*
1538 	 * Add tag cache unified to data cache. Allocation tags and data are
1539 	 * unified in a cache line so that it looks valid even if there is only
1540 	 * one cache line.
1541 	 */
1542 	if (kvm_has_mte(vcpu->kvm))
1543 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1544 
1545 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1546 }
1547 
1548 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1549 		      u64 val)
1550 {
1551 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1552 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1553 
1554 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1555 		return -EINVAL;
1556 
1557 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1558 
1559 	return 0;
1560 }
1561 
1562 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1563 			  const struct sys_reg_desc *r)
1564 {
1565 	int reg = r->reg;
1566 
1567 	if (p->is_write)
1568 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1569 	else
1570 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1571 	return true;
1572 }
1573 
1574 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1575 			  const struct sys_reg_desc *r)
1576 {
1577 	u32 csselr;
1578 
1579 	if (p->is_write)
1580 		return write_to_read_only(vcpu, p, r);
1581 
1582 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1583 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1584 	if (csselr < CSSELR_MAX)
1585 		p->regval = get_ccsidr(vcpu, csselr);
1586 
1587 	return true;
1588 }
1589 
1590 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1591 				   const struct sys_reg_desc *rd)
1592 {
1593 	if (kvm_has_mte(vcpu->kvm))
1594 		return 0;
1595 
1596 	return REG_HIDDEN;
1597 }
1598 
1599 #define MTE_REG(name) {				\
1600 	SYS_DESC(SYS_##name),			\
1601 	.access = undef_access,			\
1602 	.reset = reset_unknown,			\
1603 	.reg = name,				\
1604 	.visibility = mte_visibility,		\
1605 }
1606 
1607 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1608 				   const struct sys_reg_desc *rd)
1609 {
1610 	if (vcpu_has_nv(vcpu))
1611 		return 0;
1612 
1613 	return REG_HIDDEN;
1614 }
1615 
1616 #define EL2_REG(name, acc, rst, v) {		\
1617 	SYS_DESC(SYS_##name),			\
1618 	.access = acc,				\
1619 	.reset = rst,				\
1620 	.reg = name,				\
1621 	.visibility = el2_visibility,		\
1622 	.val = v,				\
1623 }
1624 
1625 /*
1626  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1627  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1628  * handling traps. Given that, they are always hidden from userspace.
1629  */
1630 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1631 				    const struct sys_reg_desc *rd)
1632 {
1633 	return REG_HIDDEN_USER;
1634 }
1635 
1636 #define EL12_REG(name, acc, rst, v) {		\
1637 	SYS_DESC(SYS_##name##_EL12),		\
1638 	.access = acc,				\
1639 	.reset = rst,				\
1640 	.reg = name##_EL1,			\
1641 	.val = v,				\
1642 	.visibility = elx2_visibility,		\
1643 }
1644 
1645 /* sys_reg_desc initialiser for known cpufeature ID registers */
1646 #define ID_SANITISED(name) {			\
1647 	SYS_DESC(SYS_##name),			\
1648 	.access	= access_id_reg,		\
1649 	.get_user = get_id_reg,			\
1650 	.set_user = set_id_reg,			\
1651 	.visibility = id_visibility,		\
1652 }
1653 
1654 /* sys_reg_desc initialiser for known cpufeature ID registers */
1655 #define AA32_ID_SANITISED(name) {		\
1656 	SYS_DESC(SYS_##name),			\
1657 	.access	= access_id_reg,		\
1658 	.get_user = get_id_reg,			\
1659 	.set_user = set_id_reg,			\
1660 	.visibility = aa32_id_visibility,	\
1661 }
1662 
1663 /*
1664  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1665  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1666  * (1 <= crm < 8, 0 <= Op2 < 8).
1667  */
1668 #define ID_UNALLOCATED(crm, op2) {			\
1669 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1670 	.access = access_id_reg,			\
1671 	.get_user = get_id_reg,				\
1672 	.set_user = set_id_reg,				\
1673 	.visibility = raz_visibility			\
1674 }
1675 
1676 /*
1677  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1678  * For now, these are exposed just like unallocated ID regs: they appear
1679  * RAZ for the guest.
1680  */
1681 #define ID_HIDDEN(name) {			\
1682 	SYS_DESC(SYS_##name),			\
1683 	.access = access_id_reg,		\
1684 	.get_user = get_id_reg,			\
1685 	.set_user = set_id_reg,			\
1686 	.visibility = raz_visibility,		\
1687 }
1688 
1689 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1690 			  struct sys_reg_params *p,
1691 			  const struct sys_reg_desc *r)
1692 {
1693 	if (p->is_write)
1694 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1695 	else
1696 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1697 
1698 	return true;
1699 }
1700 
1701 static bool access_elr(struct kvm_vcpu *vcpu,
1702 		       struct sys_reg_params *p,
1703 		       const struct sys_reg_desc *r)
1704 {
1705 	if (p->is_write)
1706 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1707 	else
1708 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1709 
1710 	return true;
1711 }
1712 
1713 static bool access_spsr(struct kvm_vcpu *vcpu,
1714 			struct sys_reg_params *p,
1715 			const struct sys_reg_desc *r)
1716 {
1717 	if (p->is_write)
1718 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1719 	else
1720 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1721 
1722 	return true;
1723 }
1724 
1725 /*
1726  * Architected system registers.
1727  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1728  *
1729  * Debug handling: We do trap most, if not all debug related system
1730  * registers. The implementation is good enough to ensure that a guest
1731  * can use these with minimal performance degradation. The drawback is
1732  * that we don't implement any of the external debug architecture.
1733  * This should be revisited if we ever encounter a more demanding
1734  * guest...
1735  */
1736 static const struct sys_reg_desc sys_reg_descs[] = {
1737 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1738 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1739 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1740 
1741 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1742 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1743 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1744 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1745 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1746 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1747 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1748 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1749 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1750 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1751 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1752 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1753 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1754 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1755 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1756 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1757 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1758 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1759 
1760 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1761 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1762 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1763 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1764 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1765 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1766 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1767 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1768 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1769 
1770 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1771 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1772 	// DBGDTR[TR]X_EL0 share the same encoding
1773 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1774 
1775 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1776 
1777 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1778 
1779 	/*
1780 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1781 	 * entries in arm64_ftr_regs[].
