1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/coproc.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Authors: Rusty Russell <rusty@rustcorp.com.au> 9 * Christoffer Dall <c.dall@virtualopensystems.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/bsearch.h> 14 #include <linux/kvm_host.h> 15 #include <linux/mm.h> 16 #include <linux/printk.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/cacheflush.h> 20 #include <asm/cputype.h> 21 #include <asm/debug-monitors.h> 22 #include <asm/esr.h> 23 #include <asm/kvm_arm.h> 24 #include <asm/kvm_emulate.h> 25 #include <asm/kvm_hyp.h> 26 #include <asm/kvm_mmu.h> 27 #include <asm/perf_event.h> 28 #include <asm/sysreg.h> 29 30 #include <trace/events/kvm.h> 31 32 #include "sys_regs.h" 33 34 #include "trace.h" 35 36 /* 37 * All of this file is extremely similar to the ARM coproc.c, but the 38 * types are different. My gut feeling is that it should be pretty 39 * easy to merge, but that would be an ABI breakage -- again. VFP 40 * would also need to be abstracted. 41 * 42 * For AArch32, we only take care of what is being trapped. Anything 43 * that has to do with init and userspace access has to go via the 44 * 64bit interface. 45 */ 46 47 static bool read_from_write_only(struct kvm_vcpu *vcpu, 48 struct sys_reg_params *params, 49 const struct sys_reg_desc *r) 50 { 51 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); 52 print_sys_reg_instr(params); 53 kvm_inject_undefined(vcpu); 54 return false; 55 } 56 57 static bool write_to_read_only(struct kvm_vcpu *vcpu, 58 struct sys_reg_params *params, 59 const struct sys_reg_desc *r) 60 { 61 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); 62 print_sys_reg_instr(params); 63 kvm_inject_undefined(vcpu); 64 return false; 65 } 66 67 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) 68 { 69 u64 val = 0x8badf00d8badf00d; 70 71 if (vcpu->arch.sysregs_loaded_on_cpu && 72 __vcpu_read_sys_reg_from_cpu(reg, &val)) 73 return val; 74 75 return __vcpu_sys_reg(vcpu, reg); 76 } 77 78 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) 79 { 80 if (vcpu->arch.sysregs_loaded_on_cpu && 81 __vcpu_write_sys_reg_to_cpu(val, reg)) 82 return; 83 84 __vcpu_sys_reg(vcpu, reg) = val; 85 } 86 87 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ 88 static u32 cache_levels; 89 90 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 91 #define CSSELR_MAX 14 92 93 /* Which cache CCSIDR represents depends on CSSELR value. */ 94 static u32 get_ccsidr(u32 csselr) 95 { 96 u32 ccsidr; 97 98 /* Make sure noone else changes CSSELR during this! */ 99 local_irq_disable(); 100 write_sysreg(csselr, csselr_el1); 101 isb(); 102 ccsidr = read_sysreg(ccsidr_el1); 103 local_irq_enable(); 104 105 return ccsidr; 106 } 107 108 /* 109 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 110 */ 111 static bool access_dcsw(struct kvm_vcpu *vcpu, 112 struct sys_reg_params *p, 113 const struct sys_reg_desc *r) 114 { 115 if (!p->is_write) 116 return read_from_write_only(vcpu, p, r); 117 118 /* 119 * Only track S/W ops if we don't have FWB. It still indicates 120 * that the guest is a bit broken (S/W operations should only 121 * be done by firmware, knowing that there is only a single 122 * CPU left in the system, and certainly not from non-secure 123 * software). 124 */ 125 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 126 kvm_set_way_flush(vcpu); 127 128 return true; 129 } 130 131 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) 132 { 133 switch (r->aarch32_map) { 134 case AA32_LO: 135 *mask = GENMASK_ULL(31, 0); 136 *shift = 0; 137 break; 138 case AA32_HI: 139 *mask = GENMASK_ULL(63, 32); 140 *shift = 32; 141 break; 142 default: 143 *mask = GENMASK_ULL(63, 0); 144 *shift = 0; 145 break; 146 } 147 } 148 149 /* 150 * Generic accessor for VM registers. Only called as long as HCR_TVM 151 * is set. If the guest enables the MMU, we stop trapping the VM 152 * sys_regs and leave it in complete control of the caches. 153 */ 154 static bool access_vm_reg(struct kvm_vcpu *vcpu, 155 struct sys_reg_params *p, 156 const struct sys_reg_desc *r) 157 { 158 bool was_enabled = vcpu_has_cache_enabled(vcpu); 159 u64 val, mask, shift; 160 161 BUG_ON(!p->is_write); 162 163 get_access_mask(r, &mask, &shift); 164 165 if (~mask) { 166 val = vcpu_read_sys_reg(vcpu, r->reg); 167 val &= ~mask; 168 } else { 169 val = 0; 170 } 171 172 val |= (p->regval & (mask >> shift)) << shift; 173 vcpu_write_sys_reg(vcpu, val, r->reg); 174 175 kvm_toggle_cache(vcpu, was_enabled); 176 return true; 177 } 178 179 static bool access_actlr(struct kvm_vcpu *vcpu, 180 struct sys_reg_params *p, 181 const struct sys_reg_desc *r) 182 { 183 u64 mask, shift; 184 185 if (p->is_write) 186 return ignore_write(vcpu, p); 187 188 get_access_mask(r, &mask, &shift); 189 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; 190 191 return true; 192 } 193 194 /* 195 * Trap handler for the GICv3 SGI generation system register. 196 * Forward the request to the VGIC emulation. 197 * The cp15_64 code makes sure this automatically works 198 * for both AArch64 and AArch32 accesses. 199 */ 200 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 201 struct sys_reg_params *p, 202 const struct sys_reg_desc *r) 203 { 204 bool g1; 205 206 if (!p->is_write) 207 return read_from_write_only(vcpu, p, r); 208 209 /* 210 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates 211 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, 212 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively 213 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure 214 * group. 215 */ 216 if (p->Op0 == 0) { /* AArch32 */ 217 switch (p->Op1) { 218 default: /* Keep GCC quiet */ 219 case 0: /* ICC_SGI1R */ 220 g1 = true; 221 break; 222 case 1: /* ICC_ASGI1R */ 223 case 2: /* ICC_SGI0R */ 224 g1 = false; 225 break; 226 } 227 } else { /* AArch64 */ 228 switch (p->Op2) { 229 default: /* Keep GCC quiet */ 230 case 5: /* ICC_SGI1R_EL1 */ 231 g1 = true; 232 break; 233 case 6: /* ICC_ASGI1R_EL1 */ 234 case 7: /* ICC_SGI0R_EL1 */ 235 g1 = false; 236 break; 237 } 238 } 239 240 vgic_v3_dispatch_sgi(vcpu, p->regval, g1); 241 242 return true; 243 } 244 245 static bool access_gic_sre(struct kvm_vcpu *vcpu, 246 struct sys_reg_params *p, 247 const struct sys_reg_desc *r) 248 { 249 if (p->is_write) 250 return ignore_write(vcpu, p); 251 252 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; 253 return true; 254 } 255 256 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 257 struct sys_reg_params *p, 258 const struct sys_reg_desc *r) 259 { 260 if (p->is_write) 261 return ignore_write(vcpu, p); 262 else 263 return read_zero(vcpu, p); 264 } 265 266 /* 267 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the 268 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 269 * system, these registers should UNDEF. LORID_EL1 being a RO register, we 270 * treat it separately. 271 */ 272 static bool trap_loregion(struct kvm_vcpu *vcpu, 273 struct sys_reg_params *p, 274 const struct sys_reg_desc *r) 275 { 276 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 277 u32 sr = reg_to_encoding(r); 278 279 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) { 280 kvm_inject_undefined(vcpu); 281 return false; 282 } 283 284 if (p->is_write && sr == SYS_LORID_EL1) 285 return write_to_read_only(vcpu, p, r); 286 287 return trap_raz_wi(vcpu, p, r); 288 } 289 290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 291 struct sys_reg_params *p, 292 const struct sys_reg_desc *r) 293 { 294 if (p->is_write) { 295 return ignore_write(vcpu, p); 296 } else { 297 p->regval = (1 << 3); 298 return true; 299 } 300 } 301 302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 303 struct sys_reg_params *p, 304 const struct sys_reg_desc *r) 305 { 306 if (p->is_write) { 307 return ignore_write(vcpu, p); 308 } else { 309 p->regval = read_sysreg(dbgauthstatus_el1); 310 return true; 311 } 312 } 313 314 /* 315 * We want to avoid world-switching all the DBG registers all the 316 * time: 317 * 318 * - If we've touched any debug register, it is likely that we're 319 * going to touch more of them. It then makes sense to disable the 320 * traps and start doing the save/restore dance 321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 322 * then mandatory to save/restore the registers, as the guest 323 * depends on them. 324 * 325 * For this, we use a DIRTY bit, indicating the guest has modified the 326 * debug registers, used as follow: 327 * 328 * On guest entry: 329 * - If the dirty bit is set (because we're coming back from trapping), 330 * disable the traps, save host registers, restore guest registers. 331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 332 * set the dirty bit, disable the traps, save host registers, 333 * restore guest registers. 334 * - Otherwise, enable the traps 335 * 336 * On guest exit: 337 * - If the dirty bit is set, save guest registers, restore host 338 * registers and clear the dirty bit. This ensure that the host can 339 * now use the debug registers. 340 */ 341 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 342 struct sys_reg_params *p, 343 const struct sys_reg_desc *r) 344 { 345 if (p->is_write) { 346 vcpu_write_sys_reg(vcpu, p->regval, r->reg); 347 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; 348 } else { 349 p->regval = vcpu_read_sys_reg(vcpu, r->reg); 350 } 351 352 trace_trap_reg(__func__, r->reg, p->is_write, p->regval); 353 354 return true; 355 } 356 357 /* 358 * reg_to_dbg/dbg_to_reg 359 * 360 * A 32 bit write to a debug register leave top bits alone 361 * A 32 bit read from a debug register only returns the bottom bits 362 * 363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the 364 * hyp.S code switches between host and guest values in future. 