1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * Derived from arch/arm/kvm/coproc.c: 6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 7 * Authors: Rusty Russell <rusty@rustcorp.com.au> 8 * Christoffer Dall <c.dall@virtualopensystems.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License, version 2, as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 */ 22 23 #include <linux/kvm_host.h> 24 #include <linux/mm.h> 25 #include <linux/uaccess.h> 26 27 #include <asm/cacheflush.h> 28 #include <asm/cputype.h> 29 #include <asm/debug-monitors.h> 30 #include <asm/esr.h> 31 #include <asm/kvm_arm.h> 32 #include <asm/kvm_coproc.h> 33 #include <asm/kvm_emulate.h> 34 #include <asm/kvm_host.h> 35 #include <asm/kvm_mmu.h> 36 37 #include <trace/events/kvm.h> 38 39 #include "sys_regs.h" 40 41 #include "trace.h" 42 43 /* 44 * All of this file is extremly similar to the ARM coproc.c, but the 45 * types are different. My gut feeling is that it should be pretty 46 * easy to merge, but that would be an ABI breakage -- again. VFP 47 * would also need to be abstracted. 48 * 49 * For AArch32, we only take care of what is being trapped. Anything 50 * that has to do with init and userspace access has to go via the 51 * 64bit interface. 52 */ 53 54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ 55 static u32 cache_levels; 56 57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 58 #define CSSELR_MAX 12 59 60 /* Which cache CCSIDR represents depends on CSSELR value. */ 61 static u32 get_ccsidr(u32 csselr) 62 { 63 u32 ccsidr; 64 65 /* Make sure noone else changes CSSELR during this! */ 66 local_irq_disable(); 67 /* Put value into CSSELR */ 68 asm volatile("msr csselr_el1, %x0" : : "r" (csselr)); 69 isb(); 70 /* Read result out of CCSIDR */ 71 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr)); 72 local_irq_enable(); 73 74 return ccsidr; 75 } 76 77 /* 78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 79 */ 80 static bool access_dcsw(struct kvm_vcpu *vcpu, 81 const struct sys_reg_params *p, 82 const struct sys_reg_desc *r) 83 { 84 if (!p->is_write) 85 return read_from_write_only(vcpu, p); 86 87 kvm_set_way_flush(vcpu); 88 return true; 89 } 90 91 /* 92 * Generic accessor for VM registers. Only called as long as HCR_TVM 93 * is set. If the guest enables the MMU, we stop trapping the VM 94 * sys_regs and leave it in complete control of the caches. 95 */ 96 static bool access_vm_reg(struct kvm_vcpu *vcpu, 97 const struct sys_reg_params *p, 98 const struct sys_reg_desc *r) 99 { 100 unsigned long val; 101 bool was_enabled = vcpu_has_cache_enabled(vcpu); 102 103 BUG_ON(!p->is_write); 104 105 val = *vcpu_reg(vcpu, p->Rt); 106 if (!p->is_aarch32) { 107 vcpu_sys_reg(vcpu, r->reg) = val; 108 } else { 109 if (!p->is_32bit) 110 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32; 111 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL; 112 } 113 114 kvm_toggle_cache(vcpu, was_enabled); 115 return true; 116 } 117 118 /* 119 * Trap handler for the GICv3 SGI generation system register. 120 * Forward the request to the VGIC emulation. 121 * The cp15_64 code makes sure this automatically works 122 * for both AArch64 and AArch32 accesses. 123 */ 124 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 125 const struct sys_reg_params *p, 126 const struct sys_reg_desc *r) 127 { 128 u64 val; 129 130 if (!p->is_write) 131 return read_from_write_only(vcpu, p); 132 133 val = *vcpu_reg(vcpu, p->Rt); 134 vgic_v3_dispatch_sgi(vcpu, val); 135 136 return true; 137 } 138 139 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 140 const struct sys_reg_params *p, 141 const struct sys_reg_desc *r) 142 { 143 if (p->is_write) 144 return ignore_write(vcpu, p); 145 else 146 return read_zero(vcpu, p); 147 } 148 149 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 150 const struct sys_reg_params *p, 151 const struct sys_reg_desc *r) 152 { 153 if (p->is_write) { 154 return ignore_write(vcpu, p); 155 } else { 156 *vcpu_reg(vcpu, p->Rt) = (1 << 3); 157 return true; 158 } 159 } 160 161 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 162 const struct sys_reg_params *p, 163 const struct sys_reg_desc *r) 164 { 165 if (p->is_write) { 166 return ignore_write(vcpu, p); 167 } else { 168 u32 val; 169 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val)); 170 *vcpu_reg(vcpu, p->Rt) = val; 171 return true; 172 } 173 } 174 175 /* 176 * We want to avoid world-switching all the DBG registers all the 177 * time: 178 * 179 * - If we've touched any debug register, it is likely that we're 180 * going to touch more of them. It then makes sense to disable the 181 * traps and start doing the save/restore dance 182 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 183 * then mandatory to save/restore the registers, as the guest 184 * depends on them. 185 * 186 * For this, we use a DIRTY bit, indicating the guest has modified the 187 * debug registers, used as follow: 188 * 189 * On guest entry: 190 * - If the dirty bit is set (because we're coming back from trapping), 191 * disable the traps, save host registers, restore guest registers. 192 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 193 * set the dirty bit, disable the traps, save host registers, 194 * restore guest registers. 195 * - Otherwise, enable the traps 196 * 197 * On guest exit: 198 * - If the dirty bit is set, save guest registers, restore host 199 * registers and clear the dirty bit. This ensure that the host can 200 * now use the debug registers. 