1782 	 */
1783 
1784 	/* AArch64 mappings of the AArch32 ID registers */
1785 	/* CRm=1 */
1786 	AA32_ID_SANITISED(ID_PFR0_EL1),
1787 	AA32_ID_SANITISED(ID_PFR1_EL1),
1788 	{ SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1789 	  .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1790 	  .visibility = aa32_id_visibility, },
1791 	ID_HIDDEN(ID_AFR0_EL1),
1792 	AA32_ID_SANITISED(ID_MMFR0_EL1),
1793 	AA32_ID_SANITISED(ID_MMFR1_EL1),
1794 	AA32_ID_SANITISED(ID_MMFR2_EL1),
1795 	AA32_ID_SANITISED(ID_MMFR3_EL1),
1796 
1797 	/* CRm=2 */
1798 	AA32_ID_SANITISED(ID_ISAR0_EL1),
1799 	AA32_ID_SANITISED(ID_ISAR1_EL1),
1800 	AA32_ID_SANITISED(ID_ISAR2_EL1),
1801 	AA32_ID_SANITISED(ID_ISAR3_EL1),
1802 	AA32_ID_SANITISED(ID_ISAR4_EL1),
1803 	AA32_ID_SANITISED(ID_ISAR5_EL1),
1804 	AA32_ID_SANITISED(ID_MMFR4_EL1),
1805 	AA32_ID_SANITISED(ID_ISAR6_EL1),
1806 
1807 	/* CRm=3 */
1808 	AA32_ID_SANITISED(MVFR0_EL1),
1809 	AA32_ID_SANITISED(MVFR1_EL1),
1810 	AA32_ID_SANITISED(MVFR2_EL1),
1811 	ID_UNALLOCATED(3,3),
1812 	AA32_ID_SANITISED(ID_PFR2_EL1),
1813 	ID_HIDDEN(ID_DFR1_EL1),
1814 	AA32_ID_SANITISED(ID_MMFR5_EL1),
1815 	ID_UNALLOCATED(3,7),
1816 
1817 	/* AArch64 ID registers */
1818 	/* CRm=4 */
1819 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1820 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1821 	ID_SANITISED(ID_AA64PFR1_EL1),
1822 	ID_UNALLOCATED(4,2),
1823 	ID_UNALLOCATED(4,3),
1824 	ID_SANITISED(ID_AA64ZFR0_EL1),
1825 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1826 	ID_UNALLOCATED(4,6),
1827 	ID_UNALLOCATED(4,7),
1828 
1829 	/* CRm=5 */
1830 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1831 	  .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1832 	ID_SANITISED(ID_AA64DFR1_EL1),
1833 	ID_UNALLOCATED(5,2),
1834 	ID_UNALLOCATED(5,3),
1835 	ID_HIDDEN(ID_AA64AFR0_EL1),
1836 	ID_HIDDEN(ID_AA64AFR1_EL1),
1837 	ID_UNALLOCATED(5,6),
1838 	ID_UNALLOCATED(5,7),
1839 
1840 	/* CRm=6 */
1841 	ID_SANITISED(ID_AA64ISAR0_EL1),
1842 	ID_SANITISED(ID_AA64ISAR1_EL1),
1843 	ID_SANITISED(ID_AA64ISAR2_EL1),
1844 	ID_UNALLOCATED(6,3),
1845 	ID_UNALLOCATED(6,4),
1846 	ID_UNALLOCATED(6,5),
1847 	ID_UNALLOCATED(6,6),
1848 	ID_UNALLOCATED(6,7),
1849 
1850 	/* CRm=7 */
1851 	ID_SANITISED(ID_AA64MMFR0_EL1),
1852 	ID_SANITISED(ID_AA64MMFR1_EL1),
1853 	ID_SANITISED(ID_AA64MMFR2_EL1),
1854 	ID_UNALLOCATED(7,3),
1855 	ID_UNALLOCATED(7,4),
1856 	ID_UNALLOCATED(7,5),
1857 	ID_UNALLOCATED(7,6),
1858 	ID_UNALLOCATED(7,7),
1859 
1860 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1861 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1862 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1863 
1864 	MTE_REG(RGSR_EL1),
1865 	MTE_REG(GCR_EL1),
1866 
1867 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1868 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1869 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1870 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1871 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1872 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1873 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1874 
1875 	PTRAUTH_KEY(APIA),
1876 	PTRAUTH_KEY(APIB),
1877 	PTRAUTH_KEY(APDA),
1878 	PTRAUTH_KEY(APDB),
1879 	PTRAUTH_KEY(APGA),
1880 
1881 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
1882 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
1883 
1884 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1885 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1886 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1887 
1888 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1889 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1890 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1891 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1892 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1893 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1894 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1895 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1896 
1897 	MTE_REG(TFSR_EL1),
1898 	MTE_REG(TFSRE0_EL1),
1899 
1900 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1901 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1902 
1903 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1904 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1905 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1906 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1907 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1908 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1909 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1910 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1911 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1912 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1913 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1914 	/* PMBIDR_EL1 is not trapped */
1915 
1916 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1917 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1918 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1919 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1920 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1921 
1922 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1923 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1924 
1925 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1926 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1927 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1928 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1929 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1930 
1931 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
1932 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1933 
1934 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1935 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1936 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1937 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1938 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1939 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1940 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1941 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1942 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1943 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1944 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1945 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1946 
1947 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1948 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1949 
1950 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1951 
1952 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1953 
1954 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1955 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
1956 	  .set_user = set_clidr },
1957 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
1958 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1959 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1960 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1961 	{ SYS_DESC(SYS_SVCR), undef_access },
1962 
1963 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1964 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1965 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1966 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1967 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1968 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1969 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1970 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1971 	/*
1972 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1973 	 * previously (and pointlessly) advertised in the past...