365 */ 366 static void reg_to_dbg(struct kvm_vcpu *vcpu, 367 struct sys_reg_params *p, 368 const struct sys_reg_desc *rd, 369 u64 *dbg_reg) 370 { 371 u64 mask, shift, val; 372 373 get_access_mask(rd, &mask, &shift); 374 375 val = *dbg_reg; 376 val &= ~mask; 377 val |= (p->regval & (mask >> shift)) << shift; 378 *dbg_reg = val; 379 380 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; 381 } 382 383 static void dbg_to_reg(struct kvm_vcpu *vcpu, 384 struct sys_reg_params *p, 385 const struct sys_reg_desc *rd, 386 u64 *dbg_reg) 387 { 388 u64 mask, shift; 389 390 get_access_mask(rd, &mask, &shift); 391 p->regval = (*dbg_reg & mask) >> shift; 392 } 393 394 static bool trap_bvr(struct kvm_vcpu *vcpu, 395 struct sys_reg_params *p, 396 const struct sys_reg_desc *rd) 397 { 398 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 399 400 if (p->is_write) 401 reg_to_dbg(vcpu, p, rd, dbg_reg); 402 else 403 dbg_to_reg(vcpu, p, rd, dbg_reg); 404 405 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 406 407 return true; 408 } 409 410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 411 const struct kvm_one_reg *reg, void __user *uaddr) 412 { 413 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 414 415 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 416 return -EFAULT; 417 return 0; 418 } 419 420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 421 const struct kvm_one_reg *reg, void __user *uaddr) 422 { 423 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 424 425 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 426 return -EFAULT; 427 return 0; 428 } 429 430 static void reset_bvr(struct kvm_vcpu *vcpu, 431 const struct sys_reg_desc *rd) 432 { 433 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; 434 } 435 436 static bool trap_bcr(struct kvm_vcpu *vcpu, 437 struct sys_reg_params *p, 438 const struct sys_reg_desc *rd) 439 { 440 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 441 442 if (p->is_write) 443 reg_to_dbg(vcpu, p, rd, dbg_reg); 444 else 445 dbg_to_reg(vcpu, p, rd, dbg_reg); 446 447 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 448 449 return true; 450 } 451 452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 453 const struct kvm_one_reg *reg, void __user *uaddr) 454 { 455 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 456 457 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 458 return -EFAULT; 459 460 return 0; 461 } 462 463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 464 const struct kvm_one_reg *reg, void __user *uaddr) 465 { 466 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 467 468 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 469 return -EFAULT; 470 return 0; 471 } 472 473 static void reset_bcr(struct kvm_vcpu *vcpu, 474 const struct sys_reg_desc *rd) 475 { 476 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; 477 } 478 479 static bool trap_wvr(struct kvm_vcpu *vcpu, 480 struct sys_reg_params *p, 481 const struct sys_reg_desc *rd) 482 { 483 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 484 485 if (p->is_write) 486 reg_to_dbg(vcpu, p, rd, dbg_reg); 487 else 488 dbg_to_reg(vcpu, p, rd, dbg_reg); 489 490 trace_trap_reg(__func__, rd->CRm, p->is_write, 491 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); 492 493 return true; 494 } 495 496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 497 const struct kvm_one_reg *reg, void __user *uaddr) 498 { 499 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 500 501 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 502 return -EFAULT; 503 return 0; 504 } 505 506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 507 const struct kvm_one_reg *reg, void __user *uaddr) 508 { 509 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 510 511 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 512 return -EFAULT; 513 return 0; 514 } 515 516 static void reset_wvr(struct kvm_vcpu *vcpu, 517 const struct sys_reg_desc *rd) 518 { 519 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; 520 } 521 522 static bool trap_wcr(struct kvm_vcpu *vcpu, 523 struct sys_reg_params *p, 524 const struct sys_reg_desc *rd) 525 { 526 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 527 528 if (p->is_write) 529 reg_to_dbg(vcpu, p, rd, dbg_reg); 530 else 531 dbg_to_reg(vcpu, p, rd, dbg_reg); 532 533 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 534 535 return true; 536 } 537 538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 539 const struct kvm_one_reg *reg, void __user *uaddr) 540 { 541 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 542 543 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 544 return -EFAULT; 545 return 0; 546 } 547 548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 549 const struct kvm_one_reg *reg, void __user *uaddr) 550 { 551 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 552 553 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 554 return -EFAULT; 555 return 0; 556 } 557 558 static void reset_wcr(struct kvm_vcpu *vcpu, 559 const struct sys_reg_desc *rd) 560 { 561 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; 562 } 563 564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 565 { 566 u64 amair = read_sysreg(amair_el1); 567 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); 568 } 569 570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 571 { 572 u64 actlr = read_sysreg(actlr_el1); 573 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); 574 } 575 576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 577 { 578 u64 mpidr; 579 580 /* 581 * Map the vcpu_id into the first three affinity level fields of 582 * the MPIDR. We limit the number of VCPUs in level 0 due to a 583 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 584 * of the GICv3 to be able to address each CPU directly when 585 * sending IPIs. 586 */ 587 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 588 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 589 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 590 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); 591 } 592 593 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, 594 const struct sys_reg_desc *r) 595 { 596 if (kvm_vcpu_has_pmu(vcpu)) 597 return 0; 598 599 return REG_HIDDEN; 600 } 601 602 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 603 { 604 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); 605 606 /* No PMU available, any PMU reg may UNDEF... */ 607 if (!kvm_arm_support_pmu_v3()) 608 return; 609 610 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; 611 n &= ARMV8_PMU_PMCR_N_MASK; 612 if (n) 613 mask |= GENMASK(n - 1, 0); 614 615 reset_unknown(vcpu, r); 616 __vcpu_sys_reg(vcpu, r->reg) &= mask; 617 } 618 619 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 620 { 621 reset_unknown(vcpu, r); 622 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); 623 } 624 625 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 626 { 627 reset_unknown(vcpu, r); 628 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; 629 } 630 631 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 632 { 633 reset_unknown(vcpu, r); 634 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; 635 } 636 637 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 638 { 639 u64 pmcr, val; 640 641 /* No PMU available, PMCR_EL0 may UNDEF... */ 642 if (!kvm_arm_support_pmu_v3()) 643 return; 644 645 pmcr = read_sysreg(pmcr_el0); 646 /* 647 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN 648 * except PMCR.E resetting to zero. 649 */ 650 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) 651 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); 652 if (!system_supports_32bit_el0()) 653 val |= ARMV8_PMU_PMCR_LC; 654 __vcpu_sys_reg(vcpu, r->reg) = val; 655 } 656 657 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) 658 { 659 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); 660 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); 661 662 if (!enabled) 663 kvm_inject_undefined(vcpu); 664 665 return !enabled; 666 } 667 668 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) 669 { 670 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); 671 } 672 673 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) 674 { 675 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); 676 } 677 678 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) 679 { 680 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); 681 } 682 683 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) 684 { 685 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); 686 } 687 688 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 689 const struct sys_reg_desc *r) 690 { 691 u64 val; 692 693 if (pmu_access_el0_disabled(vcpu)) 694 return false; 695 696 if (p->is_write) { 697 /* Only update writeable bits of PMCR */ 698 val = __vcpu_sys_reg(vcpu, PMCR_EL0); 699 val &= ~ARMV8_PMU_PMCR_MASK; 700 val |= p->regval & ARMV8_PMU_PMCR_MASK; 701 if (!system_supports_32bit_el0()) 702 val |= ARMV8_PMU_PMCR_LC; 703 __vcpu_sys_reg(vcpu, PMCR_EL0) = val; 704 kvm_pmu_handle_pmcr(vcpu, val); 705 kvm_vcpu_pmu_restore_guest(vcpu); 706 } else { 707 /* PMCR.P & PMCR.C are RAZ */ 708 val = __vcpu_sys_reg(vcpu, PMCR_EL0) 709 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); 710 p->regval = val; 711 } 712 713 return true; 714 } 715 716 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 717 const struct sys_reg_desc *r) 718 { 719 if (pmu_access_event_counter_el0_disabled(vcpu)) 720 return false; 721 722 if (p->is_write) 723 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; 724 else 725 /* return PMSELR.SEL field */ 726 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) 727 & ARMV8_PMU_COUNTER_MASK; 728 729 return true; 730 } 731 732 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 733 const struct sys_reg_desc *r) 734 { 735 u64 pmceid, mask, shift; 736 737 BUG_ON(p->is_write); 738 739 if (pmu_access_el0_disabled(vcpu)) 740 return false; 741 742 get_access_mask(r, &mask, &shift); 743 744 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); 745 pmceid &= mask; 746 pmceid >>= shift; 747 748 p->regval = pmceid; 749 750 return true; 751 } 752 753 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) 754 { 755 u64 pmcr, val; 756 757 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); 758 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; 759 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { 760 kvm_inject_undefined(vcpu); 761 return false; 762 } 763 764 return true; 765 } 766 767 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, 768 struct sys_reg_params *p, 769 const struct sys_reg_desc *r) 770 { 771 u64 idx = ~0UL; 772 773 if (r->CRn == 9 && r->CRm == 13) { 774 if (r->Op2 == 2) { 775 /* PMXEVCNTR_EL0 */ 776 if (pmu_access_event_counter_el0_disabled(vcpu)) 777 return false; 778 779 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) 780 & ARMV8_PMU_COUNTER_MASK; 781 } else if (r->Op2 == 0) { 782 /* PMCCNTR_EL0 */ 783 if (pmu_access_cycle_counter_el0_disabled(vcpu)) 784 return false; 785 786 idx = ARMV8_PMU_CYCLE_IDX; 787 } 788 } else if (r->CRn == 0 && r->CRm == 9) { 789 /* PMCCNTR */ 790 if (pmu_access_event_counter_el0_disabled(vcpu)) 791 return false; 792 793 idx = ARMV8_PMU_CYCLE_IDX; 794 } else if (r->CRn == 14 && (r->CRm & 12) == 8) { 795 /* PMEVCNTRn_EL0 */ 796 if (pmu_access_event_counter_el0_disabled(vcpu)) 797 return false; 798 799 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 800 } 801 802 /* Catch any decoding mistake */ 803 WARN_ON(idx == ~0UL); 804 805 if (!pmu_counter_idx_valid(vcpu, idx)) 806 return false; 807 808 if (p->is_write) { 809 if (pmu_access_el0_disabled(vcpu)) 810 return false; 811 812 kvm_pmu_set_counter_value(vcpu, idx, p->regval); 813 } else { 814 p->regval = kvm_pmu_get_counter_value(vcpu, idx); 815 } 816 817 return true; 818 } 819 820 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 821 const struct sys_reg_desc *r) 822 { 823 u64 idx, reg; 824 825 if (pmu_access_el0_disabled(vcpu)) 826 return false; 827 828 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { 829 /* PMXEVTYPER_EL0 */ 830 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; 831 reg = PMEVTYPER0_EL0 + idx; 832 } else if (r->CRn == 14 && (r->CRm & 12) == 12) { 833 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 834 if (idx == ARMV8_PMU_CYCLE_IDX) 835 reg = PMCCFILTR_EL0; 836 else 837 /* PMEVTYPERn_EL0 */ 838 reg = PMEVTYPER0_EL0 + idx; 839 } else { 840 BUG(); 841 } 842 843 if (!pmu_counter_idx_valid(vcpu, idx)) 844 return false; 845 846 if (p->is_write) { 847 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); 848 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; 849 kvm_vcpu_pmu_restore_guest(vcpu); 850 } else { 851 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; 852 } 853 854 return true; 855 } 856 857 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 858 const struct sys_reg_desc *r) 859 { 860 u64 val, mask; 861 862 if (pmu_access_el0_disabled(vcpu)) 863 return false; 864 865 mask = kvm_pmu_valid_counter_mask(vcpu); 866 if (p->is_write) { 867 val = p->regval & mask; 868 if (r->Op2 & 0x1) { 869 /* accessing PMCNTENSET_EL0 */ 870 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; 871 kvm_pmu_enable_counter_mask(vcpu, val); 872 kvm_vcpu_pmu_restore_guest(vcpu); 873 } else { 874 /* accessing PMCNTENCLR_EL0 */ 875 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; 876 kvm_pmu_disable_counter_mask(vcpu, val); 877 } 878 } else { 879 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); 880 } 881 882 return true; 883 } 884 885 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 886 const struct sys_reg_desc *r) 887 { 888 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 889 890 if (check_pmu_access_disabled(vcpu, 0)) 891 return false; 892 893 if (p->is_write) { 894 u64 val = p->regval & mask; 895 896 if (r->Op2 & 0x1) 897 /* accessing PMINTENSET_EL1 */ 898 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; 899 else 900 /* accessing PMINTENCLR_EL1 */ 901 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; 902 } else { 903 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); 904 } 905 906 return true; 907 } 908 909 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 910 const struct sys_reg_desc *r) 911 { 912 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 913 914 if (pmu_access_el0_disabled(vcpu)) 915 return false; 916 917 if (p->is_write) { 918 if (r->CRm & 0x2) 919 /* accessing PMOVSSET_EL0 */ 920 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); 921 else 922 /* accessing PMOVSCLR_EL0 */ 923 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); 924 } else { 925 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); 926 } 927 928 return true; 929 } 930 931 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 932 const struct sys_reg_desc *r) 933 { 934 u64 mask; 935 936 if (!p->is_write) 937 return read_from_write_only(vcpu, p, r); 938 939 if (pmu_write_swinc_el0_disabled(vcpu)) 940 return false; 941 942 mask = kvm_pmu_valid_counter_mask(vcpu); 943 kvm_pmu_software_increment(vcpu, p->regval & mask); 944 return true; 945 } 946 947 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 948 const struct sys_reg_desc *r) 949 { 950 if (p->is_write) { 951 if (!vcpu_mode_priv(vcpu)) { 952 kvm_inject_undefined(vcpu); 953 return false; 954 } 955 956 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = 957 p->regval & ARMV8_PMU_USERENR_MASK; 958 } else { 959 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) 960 & ARMV8_PMU_USERENR_MASK; 961 } 962 963 return true; 964 } 965 966 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 967 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 968 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ 969 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ 970 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ 971 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ 972 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ 973 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ 974 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ 975 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } 976 977 #define PMU_SYS_REG(r) \ 978 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility 979 980 /* Macro to expand the PMEVCNTRn_EL0 register */ 981 #define PMU_PMEVCNTR_EL0(n) \ 982 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \ 983 .reset = reset_pmevcntr, \ 984 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } 985 986 /* Macro to expand the PMEVTYPERn_EL0 register */ 987 #define PMU_PMEVTYPER_EL0(n) \ 988 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \ 989 .reset = reset_pmevtyper, \ 990 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } 991 992 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 993 const struct sys_reg_desc *r) 994 { 995 kvm_inject_undefined(vcpu); 996 997 return false; 998 } 999 1000 /* Macro to expand the AMU counter and type registers*/ 1001 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } 1002 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } 1003 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } 1004 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } 1005 1006 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, 1007 const struct sys_reg_desc *rd) 1008 { 1009 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; 1010 } 1011 1012 /* 1013 * If we land here on a PtrAuth access, that is because we didn't 1014 * fixup the access on exit by allowing the PtrAuth sysregs. The only 1015 * way this happens is when the guest does not have PtrAuth support 1016 * enabled. 1017 */ 1018 #define __PTRAUTH_KEY(k) \ 1019 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ 1020 .visibility = ptrauth_visibility} 1021 1022 #define PTRAUTH_KEY(k) \ 1023 __PTRAUTH_KEY(k ## KEYLO_EL1), \ 1024 __PTRAUTH_KEY(k ## KEYHI_EL1) 1025 1026 static bool access_arch_timer(struct kvm_vcpu *vcpu, 1027 struct sys_reg_params *p, 1028 const struct sys_reg_desc *r) 1029 { 1030 enum kvm_arch_timers tmr; 1031 enum kvm_arch_timer_regs treg; 1032 u64 reg = reg_to_encoding(r); 1033 1034 switch (reg) { 1035 case SYS_CNTP_TVAL_EL0: 1036 case SYS_AARCH32_CNTP_TVAL: 1037 tmr = TIMER_PTIMER; 1038 treg = TIMER_REG_TVAL; 1039 break; 1040 case SYS_CNTP_CTL_EL0: 1041 case SYS_AARCH32_CNTP_CTL: 1042 tmr = TIMER_PTIMER; 1043 treg = TIMER_REG_CTL; 1044 break; 1045 case SYS_CNTP_CVAL_EL0: 1046 case SYS_AARCH32_CNTP_CVAL: 1047 tmr = TIMER_PTIMER; 1048 treg = TIMER_REG_CVAL; 1049 break; 1050 default: 1051 BUG(); 1052 } 1053 1054 if (p->is_write) 1055 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); 1056 else 1057 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); 1058 1059 return true; 1060 } 1061 1062 /* Read a sanitised cpufeature ID register by sys_reg_desc */ 1063 static u64 read_id_reg(const struct kvm_vcpu *vcpu, 1064 struct sys_reg_desc const *r, bool raz) 1065 { 1066 u32 id = reg_to_encoding(r); 1067 u64 val; 1068 1069 if (raz) 1070 return 0; 1071 1072 val = read_sanitised_ftr_reg(id); 1073 1074 switch (id) { 1075 case SYS_ID_AA64PFR0_EL1: 1076 if (!vcpu_has_sve(vcpu)) 1077 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE); 1078 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU); 1079 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2); 1080 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2); 1081 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3); 1082 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3); 1083 if (irqchip_in_kernel(vcpu->kvm) && 1084 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 1085 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC); 1086 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1); 1087 } 1088 break; 1089 case SYS_ID_AA64PFR1_EL1: 1090 if (!kvm_has_mte(vcpu->kvm)) 1091 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE); 1092 break; 1093 case SYS_ID_AA64ISAR1_EL1: 1094 if (!vcpu_has_ptrauth(vcpu)) 1095 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) | 1096 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) | 1097 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) | 1098 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI)); 1099 break; 1100 case SYS_ID_AA64DFR0_EL1: 1101 /* Limit debug to ARMv8.0 */ 1102 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER); 1103 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6); 1104 /* Limit guests to PMUv3 for ARMv8.4 */ 1105 val = cpuid_feature_cap_perfmon_field(val, 1106 ID_AA64DFR0_PMUVER_SHIFT, 1107 kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0); 1108 /* Hide SPE from guests */ 1109 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER); 1110 break; 1111 case SYS_ID_DFR0_EL1: 1112 /* Limit guests to PMUv3 for ARMv8.4 */ 1113 val = cpuid_feature_cap_perfmon_field(val, 1114 ID_DFR0_PERFMON_SHIFT, 1115 kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0); 1116 break; 1117 } 1118 1119 return val; 1120 } 1121 1122 static unsigned int id_visibility(const struct kvm_vcpu *vcpu, 1123 const struct sys_reg_desc *r) 1124 { 1125 u32 id = reg_to_encoding(r); 1126 1127 switch (id) { 1128 case SYS_ID_AA64ZFR0_EL1: 1129 if (!vcpu_has_sve(vcpu)) 1130 return REG_RAZ; 1131 break; 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* cpufeature ID register access trap handlers */ 1138 1139 static bool __access_id_reg(struct kvm_vcpu *vcpu, 1140 struct sys_reg_params *p, 1141 const struct sys_reg_desc *r, 1142 bool raz) 1143 { 1144 if (p->is_write) 1145 return write_to_read_only(vcpu, p, r); 1146 1147 p->regval = read_id_reg(vcpu, r, raz); 1148 return true; 1149 } 1150 1151 static bool access_id_reg(struct kvm_vcpu *vcpu, 1152 struct sys_reg_params *p, 1153 const struct sys_reg_desc *r) 1154 { 1155 bool raz = sysreg_visible_as_raz(vcpu, r); 1156 1157 return __access_id_reg(vcpu, p, r, raz); 1158 } 1159 1160 static bool access_raz_id_reg(struct kvm_vcpu *vcpu, 1161 struct sys_reg_params *p, 1162 const struct sys_reg_desc *r) 1163 { 1164 return __access_id_reg(vcpu, p, r, true); 1165 } 1166 1167 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id); 1168 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id); 1169 static u64 sys_reg_to_index(const struct sys_reg_desc *reg); 1170 1171 /* Visibility overrides for SVE-specific control registers */ 1172 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, 1173 const struct sys_reg_desc *rd) 1174 { 1175 if (vcpu_has_sve(vcpu)) 1176 return 0; 1177 1178 return REG_HIDDEN; 1179 } 1180 1181 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, 1182 const struct sys_reg_desc *rd, 1183 const struct kvm_one_reg *reg, void __user *uaddr) 1184 { 1185 const u64 id = sys_reg_to_index(rd); 1186 u8 csv2, csv3; 1187 int err; 1188 u64 val; 1189 1190 err = reg_from_user(&val, uaddr, id); 1191 if (err) 1192 return err; 1193 1194 /* 1195 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as 1196 * it doesn't promise more than what is actually provided (the 1197 * guest could otherwise be covered in ectoplasmic residue). 