201 */ 202 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 203 const struct sys_reg_params *p, 204 const struct sys_reg_desc *r) 205 { 206 if (p->is_write) { 207 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt); 208 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; 209 } else { 210 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg); 211 } 212 213 trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt)); 214 215 return true; 216 } 217 218 /* 219 * reg_to_dbg/dbg_to_reg 220 * 221 * A 32 bit write to a debug register leave top bits alone 222 * A 32 bit read from a debug register only returns the bottom bits 223 * 224 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the 225 * hyp.S code switches between host and guest values in future. 226 */ 227 static inline void reg_to_dbg(struct kvm_vcpu *vcpu, 228 const struct sys_reg_params *p, 229 u64 *dbg_reg) 230 { 231 u64 val = *vcpu_reg(vcpu, p->Rt); 232 233 if (p->is_32bit) { 234 val &= 0xffffffffUL; 235 val |= ((*dbg_reg >> 32) << 32); 236 } 237 238 *dbg_reg = val; 239 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; 240 } 241 242 static inline void dbg_to_reg(struct kvm_vcpu *vcpu, 243 const struct sys_reg_params *p, 244 u64 *dbg_reg) 245 { 246 u64 val = *dbg_reg; 247 248 if (p->is_32bit) 249 val &= 0xffffffffUL; 250 251 *vcpu_reg(vcpu, p->Rt) = val; 252 } 253 254 static inline bool trap_bvr(struct kvm_vcpu *vcpu, 255 const struct sys_reg_params *p, 256 const struct sys_reg_desc *rd) 257 { 258 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; 259 260 if (p->is_write) 261 reg_to_dbg(vcpu, p, dbg_reg); 262 else 263 dbg_to_reg(vcpu, p, dbg_reg); 264 265 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); 266 267 return true; 268 } 269 270 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 271 const struct kvm_one_reg *reg, void __user *uaddr) 272 { 273 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; 274 275 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 276 return -EFAULT; 277 return 0; 278 } 279 280 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 281 const struct kvm_one_reg *reg, void __user *uaddr) 282 { 283 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; 284 285 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 286 return -EFAULT; 287 return 0; 288 } 289 290 static inline void reset_bvr(struct kvm_vcpu *vcpu, 291 const struct sys_reg_desc *rd) 292 { 293 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val; 294 } 295 296 static inline bool trap_bcr(struct kvm_vcpu *vcpu, 297 const struct sys_reg_params *p, 298 const struct sys_reg_desc *rd) 299 { 300 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; 301 302 if (p->is_write) 303 reg_to_dbg(vcpu, p, dbg_reg); 304 else 305 dbg_to_reg(vcpu, p, dbg_reg); 306 307 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); 308 309 return true; 310 } 311 312 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 313 const struct kvm_one_reg *reg, void __user *uaddr) 314 { 315 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; 316 317 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 318 return -EFAULT; 319 320 return 0; 321 } 322 323 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 324 const struct kvm_one_reg *reg, void __user *uaddr) 325 { 326 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg]; 327 328 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 329 return -EFAULT; 330 return 0; 331 } 332 333 static inline void reset_bcr(struct kvm_vcpu *vcpu, 334 const struct sys_reg_desc *rd) 335 { 336 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val; 337 } 338 339 static inline bool trap_wvr(struct kvm_vcpu *vcpu, 340 const struct sys_reg_params *p, 341 const struct sys_reg_desc *rd) 342 { 343 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; 344 345 if (p->is_write) 346 reg_to_dbg(vcpu, p, dbg_reg); 347 else 348 dbg_to_reg(vcpu, p, dbg_reg); 349 350 trace_trap_reg(__func__, rd->reg, p->is_write, 351 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]); 352 353 return true; 354 } 355 356 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 357 const struct kvm_one_reg *reg, void __user *uaddr) 358 { 359 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; 360 361 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 362 return -EFAULT; 363 return 0; 364 } 365 366 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 367 const struct kvm_one_reg *reg, void __user *uaddr) 368 { 369 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]; 370 371 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 372 return -EFAULT; 373 return 0; 374 } 375 376 static inline void reset_wvr(struct kvm_vcpu *vcpu, 377 const struct sys_reg_desc *rd) 378 { 379 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val; 380 } 381 382 static inline bool trap_wcr(struct kvm_vcpu *vcpu, 383 const struct sys_reg_params *p, 384 const struct sys_reg_desc *rd) 385 { 386 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; 387 388 if (p->is_write) 389 reg_to_dbg(vcpu, p, dbg_reg); 390 else 391 dbg_to_reg(vcpu, p, dbg_reg); 392 393 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); 394 395 return true; 396 } 397 398 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 399 const struct kvm_one_reg *reg, void __user *uaddr) 400 { 401 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; 402 403 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0) 404 return -EFAULT; 405 return 0; 406 } 407 408 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 