xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 #include "trace.h"
37 
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43 
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 				 struct sys_reg_params *params,
48 				 const struct sys_reg_desc *r)
49 {
50 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 	print_sys_reg_instr(params);
52 	kvm_inject_undefined(vcpu);
53 	return false;
54 }
55 
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 			       struct sys_reg_params *params,
58 			       const struct sys_reg_desc *r)
59 {
60 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 	print_sys_reg_instr(params);
62 	kvm_inject_undefined(vcpu);
63 	return false;
64 }
65 
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68 	u64 val = 0x8badf00d8badf00d;
69 
70 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
71 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
72 		return val;
73 
74 	return __vcpu_sys_reg(vcpu, reg);
75 }
76 
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
80 	    __vcpu_write_sys_reg_to_cpu(val, reg))
81 		return;
82 
83 	__vcpu_sys_reg(vcpu, reg) = val;
84 }
85 
86 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
87 #define CSSELR_MAX 14
88 
89 /*
90  * Returns the minimum line size for the selected cache, expressed as
91  * Log2(bytes).
92  */
93 static u8 get_min_cache_line_size(bool icache)
94 {
95 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
96 	u8 field;
97 
98 	if (icache)
99 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
100 	else
101 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
102 
103 	/*
104 	 * Cache line size is represented as Log2(words) in CTR_EL0.
105 	 * Log2(bytes) can be derived with the following:
106 	 *
107 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
108 	 * 		   = Log2(bytes) - 2 + 2
109 	 * 		   = Log2(bytes)
110 	 */
111 	return field + 2;
112 }
113 
114 /* Which cache CCSIDR represents depends on CSSELR value. */
115 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
116 {
117 	u8 line_size;
118 
119 	if (vcpu->arch.ccsidr)
120 		return vcpu->arch.ccsidr[csselr];
121 
122 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
123 
124 	/*
125 	 * Fabricate a CCSIDR value as the overriding value does not exist.
126 	 * The real CCSIDR value will not be used as it can vary by the
127 	 * physical CPU which the vcpu currently resides in.
128 	 *
129 	 * The line size is determined with get_min_cache_line_size(), which
130 	 * should be valid for all CPUs even if they have different cache
131 	 * configuration.
132 	 *
133 	 * The associativity bits are cleared, meaning the geometry of all data
134 	 * and unified caches (which are guaranteed to be PIPT and thus
135 	 * non-aliasing) are 1 set and 1 way.
136 	 * Guests should not be doing cache operations by set/way at all, and
137 	 * for this reason, we trap them and attempt to infer the intent, so
138 	 * that we can flush the entire guest's address space at the appropriate
139 	 * time. The exposed geometry minimizes the number of the traps.
140 	 * [If guests should attempt to infer aliasing properties from the
141 	 * geometry (which is not permitted by the architecture), they would
142 	 * only do so for virtually indexed caches.]
143 	 *
144 	 * We don't check if the cache level exists as it is allowed to return
145 	 * an UNKNOWN value if not.
146 	 */
147 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
148 }
149 
150 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
151 {
152 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
153 	u32 *ccsidr = vcpu->arch.ccsidr;
154 	u32 i;
155 
156 	if ((val & CCSIDR_EL1_RES0) ||
157 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
158 		return -EINVAL;
159 
160 	if (!ccsidr) {
161 		if (val == get_ccsidr(vcpu, csselr))
162 			return 0;
163 
164 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
165 		if (!ccsidr)
166 			return -ENOMEM;
167 
168 		for (i = 0; i < CSSELR_MAX; i++)
169 			ccsidr[i] = get_ccsidr(vcpu, i);
170 
171 		vcpu->arch.ccsidr = ccsidr;
172 	}
173 
174 	ccsidr[csselr] = val;
175 
176 	return 0;
177 }
178 
179 static bool access_rw(struct kvm_vcpu *vcpu,
180 		      struct sys_reg_params *p,
181 		      const struct sys_reg_desc *r)
182 {
183 	if (p->is_write)
184 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
185 	else
186 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
187 
188 	return true;
189 }
190 
191 /*
192  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
193  */
194 static bool access_dcsw(struct kvm_vcpu *vcpu,
195 			struct sys_reg_params *p,
196 			const struct sys_reg_desc *r)
197 {
198 	if (!p->is_write)
199 		return read_from_write_only(vcpu, p, r);
200 
201 	/*
202 	 * Only track S/W ops if we don't have FWB. It still indicates
203 	 * that the guest is a bit broken (S/W operations should only
204 	 * be done by firmware, knowing that there is only a single
205 	 * CPU left in the system, and certainly not from non-secure
206 	 * software).
207 	 */
208 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
209 		kvm_set_way_flush(vcpu);
210 
211 	return true;
212 }
213 
214 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
215 {
216 	switch (r->aarch32_map) {
217 	case AA32_LO:
218 		*mask = GENMASK_ULL(31, 0);
219 		*shift = 0;
220 		break;
221 	case AA32_HI:
222 		*mask = GENMASK_ULL(63, 32);
223 		*shift = 32;
224 		break;
225 	default:
226 		*mask = GENMASK_ULL(63, 0);
227 		*shift = 0;
228 		break;
229 	}
230 }
231 
232 /*
233  * Generic accessor for VM registers. Only called as long as HCR_TVM
234  * is set. If the guest enables the MMU, we stop trapping the VM
235  * sys_regs and leave it in complete control of the caches.
236  */
237 static bool access_vm_reg(struct kvm_vcpu *vcpu,
238 			  struct sys_reg_params *p,
239 			  const struct sys_reg_desc *r)
240 {
241 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
242 	u64 val, mask, shift;
243 
244 	BUG_ON(!p->is_write);
245 
246 	get_access_mask(r, &mask, &shift);
247 
248 	if (~mask) {
249 		val = vcpu_read_sys_reg(vcpu, r->reg);
250 		val &= ~mask;
251 	} else {
252 		val = 0;
253 	}
254 
255 	val |= (p->regval & (mask >> shift)) << shift;
256 	vcpu_write_sys_reg(vcpu, val, r->reg);
257 
258 	kvm_toggle_cache(vcpu, was_enabled);
259 	return true;
260 }
261 
262 static bool access_actlr(struct kvm_vcpu *vcpu,
263 			 struct sys_reg_params *p,
264 			 const struct sys_reg_desc *r)
265 {
266 	u64 mask, shift;
267 
268 	if (p->is_write)
269 		return ignore_write(vcpu, p);
270 
271 	get_access_mask(r, &mask, &shift);
272 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
273 
274 	return true;
275 }
276 
277 /*
278  * Trap handler for the GICv3 SGI generation system register.
279  * Forward the request to the VGIC emulation.
280  * The cp15_64 code makes sure this automatically works
281  * for both AArch64 and AArch32 accesses.
282  */
283 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
284 			   struct sys_reg_params *p,
285 			   const struct sys_reg_desc *r)
286 {
287 	bool g1;
288 
289 	if (!p->is_write)
290 		return read_from_write_only(vcpu, p, r);
291 
292 	/*
293 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
294 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
295 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
296 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
297 	 * group.
298 	 */
299 	if (p->Op0 == 0) {		/* AArch32 */
300 		switch (p->Op1) {
301 		default:		/* Keep GCC quiet */
302 		case 0:			/* ICC_SGI1R */
303 			g1 = true;
304 			break;
305 		case 1:			/* ICC_ASGI1R */
306 		case 2:			/* ICC_SGI0R */
307 			g1 = false;
308 			break;
309 		}
310 	} else {			/* AArch64 */
311 		switch (p->Op2) {
312 		default:		/* Keep GCC quiet */
313 		case 5:			/* ICC_SGI1R_EL1 */
314 			g1 = true;
315 			break;
316 		case 6:			/* ICC_ASGI1R_EL1 */
317 		case 7:			/* ICC_SGI0R_EL1 */
318 			g1 = false;
319 			break;
320 		}
321 	}
322 
323 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
324 
325 	return true;
326 }
327 
328 static bool access_gic_sre(struct kvm_vcpu *vcpu,
329 			   struct sys_reg_params *p,
330 			   const struct sys_reg_desc *r)
331 {
332 	if (p->is_write)
333 		return ignore_write(vcpu, p);
334 
335 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
336 	return true;
337 }
338 
339 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
340 			struct sys_reg_params *p,
341 			const struct sys_reg_desc *r)
342 {
343 	if (p->is_write)
344 		return ignore_write(vcpu, p);
345 	else
346 		return read_zero(vcpu, p);
347 }
348 
349 static bool trap_undef(struct kvm_vcpu *vcpu,
350 		       struct sys_reg_params *p,
351 		       const struct sys_reg_desc *r)
352 {
353 	kvm_inject_undefined(vcpu);
354 	return false;
355 }
356 
357 /*
358  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
359  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
360  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
361  * treat it separately.
362  */
363 static bool trap_loregion(struct kvm_vcpu *vcpu,
364 			  struct sys_reg_params *p,
365 			  const struct sys_reg_desc *r)
366 {
367 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
368 	u32 sr = reg_to_encoding(r);
369 
370 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
371 		kvm_inject_undefined(vcpu);
372 		return false;
373 	}
374 
375 	if (p->is_write && sr == SYS_LORID_EL1)
376 		return write_to_read_only(vcpu, p, r);
377 
378 	return trap_raz_wi(vcpu, p, r);
379 }
380 
381 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
382 			   struct sys_reg_params *p,
383 			   const struct sys_reg_desc *r)
384 {
385 	u64 oslsr;
386 
387 	if (!p->is_write)
388 		return read_from_write_only(vcpu, p, r);
389 
390 	/* Forward the OSLK bit to OSLSR */
391 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
392 	if (p->regval & SYS_OSLAR_OSLK)
393 		oslsr |= SYS_OSLSR_OSLK;
394 
395 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
396 	return true;
397 }
398 
399 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
400 			   struct sys_reg_params *p,
401 			   const struct sys_reg_desc *r)
402 {
403 	if (p->is_write)
404 		return write_to_read_only(vcpu, p, r);
405 
406 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
407 	return true;
408 }
409 
410 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 			 u64 val)
412 {
413 	/*
414 	 * The only modifiable bit is the OSLK bit. Refuse the write if
415 	 * userspace attempts to change any other bit in the register.
416 	 */
417 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
418 		return -EINVAL;
419 
420 	__vcpu_sys_reg(vcpu, rd->reg) = val;
421 	return 0;
422 }
423 
424 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
425 				   struct sys_reg_params *p,
426 				   const struct sys_reg_desc *r)
427 {
428 	if (p->is_write) {
429 		return ignore_write(vcpu, p);
430 	} else {
431 		p->regval = read_sysreg(dbgauthstatus_el1);
432 		return true;
433 	}
434 }
435 
436 /*
437  * We want to avoid world-switching all the DBG registers all the
438  * time:
439  *
440  * - If we've touched any debug register, it is likely that we're
441  *   going to touch more of them. It then makes sense to disable the
442  *   traps and start doing the save/restore dance
443  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
444  *   then mandatory to save/restore the registers, as the guest
445  *   depends on them.
446  *
447  * For this, we use a DIRTY bit, indicating the guest has modified the
448  * debug registers, used as follow:
449  *
450  * On guest entry:
451  * - If the dirty bit is set (because we're coming back from trapping),
452  *   disable the traps, save host registers, restore guest registers.