1198 */ 1199 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT); 1200 if (csv2 > 1 || 1201 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) 1202 return -EINVAL; 1203 1204 /* Same thing for CSV3 */ 1205 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT); 1206 if (csv3 > 1 || 1207 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) 1208 return -EINVAL; 1209 1210 /* We can only differ with CSV[23], and anything else is an error */ 1211 val ^= read_id_reg(vcpu, rd, false); 1212 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) | 1213 (0xFUL << ID_AA64PFR0_CSV3_SHIFT)); 1214 if (val) 1215 return -EINVAL; 1216 1217 vcpu->kvm->arch.pfr0_csv2 = csv2; 1218 vcpu->kvm->arch.pfr0_csv3 = csv3 ; 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * cpufeature ID register user accessors 1225 * 1226 * For now, these registers are immutable for userspace, so no values 1227 * are stored, and for set_id_reg() we don't allow the effective value 1228 * to be changed. 1229 */ 1230 static int __get_id_reg(const struct kvm_vcpu *vcpu, 1231 const struct sys_reg_desc *rd, void __user *uaddr, 1232 bool raz) 1233 { 1234 const u64 id = sys_reg_to_index(rd); 1235 const u64 val = read_id_reg(vcpu, rd, raz); 1236 1237 return reg_to_user(uaddr, &val, id); 1238 } 1239 1240 static int __set_id_reg(const struct kvm_vcpu *vcpu, 1241 const struct sys_reg_desc *rd, void __user *uaddr, 1242 bool raz) 1243 { 1244 const u64 id = sys_reg_to_index(rd); 1245 int err; 1246 u64 val; 1247 1248 err = reg_from_user(&val, uaddr, id); 1249 if (err) 1250 return err; 1251 1252 /* This is what we mean by invariant: you can't change it. */ 1253 if (val != read_id_reg(vcpu, rd, raz)) 1254 return -EINVAL; 1255 1256 return 0; 1257 } 1258 1259 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1260 const struct kvm_one_reg *reg, void __user *uaddr) 1261 { 1262 bool raz = sysreg_visible_as_raz(vcpu, rd); 1263 1264 return __get_id_reg(vcpu, rd, uaddr, raz); 1265 } 1266 1267 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1268 const struct kvm_one_reg *reg, void __user *uaddr) 1269 { 1270 bool raz = sysreg_visible_as_raz(vcpu, rd); 1271 1272 return __set_id_reg(vcpu, rd, uaddr, raz); 1273 } 1274 1275 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1276 const struct kvm_one_reg *reg, void __user *uaddr) 1277 { 1278 return __set_id_reg(vcpu, rd, uaddr, true); 1279 } 1280 1281 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1282 const struct kvm_one_reg *reg, void __user *uaddr) 1283 { 1284 const u64 id = sys_reg_to_index(rd); 1285 const u64 val = 0; 1286 1287 return reg_to_user(uaddr, &val, id); 1288 } 1289 1290 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1291 const struct kvm_one_reg *reg, void __user *uaddr) 1292 { 1293 int err; 1294 u64 val; 1295 1296 /* Perform the access even if we are going to ignore the value */ 1297 err = reg_from_user(&val, uaddr, sys_reg_to_index(rd)); 1298 if (err) 1299 return err; 1300 1301 return 0; 1302 } 1303 1304 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1305 const struct sys_reg_desc *r) 1306 { 1307 if (p->is_write) 1308 return write_to_read_only(vcpu, p, r); 1309 1310 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); 1311 return true; 1312 } 1313 1314 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1315 const struct sys_reg_desc *r) 1316 { 1317 if (p->is_write) 1318 return write_to_read_only(vcpu, p, r); 1319 1320 p->regval = read_sysreg(clidr_el1); 1321 return true; 1322 } 1323 1324 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1325 const struct sys_reg_desc *r) 1326 { 1327 int reg = r->reg; 1328 1329 if (p->is_write) 1330 vcpu_write_sys_reg(vcpu, p->regval, reg); 1331 else 1332 p->regval = vcpu_read_sys_reg(vcpu, reg); 1333 return true; 1334 } 1335 1336 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1337 const struct sys_reg_desc *r) 1338 { 1339 u32 csselr; 1340 1341 if (p->is_write) 1342 return write_to_read_only(vcpu, p, r); 1343 1344 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); 1345 p->regval = get_ccsidr(csselr); 1346 1347 /* 1348 * Guests should not be doing cache operations by set/way at all, and 1349 * for this reason, we trap them and attempt to infer the intent, so 1350 * that we can flush the entire guest's address space at the appropriate 1351 * time. 1352 * To prevent this trapping from causing performance problems, let's 1353 * expose the geometry of all data and unified caches (which are 1354 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way. 1355 * [If guests should attempt to infer aliasing properties from the 1356 * geometry (which is not permitted by the architecture), they would 1357 * only do so for virtually indexed caches.] 1358 */ 1359 if (!(csselr & 1)) // data or unified cache 1360 p->regval &= ~GENMASK(27, 3); 1361 return true; 1362 } 1363 1364 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, 1365 const struct sys_reg_desc *rd) 1366 { 1367 if (kvm_has_mte(vcpu->kvm)) 1368 return 0; 1369 1370 return REG_HIDDEN; 1371 } 1372 1373 #define MTE_REG(name) { \ 1374 SYS_DESC(SYS_##name), \ 1375 .access = undef_access, \ 1376 .reset = reset_unknown, \ 1377 .reg = name, \ 1378 .visibility = mte_visibility, \ 1379 } 1380 1381 /* sys_reg_desc initialiser for known cpufeature ID registers */ 1382 #define ID_SANITISED(name) { \ 1383 SYS_DESC(SYS_##name), \ 1384 .access = access_id_reg, \ 1385 .get_user = get_id_reg, \ 1386 .set_user = set_id_reg, \ 1387 .visibility = id_visibility, \ 1388 } 1389 1390 /* 1391 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID 1392 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 1393 * (1 <= crm < 8, 0 <= Op2 < 8). 1394 */ 1395 #define ID_UNALLOCATED(crm, op2) { \ 1396 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ 1397 .access = access_raz_id_reg, \ 1398 .get_user = get_raz_reg, \ 1399 .set_user = set_raz_id_reg, \ 1400 } 1401 1402 /* 1403 * sys_reg_desc initialiser for known ID registers that we hide from guests. 1404 * For now, these are exposed just like unallocated ID regs: they appear 1405 * RAZ for the guest. 1406 */ 1407 #define ID_HIDDEN(name) { \ 1408 SYS_DESC(SYS_##name), \ 1409 .access = access_raz_id_reg, \ 1410 .get_user = get_raz_reg, \ 1411 .set_user = set_raz_id_reg, \ 1412 } 1413 1414 /* 1415 * Architected system registers. 1416 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 1417 * 1418 * Debug handling: We do trap most, if not all debug related system 1419 * registers. The implementation is good enough to ensure that a guest 1420 * can use these with minimal performance degradation. The drawback is 1421 * that we don't implement any of the external debug, none of the 1422 * OSlock protocol. This should be revisited if we ever encounter a 1423 * more demanding guest... 1424 */ 1425 static const struct sys_reg_desc sys_reg_descs[] = { 1426 { SYS_DESC(SYS_DC_ISW), access_dcsw }, 1427 { SYS_DESC(SYS_DC_CSW), access_dcsw }, 1428 { SYS_DESC(SYS_DC_CISW), access_dcsw }, 1429 1430 DBG_BCR_BVR_WCR_WVR_EL1(0), 1431 DBG_BCR_BVR_WCR_WVR_EL1(1), 1432 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 1433 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 1434 DBG_BCR_BVR_WCR_WVR_EL1(2), 1435 DBG_BCR_BVR_WCR_WVR_EL1(3), 1436 DBG_BCR_BVR_WCR_WVR_EL1(4), 1437 DBG_BCR_BVR_WCR_WVR_EL1(5), 1438 DBG_BCR_BVR_WCR_WVR_EL1(6), 1439 DBG_BCR_BVR_WCR_WVR_EL1(7), 1440 DBG_BCR_BVR_WCR_WVR_EL1(8), 1441 DBG_BCR_BVR_WCR_WVR_EL1(9), 1442 DBG_BCR_BVR_WCR_WVR_EL1(10), 1443 DBG_BCR_BVR_WCR_WVR_EL1(11), 1444 DBG_BCR_BVR_WCR_WVR_EL1(12), 1445 DBG_BCR_BVR_WCR_WVR_EL1(13), 1446 DBG_BCR_BVR_WCR_WVR_EL1(14), 1447 DBG_BCR_BVR_WCR_WVR_EL1(15), 1448 1449 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, 1450 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi }, 1451 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 }, 1452 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, 1453 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, 1454 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, 1455 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, 1456 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, 1457 1458 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, 1459 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, 1460 // DBGDTR[TR]X_EL0 share the same encoding 1461 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, 1462 1463 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, 1464 1465 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, 1466 1467 /* 1468 * ID regs: all ID_SANITISED() entries here must have corresponding 1469 * entries in arm64_ftr_regs[]. 