409 const struct kvm_one_reg *reg, void __user *uaddr) 410 { 411 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg]; 412 413 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0) 414 return -EFAULT; 415 return 0; 416 } 417 418 static inline void reset_wcr(struct kvm_vcpu *vcpu, 419 const struct sys_reg_desc *rd) 420 { 421 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val; 422 } 423 424 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 425 { 426 u64 amair; 427 428 asm volatile("mrs %0, amair_el1\n" : "=r" (amair)); 429 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair; 430 } 431 432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 433 { 434 u64 mpidr; 435 436 /* 437 * Map the vcpu_id into the first three affinity level fields of 438 * the MPIDR. We limit the number of VCPUs in level 0 due to a 439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 440 * of the GICv3 to be able to address each CPU directly when 441 * sending IPIs. 442 */ 443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr; 447 } 448 449 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 450 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 451 /* DBGBVRn_EL1 */ \ 452 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \ 453 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \ 454 /* DBGBCRn_EL1 */ \ 455 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \ 456 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \ 457 /* DBGWVRn_EL1 */ \ 458 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \ 459 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \ 460 /* DBGWCRn_EL1 */ \ 461 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \ 462 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr } 463 464 /* 465 * Architected system registers. 466 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 467 * 468 * We could trap ID_DFR0 and tell the guest we don't support performance 469 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was 470 * NAKed, so it will read the PMCR anyway. 471 * 472 * Therefore we tell the guest we have 0 counters. Unfortunately, we 473 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for 474 * all PM registers, which doesn't crash the guest kernel at least. 475 * 476 * Debug handling: We do trap most, if not all debug related system 477 * registers. The implementation is good enough to ensure that a guest 478 * can use these with minimal performance degradation. The drawback is 479 * that we don't implement any of the external debug, none of the 480 * OSlock protocol. This should be revisited if we ever encounter a 481 * more demanding guest... 482 */ 483 static const struct sys_reg_desc sys_reg_descs[] = { 484 /* DC ISW */ 485 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010), 486 access_dcsw }, 487 /* DC CSW */ 488 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010), 489 access_dcsw }, 490 /* DC CISW */ 491 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010), 492 access_dcsw }, 493 494 DBG_BCR_BVR_WCR_WVR_EL1(0), 495 DBG_BCR_BVR_WCR_WVR_EL1(1), 496 /* MDCCINT_EL1 */ 497 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), 498 trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 499 /* MDSCR_EL1 */ 500 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), 501 trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 502 DBG_BCR_BVR_WCR_WVR_EL1(2), 503 DBG_BCR_BVR_WCR_WVR_EL1(3), 504 DBG_BCR_BVR_WCR_WVR_EL1(4), 505 DBG_BCR_BVR_WCR_WVR_EL1(5), 506 DBG_BCR_BVR_WCR_WVR_EL1(6), 507 DBG_BCR_BVR_WCR_WVR_EL1(7), 508 DBG_BCR_BVR_WCR_WVR_EL1(8), 509 DBG_BCR_BVR_WCR_WVR_EL1(9), 510 DBG_BCR_BVR_WCR_WVR_EL1(10), 511 DBG_BCR_BVR_WCR_WVR_EL1(11), 512 DBG_BCR_BVR_WCR_WVR_EL1(12), 513 DBG_BCR_BVR_WCR_WVR_EL1(13), 514 DBG_BCR_BVR_WCR_WVR_EL1(14), 515 DBG_BCR_BVR_WCR_WVR_EL1(15), 516 517 /* MDRAR_EL1 */ 518 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), 519 trap_raz_wi }, 520 /* OSLAR_EL1 */ 521 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100), 522 trap_raz_wi }, 523 /* OSLSR_EL1 */ 524 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100), 525 trap_oslsr_el1 }, 526 /* OSDLR_EL1 */ 527 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100), 528 trap_raz_wi }, 529 /* DBGPRCR_EL1 */ 530 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100), 531 trap_raz_wi }, 532 /* DBGCLAIMSET_EL1 */ 533 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110), 534 trap_raz_wi }, 535 /* DBGCLAIMCLR_EL1 */ 536 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110), 537 trap_raz_wi }, 538 /* DBGAUTHSTATUS_EL1 */ 539 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110), 540 trap_dbgauthstatus_el1 }, 541 542 /* MDCCSR_EL1 */ 543 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000), 544 trap_raz_wi }, 545 /* DBGDTR_EL0 */ 546 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000), 547 trap_raz_wi }, 548 /* DBGDTR[TR]X_EL0 */ 549 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000), 550 trap_raz_wi }, 551 552 /* DBGVCR32_EL2 */ 553 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000), 554 NULL, reset_val, DBGVCR32_EL2, 0 }, 555 556 /* MPIDR_EL1 */ 557 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101), 558 NULL, reset_mpidr, MPIDR_EL1 }, 559 /* SCTLR_EL1 */ 560 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), 561 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 562 /* CPACR_EL1 */ 563 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010), 564 NULL, reset_val, CPACR_EL1, 0 }, 565 /* TTBR0_EL1 */ 566 