453  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
454  *   set the dirty bit, disable the traps, save host registers,
455  *   restore guest registers.
456  * - Otherwise, enable the traps
457  *
458  * On guest exit:
459  * - If the dirty bit is set, save guest registers, restore host
460  *   registers and clear the dirty bit. This ensure that the host can
461  *   now use the debug registers.
462  */
463 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
464 			    struct sys_reg_params *p,
465 			    const struct sys_reg_desc *r)
466 {
467 	access_rw(vcpu, p, r);
468 	if (p->is_write)
469 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
470 
471 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
472 
473 	return true;
474 }
475 
476 /*
477  * reg_to_dbg/dbg_to_reg
478  *
479  * A 32 bit write to a debug register leave top bits alone
480  * A 32 bit read from a debug register only returns the bottom bits
481  *
482  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
483  * switches between host and guest values in future.
484  */
485 static void reg_to_dbg(struct kvm_vcpu *vcpu,
486 		       struct sys_reg_params *p,
487 		       const struct sys_reg_desc *rd,
488 		       u64 *dbg_reg)
489 {
490 	u64 mask, shift, val;
491 
492 	get_access_mask(rd, &mask, &shift);
493 
494 	val = *dbg_reg;
495 	val &= ~mask;
496 	val |= (p->regval & (mask >> shift)) << shift;
497 	*dbg_reg = val;
498 
499 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
500 }
501 
502 static void dbg_to_reg(struct kvm_vcpu *vcpu,
503 		       struct sys_reg_params *p,
504 		       const struct sys_reg_desc *rd,
505 		       u64 *dbg_reg)
506 {
507 	u64 mask, shift;
508 
509 	get_access_mask(rd, &mask, &shift);
510 	p->regval = (*dbg_reg & mask) >> shift;
511 }
512 
513 static bool trap_bvr(struct kvm_vcpu *vcpu,
514 		     struct sys_reg_params *p,
515 		     const struct sys_reg_desc *rd)
516 {
517 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
518 
519 	if (p->is_write)
520 		reg_to_dbg(vcpu, p, rd, dbg_reg);
521 	else
522 		dbg_to_reg(vcpu, p, rd, dbg_reg);
523 
524 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
525 
526 	return true;
527 }
528 
529 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
530 		   u64 val)
531 {
532 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
533 	return 0;
534 }
535 
536 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
537 		   u64 *val)
538 {
539 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
540 	return 0;
541 }
542 
543 static void reset_bvr(struct kvm_vcpu *vcpu,
544 		      const struct sys_reg_desc *rd)
545 {
546 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
547 }
548 
549 static bool trap_bcr(struct kvm_vcpu *vcpu,
550 		     struct sys_reg_params *p,
551 		     const struct sys_reg_desc *rd)
552 {
553 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
554 
555 	if (p->is_write)
556 		reg_to_dbg(vcpu, p, rd, dbg_reg);
557 	else
558 		dbg_to_reg(vcpu, p, rd, dbg_reg);
559 
560 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
561 
562 	return true;
563 }
564 
565 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 		   u64 val)
567 {
568 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
569 	return 0;
570 }
571 
572 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
573 		   u64 *val)
574 {
575 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576 	return 0;
577 }
578 
579 static void reset_bcr(struct kvm_vcpu *vcpu,
580 		      const struct sys_reg_desc *rd)
581 {
582 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
583 }
584 
585 static bool trap_wvr(struct kvm_vcpu *vcpu,
586 		     struct sys_reg_params *p,
587 		     const struct sys_reg_desc *rd)
588 {
589 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
590 
591 	if (p->is_write)
592 		reg_to_dbg(vcpu, p, rd, dbg_reg);
593 	else
594 		dbg_to_reg(vcpu, p, rd, dbg_reg);
595 
596 	trace_trap_reg(__func__, rd->CRm, p->is_write,
597 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
598 
599 	return true;
600 }
601 
602 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
603 		   u64 val)
604 {
605 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
606 	return 0;
607 }
608 
609 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
610 		   u64 *val)
611 {
612 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613 	return 0;
614 }
615 
616 static void reset_wvr(struct kvm_vcpu *vcpu,
617 		      const struct sys_reg_desc *rd)
618 {
619 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
620 }
621 
622 static bool trap_wcr(struct kvm_vcpu *vcpu,
623 		     struct sys_reg_params *p,
624 		     const struct sys_reg_desc *rd)
625 {
626 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
627 
628 	if (p->is_write)
629 		reg_to_dbg(vcpu, p, rd, dbg_reg);
630 	else
631 		dbg_to_reg(vcpu, p, rd, dbg_reg);
632 
633 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
634 
635 	return true;
636 }
637 
638 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
639 		   u64 val)
640 {
641 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
642 	return 0;
643 }
644 
645 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
646 		   u64 *val)
647 {
648 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
649 	return 0;
650 }
651 
652 static void reset_wcr(struct kvm_vcpu *vcpu,
653 		      const struct sys_reg_desc *rd)
654 {
655 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
656 }
657 
658 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
659 {
660 	u64 amair = read_sysreg(amair_el1);
661 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
662 }
663 
664 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
665 {
666 	u64 actlr = read_sysreg(actlr_el1);
667 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
668 }
669 
670 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
671 {
672 	u64 mpidr;
673 
674 	/*
675 	 * Map the vcpu_id into the first three affinity level fields of
676 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
677 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
678 	 * of the GICv3 to be able to address each CPU directly when
679 	 * sending IPIs.
680 	 */
681 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
682 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
683 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
684 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
685 }
686 
687 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
688 				   const struct sys_reg_desc *r)
689 {
690 	if (kvm_vcpu_has_pmu(vcpu))
691 		return 0;
692 
693 	return REG_HIDDEN;
694 }
695 
696 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
697 {
698 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
699 
700 	/* No PMU available, any PMU reg may UNDEF... */
701 	if (!kvm_arm_support_pmu_v3())
702 		return;
703 
704 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
705 	n &= ARMV8_PMU_PMCR_N_MASK;
706 	if (n)
707 		mask |= GENMASK(n - 1, 0);
708 
709 	reset_unknown(vcpu, r);
710 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
711 }
712 
713 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
714 {
715 	reset_unknown(vcpu, r);
716 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
717 }
718 
719 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
720 {
721 	reset_unknown(vcpu, r);
722 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
723 }
724 
725 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
726 {
727 	reset_unknown(vcpu, r);
728 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
729 }
730 
731 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
732 {
733 	u64 pmcr;
734 
735 	/* No PMU available, PMCR_EL0 may UNDEF... */
736 	if (!kvm_arm_support_pmu_v3())
737 		return;
738 
739 	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
740 	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
741 	if (!kvm_supports_32bit_el0())
742 		pmcr |= ARMV8_PMU_PMCR_LC;
743 
744 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
745 }
746 
747 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
748 {
749 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
750 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
751 
752 	if (!enabled)
753 		kvm_inject_undefined(vcpu);
754 
755 	return !enabled;
756 }
757 
758 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
759 {
760 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
761 }
762 
763 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
764 {
765 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
766 }
767 
768 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
769 {
770 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
771 }
772 
773 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
774 {
775 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
776 }
777 
778 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779 			const struct sys_reg_desc *r)
780 {
781 	u64 val;
782 
783 	if (pmu_access_el0_disabled(vcpu))
784 		return false;
785 
786 	if (p->is_write) {
787 		/*
788 		 * Only update writeable bits of PMCR (continuing into
789 		 * kvm_pmu_handle_pmcr() as well)
790 		 */
791 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
792 		val &= ~ARMV8_PMU_PMCR_MASK;
793 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
794 		if (!kvm_supports_32bit_el0())
795 			val |= ARMV8_PMU_PMCR_LC;
796 		kvm_pmu_handle_pmcr(vcpu, val);
797 	} else {
798 		/* PMCR.P & PMCR.C are RAZ */
799 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
800 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
801 		p->regval = val;
802 	}
803 
804 	return true;
805 }
806 
807 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
808 			  const struct sys_reg_desc *r)
809 {
810 	if (pmu_access_event_counter_el0_disabled(vcpu))
811 		return false;
812 
813 	if (p->is_write)
814 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
815 	else
816 		/* return PMSELR.SEL field */
817 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
818 			    & ARMV8_PMU_COUNTER_MASK;
819 
820 	return true;
821 }
822 
823 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
824 			  const struct sys_reg_desc *r)
825 {
826 	u64 pmceid, mask, shift;
827 
828 	BUG_ON(p->is_write);
829 
830 	if (pmu_access_el0_disabled(vcpu))
831 		return false;
832 
833 	get_access_mask(r, &mask, &shift);
834 
835 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
836 	pmceid &= mask;
837 	pmceid >>= shift;
838 
839 	p->regval = pmceid;
840 
841 	return true;
842 }
843 
844 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
845 {
846 	u64 pmcr, val;
847 
848 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
849 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
850 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
851 		kvm_inject_undefined(vcpu);
852 		return false;
853 	}
854 
855 	return true;
856 }
857 
858 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
859 			  u64 *val)
860 {
861 	u64 idx;
862 
863 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
864 		/* PMCCNTR_EL0 */
865 		idx = ARMV8_PMU_CYCLE_IDX;
866 	else
867 		/* PMEVCNTRn_EL0 */
868 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
869 
870 	*val = kvm_pmu_get_counter_value(vcpu, idx);
871 	return 0;
872 }
873 
874 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
875 			      struct sys_reg_params *p,
876 			      const struct sys_reg_desc *r)
877 {
878 	u64 idx = ~0UL;
879 
880 	if (r->CRn == 9 && r->CRm == 13) {
881 		if (r->Op2 == 2) {
882 			/* PMXEVCNTR_EL0 */
883 			if (pmu_access_event_counter_el0_disabled(vcpu))
884 				return false;
885 
886 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
887 			      & ARMV8_PMU_COUNTER_MASK;
888 		} else if (r->Op2 == 0) {
889 			/* PMCCNTR_EL0 */
890 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
891 				return false;
892 
893 			idx = ARMV8_PMU_CYCLE_IDX;
894 		}
895 	} else if (r->CRn == 0 && r->CRm == 9) {
896 		/* PMCCNTR */
897 		if (pmu_access_event_counter_el0_disabled(vcpu))
898 			return false;
899 
900 		idx = ARMV8_PMU_CYCLE_IDX;
901 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
902 		/* PMEVCNTRn_EL0 */
903 		if (pmu_access_event_counter_el0_disabled(vcpu))
904 			return false;
905 
906 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
907 	}
908 
909 	/* Catch any decoding mistake */
910 	WARN_ON(idx == ~0UL);
911 
912 	if (!pmu_counter_idx_valid(vcpu, idx))
913 		return false;
914 
915 	if (p->is_write) {
916 		if (pmu_access_el0_disabled(vcpu))
917 			return false;
918 
919 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
920 	} else {
921 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
922 	}
923 
924 	return true;
925 }
926 
927 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
928 			       const struct sys_reg_desc *r)
929 {
930 	u64 idx, reg;
931 
932 	if (pmu_access_el0_disabled(vcpu))
933 		return false;
934 