1470 */ 1471 1472 /* AArch64 mappings of the AArch32 ID registers */ 1473 /* CRm=1 */ 1474 ID_SANITISED(ID_PFR0_EL1), 1475 ID_SANITISED(ID_PFR1_EL1), 1476 ID_SANITISED(ID_DFR0_EL1), 1477 ID_HIDDEN(ID_AFR0_EL1), 1478 ID_SANITISED(ID_MMFR0_EL1), 1479 ID_SANITISED(ID_MMFR1_EL1), 1480 ID_SANITISED(ID_MMFR2_EL1), 1481 ID_SANITISED(ID_MMFR3_EL1), 1482 1483 /* CRm=2 */ 1484 ID_SANITISED(ID_ISAR0_EL1), 1485 ID_SANITISED(ID_ISAR1_EL1), 1486 ID_SANITISED(ID_ISAR2_EL1), 1487 ID_SANITISED(ID_ISAR3_EL1), 1488 ID_SANITISED(ID_ISAR4_EL1), 1489 ID_SANITISED(ID_ISAR5_EL1), 1490 ID_SANITISED(ID_MMFR4_EL1), 1491 ID_SANITISED(ID_ISAR6_EL1), 1492 1493 /* CRm=3 */ 1494 ID_SANITISED(MVFR0_EL1), 1495 ID_SANITISED(MVFR1_EL1), 1496 ID_SANITISED(MVFR2_EL1), 1497 ID_UNALLOCATED(3,3), 1498 ID_SANITISED(ID_PFR2_EL1), 1499 ID_HIDDEN(ID_DFR1_EL1), 1500 ID_SANITISED(ID_MMFR5_EL1), 1501 ID_UNALLOCATED(3,7), 1502 1503 /* AArch64 ID registers */ 1504 /* CRm=4 */ 1505 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, 1506 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, 1507 ID_SANITISED(ID_AA64PFR1_EL1), 1508 ID_UNALLOCATED(4,2), 1509 ID_UNALLOCATED(4,3), 1510 ID_SANITISED(ID_AA64ZFR0_EL1), 1511 ID_UNALLOCATED(4,5), 1512 ID_UNALLOCATED(4,6), 1513 ID_UNALLOCATED(4,7), 1514 1515 /* CRm=5 */ 1516 ID_SANITISED(ID_AA64DFR0_EL1), 1517 ID_SANITISED(ID_AA64DFR1_EL1), 1518 ID_UNALLOCATED(5,2), 1519 ID_UNALLOCATED(5,3), 1520 ID_HIDDEN(ID_AA64AFR0_EL1), 1521 ID_HIDDEN(ID_AA64AFR1_EL1), 1522 ID_UNALLOCATED(5,6), 1523 ID_UNALLOCATED(5,7), 1524 1525 /* CRm=6 */ 1526 ID_SANITISED(ID_AA64ISAR0_EL1), 1527 ID_SANITISED(ID_AA64ISAR1_EL1), 1528 ID_SANITISED(ID_AA64ISAR2_EL1), 1529 ID_UNALLOCATED(6,3), 1530 ID_UNALLOCATED(6,4), 1531 ID_UNALLOCATED(6,5), 1532 ID_UNALLOCATED(6,6), 1533 ID_UNALLOCATED(6,7), 1534 1535 /* CRm=7 */ 1536 ID_SANITISED(ID_AA64MMFR0_EL1), 1537 ID_SANITISED(ID_AA64MMFR1_EL1), 1538 ID_SANITISED(ID_AA64MMFR2_EL1), 1539 ID_UNALLOCATED(7,3), 1540 ID_UNALLOCATED(7,4), 1541 ID_UNALLOCATED(7,5), 1542 ID_UNALLOCATED(7,6), 1543 ID_UNALLOCATED(7,7), 1544 1545 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 1546 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, 1547 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, 1548 1549 MTE_REG(RGSR_EL1), 1550 MTE_REG(GCR_EL1), 1551 1552 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, 1553 { SYS_DESC(SYS_TRFCR_EL1), undef_access }, 1554 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, 1555 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, 1556 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, 1557 1558 PTRAUTH_KEY(APIA), 1559 PTRAUTH_KEY(APIB), 1560 PTRAUTH_KEY(APDA), 1561 PTRAUTH_KEY(APDB), 1562 PTRAUTH_KEY(APGA), 1563 1564 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, 1565 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, 1566 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, 1567 1568 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, 1569 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, 1570 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, 1571 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, 1572 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, 1573 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, 1574 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, 1575 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, 1576 1577 MTE_REG(TFSR_EL1), 1578 MTE_REG(TFSRE0_EL1), 1579 1580 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, 1581 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, 1582 1583 { SYS_DESC(SYS_PMSCR_EL1), undef_access }, 1584 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, 1585 { SYS_DESC(SYS_PMSICR_EL1), undef_access }, 1586 { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, 1587 { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, 1588 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, 1589 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, 1590 { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, 1591 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, 1592 { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, 1593 { SYS_DESC(SYS_PMBSR_EL1), undef_access }, 1594 /* PMBIDR_EL1 is not trapped */ 1595 1596 { PMU_SYS_REG(SYS_PMINTENSET_EL1), 1597 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1598 { PMU_SYS_REG(SYS_PMINTENCLR_EL1), 1599 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1600 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, 1601 1602 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, 1603 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 1604 1605 { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, 1606 { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, 1607 { SYS_DESC(SYS_LORN_EL1), trap_loregion }, 1608 { SYS_DESC(SYS_LORC_EL1), trap_loregion }, 1609 { SYS_DESC(SYS_LORID_EL1), trap_loregion }, 1610 1611 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, 1612 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, 1613 1614 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, 1615 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, 1616 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, 1617 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, 1618 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, 1619 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, 1620 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, 1621 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, 1622 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, 1623 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, 1624 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, 1625 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, 1626 1627 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 1628 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, 1629 1630 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, 1631 1632 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, 1633 1634 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, 1635 { SYS_DESC(SYS_CLIDR_EL1), access_clidr }, 1636 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, 1637 { SYS_DESC(SYS_CTR_EL0), access_ctr }, 1638 1639 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr, 1640 .reset = reset_pmcr, .reg = PMCR_EL0 }, 1641 { PMU_SYS_REG(SYS_PMCNTENSET_EL0), 1642 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1643 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0), 1644 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1645 { PMU_SYS_REG(SYS_PMOVSCLR_EL0), 1646 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1647 /* 1648 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was 1649 * previously (and pointlessly) advertised in the past... 1650 */ 1651 { PMU_SYS_REG(SYS_PMSWINC_EL0), 1652 .get_user = get_raz_reg, .set_user = set_wi_reg, 1653 .access = access_pmswinc, .reset = NULL }, 1654 { PMU_SYS_REG(SYS_PMSELR_EL0), 1655 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, 1656 { PMU_SYS_REG(SYS_PMCEID0_EL0), 1657 .access = access_pmceid, .reset = NULL }, 1658 { PMU_SYS_REG(SYS_PMCEID1_EL0), 1659 .access = access_pmceid, .reset = NULL }, 1660 { PMU_SYS_REG(SYS_PMCCNTR_EL0), 1661 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 }, 1662 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0), 1663 .access = access_pmu_evtyper, .reset = NULL }, 1664 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0), 1665 .access = access_pmu_evcntr, .reset = NULL }, 1666 /* 1667 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero 1668 * in 32bit mode. Here we choose to reset it as zero for consistency. 1669 */ 1670 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr, 1671 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, 1672 { PMU_SYS_REG(SYS_PMOVSSET_EL0), 1673 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1674 1675 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, 1676 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, 1677 1678 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, 1679 1680 { SYS_DESC(SYS_AMCR_EL0), undef_access }, 1681 { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, 1682 { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, 1683 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, 1684 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, 1685 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, 1686 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, 1687 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, 1688 AMU_AMEVCNTR0_EL0(0), 1689 AMU_AMEVCNTR0_EL0(1), 1690 AMU_AMEVCNTR0_EL0(2), 1691 AMU_AMEVCNTR0_EL0(3), 1692 AMU_AMEVCNTR0_EL0(4), 1693 AMU_AMEVCNTR0_EL0(5), 1694 AMU_AMEVCNTR0_EL0(6), 1695 AMU_AMEVCNTR0_EL0(7), 1696 AMU_AMEVCNTR0_EL0(8), 1697 AMU_AMEVCNTR0_EL0(9), 1698 AMU_AMEVCNTR0_EL0(10), 1699 AMU_AMEVCNTR0_EL0(11), 1700 AMU_AMEVCNTR0_EL0(12), 1701 AMU_AMEVCNTR0_EL0(13), 1702 AMU_AMEVCNTR0_EL0(14), 1703 AMU_AMEVCNTR0_EL0(15), 1704 AMU_AMEVTYPER0_EL0(0), 1705 AMU_AMEVTYPER0_EL0(1), 1706 AMU_AMEVTYPER0_EL0(2), 1707 AMU_AMEVTYPER0_EL0(3), 1708 AMU_AMEVTYPER0_EL0(4), 1709 AMU_AMEVTYPER0_EL0(5), 1710 AMU_AMEVTYPER0_EL0(6), 1711 AMU_AMEVTYPER0_EL0(7), 1712 AMU_AMEVTYPER0_EL0(8), 1713 AMU_AMEVTYPER0_EL0(9), 1714 AMU_AMEVTYPER0_EL0(10), 1715 AMU_AMEVTYPER0_EL0(11), 1716 AMU_AMEVTYPER0_EL0(12), 1717 AMU_AMEVTYPER0_EL0(13), 1718 AMU_AMEVTYPER0_EL0(14), 1719 AMU_AMEVTYPER0_EL0(15), 1720 AMU_AMEVCNTR1_EL0(0), 1721 AMU_AMEVCNTR1_EL0(1), 1722 AMU_AMEVCNTR1_EL0(2), 1723 AMU_AMEVCNTR1_EL0(3), 1724 AMU_AMEVCNTR1_EL0(4), 1725 AMU_AMEVCNTR1_EL0(5), 1726 AMU_AMEVCNTR1_EL0(6), 1727 AMU_AMEVCNTR1_EL0(7), 1728 AMU_AMEVCNTR1_EL0(8), 1729 AMU_AMEVCNTR1_EL0(9), 1730 AMU_AMEVCNTR1_EL0(10), 1731 AMU_AMEVCNTR1_EL0(11), 1732 AMU_AMEVCNTR1_EL0(12), 1733 AMU_AMEVCNTR1_EL0(13), 1734 AMU_AMEVCNTR1_EL0(14), 1735 AMU_AMEVCNTR1_EL0(15), 1736 AMU_AMEVTYPER1_EL0(0), 1737 AMU_AMEVTYPER1_EL0(1), 1738 AMU_AMEVTYPER1_EL0(2), 1739 AMU_AMEVTYPER1_EL0(3), 1740 AMU_AMEVTYPER1_EL0(4), 1741 AMU_AMEVTYPER1_EL0(5), 1742 AMU_AMEVTYPER1_EL0(6), 1743 AMU_AMEVTYPER1_EL0(7), 1744 AMU_AMEVTYPER1_EL0(8), 1745 AMU_AMEVTYPER1_EL0(9), 1746 AMU_AMEVTYPER1_EL0(10), 1747 AMU_AMEVTYPER1_EL0(11), 1748 AMU_AMEVTYPER1_EL0(12), 1749 AMU_AMEVTYPER1_EL0(13), 1750 AMU_AMEVTYPER1_EL0(14), 1751 AMU_AMEVTYPER1_EL0(15), 1752 1753 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, 1754 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, 1755 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, 1756 1757 /* PMEVCNTRn_EL0 */ 1758 PMU_PMEVCNTR_EL0(0), 1759 PMU_PMEVCNTR_EL0(1), 1760 PMU_PMEVCNTR_EL0(2), 1761 PMU_PMEVCNTR_EL0(3), 1762 PMU_PMEVCNTR_EL0(4), 1763 PMU_PMEVCNTR_EL0(5), 1764 PMU_PMEVCNTR_EL0(6), 1765 PMU_PMEVCNTR_EL0(7), 1766 PMU_PMEVCNTR_EL0(8), 1767 PMU_PMEVCNTR_EL0(9), 1768 PMU_PMEVCNTR_EL0(10), 1769 PMU_PMEVCNTR_EL0(11), 1770 PMU_PMEVCNTR_EL0(12), 1771 PMU_PMEVCNTR_EL0(13), 1772 PMU_PMEVCNTR_EL0(14), 1773 PMU_PMEVCNTR_EL0(15), 1774 PMU_PMEVCNTR_EL0(16), 1775 PMU_PMEVCNTR_EL0(17), 1776 PMU_PMEVCNTR_EL0(18), 1777 PMU_PMEVCNTR_EL0(19), 1778 PMU_PMEVCNTR_EL0(20), 1779 PMU_PMEVCNTR_EL0(21), 1780 PMU_PMEVCNTR_EL0(22), 1781 PMU_PMEVCNTR_EL0(23), 1782 PMU_PMEVCNTR_EL0(24), 1783 PMU_PMEVCNTR_EL0(25), 1784 PMU_PMEVCNTR_EL0(26), 1785 PMU_PMEVCNTR_EL0(27), 1786 PMU_PMEVCNTR_EL0(28), 1787 PMU_PMEVCNTR_EL0(29), 1788 PMU_PMEVCNTR_EL0(30), 1789 /* PMEVTYPERn_EL0 */ 1790 PMU_PMEVTYPER_EL0(0), 1791 PMU_PMEVTYPER_EL0(1), 1792 PMU_PMEVTYPER_EL0(2), 1793 PMU_PMEVTYPER_EL0(3), 1794 PMU_PMEVTYPER_EL0(4), 1795 PMU_PMEVTYPER_EL0(5), 1796 PMU_PMEVTYPER_EL0(6), 1797 PMU_PMEVTYPER_EL0(7), 1798 PMU_PMEVTYPER_EL0(8), 1799 PMU_PMEVTYPER_EL0(9), 1800 PMU_PMEVTYPER_EL0(10), 1801 PMU_PMEVTYPER_EL0(11), 1802 PMU_PMEVTYPER_EL0(12), 1803 PMU_PMEVTYPER_EL0(13), 1804 PMU_PMEVTYPER_EL0(14), 1805 PMU_PMEVTYPER_EL0(15), 1806 PMU_PMEVTYPER_EL0(16), 1807 PMU_PMEVTYPER_EL0(17), 1808 PMU_PMEVTYPER_EL0(18), 1809 PMU_PMEVTYPER_EL0(19), 1810 PMU_PMEVTYPER_EL0(20), 1811 PMU_PMEVTYPER_EL0(21), 1812 PMU_PMEVTYPER_EL0(22), 1813 PMU_PMEVTYPER_EL0(23), 1814 PMU_PMEVTYPER_EL0(24), 1815 PMU_PMEVTYPER_EL0(25), 1816 PMU_PMEVTYPER_EL0(26), 1817 PMU_PMEVTYPER_EL0(27), 1818 PMU_PMEVTYPER_EL0(28), 1819 PMU_PMEVTYPER_EL0(29), 1820 PMU_PMEVTYPER_EL0(30), 1821 /* 1822 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero 1823 * in 32bit mode. Here we choose to reset it as zero for consistency. 