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000), 567 access_vm_reg, reset_unknown, TTBR0_EL1 }, 568 /* TTBR1_EL1 */ 569 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001), 570 access_vm_reg, reset_unknown, TTBR1_EL1 }, 571 /* TCR_EL1 */ 572 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010), 573 access_vm_reg, reset_val, TCR_EL1, 0 }, 574 575 /* AFSR0_EL1 */ 576 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000), 577 access_vm_reg, reset_unknown, AFSR0_EL1 }, 578 /* AFSR1_EL1 */ 579 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001), 580 access_vm_reg, reset_unknown, AFSR1_EL1 }, 581 /* ESR_EL1 */ 582 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000), 583 access_vm_reg, reset_unknown, ESR_EL1 }, 584 /* FAR_EL1 */ 585 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000), 586 access_vm_reg, reset_unknown, FAR_EL1 }, 587 /* PAR_EL1 */ 588 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000), 589 NULL, reset_unknown, PAR_EL1 }, 590 591 /* PMINTENSET_EL1 */ 592 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001), 593 trap_raz_wi }, 594 /* PMINTENCLR_EL1 */ 595 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010), 596 trap_raz_wi }, 597 598 /* MAIR_EL1 */ 599 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000), 600 access_vm_reg, reset_unknown, MAIR_EL1 }, 601 /* AMAIR_EL1 */ 602 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000), 603 access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 604 605 /* VBAR_EL1 */ 606 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000), 607 NULL, reset_val, VBAR_EL1, 0 }, 608 609 /* ICC_SGI1R_EL1 */ 610 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101), 611 access_gic_sgi }, 612 /* ICC_SRE_EL1 */ 613 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101), 614 trap_raz_wi }, 615 616 /* CONTEXTIDR_EL1 */ 617 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001), 618 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 619 /* TPIDR_EL1 */ 620 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100), 621 NULL, reset_unknown, TPIDR_EL1 }, 622 623 /* CNTKCTL_EL1 */ 624 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000), 625 NULL, reset_val, CNTKCTL_EL1, 0}, 626 627 /* CSSELR_EL1 */ 628 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000), 629 NULL, reset_unknown, CSSELR_EL1 }, 630 631 /* PMCR_EL0 */ 632 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000), 633 trap_raz_wi }, 634 /* PMCNTENSET_EL0 */ 635 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001), 636 trap_raz_wi }, 637 /* PMCNTENCLR_EL0 */ 638 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010), 639 trap_raz_wi }, 640 /* PMOVSCLR_EL0 */ 641 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011), 642 trap_raz_wi }, 643 /* PMSWINC_EL0 */ 644 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100), 645 trap_raz_wi }, 646 /* PMSELR_EL0 */ 647 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101), 648 trap_raz_wi }, 649 /* PMCEID0_EL0 */ 650 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110), 651 trap_raz_wi }, 652 /* PMCEID1_EL0 */ 653 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111), 654 trap_raz_wi }, 655 /* PMCCNTR_EL0 */ 656 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000), 657 trap_raz_wi }, 658 /* PMXEVTYPER_EL0 */ 659 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001), 660 trap_raz_wi }, 661 /* PMXEVCNTR_EL0 */ 662 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010), 663 trap_raz_wi }, 664 /* PMUSERENR_EL0 */ 665 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000), 666 trap_raz_wi }, 667 /* PMOVSSET_EL0 */ 668 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011), 669 trap_raz_wi }, 670 671 /* TPIDR_EL0 */ 672 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010), 673 NULL, reset_unknown, TPIDR_EL0 }, 674 /* TPIDRRO_EL0 */ 675 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011), 676 NULL, reset_unknown, TPIDRRO_EL0 }, 677 678 /* DACR32_EL2 */ 679 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000), 680 NULL, reset_unknown, DACR32_EL2 }, 681 /* IFSR32_EL2 */ 682 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001), 683 NULL, reset_unknown, IFSR32_EL2 }, 684 /* FPEXC32_EL2 */ 685 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000), 686 NULL, reset_val, FPEXC32_EL2, 0x70 }, 687 }; 688 689 static bool trap_dbgidr(struct kvm_vcpu *vcpu, 690 const struct sys_reg_params *p, 691 const struct sys_reg_desc *r) 692 { 693 if (p->is_write) { 694 return ignore_write(vcpu, p); 695 } else { 696 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1); 697 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1); 698 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT); 699 700 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | 701 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | 702 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) | 703 (6 << 16) | (el3 << 14) | (el3 << 12)); 704 return true; 705 } 706 } 707 708 static bool trap_debug32(struct kvm_vcpu *vcpu, 709 const struct sys_reg_params *p, 710 const struct sys_reg_desc *r) 711 { 712 if (p->is_write) { 713 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt); 714 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; 715 } else { 716 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg); 717 } 718 719 return true; 720 } 721 722 /* AArch32 debug register mappings 723 * 724 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 725 