935 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
936 		/* PMXEVTYPER_EL0 */
937 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
938 		reg = PMEVTYPER0_EL0 + idx;
939 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
940 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
941 		if (idx == ARMV8_PMU_CYCLE_IDX)
942 			reg = PMCCFILTR_EL0;
943 		else
944 			/* PMEVTYPERn_EL0 */
945 			reg = PMEVTYPER0_EL0 + idx;
946 	} else {
947 		BUG();
948 	}
949 
950 	if (!pmu_counter_idx_valid(vcpu, idx))
951 		return false;
952 
953 	if (p->is_write) {
954 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
955 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
956 		kvm_vcpu_pmu_restore_guest(vcpu);
957 	} else {
958 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
959 	}
960 
961 	return true;
962 }
963 
964 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965 			   const struct sys_reg_desc *r)
966 {
967 	u64 val, mask;
968 
969 	if (pmu_access_el0_disabled(vcpu))
970 		return false;
971 
972 	mask = kvm_pmu_valid_counter_mask(vcpu);
973 	if (p->is_write) {
974 		val = p->regval & mask;
975 		if (r->Op2 & 0x1) {
976 			/* accessing PMCNTENSET_EL0 */
977 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
978 			kvm_pmu_enable_counter_mask(vcpu, val);
979 			kvm_vcpu_pmu_restore_guest(vcpu);
980 		} else {
981 			/* accessing PMCNTENCLR_EL0 */
982 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
983 			kvm_pmu_disable_counter_mask(vcpu, val);
984 		}
985 	} else {
986 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
987 	}
988 
989 	return true;
990 }
991 
992 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
993 			   const struct sys_reg_desc *r)
994 {
995 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
996 
997 	if (check_pmu_access_disabled(vcpu, 0))
998 		return false;
999 
1000 	if (p->is_write) {
1001 		u64 val = p->regval & mask;
1002 
1003 		if (r->Op2 & 0x1)
1004 			/* accessing PMINTENSET_EL1 */
1005 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1006 		else
1007 			/* accessing PMINTENCLR_EL1 */
1008 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1009 	} else {
1010 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1011 	}
1012 
1013 	return true;
1014 }
1015 
1016 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1017 			 const struct sys_reg_desc *r)
1018 {
1019 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1020 
1021 	if (pmu_access_el0_disabled(vcpu))
1022 		return false;
1023 
1024 	if (p->is_write) {
1025 		if (r->CRm & 0x2)
1026 			/* accessing PMOVSSET_EL0 */
1027 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1028 		else
1029 			/* accessing PMOVSCLR_EL0 */
1030 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1031 	} else {
1032 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1033 	}
1034 
1035 	return true;
1036 }
1037 
1038 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1039 			   const struct sys_reg_desc *r)
1040 {
1041 	u64 mask;
1042 
1043 	if (!p->is_write)
1044 		return read_from_write_only(vcpu, p, r);
1045 
1046 	if (pmu_write_swinc_el0_disabled(vcpu))
1047 		return false;
1048 
1049 	mask = kvm_pmu_valid_counter_mask(vcpu);
1050 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1051 	return true;
1052 }
1053 
1054 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1055 			     const struct sys_reg_desc *r)
1056 {
1057 	if (p->is_write) {
1058 		if (!vcpu_mode_priv(vcpu)) {
1059 			kvm_inject_undefined(vcpu);
1060 			return false;
1061 		}
1062 
1063 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1064 			       p->regval & ARMV8_PMU_USERENR_MASK;
1065 	} else {
1066 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1067 			    & ARMV8_PMU_USERENR_MASK;
1068 	}
1069 
1070 	return true;
1071 }
1072 
1073 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1074 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1075 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1076 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1077 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1078 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1079 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1080 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1081 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1082 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1083 
1084 #define PMU_SYS_REG(r)						\
1085 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1086 
1087 /* Macro to expand the PMEVCNTRn_EL0 register */
1088 #define PMU_PMEVCNTR_EL0(n)						\
1089 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1090 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1091 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1092 
1093 /* Macro to expand the PMEVTYPERn_EL0 register */
1094 #define PMU_PMEVTYPER_EL0(n)						\
1095 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1096 	  .reset = reset_pmevtyper,					\
1097 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1098 
1099 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1100 			 const struct sys_reg_desc *r)
1101 {
1102 	kvm_inject_undefined(vcpu);
1103 
1104 	return false;
1105 }
1106 
1107 /* Macro to expand the AMU counter and type registers*/
1108 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1109 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1110 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1111 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1112 
1113 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1114 			const struct sys_reg_desc *rd)
1115 {
1116 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1117 }
1118 
1119 /*
1120  * If we land here on a PtrAuth access, that is because we didn't
1121  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1122  * way this happens is when the guest does not have PtrAuth support
1123  * enabled.
1124  */
1125 #define __PTRAUTH_KEY(k)						\
1126 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1127 	.visibility = ptrauth_visibility}
1128 
1129 #define PTRAUTH_KEY(k)							\
1130 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1131 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1132 
1133 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1134 			      struct sys_reg_params *p,
1135 			      const struct sys_reg_desc *r)
1136 {
1137 	enum kvm_arch_timers tmr;
1138 	enum kvm_arch_timer_regs treg;
1139 	u64 reg = reg_to_encoding(r);
1140 
1141 	switch (reg) {
1142 	case SYS_CNTP_TVAL_EL0:
1143 	case SYS_AARCH32_CNTP_TVAL:
1144 		tmr = TIMER_PTIMER;
1145 		treg = TIMER_REG_TVAL;
1146 		break;
1147 	case SYS_CNTP_CTL_EL0:
1148 	case SYS_AARCH32_CNTP_CTL:
1149 		tmr = TIMER_PTIMER;
1150 		treg = TIMER_REG_CTL;
1151 		break;
1152 	case SYS_CNTP_CVAL_EL0:
1153 	case SYS_AARCH32_CNTP_CVAL:
1154 		tmr = TIMER_PTIMER;
1155 		treg = TIMER_REG_CVAL;
1156 		break;
1157 	case SYS_CNTPCT_EL0:
1158 	case SYS_CNTPCTSS_EL0:
1159 	case SYS_AARCH32_CNTPCT:
1160 		tmr = TIMER_PTIMER;
1161 		treg = TIMER_REG_CNT;
1162 		break;
1163 	default:
1164 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1165 		kvm_inject_undefined(vcpu);
1166 		return false;
1167 	}
1168 
1169 	if (p->is_write)
1170 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1171 	else
1172 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1173 
1174 	return true;
1175 }
1176 
1177 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1178 {
1179 	if (kvm_vcpu_has_pmu(vcpu))
1180 		return vcpu->kvm->arch.dfr0_pmuver.imp;
1181 
1182 	return vcpu->kvm->arch.dfr0_pmuver.unimp;
1183 }
1184 
1185 static u8 perfmon_to_pmuver(u8 perfmon)
1186 {
1187 	switch (perfmon) {
1188 	case ID_DFR0_EL1_PerfMon_PMUv3:
1189 		return ID_AA64DFR0_EL1_PMUVer_IMP;
1190 	case ID_DFR0_EL1_PerfMon_IMPDEF:
1191 		return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1192 	default:
1193 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1194 		return perfmon;
1195 	}
1196 }
1197 
1198 static u8 pmuver_to_perfmon(u8 pmuver)
1199 {
1200 	switch (pmuver) {
1201 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1202 		return ID_DFR0_EL1_PerfMon_PMUv3;
1203 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1204 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1205 	default:
1206 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1207 		return pmuver;
1208 	}
1209 }
1210 
1211 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1212 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1213 {
1214 	u32 id = reg_to_encoding(r);
1215 	u64 val;
1216 
1217 	if (sysreg_visible_as_raz(vcpu, r))
1218 		return 0;
1219 
1220 	val = read_sanitised_ftr_reg(id);
1221 
1222 	switch (id) {
1223 	case SYS_ID_AA64PFR0_EL1:
1224 		if (!vcpu_has_sve(vcpu))
1225 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1226 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1227 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1228 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1229 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1230 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1231 		if (kvm_vgic_global_state.type == VGIC_V3) {
1232 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1233 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1234 		}
1235 		break;
1236 	case SYS_ID_AA64PFR1_EL1:
1237 		if (!kvm_has_mte(vcpu->kvm))
1238 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1239 
1240 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1241 		break;
1242 	case SYS_ID_AA64ISAR1_EL1:
1243 		if (!vcpu_has_ptrauth(vcpu))
1244 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1245 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1246 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1247 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1248 		break;
1249 	case SYS_ID_AA64ISAR2_EL1:
1250 		if (!vcpu_has_ptrauth(vcpu))
1251 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1252 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1253 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1254 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1255 		break;
1256 	case SYS_ID_AA64DFR0_EL1:
1257 		/* Limit debug to ARMv8.0 */
1258 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1259 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1260 		/* Set PMUver to the required version */
1261 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1262 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1263 				  vcpu_pmuver(vcpu));
1264 		/* Hide SPE from guests */
1265 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1266 		break;
1267 	case SYS_ID_DFR0_EL1:
1268 		val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1269 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1270 				  pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1271 		break;
1272 	case SYS_ID_AA64MMFR2_EL1:
1273 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1274 		break;
1275 	case SYS_ID_MMFR4_EL1:
1276 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1277 		break;
1278 	}
1279 
1280 	return val;
1281 }
1282 
1283 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1284 				  const struct sys_reg_desc *r)
1285 {
1286 	u32 id = reg_to_encoding(r);
1287 
1288 	switch (id) {
1289 	case SYS_ID_AA64ZFR0_EL1:
1290 		if (!vcpu_has_sve(vcpu))
1291 			return REG_RAZ;
1292 		break;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1299 				       const struct sys_reg_desc *r)
1300 {
1301 	/*
1302 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1303 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1304 	 * systems.
1305 	 */
1306 	if (!kvm_supports_32bit_el0())
1307 		return REG_RAZ | REG_USER_WI;
1308 
1309 	return id_visibility(vcpu, r);
1310 }
1311 
1312 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1313 				   const struct sys_reg_desc *r)
1314 {
1315 	return REG_RAZ;
1316 }
1317 
1318 /* cpufeature ID register access trap handlers */
1319 
1320 static bool access_id_reg(struct kvm_vcpu *vcpu,
1321 			  struct sys_reg_params *p,
1322 			  const struct sys_reg_desc *r)
1323 {
1324 	if (p->is_write)
1325 		return write_to_read_only(vcpu, p, r);
1326 
1327 	p->regval = read_id_reg(vcpu, r);
1328 	if (vcpu_has_nv(vcpu))
1329 		access_nested_id_reg(vcpu, p, r);
1330 
1331 	return true;
1332 }
1333 
1334 /* Visibility overrides for SVE-specific control registers */
1335 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1336 				   const struct sys_reg_desc *rd)
1337 {
1338 	if (vcpu_has_sve(vcpu))
1339 		return 0;
1340 
1341 	return REG_HIDDEN;
1342 }
1343 
1344 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1345 			       const struct sys_reg_desc *rd,
1346 			       u64 val)
1347 {
1348 	u8 csv2, csv3;
1349 
1350 	/*
1351 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1352 	 * it doesn't promise more than what is actually provided (the
1353 	 * guest could otherwise be covered in ectoplasmic residue).