1974 	 */
1975 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1976 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1977 	  .access = access_pmswinc, .reset = NULL },
1978 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1979 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1980 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1981 	  .access = access_pmceid, .reset = NULL },
1982 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1983 	  .access = access_pmceid, .reset = NULL },
1984 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1985 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1986 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1987 	  .access = access_pmu_evtyper, .reset = NULL },
1988 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1989 	  .access = access_pmu_evcntr, .reset = NULL },
1990 	/*
1991 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1992 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1993 	 */
1994 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1995 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1996 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1997 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1998 
1999 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2000 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2001 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2002 
2003 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2004 
2005 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2006 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2007 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2008 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2009 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2010 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2011 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2012 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2013 	AMU_AMEVCNTR0_EL0(0),
2014 	AMU_AMEVCNTR0_EL0(1),
2015 	AMU_AMEVCNTR0_EL0(2),
2016 	AMU_AMEVCNTR0_EL0(3),
2017 	AMU_AMEVCNTR0_EL0(4),
2018 	AMU_AMEVCNTR0_EL0(5),
2019 	AMU_AMEVCNTR0_EL0(6),
2020 	AMU_AMEVCNTR0_EL0(7),
2021 	AMU_AMEVCNTR0_EL0(8),
2022 	AMU_AMEVCNTR0_EL0(9),
2023 	AMU_AMEVCNTR0_EL0(10),
2024 	AMU_AMEVCNTR0_EL0(11),
2025 	AMU_AMEVCNTR0_EL0(12),
2026 	AMU_AMEVCNTR0_EL0(13),
2027 	AMU_AMEVCNTR0_EL0(14),
2028 	AMU_AMEVCNTR0_EL0(15),
2029 	AMU_AMEVTYPER0_EL0(0),
2030 	AMU_AMEVTYPER0_EL0(1),
2031 	AMU_AMEVTYPER0_EL0(2),
2032 	AMU_AMEVTYPER0_EL0(3),
2033 	AMU_AMEVTYPER0_EL0(4),
2034 	AMU_AMEVTYPER0_EL0(5),
2035 	AMU_AMEVTYPER0_EL0(6),
2036 	AMU_AMEVTYPER0_EL0(7),
2037 	AMU_AMEVTYPER0_EL0(8),
2038 	AMU_AMEVTYPER0_EL0(9),
2039 	AMU_AMEVTYPER0_EL0(10),
2040 	AMU_AMEVTYPER0_EL0(11),
2041 	AMU_AMEVTYPER0_EL0(12),
2042 	AMU_AMEVTYPER0_EL0(13),
2043 	AMU_AMEVTYPER0_EL0(14),
2044 	AMU_AMEVTYPER0_EL0(15),
2045 	AMU_AMEVCNTR1_EL0(0),
2046 	AMU_AMEVCNTR1_EL0(1),
2047 	AMU_AMEVCNTR1_EL0(2),
2048 	AMU_AMEVCNTR1_EL0(3),
2049 	AMU_AMEVCNTR1_EL0(4),
2050 	AMU_AMEVCNTR1_EL0(5),
2051 	AMU_AMEVCNTR1_EL0(6),
2052 	AMU_AMEVCNTR1_EL0(7),
2053 	AMU_AMEVCNTR1_EL0(8),
2054 	AMU_AMEVCNTR1_EL0(9),
2055 	AMU_AMEVCNTR1_EL0(10),
2056 	AMU_AMEVCNTR1_EL0(11),
2057 	AMU_AMEVCNTR1_EL0(12),
2058 	AMU_AMEVCNTR1_EL0(13),
2059 	AMU_AMEVCNTR1_EL0(14),
2060 	AMU_AMEVCNTR1_EL0(15),
2061 	AMU_AMEVTYPER1_EL0(0),
2062 	AMU_AMEVTYPER1_EL0(1),
2063 	AMU_AMEVTYPER1_EL0(2),
2064 	AMU_AMEVTYPER1_EL0(3),
2065 	AMU_AMEVTYPER1_EL0(4),
2066 	AMU_AMEVTYPER1_EL0(5),
2067 	AMU_AMEVTYPER1_EL0(6),
2068 	AMU_AMEVTYPER1_EL0(7),
2069 	AMU_AMEVTYPER1_EL0(8),
2070 	AMU_AMEVTYPER1_EL0(9),
2071 	AMU_AMEVTYPER1_EL0(10),
2072 	AMU_AMEVTYPER1_EL0(11),
2073 	AMU_AMEVTYPER1_EL0(12),
2074 	AMU_AMEVTYPER1_EL0(13),
2075 	AMU_AMEVTYPER1_EL0(14),
2076 	AMU_AMEVTYPER1_EL0(15),
2077 
2078 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2079 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2080 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2081 
2082 	/* PMEVCNTRn_EL0 */
2083 	PMU_PMEVCNTR_EL0(0),
2084 	PMU_PMEVCNTR_EL0(1),
2085 	PMU_PMEVCNTR_EL0(2),
2086 	PMU_PMEVCNTR_EL0(3),
2087 	PMU_PMEVCNTR_EL0(4),
2088 	PMU_PMEVCNTR_EL0(5),
2089 	PMU_PMEVCNTR_EL0(6),
2090 	PMU_PMEVCNTR_EL0(7),
2091 	PMU_PMEVCNTR_EL0(8),
2092 	PMU_PMEVCNTR_EL0(9),
2093 	PMU_PMEVCNTR_EL0(10),
2094 	PMU_PMEVCNTR_EL0(11),
2095 	PMU_PMEVCNTR_EL0(12),
2096 	PMU_PMEVCNTR_EL0(13),
2097 	PMU_PMEVCNTR_EL0(14),
2098 	PMU_PMEVCNTR_EL0(15),
2099 	PMU_PMEVCNTR_EL0(16),
2100 	PMU_PMEVCNTR_EL0(17),
2101 	PMU_PMEVCNTR_EL0(18),
2102 	PMU_PMEVCNTR_EL0(19),
2103 	PMU_PMEVCNTR_EL0(20),
2104 	PMU_PMEVCNTR_EL0(21),
2105 	PMU_PMEVCNTR_EL0(22),
2106 	PMU_PMEVCNTR_EL0(23),
2107 	PMU_PMEVCNTR_EL0(24),
2108 	PMU_PMEVCNTR_EL0(25),
2109 	PMU_PMEVCNTR_EL0(26),
2110 	PMU_PMEVCNTR_EL0(27),
2111 	PMU_PMEVCNTR_EL0(28),
2112 	PMU_PMEVCNTR_EL0(29),
2113 	PMU_PMEVCNTR_EL0(30),
2114 	/* PMEVTYPERn_EL0 */
2115 	PMU_PMEVTYPER_EL0(0),
2116 	PMU_PMEVTYPER_EL0(1),
2117 	PMU_PMEVTYPER_EL0(2),
2118 	PMU_PMEVTYPER_EL0(3),
2119 	PMU_PMEVTYPER_EL0(4),
2120 	PMU_PMEVTYPER_EL0(5),
2121 	PMU_PMEVTYPER_EL0(6),
2122 	PMU_PMEVTYPER_EL0(7),
2123 	PMU_PMEVTYPER_EL0(8),
2124 	PMU_PMEVTYPER_EL0(9),
2125 	PMU_PMEVTYPER_EL0(10),
2126 	PMU_PMEVTYPER_EL0(11),
2127 	PMU_PMEVTYPER_EL0(12),
2128 	PMU_PMEVTYPER_EL0(13),
2129 	PMU_PMEVTYPER_EL0(14),
2130 	PMU_PMEVTYPER_EL0(15),
2131 	PMU_PMEVTYPER_EL0(16),
2132 	PMU_PMEVTYPER_EL0(17),
2133 	PMU_PMEVTYPER_EL0(18),
2134 	PMU_PMEVTYPER_EL0(19),
2135 	PMU_PMEVTYPER_EL0(20),
2136 	PMU_PMEVTYPER_EL0(21),
2137 	PMU_PMEVTYPER_EL0(22),
2138 	PMU_PMEVTYPER_EL0(23),
2139 	PMU_PMEVTYPER_EL0(24),
2140 	PMU_PMEVTYPER_EL0(25),
2141 	PMU_PMEVTYPER_EL0(26),
2142 	PMU_PMEVTYPER_EL0(27),
2143 	PMU_PMEVTYPER_EL0(28),
2144 	PMU_PMEVTYPER_EL0(29),
2145 	PMU_PMEVTYPER_EL0(30),
2146 	/*
2147 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2148 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2149 	 */
2150 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2151 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2152 
2153 	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2154 	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2155 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2156 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2157 	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2158 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2159 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_EL2_DEFAULT ),
2160 	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2161 	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2162 
2163 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2164 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2165 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2166 	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2167 	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2168 
2169 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2170 	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2171 	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2172 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2173 
2174 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2175 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2176 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2177 	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2178 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2179 