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 726 * 727 * All control registers and watchpoint value registers are mapped to 728 * the lower 32 bits of their AArch64 equivalents. We share the trap 729 * handlers with the above AArch64 code which checks what mode the 730 * system is in. 731 */ 732 733 static inline bool trap_xvr(struct kvm_vcpu *vcpu, 734 const struct sys_reg_params *p, 735 const struct sys_reg_desc *rd) 736 { 737 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg]; 738 739 if (p->is_write) { 740 u64 val = *dbg_reg; 741 742 val &= 0xffffffffUL; 743 val |= *vcpu_reg(vcpu, p->Rt) << 32; 744 *dbg_reg = val; 745 746 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY; 747 } else { 748 *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32; 749 } 750 751 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg); 752 753 return true; 754 } 755 756 #define DBG_BCR_BVR_WCR_WVR(n) \ 757 /* DBGBVRn */ \ 758 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 759 /* DBGBCRn */ \ 760 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 761 /* DBGWVRn */ \ 762 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 763 /* DBGWCRn */ \ 764 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 765 766 #define DBGBXVR(n) \ 767 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n } 768 769 /* 770 * Trapped cp14 registers. We generally ignore most of the external 771 * debug, on the principle that they don't really make sense to a 772 * guest. Revisit this one day, would this principle change. 773 */ 774 static const struct sys_reg_desc cp14_regs[] = { 775 /* DBGIDR */ 776 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr }, 777 /* DBGDTRRXext */ 778 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 779 780 DBG_BCR_BVR_WCR_WVR(0), 781 /* DBGDSCRint */ 782 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 783 DBG_BCR_BVR_WCR_WVR(1), 784 /* DBGDCCINT */ 785 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 }, 786 /* DBGDSCRext */ 787 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 }, 788 DBG_BCR_BVR_WCR_WVR(2), 789 /* DBGDTR[RT]Xint */ 790 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 791 /* DBGDTR[RT]Xext */ 792 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 793 DBG_BCR_BVR_WCR_WVR(3), 794 DBG_BCR_BVR_WCR_WVR(4), 795 DBG_BCR_BVR_WCR_WVR(5), 796 /* DBGWFAR */ 797 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 798 /* DBGOSECCR */ 799 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 800 DBG_BCR_BVR_WCR_WVR(6), 801 /* DBGVCR */ 802 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 }, 803 DBG_BCR_BVR_WCR_WVR(7), 804 DBG_BCR_BVR_WCR_WVR(8), 805 DBG_BCR_BVR_WCR_WVR(9), 806 DBG_BCR_BVR_WCR_WVR(10), 807 DBG_BCR_BVR_WCR_WVR(11), 808 DBG_BCR_BVR_WCR_WVR(12), 809 DBG_BCR_BVR_WCR_WVR(13), 810 DBG_BCR_BVR_WCR_WVR(14), 811 DBG_BCR_BVR_WCR_WVR(15), 812 813 /* DBGDRAR (32bit) */ 814 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 815 816 DBGBXVR(0), 817 /* DBGOSLAR */ 818 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi }, 819 DBGBXVR(1), 820 /* DBGOSLSR */ 821 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 }, 822 DBGBXVR(2), 823 DBGBXVR(3), 824 /* DBGOSDLR */ 825 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 826 DBGBXVR(4), 827 /* DBGPRCR */ 828 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 829 DBGBXVR(5), 830 DBGBXVR(6), 831 DBGBXVR(7), 832 DBGBXVR(8), 833 DBGBXVR(9), 834 DBGBXVR(10), 835 DBGBXVR(11), 836 DBGBXVR(12), 837 DBGBXVR(13), 838 DBGBXVR(14), 839 DBGBXVR(15), 840 841 /* DBGDSAR (32bit) */ 842 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 843 844 /* DBGDEVID2 */ 845 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 846 /* DBGDEVID1 */ 847 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 848 /* DBGDEVID */ 849 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 850 /* DBGCLAIMSET */ 851 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 852 /* DBGCLAIMCLR */ 853 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 854 /* DBGAUTHSTATUS */ 855 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 856 }; 857 858 /* Trapped cp14 64bit registers */ 859 static const struct sys_reg_desc cp14_64_regs[] = { 860 /* DBGDRAR (64bit) */ 861 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 862 863 /* DBGDSAR (64bit) */ 864 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 865 }; 866 867 /* 868 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 869 * depending on the way they are accessed (as a 32bit or a 64bit 870 * register). 871 */ 872 static const struct sys_reg_desc cp15_regs[] = { 873 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, 874 875 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR }, 876 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, 877 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 }, 878 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR }, 879 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR }, 880 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR }, 881 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR }, 882 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR }, 883 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR }, 884 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR }, 885 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR }, 886 887 /* 888 * DC{C,I,CI}SW operations: 889 */ 890 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 891 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 892 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 