1354 	 */
1355 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1356 	if (csv2 > 1 ||
1357 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1358 		return -EINVAL;
1359 
1360 	/* Same thing for CSV3 */
1361 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1362 	if (csv3 > 1 ||
1363 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1364 		return -EINVAL;
1365 
1366 	/* We can only differ with CSV[23], and anything else is an error */
1367 	val ^= read_id_reg(vcpu, rd);
1368 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1369 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1370 	if (val)
1371 		return -EINVAL;
1372 
1373 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1374 	vcpu->kvm->arch.pfr0_csv3 = csv3;
1375 
1376 	return 0;
1377 }
1378 
1379 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1380 			       const struct sys_reg_desc *rd,
1381 			       u64 val)
1382 {
1383 	u8 pmuver, host_pmuver;
1384 	bool valid_pmu;
1385 
1386 	host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1387 
1388 	/*
1389 	 * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1390 	 * as it doesn't promise more than what the HW gives us. We
1391 	 * allow an IMPDEF PMU though, only if no PMU is supported
1392 	 * (KVM backward compatibility handling).
1393 	 */
1394 	pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1395 	if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1396 		return -EINVAL;
1397 
1398 	valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1399 
1400 	/* Make sure view register and PMU support do match */
1401 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1402 		return -EINVAL;
1403 
1404 	/* We can only differ with PMUver, and anything else is an error */
1405 	val ^= read_id_reg(vcpu, rd);
1406 	val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1407 	if (val)
1408 		return -EINVAL;
1409 
1410 	if (valid_pmu)
1411 		vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1412 	else
1413 		vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1414 
1415 	return 0;
1416 }
1417 
1418 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1419 			   const struct sys_reg_desc *rd,
1420 			   u64 val)
1421 {
1422 	u8 perfmon, host_perfmon;
1423 	bool valid_pmu;
1424 
1425 	host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1426 
1427 	/*
1428 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1429 	 * it doesn't promise more than what the HW gives us on the
1430 	 * AArch64 side (as everything is emulated with that), and
1431 	 * that this is a PMUv3.
1432 	 */
1433 	perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1434 	if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1435 	    (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1436 		return -EINVAL;
1437 
1438 	valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1439 
1440 	/* Make sure view register and PMU support do match */
1441 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1442 		return -EINVAL;
1443 
1444 	/* We can only differ with PerfMon, and anything else is an error */
1445 	val ^= read_id_reg(vcpu, rd);
1446 	val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1447 	if (val)
1448 		return -EINVAL;
1449 
1450 	if (valid_pmu)
1451 		vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1452 	else
1453 		vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1454 
1455 	return 0;
1456 }
1457 
1458 /*
1459  * cpufeature ID register user accessors
1460  *
1461  * For now, these registers are immutable for userspace, so no values
1462  * are stored, and for set_id_reg() we don't allow the effective value
1463  * to be changed.
1464  */
1465 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1466 		      u64 *val)
1467 {
1468 	*val = read_id_reg(vcpu, rd);
1469 	return 0;
1470 }
1471 
1472 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1473 		      u64 val)
1474 {
1475 	/* This is what we mean by invariant: you can't change it. */
1476 	if (val != read_id_reg(vcpu, rd))
1477 		return -EINVAL;
1478 
1479 	return 0;
1480 }
1481 
1482 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1483 		       u64 *val)
1484 {
1485 	*val = 0;
1486 	return 0;
1487 }
1488 
1489 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1490 		      u64 val)
1491 {
1492 	return 0;
1493 }
1494 
1495 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1496 		       const struct sys_reg_desc *r)
1497 {
1498 	if (p->is_write)
1499 		return write_to_read_only(vcpu, p, r);
1500 
1501 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1502 	return true;
1503 }
1504 
1505 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1506 			 const struct sys_reg_desc *r)
1507 {
1508 	if (p->is_write)
1509 		return write_to_read_only(vcpu, p, r);
1510 
1511 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1512 	return true;
1513 }
1514 
1515 /*
1516  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1517  * by the physical CPU which the vcpu currently resides in.
1518  */
1519 static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1520 {
1521 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1522 	u64 clidr;
1523 	u8 loc;
1524 
1525 	if ((ctr_el0 & CTR_EL0_IDC)) {
1526 		/*
1527 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1528 		 * will not be set and a unified cache, which will be marked as
1529 		 * LoC, will be added.
1530 		 *
1531 		 * If not DIC, let the unified cache L2 so that an instruction
1532 		 * cache can be added as L1 later.
1533 		 */
1534 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1535 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1536 	} else {
1537 		/*
1538 		 * Data cache clean to the PoU is required so let L1 have a data
1539 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1540 		 * it can be marked as LoC too.
1541 		 */
1542 		loc = 1;
1543 		clidr = 1 << CLIDR_LOUU_SHIFT;
1544 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1545 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1546 	}
1547 
1548 	/*
1549 	 * Instruction cache invalidation to the PoU is required so let L1 have
1550 	 * an instruction cache. If L1 already has a data cache, it will be
1551 	 * CACHE_TYPE_SEPARATE.
1552 	 */
1553 	if (!(ctr_el0 & CTR_EL0_DIC))
1554 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1555 
1556 	clidr |= loc << CLIDR_LOC_SHIFT;
1557 
1558 	/*
1559 	 * Add tag cache unified to data cache. Allocation tags and data are
1560 	 * unified in a cache line so that it looks valid even if there is only
1561 	 * one cache line.
1562 	 */
1563 	if (kvm_has_mte(vcpu->kvm))
1564 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1565 
1566 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1567 }
1568 
1569 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1570 		      u64 val)
1571 {
1572 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1573 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1574 
1575 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1576 		return -EINVAL;
1577 
1578 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1579 
1580 	return 0;
1581 }
1582 
1583 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1584 			  const struct sys_reg_desc *r)
1585 {
1586 	int reg = r->reg;
1587 
1588 	if (p->is_write)
1589 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1590 	else
1591 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1592 	return true;
1593 }
1594 
1595 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1596 			  const struct sys_reg_desc *r)
1597 {
1598 	u32 csselr;
1599 
1600 	if (p->is_write)
1601 		return write_to_read_only(vcpu, p, r);
1602 
1603 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1604 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1605 	if (csselr < CSSELR_MAX)
1606 		p->regval = get_ccsidr(vcpu, csselr);
1607 
1608 	return true;
1609 }
1610 
1611 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1612 				   const struct sys_reg_desc *rd)
1613 {
1614 	if (kvm_has_mte(vcpu->kvm))
1615 		return 0;
1616 
1617 	return REG_HIDDEN;
1618 }
1619 
1620 #define MTE_REG(name) {				\
1621 	SYS_DESC(SYS_##name),			\
1622 	.access = undef_access,			\
1623 	.reset = reset_unknown,			\
1624 	.reg = name,				\
1625 	.visibility = mte_visibility,		\
1626 }
1627 
1628 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1629 				   const struct sys_reg_desc *rd)
1630 {
1631 	if (vcpu_has_nv(vcpu))
1632 		return 0;
1633 
1634 	return REG_HIDDEN;
1635 }
1636 
1637 #define EL2_REG(name, acc, rst, v) {		\
1638 	SYS_DESC(SYS_##name),			\
1639 	.access = acc,				\
1640 	.reset = rst,				\
1641 	.reg = name,				\
1642 	.visibility = el2_visibility,		\
1643 	.val = v,				\
1644 }
1645 
1646 /*
1647  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1648  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1649  * handling traps. Given that, they are always hidden from userspace.
1650  */
1651 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1652 				    const struct sys_reg_desc *rd)
1653 {
1654 	return REG_HIDDEN_USER;
1655 }
1656 
1657 #define EL12_REG(name, acc, rst, v) {		\
1658 	SYS_DESC(SYS_##name##_EL12),		\
1659 	.access = acc,				\
1660 	.reset = rst,				\
1661 	.reg = name##_EL1,			\
1662 	.val = v,				\
1663 	.visibility = elx2_visibility,		\
1664 }
1665 
1666 /* sys_reg_desc initialiser for known cpufeature ID registers */
1667 #define ID_SANITISED(name) {			\
1668 	SYS_DESC(SYS_##name),			\
1669 	.access	= access_id_reg,		\
1670 	.get_user = get_id_reg,			\
1671 	.set_user = set_id_reg,			\
1672 	.visibility = id_visibility,		\
1673 }
1674 
1675 /* sys_reg_desc initialiser for known cpufeature ID registers */
1676 #define AA32_ID_SANITISED(name) {		\
1677 	SYS_DESC(SYS_##name),			\
1678 	.access	= access_id_reg,		\
1679 	.get_user = get_id_reg,			\
1680 	.set_user = set_id_reg,			\
1681 	.visibility = aa32_id_visibility,	\
1682 }
1683 
1684 /*
1685  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1686  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1687  * (1 <= crm < 8, 0 <= Op2 < 8).
1688  */
1689 #define ID_UNALLOCATED(crm, op2) {			\
1690 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1691 	.access = access_id_reg,			\
1692 	.get_user = get_id_reg,				\
1693 	.set_user = set_id_reg,				\
1694 	.visibility = raz_visibility			\
1695 }
1696 
1697 /*
1698  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1699  * For now, these are exposed just like unallocated ID regs: they appear
1700  * RAZ for the guest.
1701  */
1702 #define ID_HIDDEN(name) {			\
1703 	SYS_DESC(SYS_##name),			\
1704 	.access = access_id_reg,		\
1705 	.get_user = get_id_reg,			\
1706 	.set_user = set_id_reg,			\
1707 	.visibility = raz_visibility,		\
1708 }
1709 
1710 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1711 			  struct sys_reg_params *p,
1712 			  const struct sys_reg_desc *r)
1713 {
1714 	if (p->is_write)
1715 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1716 	else
1717 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1718 
1719 	return true;
1720 }
1721 
1722 static bool access_elr(struct kvm_vcpu *vcpu,
1723 		       struct sys_reg_params *p,
1724 		       const struct sys_reg_desc *r)
1725 {
1726 	if (p->is_write)
1727 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1728 	else
1729 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1730 
1731 	return true;
1732 }
1733 
1734 static bool access_spsr(struct kvm_vcpu *vcpu,
1735 			struct sys_reg_params *p,
1736 			const struct sys_reg_desc *r)
1737 {
1738 	if (p->is_write)
1739 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1740 	else
1741 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1742 
1743 	return true;
1744 }
1745 
1746 /*
1747  * Architected system registers.
1748  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1749  *
1750  * Debug handling: We do trap most, if not all debug related system
1751  * registers. The implementation is good enough to ensure that a guest
1752  * can use these with minimal performance degradation. The drawback is
1753  * that we don't implement any of the external debug architecture.
1754  * This should be revisited if we ever encounter a more demanding
1755  * guest...
1756  */
1757 static const struct sys_reg_desc sys_reg_descs[] = {
1758 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1759 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1760 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1761 
1762 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1763 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1764 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1765 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1766 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1767 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1768 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1769 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1770 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1771 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1772 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1773 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1774 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1775 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1776 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1777 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1778 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1779 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1780 
1781 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1782 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1783 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1784 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1785 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1786 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1787 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1788 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1789 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1790 
1791 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1792 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1793 	// DBGDTR[TR]X_EL0 share the same encoding
1794 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1795 
1796 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1797 
1798 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1799 
1800 	/*
1801 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1802 	 * entries in arm64_ftr_regs[].