2180 	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2181 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2182 
2183 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2184 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2185 
2186 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2187 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2188 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2189 
2190 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2191 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2192 
2193 	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2194 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2195 
2196 	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2197 	EL12_REG(CPACR, access_rw, reset_val, 0),
2198 	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2199 	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2200 	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2201 	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2202 	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2203 	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2204 	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2205 	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2206 	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2207 	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2208 	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2209 	EL12_REG(VBAR, access_rw, reset_val, 0),
2210 	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2211 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2212 
2213 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2214 };
2215 
2216 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2217 			struct sys_reg_params *p,
2218 			const struct sys_reg_desc *r)
2219 {
2220 	if (p->is_write) {
2221 		return ignore_write(vcpu, p);
2222 	} else {
2223 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2224 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2225 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2226 
2227 		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2228 			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2229 			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2230 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2231 		return true;
2232 	}
2233 }
2234 
2235 /*
2236  * AArch32 debug register mappings
2237  *
2238  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2239  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2240  *
2241  * None of the other registers share their location, so treat them as
2242  * if they were 64bit.
2243  */
2244 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2245 	/* DBGBVRn */							      \
2246 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2247 	/* DBGBCRn */							      \
2248 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2249 	/* DBGWVRn */							      \
2250 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2251 	/* DBGWCRn */							      \
2252 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2253 
2254 #define DBGBXVR(n)							      \
2255 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2256 
2257 /*
2258  * Trapped cp14 registers. We generally ignore most of the external
2259  * debug, on the principle that they don't really make sense to a
2260  * guest. Revisit this one day, would this principle change.
2261  */
2262 static const struct sys_reg_desc cp14_regs[] = {
2263 	/* DBGDIDR */
2264 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2265 	/* DBGDTRRXext */
2266 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2267 
2268 	DBG_BCR_BVR_WCR_WVR(0),
2269 	/* DBGDSCRint */
2270 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2271 	DBG_BCR_BVR_WCR_WVR(1),
2272 	/* DBGDCCINT */
2273 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2274 	/* DBGDSCRext */
2275 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2276 	DBG_BCR_BVR_WCR_WVR(2),
2277 	/* DBGDTR[RT]Xint */
2278 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2279 	/* DBGDTR[RT]Xext */
2280 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2281 	DBG_BCR_BVR_WCR_WVR(3),
2282 	DBG_BCR_BVR_WCR_WVR(4),
2283 	DBG_BCR_BVR_WCR_WVR(5),
2284 	/* DBGWFAR */
2285 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2286 	/* DBGOSECCR */
2287 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2288 	DBG_BCR_BVR_WCR_WVR(6),
2289 	/* DBGVCR */
2290 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2291 	DBG_BCR_BVR_WCR_WVR(7),
2292 	DBG_BCR_BVR_WCR_WVR(8),
2293 	DBG_BCR_BVR_WCR_WVR(9),
2294 	DBG_BCR_BVR_WCR_WVR(10),
2295 	DBG_BCR_BVR_WCR_WVR(11),
2296 	DBG_BCR_BVR_WCR_WVR(12),
2297 	DBG_BCR_BVR_WCR_WVR(13),
2298 	DBG_BCR_BVR_WCR_WVR(14),
2299 	DBG_BCR_BVR_WCR_WVR(15),
2300 
2301 	/* DBGDRAR (32bit) */
2302 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2303 
2304 	DBGBXVR(0),
2305 	/* DBGOSLAR */
2306 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2307 	DBGBXVR(1),
2308 	/* DBGOSLSR */
2309 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2310 	DBGBXVR(2),
2311 	DBGBXVR(3),
2312 	/* DBGOSDLR */
2313 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2314 	DBGBXVR(4),
2315 	/* DBGPRCR */
2316 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2317 	DBGBXVR(5),
2318 	DBGBXVR(6),
2319 	DBGBXVR(7),
2320 	DBGBXVR(8),
2321 	DBGBXVR(9),
2322 	DBGBXVR(10),
2323 	DBGBXVR(11),
2324 	DBGBXVR(12),
2325 	DBGBXVR(13),
2326 	DBGBXVR(14),
2327 	DBGBXVR(15),
2328 
2329 	/* DBGDSAR (32bit) */
2330 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2331 
2332 	/* DBGDEVID2 */
2333 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2334 	/* DBGDEVID1 */
2335 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2336 	/* DBGDEVID */
2337 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2338 	/* DBGCLAIMSET */
2339 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2340 	/* DBGCLAIMCLR */
2341 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2342 	/* DBGAUTHSTATUS */
2343 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2344 };
2345 
2346 /* Trapped cp14 64bit registers */
2347 static const struct sys_reg_desc cp14_64_regs[] = {
2348 	/* DBGDRAR (64bit) */
2349 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2350 
2351 	/* DBGDSAR (64bit) */
2352 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2353 };
2354 
2355 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2356 	AA32(_map),							\
2357 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2358 	.visibility = pmu_visibility
2359 
2360 /* Macro to expand the PMEVCNTRn register */
2361 #define PMU_PMEVCNTR(n)							\
2362 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2363 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2364 	  .access = access_pmu_evcntr }
2365 
2366 /* Macro to expand the PMEVTYPERn register */
2367 #define PMU_PMEVTYPER(n)						\
2368 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2369 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2370 	  .access = access_pmu_evtyper }
2371 /*
2372  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2373  * depending on the way they are accessed (as a 32bit or a 64bit
2374  * register).