1824 */ 1825 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper, 1826 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, 1827 1828 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, 1829 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, 1830 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, 1831 }; 1832 1833 static bool trap_dbgdidr(struct kvm_vcpu *vcpu, 1834 struct sys_reg_params *p, 1835 const struct sys_reg_desc *r) 1836 { 1837 if (p->is_write) { 1838 return ignore_write(vcpu, p); 1839 } else { 1840 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); 1841 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1842 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); 1843 1844 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | 1845 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | 1846 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) 1847 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); 1848 return true; 1849 } 1850 } 1851 1852 /* 1853 * AArch32 debug register mappings 1854 * 1855 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 1856 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 1857 * 1858 * None of the other registers share their location, so treat them as 1859 * if they were 64bit. 1860 */ 1861 #define DBG_BCR_BVR_WCR_WVR(n) \ 1862 /* DBGBVRn */ \ 1863 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 1864 /* DBGBCRn */ \ 1865 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 1866 /* DBGWVRn */ \ 1867 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 1868 /* DBGWCRn */ \ 1869 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 1870 1871 #define DBGBXVR(n) \ 1872 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } 1873 1874 /* 1875 * Trapped cp14 registers. We generally ignore most of the external 1876 * debug, on the principle that they don't really make sense to a 1877 * guest. Revisit this one day, would this principle change. 1878 */ 1879 static const struct sys_reg_desc cp14_regs[] = { 1880 /* DBGDIDR */ 1881 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, 1882 /* DBGDTRRXext */ 1883 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 1884 1885 DBG_BCR_BVR_WCR_WVR(0), 1886 /* DBGDSCRint */ 1887 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 1888 DBG_BCR_BVR_WCR_WVR(1), 1889 /* DBGDCCINT */ 1890 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, 1891 /* DBGDSCRext */ 1892 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, 1893 DBG_BCR_BVR_WCR_WVR(2), 1894 /* DBGDTR[RT]Xint */ 1895 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 1896 /* DBGDTR[RT]Xext */ 1897 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 1898 DBG_BCR_BVR_WCR_WVR(3), 1899 DBG_BCR_BVR_WCR_WVR(4), 1900 DBG_BCR_BVR_WCR_WVR(5), 1901 /* DBGWFAR */ 1902 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 1903 /* DBGOSECCR */ 1904 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 1905 DBG_BCR_BVR_WCR_WVR(6), 1906 /* DBGVCR */ 1907 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, 1908 DBG_BCR_BVR_WCR_WVR(7), 1909 DBG_BCR_BVR_WCR_WVR(8), 1910 DBG_BCR_BVR_WCR_WVR(9), 1911 DBG_BCR_BVR_WCR_WVR(10), 1912 DBG_BCR_BVR_WCR_WVR(11), 1913 DBG_BCR_BVR_WCR_WVR(12), 1914 DBG_BCR_BVR_WCR_WVR(13), 1915 DBG_BCR_BVR_WCR_WVR(14), 1916 DBG_BCR_BVR_WCR_WVR(15), 1917 1918 /* DBGDRAR (32bit) */ 1919 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 1920 1921 DBGBXVR(0), 1922 /* DBGOSLAR */ 1923 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, 1924 DBGBXVR(1), 1925 /* DBGOSLSR */ 1926 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, 1927 DBGBXVR(2), 1928 DBGBXVR(3), 1929 /* DBGOSDLR */ 1930 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 1931 DBGBXVR(4), 1932 /* DBGPRCR */ 1933 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 1934 DBGBXVR(5), 1935 DBGBXVR(6), 1936 DBGBXVR(7), 1937 DBGBXVR(8), 1938 DBGBXVR(9), 1939 DBGBXVR(10), 1940 DBGBXVR(11), 1941 DBGBXVR(12), 1942 DBGBXVR(13), 1943 DBGBXVR(14), 1944 DBGBXVR(15), 1945 1946 /* DBGDSAR (32bit) */ 1947 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 1948 1949 /* DBGDEVID2 */ 1950 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 1951 /* DBGDEVID1 */ 1952 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 1953 /* DBGDEVID */ 1954 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 1955 /* DBGCLAIMSET */ 1956 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 1957 /* DBGCLAIMCLR */ 1958 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 1959 /* DBGAUTHSTATUS */ 1960 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 1961 }; 1962 1963 /* Trapped cp14 64bit registers */ 1964 static const struct sys_reg_desc cp14_64_regs[] = { 1965 /* DBGDRAR (64bit) */ 1966 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 1967 1968 /* DBGDSAR (64bit) */ 1969 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 1970 }; 1971 1972 /* Macro to expand the PMEVCNTRn register */ 1973 #define PMU_PMEVCNTR(n) \ 1974 /* PMEVCNTRn */ \ 1975 { Op1(0), CRn(0b1110), \ 1976 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ 1977 access_pmu_evcntr } 1978 1979 /* Macro to expand the PMEVTYPERn register */ 1980 #define PMU_PMEVTYPER(n) \ 1981 /* PMEVTYPERn */ \ 1982 { Op1(0), CRn(0b1110), \ 1983 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \ 1984 access_pmu_evtyper } 1985 1986 /* 1987 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 1988 * depending on the way they are accessed (as a 32bit or a 64bit 1989 * register). 1990 */ 1991 static const struct sys_reg_desc cp15_regs[] = { 1992 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, 1993 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, 1994 /* ACTLR */ 1995 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, 1996 /* ACTLR2 */ 1997 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, 1998 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 1999 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, 2000 /* TTBCR */ 2001 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, 2002 /* TTBCR2 */ 2003 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, 2004 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, 2005 /* DFSR */ 2006 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, 2007 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, 2008 /* ADFSR */ 2009 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, 2010 /* AIFSR */ 2011 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, 2012 /* DFAR */ 2013 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, 2014 /* IFAR */ 2015 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, 2016 2017 /* 2018 * DC{C,I,CI}SW operations: 2019 */ 2020 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 2021 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 2022 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 2023 2024 /* PMU */ 2025 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr }, 2026 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten }, 2027 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten }, 2028 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs }, 2029 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc }, 2030 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr }, 2031 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid }, 2032 { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid }, 2033 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr }, 2034 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper }, 2035 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr }, 2036 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr }, 2037 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten }, 2038 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten }, 2039 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs }, 2040 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid }, 2041 { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid }, 2042 /* PMMIR */ 2043 { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi }, 2044 2045 /* PRRR/MAIR0 */ 2046 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, 2047 /* NMRR/MAIR1 */ 2048 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, 2049 /* AMAIR0 */ 2050 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, 2051 /* AMAIR1 */ 2052 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, 2053 2054 /* ICC_SRE */ 2055 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, 2056 2057 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, 2058 2059 /* Arch Tmers */ 2060 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, 2061 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, 2062 2063 /* PMEVCNTRn */ 2064 PMU_PMEVCNTR(0), 2065 PMU_PMEVCNTR(1), 2066 PMU_PMEVCNTR(2), 2067 PMU_PMEVCNTR(3), 2068 PMU_PMEVCNTR(4), 2069 PMU_PMEVCNTR(5), 2070 PMU_PMEVCNTR(6), 2071 PMU_PMEVCNTR(7), 2072 PMU_PMEVCNTR(8), 2073 PMU_PMEVCNTR(9), 2074 PMU_PMEVCNTR(10), 2075 PMU_PMEVCNTR(11), 2076 PMU_PMEVCNTR(12), 2077 PMU_PMEVCNTR(13), 2078 PMU_PMEVCNTR(14), 2079 PMU_PMEVCNTR(15), 2080 PMU_PMEVCNTR(16), 2081 PMU_PMEVCNTR(17), 2082 PMU_PMEVCNTR(18), 2083 PMU_PMEVCNTR(19), 2084 PMU_PMEVCNTR(20), 2085 PMU_PMEVCNTR(21), 2086 PMU_PMEVCNTR(22), 2087 PMU_PMEVCNTR(23), 2088 PMU_PMEVCNTR(24), 2089 PMU_PMEVCNTR(25), 2090 PMU_PMEVCNTR(26), 2091 PMU_PMEVCNTR(27), 2092 PMU_PMEVCNTR(28), 2093 PMU_PMEVCNTR(29), 2094 PMU_PMEVCNTR(30), 2095 /* PMEVTYPERn */ 2096 PMU_PMEVTYPER(0), 2097 PMU_PMEVTYPER(1), 2098 PMU_PMEVTYPER(2), 2099 PMU_PMEVTYPER(3), 2100 PMU_PMEVTYPER(4), 2101 PMU_PMEVTYPER(5), 2102 PMU_PMEVTYPER(6), 2103 PMU_PMEVTYPER(7), 2104 PMU_PMEVTYPER(8), 2105 PMU_PMEVTYPER(9), 2106 PMU_PMEVTYPER(10), 2107 PMU_PMEVTYPER(11), 2108 PMU_PMEVTYPER(12), 2109 PMU_PMEVTYPER(13), 2110 PMU_PMEVTYPER(14), 2111 PMU_PMEVTYPER(15), 2112 PMU_PMEVTYPER(16), 2113 PMU_PMEVTYPER(17), 2114 PMU_PMEVTYPER(18), 2115 PMU_PMEVTYPER(19), 2116 PMU_PMEVTYPER(20), 2117 PMU_PMEVTYPER(21), 2118 PMU_PMEVTYPER(22), 2119 PMU_PMEVTYPER(23), 2120 PMU_PMEVTYPER(24), 2121 PMU_PMEVTYPER(25), 2122 PMU_PMEVTYPER(26), 2123 