1803 	 */
1804 
1805 	/* AArch64 mappings of the AArch32 ID registers */
1806 	/* CRm=1 */
1807 	AA32_ID_SANITISED(ID_PFR0_EL1),
1808 	AA32_ID_SANITISED(ID_PFR1_EL1),
1809 	{ SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1810 	  .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1811 	  .visibility = aa32_id_visibility, },
1812 	ID_HIDDEN(ID_AFR0_EL1),
1813 	AA32_ID_SANITISED(ID_MMFR0_EL1),
1814 	AA32_ID_SANITISED(ID_MMFR1_EL1),
1815 	AA32_ID_SANITISED(ID_MMFR2_EL1),
1816 	AA32_ID_SANITISED(ID_MMFR3_EL1),
1817 
1818 	/* CRm=2 */
1819 	AA32_ID_SANITISED(ID_ISAR0_EL1),
1820 	AA32_ID_SANITISED(ID_ISAR1_EL1),
1821 	AA32_ID_SANITISED(ID_ISAR2_EL1),
1822 	AA32_ID_SANITISED(ID_ISAR3_EL1),
1823 	AA32_ID_SANITISED(ID_ISAR4_EL1),
1824 	AA32_ID_SANITISED(ID_ISAR5_EL1),
1825 	AA32_ID_SANITISED(ID_MMFR4_EL1),
1826 	AA32_ID_SANITISED(ID_ISAR6_EL1),
1827 
1828 	/* CRm=3 */
1829 	AA32_ID_SANITISED(MVFR0_EL1),
1830 	AA32_ID_SANITISED(MVFR1_EL1),
1831 	AA32_ID_SANITISED(MVFR2_EL1),
1832 	ID_UNALLOCATED(3,3),
1833 	AA32_ID_SANITISED(ID_PFR2_EL1),
1834 	ID_HIDDEN(ID_DFR1_EL1),
1835 	AA32_ID_SANITISED(ID_MMFR5_EL1),
1836 	ID_UNALLOCATED(3,7),
1837 
1838 	/* AArch64 ID registers */
1839 	/* CRm=4 */
1840 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1841 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1842 	ID_SANITISED(ID_AA64PFR1_EL1),
1843 	ID_UNALLOCATED(4,2),
1844 	ID_UNALLOCATED(4,3),
1845 	ID_SANITISED(ID_AA64ZFR0_EL1),
1846 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1847 	ID_UNALLOCATED(4,6),
1848 	ID_UNALLOCATED(4,7),
1849 
1850 	/* CRm=5 */
1851 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1852 	  .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1853 	ID_SANITISED(ID_AA64DFR1_EL1),
1854 	ID_UNALLOCATED(5,2),
1855 	ID_UNALLOCATED(5,3),
1856 	ID_HIDDEN(ID_AA64AFR0_EL1),
1857 	ID_HIDDEN(ID_AA64AFR1_EL1),
1858 	ID_UNALLOCATED(5,6),
1859 	ID_UNALLOCATED(5,7),
1860 
1861 	/* CRm=6 */
1862 	ID_SANITISED(ID_AA64ISAR0_EL1),
1863 	ID_SANITISED(ID_AA64ISAR1_EL1),
1864 	ID_SANITISED(ID_AA64ISAR2_EL1),
1865 	ID_UNALLOCATED(6,3),
1866 	ID_UNALLOCATED(6,4),
1867 	ID_UNALLOCATED(6,5),
1868 	ID_UNALLOCATED(6,6),
1869 	ID_UNALLOCATED(6,7),
1870 
1871 	/* CRm=7 */
1872 	ID_SANITISED(ID_AA64MMFR0_EL1),
1873 	ID_SANITISED(ID_AA64MMFR1_EL1),
1874 	ID_SANITISED(ID_AA64MMFR2_EL1),
1875 	ID_UNALLOCATED(7,3),
1876 	ID_UNALLOCATED(7,4),
1877 	ID_UNALLOCATED(7,5),
1878 	ID_UNALLOCATED(7,6),
1879 	ID_UNALLOCATED(7,7),
1880 
1881 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1882 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1883 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1884 
1885 	MTE_REG(RGSR_EL1),
1886 	MTE_REG(GCR_EL1),
1887 
1888 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1889 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1890 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1891 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1892 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1893 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1894 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1895 
1896 	PTRAUTH_KEY(APIA),
1897 	PTRAUTH_KEY(APIB),
1898 	PTRAUTH_KEY(APDA),
1899 	PTRAUTH_KEY(APDB),
1900 	PTRAUTH_KEY(APGA),
1901 
1902 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
1903 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
1904 
1905 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1906 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1907 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1908 
1909 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1910 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1911 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1912 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1913 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1914 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1915 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1916 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1917 
1918 	MTE_REG(TFSR_EL1),
1919 	MTE_REG(TFSRE0_EL1),
1920 
1921 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1922 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1923 
1924 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1925 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1926 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1927 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1928 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1929 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1930 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1931 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1932 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1933 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1934 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1935 	/* PMBIDR_EL1 is not trapped */
1936 
1937 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1938 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1939 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1940 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1941 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1942 
1943 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1944 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1945 
1946 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1947 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1948 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1949 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1950 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1951 
1952 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
1953 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1954 
1955 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1956 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1957 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1958 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1959 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1960 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1961 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1962 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1963 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1964 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1965 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1966 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1967 
1968 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1969 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1970 
1971 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1972 
1973 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1974 
1975 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1976 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
1977 	  .set_user = set_clidr },
1978 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
1979 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1980 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1981 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1982 	{ SYS_DESC(SYS_SVCR), undef_access },
1983 
1984 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1985 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1986 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1987 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1988 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1989 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1990 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1991 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1992 	/*
1993 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1994 	 * previously (and pointlessly) advertised in the past...
1995 	 */
1996 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1997 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1998 	  .access = access_pmswinc, .reset = NULL },
1999 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
2000 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2001 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
2002 	  .access = access_pmceid, .reset = NULL },
2003 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
2004 	  .access = access_pmceid, .reset = NULL },
2005 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
2006 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2007 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2008 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
2009 	  .access = access_pmu_evtyper, .reset = NULL },
2010 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
2011 	  .access = access_pmu_evcntr, .reset = NULL },
2012 	/*
2013 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2014 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2015 	 */
2016 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
2017 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2018 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
2019 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
2020 
2021 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2022 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2023 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2024 
2025 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2026 
2027 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2028 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2029 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2030 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2031 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2032 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2033 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2034 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2035 	AMU_AMEVCNTR0_EL0(0),
2036 	AMU_AMEVCNTR0_EL0(1),
2037 	AMU_AMEVCNTR0_EL0(2),
2038 	AMU_AMEVCNTR0_EL0(3),
2039 	AMU_AMEVCNTR0_EL0(4),
2040 	AMU_AMEVCNTR0_EL0(5),
2041 	AMU_AMEVCNTR0_EL0(6),
2042 	AMU_AMEVCNTR0_EL0(7),
2043 	AMU_AMEVCNTR0_EL0(8),
2044 	AMU_AMEVCNTR0_EL0(9),
2045 	AMU_AMEVCNTR0_EL0(10),
2046 	AMU_AMEVCNTR0_EL0(11),
2047 	AMU_AMEVCNTR0_EL0(12),
2048 	AMU_AMEVCNTR0_EL0(13),
2049 	AMU_AMEVCNTR0_EL0(14),
2050 	AMU_AMEVCNTR0_EL0(15),
2051 	AMU_AMEVTYPER0_EL0(0),
2052 	AMU_AMEVTYPER0_EL0(1),
2053 	AMU_AMEVTYPER0_EL0(2),
2054 	AMU_AMEVTYPER0_EL0(3),
2055 	AMU_AMEVTYPER0_EL0(4),
2056 	AMU_AMEVTYPER0_EL0(5),
2057 	AMU_AMEVTYPER0_EL0(6),
2058 	AMU_AMEVTYPER0_EL0(7),
2059 	AMU_AMEVTYPER0_EL0(8),
2060 	AMU_AMEVTYPER0_EL0(9),
2061 	AMU_AMEVTYPER0_EL0(10),
2062 	AMU_AMEVTYPER0_EL0(11),
2063 	AMU_AMEVTYPER0_EL0(12),
2064 	AMU_AMEVTYPER0_EL0(13),
2065 	AMU_AMEVTYPER0_EL0(14),
2066 	AMU_AMEVTYPER0_EL0(15),
2067 	AMU_AMEVCNTR1_EL0(0),
2068 	AMU_AMEVCNTR1_EL0(1),
2069 	AMU_AMEVCNTR1_EL0(2),
2070 	AMU_AMEVCNTR1_EL0(3),
2071 	AMU_AMEVCNTR1_EL0(4),
2072 	AMU_AMEVCNTR1_EL0(5),
2073 	AMU_AMEVCNTR1_EL0(6),
2074 	AMU_AMEVCNTR1_EL0(7),
2075 	AMU_AMEVCNTR1_EL0(8),
2076 	AMU_AMEVCNTR1_EL0(9),
2077 	AMU_AMEVCNTR1_EL0(10),
2078 	AMU_AMEVCNTR1_EL0(11),
2079 	AMU_AMEVCNTR1_EL0(12),
2080 	AMU_AMEVCNTR1_EL0(13),
2081 	AMU_AMEVCNTR1_EL0(14),
2082 	AMU_AMEVCNTR1_EL0(15),
2083 	AMU_AMEVTYPER1_EL0(0),
2084 	AMU_AMEVTYPER1_EL0(1),
2085 	AMU_AMEVTYPER1_EL0(2),
2086 	AMU_AMEVTYPER1_EL0(3),
2087 	AMU_AMEVTYPER1_EL0(4),