2375  */
2376 static const struct sys_reg_desc cp15_regs[] = {
2377 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2378 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2379 	/* ACTLR */
2380 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2381 	/* ACTLR2 */
2382 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2383 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2384 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2385 	/* TTBCR */
2386 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2387 	/* TTBCR2 */
2388 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2389 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2390 	/* DFSR */
2391 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2392 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2393 	/* ADFSR */
2394 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2395 	/* AIFSR */
2396 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2397 	/* DFAR */
2398 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2399 	/* IFAR */
2400 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2401 
2402 	/*
2403 	 * DC{C,I,CI}SW operations:
2404 	 */
2405 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2406 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2407 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2408 
2409 	/* PMU */
2410 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2411 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2412 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2413 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2414 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2415 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2416 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2417 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2418 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2419 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2420 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2421 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2422 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2423 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2424 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2425 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2426 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2427 	/* PMMIR */
2428 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2429 
2430 	/* PRRR/MAIR0 */
2431 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2432 	/* NMRR/MAIR1 */
2433 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2434 	/* AMAIR0 */
2435 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2436 	/* AMAIR1 */
2437 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2438 
2439 	/* ICC_SRE */
2440 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2441 
2442 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2443 
2444 	/* Arch Tmers */
2445 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2446 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2447 
2448 	/* PMEVCNTRn */
2449 	PMU_PMEVCNTR(0),
2450 	PMU_PMEVCNTR(1),
2451 	PMU_PMEVCNTR(2),
2452 	PMU_PMEVCNTR(3),
2453 	PMU_PMEVCNTR(4),
2454 	PMU_PMEVCNTR(5),
2455 	PMU_PMEVCNTR(6),
2456 	PMU_PMEVCNTR(7),
2457 	PMU_PMEVCNTR(8),
2458 	PMU_PMEVCNTR(9),
2459 	PMU_PMEVCNTR(10),
2460 	PMU_PMEVCNTR(11),
2461 	PMU_PMEVCNTR(12),
2462 	PMU_PMEVCNTR(13),
2463 	PMU_PMEVCNTR(14),
2464 	PMU_PMEVCNTR(15),
2465 	PMU_PMEVCNTR(16),
2466 	PMU_PMEVCNTR(17),
2467 	PMU_PMEVCNTR(18),
2468 	PMU_PMEVCNTR(19),
2469 	PMU_PMEVCNTR(20),
2470 	PMU_PMEVCNTR(21),
2471 	PMU_PMEVCNTR(22),
2472 	PMU_PMEVCNTR(23),
2473 	PMU_PMEVCNTR(24),
2474 	PMU_PMEVCNTR(25),
2475 	PMU_PMEVCNTR(26),
2476 	PMU_PMEVCNTR(27),
2477 	PMU_PMEVCNTR(28),
2478 	PMU_PMEVCNTR(29),
2479 	PMU_PMEVCNTR(30),
2480 	/* PMEVTYPERn */
2481 	PMU_PMEVTYPER(0),
2482 	PMU_PMEVTYPER(1),
2483 	PMU_PMEVTYPER(2),
2484 	PMU_PMEVTYPER(3),
2485 	PMU_PMEVTYPER(4),
2486 	PMU_PMEVTYPER(5),
2487 	PMU_PMEVTYPER(6),
2488 	PMU_PMEVTYPER(7),
2489 	PMU_PMEVTYPER(8),
2490 	PMU_PMEVTYPER(9),
2491 	PMU_PMEVTYPER(10),
2492 	PMU_PMEVTYPER(11),
2493 	PMU_PMEVTYPER(12),
2494 	PMU_PMEVTYPER(13),
2495 	PMU_PMEVTYPER(14),
2496 	PMU_PMEVTYPER(15),
2497 	PMU_PMEVTYPER(16),
2498 	PMU_PMEVTYPER(17),
2499 	PMU_PMEVTYPER(18),
2500 	PMU_PMEVTYPER(19),
2501 	PMU_PMEVTYPER(20),
2502 	PMU_PMEVTYPER(21),
2503 	PMU_PMEVTYPER(22),
2504 	PMU_PMEVTYPER(23),
2505 	PMU_PMEVTYPER(24),
2506 	PMU_PMEVTYPER(25),
2507 	PMU_PMEVTYPER(26),
2508 	PMU_PMEVTYPER(27),
2509 	PMU_PMEVTYPER(28),
2510 	PMU_PMEVTYPER(29),
2511 	PMU_PMEVTYPER(30),
2512 	/* PMCCFILTR */
2513 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2514 
2515 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2516 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2517 
2518 	/* CCSIDR2 */
2519 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2520 
2521 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2522 };
2523 
2524 static const struct sys_reg_desc cp15_64_regs[] = {
2525 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2526 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2527 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2528 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2529 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2530 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2531 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2532 };
2533 
2534 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2535 			       bool is_32)
2536 {
2537 	unsigned int i;
2538 
2539 	for (i = 0; i < n; i++) {
2540 		if (!is_32 && table[i].reg && !table[i].reset) {
2541 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2542 			return false;
2543 		}
2544 
2545 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2546 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2547 			return false;
2548 		}
2549 	}
2550 
2551 	return true;
2552 }
2553 
2554 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2555 {
2556 	kvm_inject_undefined(vcpu);
2557 	return 1;
2558 }
2559 
2560 static void perform_access(struct kvm_vcpu *vcpu,
2561 			   struct sys_reg_params *params,
2562 			   const struct sys_reg_desc *r)
2563 {
2564 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2565 
2566 	/* Check for regs disabled by runtime config */
2567 	if (sysreg_hidden(vcpu, r)) {
2568 		kvm_inject_undefined(vcpu);
2569 		return;
2570 	}
2571 
2572 	/*
2573 	 * Not having an accessor means that we have configured a trap
2574 	 * that we don't know how to handle. This certainly qualifies
2575 	 * as a gross bug that should be fixed right away.
2576 	 */
2577 	BUG_ON(!r->access);
2578 
2579 	/* Skip instruction if instructed so */
2580 	if (likely(r->access(vcpu, params, r)))
2581 		kvm_incr_pc(vcpu);
2582 }
2583 
2584 /*
2585  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2586  *                call the corresponding trap handler.