PMU_PMEVTYPER(27), 2124 PMU_PMEVTYPER(28), 2125 PMU_PMEVTYPER(29), 2126 PMU_PMEVTYPER(30), 2127 /* PMCCFILTR */ 2128 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper }, 2129 2130 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, 2131 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, 2132 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, 2133 }; 2134 2135 static const struct sys_reg_desc cp15_64_regs[] = { 2136 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2137 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr }, 2138 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ 2139 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, 2140 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ 2141 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ 2142 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, 2143 }; 2144 2145 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, 2146 bool is_32) 2147 { 2148 unsigned int i; 2149 2150 for (i = 0; i < n; i++) { 2151 if (!is_32 && table[i].reg && !table[i].reset) { 2152 kvm_err("sys_reg table %p entry %d has lacks reset\n", 2153 table, i); 2154 return 1; 2155 } 2156 2157 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 2158 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); 2159 return 1; 2160 } 2161 } 2162 2163 return 0; 2164 } 2165 2166 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) 2167 { 2168 kvm_inject_undefined(vcpu); 2169 return 1; 2170 } 2171 2172 static void perform_access(struct kvm_vcpu *vcpu, 2173 struct sys_reg_params *params, 2174 const struct sys_reg_desc *r) 2175 { 2176 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); 2177 2178 /* Check for regs disabled by runtime config */ 2179 if (sysreg_hidden(vcpu, r)) { 2180 kvm_inject_undefined(vcpu); 2181 return; 2182 } 2183 2184 /* 2185 * Not having an accessor means that we have configured a trap 2186 * that we don't know how to handle. This certainly qualifies 2187 * as a gross bug that should be fixed right away. 2188 */ 2189 BUG_ON(!r->access); 2190 2191 /* Skip instruction if instructed so */ 2192 if (likely(r->access(vcpu, params, r))) 2193 kvm_incr_pc(vcpu); 2194 } 2195 2196 /* 2197 * emulate_cp -- tries to match a sys_reg access in a handling table, and 2198 * call the corresponding trap handler. 2199 * 2200 * @params: pointer to the descriptor of the access 2201 * @table: array of trap descriptors 2202 * @num: size of the trap descriptor array 2203 * 2204 * Return 0 if the access has been handled, and -1 if not. 2205 */ 2206 static int emulate_cp(struct kvm_vcpu *vcpu, 2207 struct sys_reg_params *params, 2208 const struct sys_reg_desc *table, 2209 size_t num) 2210 { 2211 const struct sys_reg_desc *r; 2212 2213 if (!table) 2214 return -1; /* Not handled */ 2215 2216 r = find_reg(params, table, num); 2217 2218 if (r) { 2219 perform_access(vcpu, params, r); 2220 return 0; 2221 } 2222 2223 /* Not handled */ 2224 return -1; 2225 } 2226 2227 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 2228 struct sys_reg_params *params) 2229 { 2230 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 2231 int cp = -1; 2232 2233 switch (esr_ec) { 2234 case ESR_ELx_EC_CP15_32: 2235 case ESR_ELx_EC_CP15_64: 2236 cp = 15; 2237 break; 2238 case ESR_ELx_EC_CP14_MR: 2239 case ESR_ELx_EC_CP14_64: 2240 cp = 14; 2241 break; 2242 default: 2243 WARN_ON(1); 2244 } 2245 2246 print_sys_reg_msg(params, 2247 "Unsupported guest CP%d access at: %08lx [%08lx]\n", 2248 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2249 kvm_inject_undefined(vcpu); 2250 } 2251 2252 /** 2253 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access 2254 * @vcpu: The VCPU pointer 2255 * @run: The kvm_run struct 2256 */ 2257 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 2258 const struct sys_reg_desc *global, 2259 size_t nr_global) 2260 { 2261 struct sys_reg_params params; 2262 u32 esr = kvm_vcpu_get_esr(vcpu); 2263 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2264 int Rt2 = (esr >> 10) & 0x1f; 2265 2266 params.CRm = (esr >> 1) & 0xf; 2267 params.is_write = ((esr & 1) == 0); 2268 2269 params.Op0 = 0; 2270 params.Op1 = (esr >> 16) & 0xf; 2271 params.Op2 = 0; 2272 params.CRn = 0; 2273 2274 /* 2275 * Make a 64-bit value out of Rt and Rt2. As we use the same trap 2276 * backends between AArch32 and AArch64, we get away with it. 2277 */ 2278 if (params.is_write) { 2279 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; 2280 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; 2281 } 2282 2283 /* 2284 * If the table contains a handler, handle the 2285 * potential register operation in the case of a read and return 2286 * with success. 2287 */ 2288 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) { 2289 /* Split up the value between registers for the read side */ 2290 if (!params.is_write) { 2291 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); 2292 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); 2293 } 2294 2295 return 1; 2296 } 2297 2298 unhandled_cp_access(vcpu, ¶ms); 2299 return 1; 2300 } 2301 2302 /** 2303 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access 2304 * @vcpu: The VCPU pointer 2305 * @run: The kvm_run struct 2306 */ 2307 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 2308 const struct sys_reg_desc *global, 2309 size_t nr_global) 2310 { 2311 struct sys_reg_params params; 2312 u32 esr = kvm_vcpu_get_esr(vcpu); 2313 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2314 2315 params.CRm = (esr >> 1) & 0xf; 2316 params.regval = vcpu_get_reg(vcpu, Rt); 2317 params.is_write = ((esr & 1) == 0); 2318 params.CRn = (esr >> 10) & 0xf; 2319 params.Op0 = 0; 2320 params.Op1 = (esr >> 14) & 0x7; 2321 params.Op2 = (esr >> 17) & 0x7; 2322 2323 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) { 2324 if (!params.is_write) 2325 vcpu_set_reg(vcpu, Rt, params.regval); 2326 return 1; 2327 } 2328 2329 unhandled_cp_access(vcpu, ¶ms); 2330 return 1; 2331 } 2332 2333 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) 2334 { 2335 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); 2336 } 2337 2338 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) 2339 { 2340 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs)); 2341 } 2342 2343 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) 2344 { 2345 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); 2346 } 2347 2348 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) 2349 { 2350 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs)); 2351 } 2352 2353 static bool is_imp_def_sys_reg(struct sys_reg_params *params) 2354 { 2355 // See ARM DDI 0487E.a, section D12.3.2 2356 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; 2357 } 2358 2359 static int emulate_sys_reg(struct kvm_vcpu *vcpu, 2360 struct sys_reg_params *params) 2361 { 2362 const struct sys_reg_desc *r; 2363 2364 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2365 2366 if (likely(r)) { 2367 perform_access(vcpu, params, r); 2368 } else if (is_imp_def_sys_reg(params)) { 2369 kvm_inject_undefined(vcpu); 2370 } else { 2371 print_sys_reg_msg(params, 2372 "Unsupported guest sys_reg access at: %lx [%08lx]\n", 2373 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2374 kvm_inject_undefined(vcpu); 2375 } 2376 return 1; 2377 } 2378 2379 /** 2380 * kvm_reset_sys_regs - sets system registers to reset value 2381 * @vcpu: The VCPU pointer 2382 * 2383 * This function finds the right table above and sets the registers on the 2384 * virtual CPU struct to their architecturally defined reset values. 2385 */ 2386 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 2387 { 2388 unsigned long i; 2389 2390 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) 2391 if (sys_reg_descs[i].reset) 2392 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); 2393 } 2394 2395 /** 2396 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access 2397 * @vcpu: The VCPU pointer 2398 */ 2399 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) 2400 { 2401 struct sys_reg_params params; 2402 unsigned long esr = kvm_vcpu_get_esr(vcpu); 2403 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2404 int ret; 2405 2406 trace_kvm_handle_sys_reg(esr); 2407 2408 params = esr_sys64_to_params(esr); 2409 params.regval = vcpu_get_reg(vcpu, Rt); 2410 2411 ret = emulate_sys_reg(vcpu, ¶ms); 2412 2413 if (!params.is_write) 2414 vcpu_set_reg(vcpu, Rt, params.regval); 2415 return ret; 2416 } 2417 2418 /****************************************************************************** 2419 * Userspace API 2420 *****************************************************************************/ 2421 2422 static bool index_to_params(u64 id, struct sys_reg_params *params) 2423 { 2424 switch (id & KVM_REG_SIZE_MASK) { 2425 case KVM_REG_SIZE_U64: 2426 /* Any unused index bits means it's not valid. */ 2427 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 2428 | KVM_REG_ARM_COPROC_MASK 2429 | KVM_REG_ARM64_SYSREG_OP0_MASK 2430 | KVM_REG_ARM64_SYSREG_OP1_MASK 2431 | KVM_REG_ARM64_SYSREG_CRN_MASK 2432 | KVM_REG_ARM64_SYSREG_CRM_MASK 2433 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 2434 return false; 2435 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 2436 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 2437 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 2438 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 2439 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 2440 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 2441 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 2442 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 2443 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 2444 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 2445 return true; 2446 default: 2447 return false; 2448 } 2449 } 2450 2451 const struct sys_reg_desc *find_reg_by_id(u64 id, 2452 struct sys_reg_params *params, 2453 const struct sys_reg_desc table[], 2454 unsigned int num) 2455 { 2456 if (!index_to_params(id, params)) 2457 return NULL; 2458 2459 return find_reg(params, table, num); 2460 } 2461 2462 /* Decode an index value, and find the sys_reg_desc entry. */ 2463 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, 2464 u64 id) 2465 { 2466 const struct sys_reg_desc *r; 2467 struct sys_reg_params params; 2468 2469 /* We only do sys_reg for now. */ 2470 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 2471 return NULL; 2472 2473 if (!index_to_params(id, ¶ms)) 2474 return NULL; 2475 2476 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2477 2478 /* Not saved in the sys_reg array and not otherwise accessible? */ 2479 if (r && !