893 894 /* PMU */ 895 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi }, 896 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi }, 897 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi }, 898 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi }, 899 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi }, 900 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi }, 901 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi }, 902 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi }, 903 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi }, 904 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi }, 905 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi }, 906 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi }, 907 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi }, 908 909 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR }, 910 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR }, 911 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 }, 912 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 }, 913 914 /* ICC_SRE */ 915 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi }, 916 917 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID }, 918 }; 919 920 static const struct sys_reg_desc cp15_64_regs[] = { 921 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 }, 922 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, 923 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 }, 924 }; 925 926 /* Target specific emulation tables */ 927 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; 928 929 void kvm_register_target_sys_reg_table(unsigned int target, 930 struct kvm_sys_reg_target_table *table) 931 { 932 target_tables[target] = table; 933 } 934 935 /* Get specific register table for this target. */ 936 static const struct sys_reg_desc *get_target_table(unsigned target, 937 bool mode_is_64, 938 size_t *num) 939 { 940 struct kvm_sys_reg_target_table *table; 941 942 table = target_tables[target]; 943 if (mode_is_64) { 944 *num = table->table64.num; 945 return table->table64.table; 946 } else { 947 *num = table->table32.num; 948 return table->table32.table; 949 } 950 } 951 952 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, 953 const struct sys_reg_desc table[], 954 unsigned int num) 955 { 956 unsigned int i; 957 958 for (i = 0; i < num; i++) { 959 const struct sys_reg_desc *r = &table[i]; 960 961 if (params->Op0 != r->Op0) 962 continue; 963 if (params->Op1 != r->Op1) 964 continue; 965 if (params->CRn != r->CRn) 966 continue; 967 if (params->CRm != r->CRm) 968 continue; 969 if (params->Op2 != r->Op2) 970 continue; 971 972 return r; 973 } 974 return NULL; 975 } 976 977 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) 978 { 979 kvm_inject_undefined(vcpu); 980 return 1; 981 } 982 983 /* 984 * emulate_cp -- tries to match a sys_reg access in a handling table, and 985 * call the corresponding trap handler. 986 * 987 * @params: pointer to the descriptor of the access 988 * @table: array of trap descriptors 989 * @num: size of the trap descriptor array 990 * 991 * Return 0 if the access has been handled, and -1 if not. 992 */ 993 static int emulate_cp(struct kvm_vcpu *vcpu, 994 const struct sys_reg_params *params, 995 const struct sys_reg_desc *table, 996 size_t num) 997 { 998 const struct sys_reg_desc *r; 999 1000 if (!table) 1001 return -1; /* Not handled */ 1002 1003 r = find_reg(params, table, num); 1004 1005 if (r) { 1006 /* 1007 * Not having an accessor means that we have 1008 * configured a trap that we don't know how to 1009 * handle. This certainly qualifies as a gross bug 1010 * that should be fixed right away. 1011 */ 1012 BUG_ON(!r->access); 1013 1014 if (likely(r->access(vcpu, params, r))) { 1015 /* Skip instruction, since it was emulated */ 1016 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 1017 } 1018 1019 /* Handled */ 1020 return 0; 1021 } 1022 1023 /* Not handled */ 1024 return -1; 1025 } 1026 1027 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 1028 struct sys_reg_params *params) 1029 { 1030 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); 1031 int cp; 1032 1033 switch(hsr_ec) { 1034 case ESR_ELx_EC_CP15_32: 1035 case ESR_ELx_EC_CP15_64: 1036 cp = 15; 1037 break; 1038 case ESR_ELx_EC_CP14_MR: 1039 case ESR_ELx_EC_CP14_64: 1040 cp = 14; 1041 break; 1042 default: 1043 WARN_ON((cp = -1)); 1044 } 1045 1046 kvm_err("Unsupported guest CP%d access at: %08lx\n", 1047 cp, *vcpu_pc(vcpu)); 1048 print_sys_reg_instr(params); 1049 kvm_inject_undefined(vcpu); 1050 } 1051 1052 /** 1053 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access 1054 * @vcpu: The VCPU pointer 1055 * @run: The kvm_run struct 1056 */ 1057 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 1058 const struct sys_reg_desc *global, 1059 size_t nr_global, 1060 const struct sys_reg_desc *target_specific, 1061 size_t nr_specific) 1062 { 1063 struct sys_reg_params params; 1064 u32 hsr = kvm_vcpu_get_hsr(vcpu); 1065 int Rt2 = (hsr >> 10) & 0xf; 1066 1067 params.is_aarch32 = true; 1068 params.is_32bit = false; 1069 params.CRm = (hsr >> 1) & 0xf; 1070 params.Rt = (hsr >> 5) & 0xf; 1071 params.is_write = ((hsr & 1) == 0); 1072 1073 params.Op0 = 0; 1074 params.Op1 = (hsr >> 16) & 0xf; 1075 params.Op2 = 0; 1076 params.CRn = 0; 1077 1078 /* 1079 * Massive hack here. Store Rt2 in the top 32bits so we only 1080 * have one register to deal with. As we use the same trap 1081 * backends between AArch32 and AArch64, we get away with