2587  *
2588  * @params: pointer to the descriptor of the access
2589  * @table: array of trap descriptors
2590  * @num: size of the trap descriptor array
2591  *
2592  * Return true if the access has been handled, false if not.
2593  */
2594 static bool emulate_cp(struct kvm_vcpu *vcpu,
2595 		       struct sys_reg_params *params,
2596 		       const struct sys_reg_desc *table,
2597 		       size_t num)
2598 {
2599 	const struct sys_reg_desc *r;
2600 
2601 	if (!table)
2602 		return false;	/* Not handled */
2603 
2604 	r = find_reg(params, table, num);
2605 
2606 	if (r) {
2607 		perform_access(vcpu, params, r);
2608 		return true;
2609 	}
2610 
2611 	/* Not handled */
2612 	return false;
2613 }
2614 
2615 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2616 				struct sys_reg_params *params)
2617 {
2618 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2619 	int cp = -1;
2620 
2621 	switch (esr_ec) {
2622 	case ESR_ELx_EC_CP15_32:
2623 	case ESR_ELx_EC_CP15_64:
2624 		cp = 15;
2625 		break;
2626 	case ESR_ELx_EC_CP14_MR:
2627 	case ESR_ELx_EC_CP14_64:
2628 		cp = 14;
2629 		break;
2630 	default:
2631 		WARN_ON(1);
2632 	}
2633 
2634 	print_sys_reg_msg(params,
2635 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2636 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2637 	kvm_inject_undefined(vcpu);
2638 }
2639 
2640 /**
2641  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2642  * @vcpu: The VCPU pointer
2643  * @run:  The kvm_run struct
2644  */
2645 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2646 			    const struct sys_reg_desc *global,
2647 			    size_t nr_global)
2648 {
2649 	struct sys_reg_params params;
2650 	u64 esr = kvm_vcpu_get_esr(vcpu);
2651 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2652 	int Rt2 = (esr >> 10) & 0x1f;
2653 
2654 	params.CRm = (esr >> 1) & 0xf;
2655 	params.is_write = ((esr & 1) == 0);
2656 
2657 	params.Op0 = 0;
2658 	params.Op1 = (esr >> 16) & 0xf;
2659 	params.Op2 = 0;
2660 	params.CRn = 0;
2661 
2662 	/*
2663 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2664 	 * backends between AArch32 and AArch64, we get away with it.
2665 	 */
2666 	if (params.is_write) {
2667 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2668 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2669 	}
2670 
2671 	/*
2672 	 * If the table contains a handler, handle the
2673 	 * potential register operation in the case of a read and return
2674 	 * with success.
2675 	 */
2676 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2677 		/* Split up the value between registers for the read side */
2678 		if (!params.is_write) {
2679 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2680 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2681 		}
2682 
2683 		return 1;
2684 	}
2685 
2686 	unhandled_cp_access(vcpu, &params);
2687 	return 1;
2688 }
2689 
2690 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2691 
2692 /*
2693  * The CP10 ID registers are architecturally mapped to AArch64 feature
2694  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2695  * from AArch32.
2696  */
2697 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2698 {
2699 	u8 reg_id = (esr >> 10) & 0xf;
2700 	bool valid;
2701 
2702 	params->is_write = ((esr & 1) == 0);
2703 	params->Op0 = 3;
2704 	params->Op1 = 0;
2705 	params->CRn = 0;
2706 	params->CRm = 3;
2707 
2708 	/* CP10 ID registers are read-only */
2709 	valid = !params->is_write;
2710 
2711 	switch (reg_id) {
2712 	/* MVFR0 */
2713 	case 0b0111:
2714 		params->Op2 = 0;
2715 		break;
2716 	/* MVFR1 */
2717 	case 0b0110:
2718 		params->Op2 = 1;
2719 		break;
2720 	/* MVFR2 */
2721 	case 0b0101:
2722 		params->Op2 = 2;
2723 		break;
2724 	default:
2725 		valid = false;
2726 	}
2727 
2728 	if (valid)
2729 		return true;
2730 
2731 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2732 		      params->is_write ? "write" : "read", reg_id);
2733 	return false;
2734 }
2735 
2736 /**
2737  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2738  *			  VFP Register' from AArch32.
2739  * @vcpu: The vCPU pointer
2740  *
2741  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2742  * Work out the correct AArch64 system register encoding and reroute to the
2743  * AArch64 system register emulation.
2744  */
2745 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2746 {
2747 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2748 	u64 esr = kvm_vcpu_get_esr(vcpu);
2749 	struct sys_reg_params params;
2750 
2751 	/* UNDEF on any unhandled register access */
2752 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2753 		kvm_inject_undefined(vcpu);
2754 		return 1;
2755 	}
2756 
2757 	if (emulate_sys_reg(vcpu, &params))
2758 		vcpu_set_reg(vcpu, Rt, params.regval);
2759 
2760 	return 1;
2761 }
2762 
2763 /**
2764  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2765  *			       CRn=0, which corresponds to the AArch32 feature
2766  *			       registers.
2767  * @vcpu: the vCPU pointer
2768  * @params: the system register access parameters.
2769  *
2770  * Our cp15 system register tables do not enumerate the AArch32 feature
2771  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2772  * register encoding can be trivially remapped into the AArch64 for the feature
2773  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2774  *
2775  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2776  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2777  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2778  * treat undefined registers in this range as RAZ.
2779  */
2780 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2781 				   struct sys_reg_params *params)
2782 {
2783 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2784 
2785 	/* Treat impossible writes to RO registers as UNDEFINED */
2786 	if (params->is_write) {
2787 		unhandled_cp_access(vcpu, params);
2788 		return 1;
2789 	}
2790 
2791 	params->Op0 = 3;
2792 
2793 	/*
2794 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2795 	 * Avoid conflicting with future expansion of AArch64 feature registers
2796 	 * and simply treat them as RAZ here.