(r->reg || r->get_user)) 2480 r = NULL; 2481 2482 return r; 2483 } 2484 2485 /* 2486 * These are the invariant sys_reg registers: we let the guest see the 2487 * host versions of these, so they're part of the guest state. 2488 * 2489 * A future CPU may provide a mechanism to present different values to 2490 * the guest, or a future kvm may trap them. 2491 */ 2492 2493 #define FUNCTION_INVARIANT(reg) \ 2494 static void get_##reg(struct kvm_vcpu *v, \ 2495 const struct sys_reg_desc *r) \ 2496 { \ 2497 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ 2498 } 2499 2500 FUNCTION_INVARIANT(midr_el1) 2501 FUNCTION_INVARIANT(revidr_el1) 2502 FUNCTION_INVARIANT(clidr_el1) 2503 FUNCTION_INVARIANT(aidr_el1) 2504 2505 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) 2506 { 2507 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); 2508 } 2509 2510 /* ->val is filled in by kvm_sys_reg_table_init() */ 2511 static struct sys_reg_desc invariant_sys_regs[] = { 2512 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, 2513 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, 2514 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, 2515 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, 2516 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, 2517 }; 2518 2519 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) 2520 { 2521 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) 2522 return -EFAULT; 2523 return 0; 2524 } 2525 2526 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) 2527 { 2528 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) 2529 return -EFAULT; 2530 return 0; 2531 } 2532 2533 static int get_invariant_sys_reg(u64 id, void __user *uaddr) 2534 { 2535 struct sys_reg_params params; 2536 const struct sys_reg_desc *r; 2537 2538 r = find_reg_by_id(id, ¶ms, invariant_sys_regs, 2539 ARRAY_SIZE(invariant_sys_regs)); 2540 if (!r) 2541 return -ENOENT; 2542 2543 return reg_to_user(uaddr, &r->val, id); 2544 } 2545 2546 static int set_invariant_sys_reg(u64 id, void __user *uaddr) 2547 { 2548 struct sys_reg_params params; 2549 const struct sys_reg_desc *r; 2550 int err; 2551 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ 2552 2553 r = find_reg_by_id(id, ¶ms, invariant_sys_regs, 2554 ARRAY_SIZE(invariant_sys_regs)); 2555 if (!r) 2556 return -ENOENT; 2557 2558 err = reg_from_user(&val, uaddr, id); 2559 if (err) 2560 return err; 2561 2562 /* This is what we mean by invariant: you can't change it. */ 2563 if (r->val != val) 2564 return -EINVAL; 2565 2566 return 0; 2567 } 2568 2569 static bool is_valid_cache(u32 val) 2570 { 2571 u32 level, ctype; 2572 2573 if (val >= CSSELR_MAX) 2574 return false; 2575 2576 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ 2577 level = (val >> 1); 2578 ctype = (cache_levels >> (level * 3)) & 7; 2579 2580 switch (ctype) { 2581 case 0: /* No cache */ 2582 return false; 2583 case 1: /* Instruction cache only */ 2584 return (val & 1); 2585 case 2: /* Data cache only */ 2586 case 4: /* Unified cache */ 2587 return !(val & 1); 2588 case 3: /* Separate instruction and data caches */ 2589 return true; 2590 default: /* Reserved: we can't know instruction or data. */ 2591 return false; 2592 } 2593 } 2594 2595 static int demux_c15_get(u64 id, void __user *uaddr) 2596 { 2597 u32 val; 2598 u32 __user *uval = uaddr; 2599 2600 /* Fail if we have unknown bits set. */ 2601 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2602 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2603 return -ENOENT; 2604 2605 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2606 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2607 if (KVM_REG_SIZE(id) != 4) 2608 return -ENOENT; 2609 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2610 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2611 if (!is_valid_cache(val)) 2612 return -ENOENT; 2613 2614 return put_user(get_ccsidr(val), uval); 2615 default: 2616 return -ENOENT; 2617 } 2618 } 2619 2620 static int demux_c15_set(u64 id, void __user *uaddr) 2621 { 2622 u32 val, newval; 2623 u32 __user *uval = uaddr; 2624 2625 /* Fail if we have unknown bits set. */ 2626 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2627 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2628 return -ENOENT; 2629 2630 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2631 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2632 if (KVM_REG_SIZE(id) != 4) 2633 return -ENOENT; 2634 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2635 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2636 if (!is_valid_cache(val)) 2637 return -ENOENT; 2638 2639 if (get_user(newval, uval)) 2640 return -EFAULT; 2641 2642 /* This is also invariant: you can't change it. */ 2643 if (newval != get_ccsidr(val)) 2644 return -EINVAL; 2645 return 0; 2646 default: 2647 return -ENOENT; 2648 } 2649 } 2650 2651 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2652 { 2653 const struct sys_reg_desc *r; 2654 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2655 2656 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2657 return demux_c15_get(reg->id, uaddr); 2658 2659 if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) 2660 return -ENOENT; 2661 2662 r = index_to_sys_reg_desc(vcpu, reg->id); 2663 if (!r) 2664 return get_invariant_sys_reg(reg->id, uaddr); 2665 2666 /* Check for regs disabled by runtime config */ 2667 if (sysreg_hidden(vcpu, r)) 2668 return -ENOENT; 2669 2670 if (r->get_user) 2671 return (r->get_user)(vcpu, r, reg, uaddr); 2672 2673 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id); 2674 } 2675 2676 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2677 { 2678 const struct sys_reg_desc *r; 2679 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2680 2681 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2682 return demux_c15_set(reg->id, uaddr); 2683 2684 if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) 2685 return -ENOENT; 2686 2687 r = index_to_sys_reg_desc(vcpu, reg->id); 2688 if (!r) 2689 return set_invariant_sys_reg(reg->id, uaddr); 2690 2691 /* Check for regs disabled by runtime config */ 2692 if (sysreg_hidden(vcpu, r)) 2693 return -ENOENT; 2694 2695 if (r->set_user) 2696 return (r->set_user)(vcpu, r, reg, uaddr); 2697 2698 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); 2699 } 2700 2701 static unsigned int num_demux_regs(void) 2702 { 2703 unsigned int i, count = 0; 2704 2705 for (i = 0; i < CSSELR_MAX; i++) 2706 if (is_valid_cache(i)) 2707 count++; 2708 2709 return count; 2710 } 2711 2712 static int write_demux_regids(u64 __user *uindices) 2713 { 2714 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 2715 unsigned int i; 2716 2717 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 2718 for (i = 0; i < CSSELR_MAX; i++) { 2719 if (!is_valid_cache(i)) 2720 continue; 2721 if (put_user(val | i, uindices)) 2722 return -EFAULT; 2723 uindices++; 2724 } 2725 return 0; 2726 } 2727 2728 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 2729 { 2730 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 2731 KVM_REG_ARM64_SYSREG | 2732 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 2733 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 2734 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 2735 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 2736 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 2737 } 2738 2739 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 2740 { 2741 if (!*uind) 2742 return true; 2743 2744 if (put_user(sys_reg_to_index(reg), *uind)) 2745 return false; 2746 2747 (*uind)++; 2748 return true; 2749 } 2750 2751 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, 2752 const struct sys_reg_desc *rd, 2753 u64 __user **uind, 2754 unsigned int *total) 2755 { 2756 /* 2757 * Ignore registers we trap but don't save, 2758 * and for which no custom user accessor is provided. 2759 */ 2760 if (!(rd->reg || rd->get_user)) 2761 return 0; 2762 2763 if (sysreg_hidden(vcpu, rd)) 2764 return 0; 2765 2766 if (!copy_reg_to_user(rd, uind)) 2767 return -EFAULT; 2768 2769 (*total)++; 2770 return 0; 2771 } 2772 2773 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 2774 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 2775 { 2776 const struct sys_reg_desc *i2, *end2; 2777 unsigned int total = 0; 2778 int err; 2779 2780 i2 = sys_reg_descs; 2781 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 2782 2783 while (i2 != end2) { 2784 err = walk_one_sys_reg(vcpu, i2++, &uind, &total); 2785 if (err) 2786 return err; 2787 } 2788 return total; 2789 } 2790 2791 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 2792 { 2793 return ARRAY_SIZE(invariant_sys_regs) 2794 + num_demux_regs() 2795 + walk_sys_regs(vcpu, (u64 __user *)NULL); 2796 } 2797 2798 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 2799 { 2800 unsigned int i; 2801 int err; 2802 2803 /* Then give them all the invariant registers' indices. */ 2804 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 2805 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 2806 return -EFAULT; 2807 uindices++; 2808 } 2809 2810 err = walk_sys_regs(vcpu, uindices); 2811 if (err < 0) 2812 return err; 2813 uindices += err; 2814 2815 return write_demux_regids(uindices); 2816 } 2817 2818 void kvm_sys_reg_table_init(void) 2819 { 2820 unsigned int i; 2821 struct sys_reg_desc clidr; 2822 2823 /* Make sure tables are unique and in order. */ 2824 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false)); 2825 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true)); 2826 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true)); 2827 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true)); 2828 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true)); 2829 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false)); 2830 2831 /* We abuse the reset function to overwrite the table itself. */ 2832 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 2833 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 2834 2835 /* 2836 * CLIDR format is awkward, so clean it up. See ARM B4.1.20: 2837 * 2838 * If software reads the Cache Type fields from Ctype1 2839 * upwards, once it has seen a value of 0b000, no caches 2840 * exist at further-out levels of the hierarchy. So, for 2841 * example, if Ctype3 is the first Cache Type field with a 2842 * value of 0b000, the values of Ctype4 to Ctype7 must be 2843 * ignored. 2844 */ 2845 get_clidr_el1(NULL, &clidr); /* Ugly... */ 2846 cache_levels = clidr.val; 2847 for (i = 0; i < 7; i++) 2848 if (((cache_levels >> (i*3)) & 7) == 0) 2849 break; 2850 /* Clear all higher bits. */ 2851 cache_levels &= (1 << (i*3))-1; 2852 } 2853