2088 	AMU_AMEVTYPER1_EL0(5),
2089 	AMU_AMEVTYPER1_EL0(6),
2090 	AMU_AMEVTYPER1_EL0(7),
2091 	AMU_AMEVTYPER1_EL0(8),
2092 	AMU_AMEVTYPER1_EL0(9),
2093 	AMU_AMEVTYPER1_EL0(10),
2094 	AMU_AMEVTYPER1_EL0(11),
2095 	AMU_AMEVTYPER1_EL0(12),
2096 	AMU_AMEVTYPER1_EL0(13),
2097 	AMU_AMEVTYPER1_EL0(14),
2098 	AMU_AMEVTYPER1_EL0(15),
2099 
2100 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2101 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2102 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2103 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2104 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2105 
2106 	/* PMEVCNTRn_EL0 */
2107 	PMU_PMEVCNTR_EL0(0),
2108 	PMU_PMEVCNTR_EL0(1),
2109 	PMU_PMEVCNTR_EL0(2),
2110 	PMU_PMEVCNTR_EL0(3),
2111 	PMU_PMEVCNTR_EL0(4),
2112 	PMU_PMEVCNTR_EL0(5),
2113 	PMU_PMEVCNTR_EL0(6),
2114 	PMU_PMEVCNTR_EL0(7),
2115 	PMU_PMEVCNTR_EL0(8),
2116 	PMU_PMEVCNTR_EL0(9),
2117 	PMU_PMEVCNTR_EL0(10),
2118 	PMU_PMEVCNTR_EL0(11),
2119 	PMU_PMEVCNTR_EL0(12),
2120 	PMU_PMEVCNTR_EL0(13),
2121 	PMU_PMEVCNTR_EL0(14),
2122 	PMU_PMEVCNTR_EL0(15),
2123 	PMU_PMEVCNTR_EL0(16),
2124 	PMU_PMEVCNTR_EL0(17),
2125 	PMU_PMEVCNTR_EL0(18),
2126 	PMU_PMEVCNTR_EL0(19),
2127 	PMU_PMEVCNTR_EL0(20),
2128 	PMU_PMEVCNTR_EL0(21),
2129 	PMU_PMEVCNTR_EL0(22),
2130 	PMU_PMEVCNTR_EL0(23),
2131 	PMU_PMEVCNTR_EL0(24),
2132 	PMU_PMEVCNTR_EL0(25),
2133 	PMU_PMEVCNTR_EL0(26),
2134 	PMU_PMEVCNTR_EL0(27),
2135 	PMU_PMEVCNTR_EL0(28),
2136 	PMU_PMEVCNTR_EL0(29),
2137 	PMU_PMEVCNTR_EL0(30),
2138 	/* PMEVTYPERn_EL0 */
2139 	PMU_PMEVTYPER_EL0(0),
2140 	PMU_PMEVTYPER_EL0(1),
2141 	PMU_PMEVTYPER_EL0(2),
2142 	PMU_PMEVTYPER_EL0(3),
2143 	PMU_PMEVTYPER_EL0(4),
2144 	PMU_PMEVTYPER_EL0(5),
2145 	PMU_PMEVTYPER_EL0(6),
2146 	PMU_PMEVTYPER_EL0(7),
2147 	PMU_PMEVTYPER_EL0(8),
2148 	PMU_PMEVTYPER_EL0(9),
2149 	PMU_PMEVTYPER_EL0(10),
2150 	PMU_PMEVTYPER_EL0(11),
2151 	PMU_PMEVTYPER_EL0(12),
2152 	PMU_PMEVTYPER_EL0(13),
2153 	PMU_PMEVTYPER_EL0(14),
2154 	PMU_PMEVTYPER_EL0(15),
2155 	PMU_PMEVTYPER_EL0(16),
2156 	PMU_PMEVTYPER_EL0(17),
2157 	PMU_PMEVTYPER_EL0(18),
2158 	PMU_PMEVTYPER_EL0(19),
2159 	PMU_PMEVTYPER_EL0(20),
2160 	PMU_PMEVTYPER_EL0(21),
2161 	PMU_PMEVTYPER_EL0(22),
2162 	PMU_PMEVTYPER_EL0(23),
2163 	PMU_PMEVTYPER_EL0(24),
2164 	PMU_PMEVTYPER_EL0(25),
2165 	PMU_PMEVTYPER_EL0(26),
2166 	PMU_PMEVTYPER_EL0(27),
2167 	PMU_PMEVTYPER_EL0(28),
2168 	PMU_PMEVTYPER_EL0(29),
2169 	PMU_PMEVTYPER_EL0(30),
2170 	/*
2171 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2172 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2173 	 */
2174 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2175 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2176 
2177 	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2178 	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2179 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2180 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2181 	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2182 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2183 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_EL2_DEFAULT ),
2184 	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2185 	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2186 
2187 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2188 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2189 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2190 	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2191 	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2192 
2193 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2194 	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2195 	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2196 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2197 
2198 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2199 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2200 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2201 	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2202 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2203 
2204 	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2205 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2206 
2207 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2208 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2209 
2210 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2211 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2212 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2213 
2214 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2215 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2216 
2217 	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2218 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2219 
2220 	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2221 	EL12_REG(CPACR, access_rw, reset_val, 0),
2222 	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2223 	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2224 	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2225 	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2226 	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2227 	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2228 	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2229 	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2230 	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2231 	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2232 	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2233 	EL12_REG(VBAR, access_rw, reset_val, 0),
2234 	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2235 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2236 
2237 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2238 };
2239 
2240 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2241 			struct sys_reg_params *p,
2242 			const struct sys_reg_desc *r)
2243 {
2244 	if (p->is_write) {
2245 		return ignore_write(vcpu, p);
2246 	} else {
2247 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2248 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2249 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2250 
2251 		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2252 			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2253 			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2254 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2255 		return true;
2256 	}
2257 }
2258 
2259 /*
2260  * AArch32 debug register mappings
2261  *
2262  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2263  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2264  *
2265  * None of the other registers share their location, so treat them as
2266  * if they were 64bit.
2267  */
2268 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2269 	/* DBGBVRn */							      \
2270 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2271 	/* DBGBCRn */							      \
2272 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2273 	/* DBGWVRn */							      \
2274 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2275 	/* DBGWCRn */							      \
2276 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2277 
2278 #define DBGBXVR(n)							      \
2279 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2280 
2281 /*
2282  * Trapped cp14 registers. We generally ignore most of the external
2283  * debug, on the principle that they don't really make sense to a
2284  * guest. Revisit this one day, would this principle change.
2285  */
2286 static const struct sys_reg_desc cp14_regs[] = {
2287 	/* DBGDIDR */
2288 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2289 	/* DBGDTRRXext */
2290 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2291 
2292 	DBG_BCR_BVR_WCR_WVR(0),
2293 	/* DBGDSCRint */
2294 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2295 	DBG_BCR_BVR_WCR_WVR(1),
2296 	/* DBGDCCINT */
2297 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2298 	/* DBGDSCRext */
2299 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2300 	DBG_BCR_BVR_WCR_WVR(2),
2301 	/* DBGDTR[RT]Xint */
2302 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2303 	/* DBGDTR[RT]Xext */
2304 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2305 	DBG_BCR_BVR_WCR_WVR(3),
2306 	DBG_BCR_BVR_WCR_WVR(4),
2307 	DBG_BCR_BVR_WCR_WVR(5),
2308 	/* DBGWFAR */
2309 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2310 	/* DBGOSECCR */
2311 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2312 	DBG_BCR_BVR_WCR_WVR(6),
2313 	/* DBGVCR */
2314 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2315 	DBG_BCR_BVR_WCR_WVR(7),
2316 	DBG_BCR_BVR_WCR_WVR(8),
2317 	DBG_BCR_BVR_WCR_WVR(9),
2318 	DBG_BCR_BVR_WCR_WVR(10),
2319 	DBG_BCR_BVR_WCR_WVR(11),
2320 	DBG_BCR_BVR_WCR_WVR(12),
2321 	DBG_BCR_BVR_WCR_WVR(13),
2322 	DBG_BCR_BVR_WCR_WVR(14),
2323 	DBG_BCR_BVR_WCR_WVR(15),
2324 
2325 	/* DBGDRAR (32bit) */
2326 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2327 
2328 	DBGBXVR(0),
2329 	/* DBGOSLAR */
2330 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2331 	DBGBXVR(1),
2332 	/* DBGOSLSR */
2333 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2334 	DBGBXVR(2),
2335 	DBGBXVR(3),
2336 	/* DBGOSDLR */
2337 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2338 	DBGBXVR(4),
2339 	/* DBGPRCR */
2340 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2341 	DBGBXVR(5),
2342 	DBGBXVR(6),
2343 	DBGBXVR(7),
2344 	DBGBXVR(8),
2345 	DBGBXVR(9),
2346 	DBGBXVR(10),
2347 	DBGBXVR(11),
2348 	DBGBXVR(12),
2349 	DBGBXVR(13),
2350 	DBGBXVR(14),
2351 	DBGBXVR(15),
2352 
2353 	/* DBGDSAR (32bit) */
2354 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2355 
2356 	/* DBGDEVID2 */
2357 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2358 	/* DBGDEVID1 */
2359 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2360 	/* DBGDEVID */
2361 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2362 	/* DBGCLAIMSET */
2363 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2364 	/* DBGCLAIMCLR */
2365 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2366 	/* DBGAUTHSTATUS */
2367 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2368 };
2369 
2370 /* Trapped cp14 64bit registers */
2371 static const struct sys_reg_desc cp14_64_regs[] = {
2372 	/* DBGDRAR (64bit) */
2373 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2374 
2375 	/* DBGDSAR (64bit) */
2376 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2377 };
2378 
2379 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2380 	AA32(_map),							\
2381 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2382 	.visibility = pmu_visibility
2383 
2384 /* Macro to expand the PMEVCNTRn register */
2385 #define PMU_PMEVCNTR(n)							\
2386 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2387 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2388 	  .access = access_pmu_evcntr }
2389 
2390 /* Macro to expand the PMEVTYPERn register */
2391 #define PMU_PMEVTYPER(n)						\
2392 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2393 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2394 	  .access = access_pmu_evtyper }
2395 /*
2396  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2397  * depending on the way they are accessed (as a 32bit or a 64bit
2398  * register).