2797 	 */
2798 	if (params->CRm > 3)
2799 		params->regval = 0;
2800 	else if (!emulate_sys_reg(vcpu, params))
2801 		return 1;
2802 
2803 	vcpu_set_reg(vcpu, Rt, params->regval);
2804 	return 1;
2805 }
2806 
2807 /**
2808  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2809  * @vcpu: The VCPU pointer
2810  * @run:  The kvm_run struct
2811  */
2812 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2813 			    struct sys_reg_params *params,
2814 			    const struct sys_reg_desc *global,
2815 			    size_t nr_global)
2816 {
2817 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2818 
2819 	params->regval = vcpu_get_reg(vcpu, Rt);
2820 
2821 	if (emulate_cp(vcpu, params, global, nr_global)) {
2822 		if (!params->is_write)
2823 			vcpu_set_reg(vcpu, Rt, params->regval);
2824 		return 1;
2825 	}
2826 
2827 	unhandled_cp_access(vcpu, params);
2828 	return 1;
2829 }
2830 
2831 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2832 {
2833 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2834 }
2835 
2836 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2837 {
2838 	struct sys_reg_params params;
2839 
2840 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2841 
2842 	/*
2843 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
2844 	 * system register table. Registers in the ID range where CRm=0 are
2845 	 * excluded from this scheme as they do not trivially map into AArch64
2846 	 * system register encodings.
2847 	 */
2848 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2849 		return kvm_emulate_cp15_id_reg(vcpu, &params);
2850 
2851 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2852 }
2853 
2854 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2855 {
2856 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2857 }
2858 
2859 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2860 {
2861 	struct sys_reg_params params;
2862 
2863 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2864 
2865 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2866 }
2867 
2868 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2869 {
2870 	// See ARM DDI 0487E.a, section D12.3.2
2871 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2872 }
2873 
2874 /**
2875  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2876  * @vcpu: The VCPU pointer
2877  * @params: Decoded system register parameters
2878  *
2879  * Return: true if the system register access was successful, false otherwise.
2880  */
2881 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2882 			   struct sys_reg_params *params)
2883 {
2884 	const struct sys_reg_desc *r;
2885 
2886 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2887 
2888 	if (likely(r)) {
2889 		perform_access(vcpu, params, r);
2890 		return true;
2891 	}
2892 
2893 	if (is_imp_def_sys_reg(params)) {
2894 		kvm_inject_undefined(vcpu);
2895 	} else {
2896 		print_sys_reg_msg(params,
2897 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2898 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2899 		kvm_inject_undefined(vcpu);
2900 	}
2901 	return false;
2902 }
2903 
2904 /**
2905  * kvm_reset_sys_regs - sets system registers to reset value
2906  * @vcpu: The VCPU pointer
2907  *
2908  * This function finds the right table above and sets the registers on the
2909  * virtual CPU struct to their architecturally defined reset values.
2910  */
2911 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2912 {
2913 	unsigned long i;
2914 
2915 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2916 		if (sys_reg_descs[i].reset)
2917 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2918 }
2919 
2920 /**
2921  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2922  * @vcpu: The VCPU pointer
2923  */
2924 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2925 {
2926 	struct sys_reg_params params;
2927 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2928 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2929 
2930 	trace_kvm_handle_sys_reg(esr);
2931 
2932 	params = esr_sys64_to_params(esr);
2933 	params.regval = vcpu_get_reg(vcpu, Rt);
2934 
2935 	if (!emulate_sys_reg(vcpu, &params))
2936 		return 1;
2937 
2938 	if (!params.is_write)
2939 		vcpu_set_reg(vcpu, Rt, params.regval);
2940 	return 1;
2941 }
2942 
2943 /******************************************************************************
2944  * Userspace API
2945  *****************************************************************************/
2946 
2947 static bool index_to_params(u64 id, struct sys_reg_params *params)
2948 {
2949 	switch (id & KVM_REG_SIZE_MASK) {
2950 	case KVM_REG_SIZE_U64:
2951 		/* Any unused index bits means it's not valid. */
2952 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2953 			      | KVM_REG_ARM_COPROC_MASK
2954 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2955 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2956 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2957 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2958 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2959 			return false;
2960 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2961 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2962 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2963 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2964 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2965 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2966 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2967 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2968 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2969 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2970 		return true;
2971 	default:
2972 		return false;
2973 	}
2974 }
2975 
2976 const struct sys_reg_desc *get_reg_by_id(u64 id,
2977 					 const struct sys_reg_desc table[],
2978 					 unsigned int num)
2979 {
2980 	struct sys_reg_params params;
2981 
2982 	if (!index_to_params(id, &params))
2983 		return NULL;
2984 
2985 	return find_reg(&params, table, num);
2986 }
2987 
2988 /* Decode an index value, and find the sys_reg_desc entry. */
2989 static const struct sys_reg_desc *
2990 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2991 		   const struct sys_reg_desc table[], unsigned int num)
2992 
2993 {
2994 	const struct sys_reg_desc *r;
2995 
2996 	/* We only do sys_reg for now. */
2997 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2998 		return NULL;
2999 
3000 	r = get_reg_by_id(id, table, num);
3001 
3002 	/* Not saved in the sys_reg array and not otherwise accessible? */
3003 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3004 		r = NULL;
3005 
3006 	return r;
3007 }
3008 
3009 /*
3010  * These are the invariant sys_reg registers: we let the guest see the
3011  * host versions of these, so they're part of the guest state.
3012  *
3013  * A future CPU may provide a mechanism to present different values to
3014  * the guest, or a future kvm may trap them.