it. 1082 */ 1083 if (params.is_write) { 1084 u64 val = *vcpu_reg(vcpu, params.Rt); 1085 val &= 0xffffffff; 1086 val |= *vcpu_reg(vcpu, Rt2) << 32; 1087 *vcpu_reg(vcpu, params.Rt) = val; 1088 } 1089 1090 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific)) 1091 goto out; 1092 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) 1093 goto out; 1094 1095 unhandled_cp_access(vcpu, ¶ms); 1096 1097 out: 1098 /* Do the opposite hack for the read side */ 1099 if (!params.is_write) { 1100 u64 val = *vcpu_reg(vcpu, params.Rt); 1101 val >>= 32; 1102 *vcpu_reg(vcpu, Rt2) = val; 1103 } 1104 1105 return 1; 1106 } 1107 1108 /** 1109 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access 1110 * @vcpu: The VCPU pointer 1111 * @run: The kvm_run struct 1112 */ 1113 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 1114 const struct sys_reg_desc *global, 1115 size_t nr_global, 1116 const struct sys_reg_desc *target_specific, 1117 size_t nr_specific) 1118 { 1119 struct sys_reg_params params; 1120 u32 hsr = kvm_vcpu_get_hsr(vcpu); 1121 1122 params.is_aarch32 = true; 1123 params.is_32bit = true; 1124 params.CRm = (hsr >> 1) & 0xf; 1125 params.Rt = (hsr >> 5) & 0xf; 1126 params.is_write = ((hsr & 1) == 0); 1127 params.CRn = (hsr >> 10) & 0xf; 1128 params.Op0 = 0; 1129 params.Op1 = (hsr >> 14) & 0x7; 1130 params.Op2 = (hsr >> 17) & 0x7; 1131 1132 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific)) 1133 return 1; 1134 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) 1135 return 1; 1136 1137 unhandled_cp_access(vcpu, ¶ms); 1138 return 1; 1139 } 1140 1141 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) 1142 { 1143 const struct sys_reg_desc *target_specific; 1144 size_t num; 1145 1146 target_specific = get_target_table(vcpu->arch.target, false, &num); 1147 return kvm_handle_cp_64(vcpu, 1148 cp15_64_regs, ARRAY_SIZE(cp15_64_regs), 1149 target_specific, num); 1150 } 1151 1152 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) 1153 { 1154 const struct sys_reg_desc *target_specific; 1155 size_t num; 1156 1157 target_specific = get_target_table(vcpu->arch.target, false, &num); 1158 return kvm_handle_cp_32(vcpu, 1159 cp15_regs, ARRAY_SIZE(cp15_regs), 1160 target_specific, num); 1161 } 1162 1163 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run) 1164 { 1165 return kvm_handle_cp_64(vcpu, 1166 cp14_64_regs, ARRAY_SIZE(cp14_64_regs), 1167 NULL, 0); 1168 } 1169 1170 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run) 1171 { 1172 return kvm_handle_cp_32(vcpu, 1173 cp14_regs, ARRAY_SIZE(cp14_regs), 1174 NULL, 0); 1175 } 1176 1177 static int emulate_sys_reg(struct kvm_vcpu *vcpu, 1178 const struct sys_reg_params *params) 1179 { 1180 size_t num; 1181 const struct sys_reg_desc *table, *r; 1182 1183 table = get_target_table(vcpu->arch.target, true, &num); 1184 1185 /* Search target-specific then generic table. */ 1186 r = find_reg(params, table, num); 1187 if (!r) 1188 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 1189 1190 if (likely(r)) { 1191 /* 1192 * Not having an accessor means that we have 1193 * configured a trap that we don't know how to 1194 * handle. This certainly qualifies as a gross bug 1195 * that should be fixed right away. 1196 */ 1197 BUG_ON(!r->access); 1198 1199 if (likely(r->access(vcpu, params, r))) { 1200 /* Skip instruction, since it was emulated */ 1201 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 1202 return 1; 1203 } 1204 /* If access function fails, it should complain. */ 1205 } else { 1206 kvm_err("Unsupported guest sys_reg access at: %lx\n", 1207 *vcpu_pc(vcpu)); 1208 print_sys_reg_instr(params); 1209 } 1210 kvm_inject_undefined(vcpu); 1211 return 1; 1212 } 1213 1214 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, 1215 const struct sys_reg_desc *table, size_t num) 1216 { 1217 unsigned long i; 1218 1219 for (i = 0; i < num; i++) 1220 if (table[i].reset) 1221 table[i].reset(vcpu, &table[i]); 1222 } 1223 1224 /** 1225 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access 1226 * @vcpu: The VCPU pointer 1227 * @run: The kvm_run struct 1228 */ 1229 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) 1230 { 1231 struct sys_reg_params params; 1232 unsigned long esr = kvm_vcpu_get_hsr(vcpu); 1233 1234 trace_kvm_handle_sys_reg(esr); 1235 1236 params.is_aarch32 = false; 1237 params.is_32bit = false; 1238 params.Op0 = (esr >> 20) & 3; 1239 params.Op1 = (esr >> 14) & 0x7; 1240 params.CRn = (esr >> 10) & 0xf; 1241 params.CRm = (esr >> 1) & 0xf; 1242 params.Op2 = (esr >> 17) & 0x7; 1243 params.Rt = (esr >> 5) & 0x1f; 1244 params.is_write = !(esr & 1); 1245 1246 return emulate_sys_reg(vcpu, ¶ms); 1247 } 1248 1249 /****************************************************************************** 1250 * Userspace API 1251 *****************************************************************************/ 1252 1253 static bool index_to_params(u64 id, struct sys_reg_params *params) 1254 { 1255 switch (id & KVM_REG_SIZE_MASK) { 1256 case KVM_REG_SIZE_U64: 1257 /* Any unused index bits means it's not valid. */ 1258 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 1259 | KVM_REG_ARM_COPROC_MASK 1260 | KVM_REG_ARM64_SYSREG_OP0_MASK 1261 | KVM_REG_ARM64_SYSREG_OP1_MASK 1262 | KVM_REG_ARM64_SYSREG_CRN_MASK 1263 | KVM_REG_ARM64_SYSREG_CRM_MASK 1264 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 1265 return false; 1266 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 1267 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 1268 