2399  */
2400 static const struct sys_reg_desc cp15_regs[] = {
2401 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2402 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2403 	/* ACTLR */
2404 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2405 	/* ACTLR2 */
2406 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2407 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2408 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2409 	/* TTBCR */
2410 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2411 	/* TTBCR2 */
2412 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2413 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2414 	/* DFSR */
2415 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2416 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2417 	/* ADFSR */
2418 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2419 	/* AIFSR */
2420 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2421 	/* DFAR */
2422 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2423 	/* IFAR */
2424 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2425 
2426 	/*
2427 	 * DC{C,I,CI}SW operations:
2428 	 */
2429 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2430 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2431 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2432 
2433 	/* PMU */
2434 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2435 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2436 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2437 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2438 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2439 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2440 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2441 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2442 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2443 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2444 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2445 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2446 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2447 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2448 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2449 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2450 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2451 	/* PMMIR */
2452 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2453 
2454 	/* PRRR/MAIR0 */
2455 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2456 	/* NMRR/MAIR1 */
2457 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2458 	/* AMAIR0 */
2459 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2460 	/* AMAIR1 */
2461 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2462 
2463 	/* ICC_SRE */
2464 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2465 
2466 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2467 
2468 	/* Arch Tmers */
2469 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2470 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2471 
2472 	/* PMEVCNTRn */
2473 	PMU_PMEVCNTR(0),
2474 	PMU_PMEVCNTR(1),
2475 	PMU_PMEVCNTR(2),
2476 	PMU_PMEVCNTR(3),
2477 	PMU_PMEVCNTR(4),
2478 	PMU_PMEVCNTR(5),
2479 	PMU_PMEVCNTR(6),
2480 	PMU_PMEVCNTR(7),
2481 	PMU_PMEVCNTR(8),
2482 	PMU_PMEVCNTR(9),
2483 	PMU_PMEVCNTR(10),
2484 	PMU_PMEVCNTR(11),
2485 	PMU_PMEVCNTR(12),
2486 	PMU_PMEVCNTR(13),
2487 	PMU_PMEVCNTR(14),
2488 	PMU_PMEVCNTR(15),
2489 	PMU_PMEVCNTR(16),
2490 	PMU_PMEVCNTR(17),
2491 	PMU_PMEVCNTR(18),
2492 	PMU_PMEVCNTR(19),
2493 	PMU_PMEVCNTR(20),
2494 	PMU_PMEVCNTR(21),
2495 	PMU_PMEVCNTR(22),
2496 	PMU_PMEVCNTR(23),
2497 	PMU_PMEVCNTR(24),
2498 	PMU_PMEVCNTR(25),
2499 	PMU_PMEVCNTR(26),
2500 	PMU_PMEVCNTR(27),
2501 	PMU_PMEVCNTR(28),
2502 	PMU_PMEVCNTR(29),
2503 	PMU_PMEVCNTR(30),
2504 	/* PMEVTYPERn */
2505 	PMU_PMEVTYPER(0),
2506 	PMU_PMEVTYPER(1),
2507 	PMU_PMEVTYPER(2),
2508 	PMU_PMEVTYPER(3),
2509 	PMU_PMEVTYPER(4),
2510 	PMU_PMEVTYPER(5),
2511 	PMU_PMEVTYPER(6),
2512 	PMU_PMEVTYPER(7),
2513 	PMU_PMEVTYPER(8),
2514 	PMU_PMEVTYPER(9),
2515 	PMU_PMEVTYPER(10),
2516 	PMU_PMEVTYPER(11),
2517 	PMU_PMEVTYPER(12),
2518 	PMU_PMEVTYPER(13),
2519 	PMU_PMEVTYPER(14),
2520 	PMU_PMEVTYPER(15),
2521 	PMU_PMEVTYPER(16),
2522 	PMU_PMEVTYPER(17),
2523 	PMU_PMEVTYPER(18),
2524 	PMU_PMEVTYPER(19),
2525 	PMU_PMEVTYPER(20),
2526 	PMU_PMEVTYPER(21),
2527 	PMU_PMEVTYPER(22),
2528 	PMU_PMEVTYPER(23),
2529 	PMU_PMEVTYPER(24),
2530 	PMU_PMEVTYPER(25),
2531 	PMU_PMEVTYPER(26),
2532 	PMU_PMEVTYPER(27),
2533 	PMU_PMEVTYPER(28),
2534 	PMU_PMEVTYPER(29),
2535 	PMU_PMEVTYPER(30),
2536 	/* PMCCFILTR */
2537 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2538 
2539 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2540 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2541 
2542 	/* CCSIDR2 */
2543 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2544 
2545 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2546 };
2547 
2548 static const struct sys_reg_desc cp15_64_regs[] = {
2549 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2550 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2551 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2552 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
2553 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2554 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2555 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2556 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2557 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2558 };
2559 
2560 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2561 			       bool is_32)
2562 {
2563 	unsigned int i;
2564 
2565 	for (i = 0; i < n; i++) {
2566 		if (!is_32 && table[i].reg && !table[i].reset) {
2567 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2568 			return false;
2569 		}
2570 
2571 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2572 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2573 			return false;
2574 		}
2575 	}
2576 
2577 	return true;
2578 }
2579 
2580 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2581 {
2582 	kvm_inject_undefined(vcpu);
2583 	return 1;
2584 }
2585 
2586 static void perform_access(struct kvm_vcpu *vcpu,
2587 			   struct sys_reg_params *params,
2588 			   const struct sys_reg_desc *r)
2589 {
2590 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2591 
2592 	/* Check for regs disabled by runtime config */
2593 	if (sysreg_hidden(vcpu, r)) {
2594 		kvm_inject_undefined(vcpu);
2595 		return;
2596 	}
2597 
2598 	/*
2599 	 * Not having an accessor means that we have configured a trap
2600 	 * that we don't know how to handle. This certainly qualifies
2601 	 * as a gross bug that should be fixed right away.
2602 	 */
2603 	BUG_ON(!r->access);
2604 
2605 	/* Skip instruction if instructed so */
2606 	if (likely(r->access(vcpu, params, r)))
2607 		kvm_incr_pc(vcpu);
2608 }
2609 
2610 /*
2611  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2612  *                call the corresponding trap handler.
2613  *
2614  * @params: pointer to the descriptor of the access
2615  * @table: array of trap descriptors
2616  * @num: size of the trap descriptor array
2617  *
2618  * Return true if the access has been handled, false if not.
2619  */
2620 static bool emulate_cp(struct kvm_vcpu *vcpu,
2621 		       struct sys_reg_params *params,
2622 		       const struct sys_reg_desc *table,
2623 		       size_t num)
2624 {
2625 	const struct sys_reg_desc *r;
2626 
2627 	if (!table)
2628 		return false;	/* Not handled */
2629 
2630 	r = find_reg(params, table, num);
2631 
2632 	if (r) {
2633 		perform_access(vcpu, params, r);
2634 		return true;
2635 	}
2636 
2637 	/* Not handled */
2638 	return false;
2639 }
2640 
2641 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2642 				struct sys_reg_params *params)
2643 {
2644 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2645 	int cp = -1;
2646 
2647 	switch (esr_ec) {
2648 	case ESR_ELx_EC_CP15_32:
2649 	case ESR_ELx_EC_CP15_64:
2650 		cp = 15;
2651 		break;
2652 	case ESR_ELx_EC_CP14_MR:
2653 	case ESR_ELx_EC_CP14_64:
2654 		cp = 14;
2655 		break;
2656 	default:
2657 		WARN_ON(1);
2658 	}
2659 
2660 	print_sys_reg_msg(params,
2661 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2662 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2663 	kvm_inject_undefined(vcpu);
2664 }
2665 
2666 /**
2667  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2668  * @vcpu: The VCPU pointer
2669  * @run:  The kvm_run struct
2670  */
2671 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2672 			    const struct sys_reg_desc *global,
2673 			    size_t nr_global)
2674 {
2675 	struct sys_reg_params params;
2676 	u64 esr = kvm_vcpu_get_esr(vcpu);
2677 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2678 	int Rt2 = (esr >> 10) & 0x1f;
2679 
2680 	params.CRm = (esr >> 1) & 0xf;
2681 	params.is_write = ((esr & 1) == 0);
2682 
2683 	params.Op0 = 0;
2684 	params.Op1 = (esr >> 16) & 0xf;
2685 	params.Op2 = 0;
2686 	params.CRn = 0;
2687 
2688 	/*
2689 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2690 	 * backends between AArch32 and AArch64, we get away with it.
2691 	 */
2692 	if (params.is_write) {
2693 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2694 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2695 	}
2696 
2697 	/*
2698 	 * If the table contains a handler, handle the
2699 	 * potential register operation in the case of a read and return
2700 	 * with success.
2701 	 */
2702 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2703 		/* Split up the value between registers for the read side */
2704 		if (!params.is_write) {
2705 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2706 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2707 		}
2708 
2709 		return 1;
2710 	}
2711 
2712 	unhandled_cp_access(vcpu, &params);
2713 	return 1;
2714 }
2715 
2716 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2717 
2718 /*
2719  * The CP10 ID registers are architecturally mapped to AArch64 feature
2720  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2721  * from AArch32.
2722  */
2723 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2724 {
2725 	u8 reg_id = (esr >> 10) & 0xf;
2726 	bool valid;
2727 
2728 	params->is_write = ((esr & 1) == 0);
2729 	params->Op0 = 3;
2730 	params->Op1 = 0;
2731 	params->CRn = 0;
2732 	params->CRm = 3;
2733 
2734 	/* CP10 ID registers are read-only */
2735 	valid = !params->is_write;
2736 
2737 	switch (reg_id) {
2738 	/* MVFR0 */
2739 	case 0b0111:
2740 		params->Op2 = 0;
2741 		break;
2742 	/* MVFR1 */
2743 	case 0b0110:
2744 		params->Op2 = 1;
2745 		break;
2746 	/* MVFR2 */
2747 	case 0b0101:
2748 		params->Op2 = 2;
2749 		break;
2750 	default:
2751 		valid = false;
2752 	}
2753 
2754 	if (valid)
2755 		return true;
2756 
2757 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2758 		      params->is_write ? "write" : "read", reg_id);
2759 	return false;
2760 }
2761 
2762 /**
2763  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2764  *			  VFP Register' from AArch32.
2765  * @vcpu: The vCPU pointer
2766  *
2767  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2768  * Work out the correct AArch64 system register encoding and reroute to the
2769  * AArch64 system register emulation.
2770  */
2771 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2772 {
2773 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2774 	u64 esr = kvm_vcpu_get_esr(vcpu);
2775 	struct sys_reg_params params;
2776 
2777 	/* UNDEF on any unhandled register access */
2778 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2779 		kvm_inject_undefined(vcpu);
2780 		return 1;
2781 	}
2782 
2783 	if (emulate_sys_reg(vcpu, &params))
2784 		vcpu_set_reg(vcpu, Rt, params.regval);
2785 
2786 	return 1;
2787 }
2788 
2789 /**
2790  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2791  *			       CRn=0, which corresponds to the AArch32 feature
2792  *			       registers.
2793  * @vcpu: the vCPU pointer
2794  * @params: the system register access parameters.
2795  *
2796  * Our cp15 system register tables do not enumerate the AArch32 feature
2797  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2798  * register encoding can be trivially remapped into the AArch64 for the feature
2799  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2800  *
2801  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2802  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2803  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2804  * treat undefined registers in this range as RAZ.
2805  */
2806 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2807 				   struct sys_reg_params *params)
2808 {
2809 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2810 
2811 	/* Treat impossible writes to RO registers as UNDEFINED */
2812 	if (params->is_write) {
2813 		unhandled_cp_access(vcpu, params);
2814 		return 1;
2815 	}
2816 
2817 	params->Op0 = 3;
2818 
2819 	/*
2820 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2821 	 * Avoid conflicting with future expansion of AArch64 feature registers
2822 	 * and simply treat them as RAZ here.
2823 	 */
2824 	if (params->CRm > 3)
2825 		params->regval = 0;
2826 	else if (!emulate_sys_reg(vcpu, params))
2827 		return 1;
2828 
2829 	vcpu_set_reg(vcpu, Rt, params->regval);
2830 	return 1;
2831 }
2832 
2833 /**
2834  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2835  * @vcpu: The VCPU pointer
2836  * @run:  The kvm_run struct
2837  */
2838 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2839 			    struct sys_reg_params *params,
2840 			    const struct sys_reg_desc *global,
2841 			    size_t nr_global)
2842 {
2843 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2844 
2845 	params->regval = vcpu_get_reg(vcpu, Rt);
2846 
2847 	if (emulate_cp(vcpu, params, global, nr_global)) {
2848 		if (!params->is_write)
2849 			vcpu_set_reg(vcpu, Rt, params->regval);
2850 		return 1;
2851 	}
2852 
2853 	unhandled_cp_access(vcpu, params);
2854 	return 1;
2855 }
2856 
2857 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2858 {
2859 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2860 }
2861 
2862 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2863 {
2864 	struct sys_reg_params params;
2865 
2866 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2867 
2868 	/*
2869 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
2870 	 * system register table. Registers in the ID range where CRm=0 are
2871 	 * excluded from this scheme as they do not trivially map into AArch64
2872 	 * system register encodings.
2873 	 */
2874 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2875 		return kvm_emulate_cp15_id_reg(vcpu, &params);
2876 
2877 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2878 }
2879 
2880 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2881 {
2882 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2883 }
2884 
2885 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2886 {
2887 	struct sys_reg_params params;
2888 
2889 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2890 
2891 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2892 }
2893 
2894 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2895 {
2896 	// See ARM DDI 0487E.a, section D12.3.2
2897 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2898 }
2899 
2900 /**
2901  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2902  * @vcpu: The VCPU pointer
2903  * @params: Decoded system register parameters
2904  *
2905  * Return: true if the system register access was successful, false otherwise.