3015  */
3016 
3017 #define FUNCTION_INVARIANT(reg)						\
3018 	static void get_##reg(struct kvm_vcpu *v,			\
3019 			      const struct sys_reg_desc *r)		\
3020 	{								\
3021 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3022 	}
3023 
3024 FUNCTION_INVARIANT(midr_el1)
3025 FUNCTION_INVARIANT(revidr_el1)
3026 FUNCTION_INVARIANT(aidr_el1)
3027 
3028 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3029 {
3030 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3031 }
3032 
3033 /* ->val is filled in by kvm_sys_reg_table_init() */
3034 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3035 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3036 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3037 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3038 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3039 };
3040 
3041 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3042 {
3043 	const struct sys_reg_desc *r;
3044 
3045 	r = get_reg_by_id(id, invariant_sys_regs,
3046 			  ARRAY_SIZE(invariant_sys_regs));
3047 	if (!r)
3048 		return -ENOENT;
3049 
3050 	return put_user(r->val, uaddr);
3051 }
3052 
3053 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3054 {
3055 	const struct sys_reg_desc *r;
3056 	u64 val;
3057 
3058 	r = get_reg_by_id(id, invariant_sys_regs,
3059 			  ARRAY_SIZE(invariant_sys_regs));
3060 	if (!r)
3061 		return -ENOENT;
3062 
3063 	if (get_user(val, uaddr))
3064 		return -EFAULT;
3065 
3066 	/* This is what we mean by invariant: you can't change it. */
3067 	if (r->val != val)
3068 		return -EINVAL;
3069 
3070 	return 0;
3071 }
3072 
3073 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3074 {
3075 	u32 val;
3076 	u32 __user *uval = uaddr;
3077 
3078 	/* Fail if we have unknown bits set. */
3079 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3080 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3081 		return -ENOENT;
3082 
3083 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3084 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3085 		if (KVM_REG_SIZE(id) != 4)
3086 			return -ENOENT;
3087 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3088 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3089 		if (val >= CSSELR_MAX)
3090 			return -ENOENT;
3091 
3092 		return put_user(get_ccsidr(vcpu, val), uval);
3093 	default:
3094 		return -ENOENT;
3095 	}
3096 }
3097 
3098 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3099 {
3100 	u32 val, newval;
3101 	u32 __user *uval = uaddr;
3102 
3103 	/* Fail if we have unknown bits set. */
3104 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3105 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3106 		return -ENOENT;
3107 
3108 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3109 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3110 		if (KVM_REG_SIZE(id) != 4)
3111 			return -ENOENT;
3112 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3113 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3114 		if (val >= CSSELR_MAX)
3115 			return -ENOENT;
3116 
3117 		if (get_user(newval, uval))
3118 			return -EFAULT;
3119 
3120 		return set_ccsidr(vcpu, val, newval);
3121 	default:
3122 		return -ENOENT;
3123 	}
3124 }
3125 
3126 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3127 			 const struct sys_reg_desc table[], unsigned int num)
3128 {
3129 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3130 	const struct sys_reg_desc *r;
3131 	u64 val;
3132 	int ret;
3133 
3134 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3135 	if (!r || sysreg_hidden_user(vcpu, r))
3136 		return -ENOENT;
3137 
3138 	if (r->get_user) {
3139 		ret = (r->get_user)(vcpu, r, &val);
3140 	} else {
3141 		val = __vcpu_sys_reg(vcpu, r->reg);
3142 		ret = 0;
3143 	}
3144 
3145 	if (!ret)
3146 		ret = put_user(val, uaddr);
3147 
3148 	return ret;
3149 }
3150 
3151 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3152 {
3153 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3154 	int err;
3155 
3156 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3157 		return demux_c15_get(vcpu, reg->id, uaddr);
3158 
3159 	err = get_invariant_sys_reg(reg->id, uaddr);
3160 	if (err != -ENOENT)
3161 		return err;
3162 
3163 	return kvm_sys_reg_get_user(vcpu, reg,
3164 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3165 }
3166 
3167 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3168 			 const struct sys_reg_desc table[], unsigned int num)
3169 {
3170 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3171 	const struct sys_reg_desc *r;
3172 	u64 val;
3173 	int ret;
3174 
3175 	if (get_user(val, uaddr))
3176 		return -EFAULT;
3177 
3178 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3179 	if (!r || sysreg_hidden_user(vcpu, r))
3180 		return -ENOENT;
3181 
3182 	if (sysreg_user_write_ignore(vcpu, r))
3183 		return 0;
3184 
3185 	if (r->set_user) {
3186 		ret = (r->set_user)(vcpu, r, val);
3187 	} else {
3188 		__vcpu_sys_reg(vcpu, r->reg) = val;
3189 		ret = 0;
3190 	}
3191 
3192 	return ret;
3193 }
3194 
3195 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3196 {
3197 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3198 	int err;
3199 
3200 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3201 		return demux_c15_set(vcpu, reg->id, uaddr);
3202 
3203 	err = set_invariant_sys_reg(reg->id, uaddr);
3204 	if (err != -ENOENT)
3205 		return err;
3206 
3207 	return kvm_sys_reg_set_user(vcpu, reg,
3208 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3209 }
3210 
3211 static unsigned int num_demux_regs(void)
3212 {
3213 	return CSSELR_MAX;
3214 }
3215 
3216 static int write_demux_regids(u64 __user *uindices)
3217 {
3218 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3219 	unsigned int i;
3220 
3221 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3222 	for (i = 0; i < CSSELR_MAX; i++) {
3223 		if (put_user(val | i, uindices))
3224 			return -EFAULT;
3225 		uindices++;
3226 	}
3227 	return 0;
3228 }
3229 
3230 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3231 {
3232 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3233 		KVM_REG_ARM64_SYSREG |
3234 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3235 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3236 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3237 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3238 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3239 }
3240 
3241 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3242 {
3243 	if (!*uind)
3244 		return true;
3245 
3246 	if (put_user(sys_reg_to_index(reg), *uind))
3247 		return false;
3248 
3249 	(*uind)++;
3250 	return true;
3251 }
3252 
3253 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3254 			    const struct sys_reg_desc *rd,
3255 			    u64 __user **uind,
3256 			    unsigned int *total)
3257 {
3258 	/*
3259 	 * Ignore registers we trap but don't save,
3260 	 * and for which no custom user accessor is provided.
3261 	 */
3262 	if (!(rd->reg || rd->get_user))
3263 		return 0;
3264 
3265 	if (sysreg_hidden_user(vcpu, rd))
3266 		return 0;
3267 
3268 	if (!copy_reg_to_user(rd, uind))
3269 		return -EFAULT;
3270 
3271 	(*total)++;
3272 	return 0;
3273 }
3274 
3275 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3276 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3277 {
3278 	const struct sys_reg_desc *i2, *end2;
3279 	unsigned int total = 0;
3280 	int err;
3281 
3282 	i2 = sys_reg_descs;
3283 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3284 
3285 	while (i2 != end2) {
3286 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3287 		if (err)
3288 			return err;
3289 	}
3290 	return total;
3291 }
3292 
3293 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3294 {
3295 	return ARRAY_SIZE(invariant_sys_regs)
3296 		+ num_demux_regs()
3297 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3298 }
3299 
3300 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3301 {
3302 	unsigned int i;
3303 	int err;
3304 
3305 	/* Then give them all the invariant registers' indices. */
3306 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3307 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3308 			return -EFAULT;
3309 		uindices++;
3310 	}
3311 
3312 	err = walk_sys_regs(vcpu, uindices);
3313 	if (err < 0)
3314 		return err;
3315 	uindices += err;
3316 
3317 	return write_demux_regids(uindices);
3318 }
3319 
3320 int __init kvm_sys_reg_table_init(void)
3321 {
3322 	bool valid = true;
3323 	unsigned int i;
3324 
3325 	/* Make sure tables are unique and in order. */
3326 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3327 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3328 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3329 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3330 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3331 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3332 
3333 	if (!valid)
3334 		return -EINVAL;
3335 
3336 	/* We abuse the reset function to overwrite the table itself. */
3337 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3338 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3339 
3340 	return 0;
3341 }
3342