2906  */
2907 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2908 			   struct sys_reg_params *params)
2909 {
2910 	const struct sys_reg_desc *r;
2911 
2912 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2913 
2914 	if (likely(r)) {
2915 		perform_access(vcpu, params, r);
2916 		return true;
2917 	}
2918 
2919 	if (is_imp_def_sys_reg(params)) {
2920 		kvm_inject_undefined(vcpu);
2921 	} else {
2922 		print_sys_reg_msg(params,
2923 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2924 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2925 		kvm_inject_undefined(vcpu);
2926 	}
2927 	return false;
2928 }
2929 
2930 /**
2931  * kvm_reset_sys_regs - sets system registers to reset value
2932  * @vcpu: The VCPU pointer
2933  *
2934  * This function finds the right table above and sets the registers on the
2935  * virtual CPU struct to their architecturally defined reset values.
2936  */
2937 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2938 {
2939 	unsigned long i;
2940 
2941 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2942 		if (sys_reg_descs[i].reset)
2943 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2944 }
2945 
2946 /**
2947  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2948  * @vcpu: The VCPU pointer
2949  */
2950 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2951 {
2952 	struct sys_reg_params params;
2953 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2954 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2955 
2956 	trace_kvm_handle_sys_reg(esr);
2957 
2958 	params = esr_sys64_to_params(esr);
2959 	params.regval = vcpu_get_reg(vcpu, Rt);
2960 
2961 	if (!emulate_sys_reg(vcpu, &params))
2962 		return 1;
2963 
2964 	if (!params.is_write)
2965 		vcpu_set_reg(vcpu, Rt, params.regval);
2966 	return 1;
2967 }
2968 
2969 /******************************************************************************
2970  * Userspace API
2971  *****************************************************************************/
2972 
2973 static bool index_to_params(u64 id, struct sys_reg_params *params)
2974 {
2975 	switch (id & KVM_REG_SIZE_MASK) {
2976 	case KVM_REG_SIZE_U64:
2977 		/* Any unused index bits means it's not valid. */
2978 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2979 			      | KVM_REG_ARM_COPROC_MASK
2980 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2981 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2982 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2983 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2984 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2985 			return false;
2986 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2987 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2988 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2989 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2990 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2991 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2992 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2993 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2994 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2995 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2996 		return true;
2997 	default:
2998 		return false;
2999 	}
3000 }
3001 
3002 const struct sys_reg_desc *get_reg_by_id(u64 id,
3003 					 const struct sys_reg_desc table[],
3004 					 unsigned int num)
3005 {
3006 	struct sys_reg_params params;
3007 
3008 	if (!index_to_params(id, &params))
3009 		return NULL;
3010 
3011 	return find_reg(&params, table, num);
3012 }
3013 
3014 /* Decode an index value, and find the sys_reg_desc entry. */
3015 static const struct sys_reg_desc *
3016 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3017 		   const struct sys_reg_desc table[], unsigned int num)
3018 
3019 {
3020 	const struct sys_reg_desc *r;
3021 
3022 	/* We only do sys_reg for now. */
3023 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3024 		return NULL;
3025 
3026 	r = get_reg_by_id(id, table, num);
3027 
3028 	/* Not saved in the sys_reg array and not otherwise accessible? */
3029 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3030 		r = NULL;
3031 
3032 	return r;
3033 }
3034 
3035 /*
3036  * These are the invariant sys_reg registers: we let the guest see the
3037  * host versions of these, so they're part of the guest state.
3038  *
3039  * A future CPU may provide a mechanism to present different values to
3040  * the guest, or a future kvm may trap them.
3041  */
3042 
3043 #define FUNCTION_INVARIANT(reg)						\
3044 	static void get_##reg(struct kvm_vcpu *v,			\
3045 			      const struct sys_reg_desc *r)		\
3046 	{								\
3047 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3048 	}
3049 
3050 FUNCTION_INVARIANT(midr_el1)
3051 FUNCTION_INVARIANT(revidr_el1)
3052 FUNCTION_INVARIANT(aidr_el1)
3053 
3054 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3055 {
3056 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3057 }
3058 
3059 /* ->val is filled in by kvm_sys_reg_table_init() */
3060 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3061 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3062 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3063 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3064 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3065 };
3066 
3067 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3068 {
3069 	const struct sys_reg_desc *r;
3070 
3071 	r = get_reg_by_id(id, invariant_sys_regs,
3072 			  ARRAY_SIZE(invariant_sys_regs));
3073 	if (!r)
3074 		return -ENOENT;
3075 
3076 	return put_user(r->val, uaddr);
3077 }
3078 
3079 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3080 {
3081 	const struct sys_reg_desc *r;
3082 	u64 val;
3083 
3084 	r = get_reg_by_id(id, invariant_sys_regs,
3085 			  ARRAY_SIZE(invariant_sys_regs));
3086 	if (!r)
3087 		return -ENOENT;
3088 
3089 	if (get_user(val, uaddr))
3090 		return -EFAULT;
3091 
3092 	/* This is what we mean by invariant: you can't change it. */
3093 	if (r->val != val)
3094 		return -EINVAL;
3095 
3096 	return 0;
3097 }
3098 
3099 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3100 {
3101 	u32 val;
3102 	u32 __user *uval = uaddr;
3103 
3104 	/* Fail if we have unknown bits set. */
3105 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3106 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3107 		return -ENOENT;
3108 
3109 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3110 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3111 		if (KVM_REG_SIZE(id) != 4)
3112 			return -ENOENT;
3113 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3114 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3115 		if (val >= CSSELR_MAX)
3116 			return -ENOENT;
3117 
3118 		return put_user(get_ccsidr(vcpu, val), uval);
3119 	default:
3120 		return -ENOENT;
3121 	}
3122 }
3123 
3124 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3125 {
3126 	u32 val, newval;
3127 	u32 __user *uval = uaddr;
3128 
3129 	/* Fail if we have unknown bits set. */
3130 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3131 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3132 		return -ENOENT;
3133 
3134 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3135 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3136 		if (KVM_REG_SIZE(id) != 4)
3137 			return -ENOENT;
3138 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3139 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3140 		if (val >= CSSELR_MAX)
3141 			return -ENOENT;
3142 
3143 		if (get_user(newval, uval))
3144 			return -EFAULT;
3145 
3146 		return set_ccsidr(vcpu, val, newval);
3147 	default:
3148 		return -ENOENT;
3149 	}
3150 }
3151 
3152 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3153 			 const struct sys_reg_desc table[], unsigned int num)
3154 {
3155 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3156 	const struct sys_reg_desc *r;
3157 	u64 val;
3158 	int ret;
3159 
3160 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3161 	if (!r || sysreg_hidden_user(vcpu, r))
3162 		return -ENOENT;
3163 
3164 	if (r->get_user) {
3165 		ret = (r->get_user)(vcpu, r, &val);
3166 	} else {
3167 		val = __vcpu_sys_reg(vcpu, r->reg);
3168 		ret = 0;
3169 	}
3170 
3171 	if (!ret)
3172 		ret = put_user(val, uaddr);
3173 
3174 	return ret;
3175 }
3176 
3177 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3178 {
3179 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3180 	int err;
3181 
3182 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3183 		return demux_c15_get(vcpu, reg->id, uaddr);
3184 
3185 	err = get_invariant_sys_reg(reg->id, uaddr);
3186 	if (err != -ENOENT)
3187 		return err;
3188 
3189 	return kvm_sys_reg_get_user(vcpu, reg,
3190 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3191 }
3192 
3193 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3194 			 const struct sys_reg_desc table[], unsigned int num)
3195 {
3196 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3197 	const struct sys_reg_desc *r;
3198 	u64 val;
3199 	int ret;
3200 
3201 	if (get_user(val, uaddr))
3202 		return -EFAULT;
3203 
3204 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3205 	if (!r || sysreg_hidden_user(vcpu, r))
3206 		return -ENOENT;
3207 
3208 	if (sysreg_user_write_ignore(vcpu, r))
3209 		return 0;
3210 
3211 	if (r->set_user) {
3212 		ret = (r->set_user)(vcpu, r, val);
3213 	} else {
3214 		__vcpu_sys_reg(vcpu, r->reg) = val;
3215 		ret = 0;
3216 	}
3217 
3218 	return ret;
3219 }
3220 
3221 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3222 {
3223 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3224 	int err;
3225 
3226 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3227 		return demux_c15_set(vcpu, reg->id, uaddr);
3228 
3229 	err = set_invariant_sys_reg(reg->id, uaddr);
3230 	if (err != -ENOENT)
3231 		return err;
3232 
3233 	return kvm_sys_reg_set_user(vcpu, reg,
3234 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3235 }
3236 
3237 static unsigned int num_demux_regs(void)
3238 {
3239 	return CSSELR_MAX;
3240 }
3241 
3242 static int write_demux_regids(u64 __user *uindices)
3243 {
3244 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3245 	unsigned int i;
3246 
3247 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3248 	for (i = 0; i < CSSELR_MAX; i++) {
3249 		if (put_user(val | i, uindices))
3250 			return -EFAULT;
3251 		uindices++;
3252 	}
3253 	return 0;
3254 }
3255 
3256 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3257 {
3258 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3259 		KVM_REG_ARM64_SYSREG |
3260 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3261 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3262 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3263 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3264 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3265 }
3266 
3267 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3268 {
3269 	if (!*uind)
3270 		return true;
3271 
3272 	if (put_user(sys_reg_to_index(reg), *uind))
3273 		return false;
3274 
3275 	(*uind)++;
3276 	return true;
3277 }
3278 
3279 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3280 			    const struct sys_reg_desc *rd,
3281 			    u64 __user **uind,
3282 			    unsigned int *total)
3283 {
3284 	/*
3285 	 * Ignore registers we trap but don't save,
3286 	 * and for which no custom user accessor is provided.
3287 	 */
3288 	if (!(rd->reg || rd->get_user))
3289 		return 0;
3290 
3291 	if (sysreg_hidden_user(vcpu, rd))
3292 		return 0;
3293 
3294 	if (!copy_reg_to_user(rd, uind))
3295 		return -EFAULT;
3296 
3297 	(*total)++;
3298 	return 0;
3299 }
3300 
3301 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3302 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3303 {
3304 	const struct sys_reg_desc *i2, *end2;
3305 	unsigned int total = 0;
3306 	int err;
3307 
3308 	i2 = sys_reg_descs;
3309 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3310 
3311 	while (i2 != end2) {
3312 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3313 		if (err)
3314 			return err;
3315 	}
3316 	return total;
3317 }
3318 
3319 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3320 {
3321 	return ARRAY_SIZE(invariant_sys_regs)
3322 		+ num_demux_regs()
3323 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3324 }
3325 
3326 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3327 {
3328 	unsigned int i;
3329 	int err;
3330 
3331 	/* Then give them all the invariant registers' indices. */
3332 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3333 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3334 			return -EFAULT;
3335 		uindices++;
3336 	}
3337 
3338 	err = walk_sys_regs(vcpu, uindices);
3339 	if (err < 0)
3340 		return err;
3341 	uindices += err;
3342 
3343 	return write_demux_regids(uindices);
3344 }
3345 
3346 int __init kvm_sys_reg_table_init(void)
3347 {
3348 	bool valid = true;
3349 	unsigned int i;
3350 
3351 	/* Make sure tables are unique and in order. */
3352 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3353 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3354 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3355 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3356 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3357 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3358 
3359 	if (!valid)
3360 		return -EINVAL;
3361 
3362 	/* We abuse the reset function to overwrite the table itself. */
3363 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3364 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3365 
3366 	return 0;
3367 }
3368