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 1269 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 1270 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 1271 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 1272 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 1273 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 1274 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 1275 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 1276 return true; 1277 default: 1278 return false; 1279 } 1280 } 1281 1282 /* Decode an index value, and find the sys_reg_desc entry. */ 1283 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, 1284 u64 id) 1285 { 1286 size_t num; 1287 const struct sys_reg_desc *table, *r; 1288 struct sys_reg_params params; 1289 1290 /* We only do sys_reg for now. */ 1291 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 1292 return NULL; 1293 1294 if (!index_to_params(id, ¶ms)) 1295 return NULL; 1296 1297 table = get_target_table(vcpu->arch.target, true, &num); 1298 r = find_reg(¶ms, table, num); 1299 if (!r) 1300 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 1301 1302 /* Not saved in the sys_reg array? */ 1303 if (r && !r->reg) 1304 r = NULL; 1305 1306 return r; 1307 } 1308 1309 /* 1310 * These are the invariant sys_reg registers: we let the guest see the 1311 * host versions of these, so they're part of the guest state. 1312 * 1313 * A future CPU may provide a mechanism to present different values to 1314 * the guest, or a future kvm may trap them. 1315 */ 1316 1317 #define FUNCTION_INVARIANT(reg) \ 1318 static void get_##reg(struct kvm_vcpu *v, \ 1319 const struct sys_reg_desc *r) \ 1320 { \ 1321 u64 val; \ 1322 \ 1323 asm volatile("mrs %0, " __stringify(reg) "\n" \ 1324 : "=r" (val)); \ 1325 ((struct sys_reg_desc *)r)->val = val; \ 1326 } 1327 1328 FUNCTION_INVARIANT(midr_el1) 1329 FUNCTION_INVARIANT(ctr_el0) 1330 FUNCTION_INVARIANT(revidr_el1) 1331 FUNCTION_INVARIANT(id_pfr0_el1) 1332 FUNCTION_INVARIANT(id_pfr1_el1) 1333 FUNCTION_INVARIANT(id_dfr0_el1) 1334 FUNCTION_INVARIANT(id_afr0_el1) 1335 FUNCTION_INVARIANT(id_mmfr0_el1) 1336 FUNCTION_INVARIANT(id_mmfr1_el1) 1337 FUNCTION_INVARIANT(id_mmfr2_el1) 1338 FUNCTION_INVARIANT(id_mmfr3_el1) 1339 FUNCTION_INVARIANT(id_isar0_el1) 1340 FUNCTION_INVARIANT(id_isar1_el1) 1341 FUNCTION_INVARIANT(id_isar2_el1) 1342 FUNCTION_INVARIANT(id_isar3_el1) 1343 FUNCTION_INVARIANT(id_isar4_el1) 1344 FUNCTION_INVARIANT(id_isar5_el1) 1345 FUNCTION_INVARIANT(clidr_el1) 1346 FUNCTION_INVARIANT(aidr_el1) 1347 1348 /* ->val is filled in by kvm_sys_reg_table_init() */ 1349 static struct sys_reg_desc invariant_sys_regs[] = { 1350 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000), 1351 NULL, get_midr_el1 }, 1352 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110), 1353 NULL, get_revidr_el1 }, 1354 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000), 1355 NULL, get_id_pfr0_el1 }, 1356 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001), 1357 NULL, get_id_pfr1_el1 }, 1358 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010), 1359 NULL, get_id_dfr0_el1 }, 1360 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011), 1361 NULL, get_id_afr0_el1 }, 1362 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100), 1363 NULL, get_id_mmfr0_el1 }, 1364 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101), 1365 NULL, get_id_mmfr1_el1 }, 1366 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110), 1367 NULL, get_id_mmfr2_el1 }, 1368 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111), 1369 NULL, get_id_mmfr3_el1 }, 1370 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), 1371 NULL, get_id_isar0_el1 }, 1372 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001), 1373 NULL, get_id_isar1_el1 }, 1374 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), 1375 NULL, get_id_isar2_el1 }, 1376 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011), 1377 NULL, get_id_isar3_el1 }, 1378 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100), 1379 NULL, get_id_isar4_el1 }, 1380 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101), 1381 NULL, get_id_isar5_el1 }, 1382 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001), 1383 NULL, get_clidr_el1 }, 1384 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111), 1385 NULL, get_aidr_el1 }, 1386 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001), 1387 NULL, get_ctr_el0 }, 1388 }; 1389 1390 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id) 1391 { 1392 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) 1393 return -EFAULT; 1394 return 0; 1395 } 1396 1397 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id) 1398 { 1399 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) 1400 return -EFAULT; 1401 return 0; 1402 } 1403 1404 static int get_invariant_sys_reg(u64 id, void __user *uaddr) 1405 { 1406 struct sys_reg_params params; 1407 const struct sys_reg_desc *r; 1408 1409 if (!index_to_params(id, ¶ms)) 1410 return -ENOENT; 1411 1412 r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); 1413 if (!r) 1414 return -ENOENT; 1415 1416 return reg_to_user(uaddr, &r->val, id); 1417 } 1418 1419 static int set_invariant_sys_reg(u64 id, void __user *uaddr) 1420 { 1421 struct sys_reg_params params; 1422 const struct sys_reg_desc *r; 1423 int err; 1424 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ 1425 1426 if (!index_to_params(id, ¶ms)) 1427 return -ENOENT; 1428 r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); 1429 if (!r) 1430 return -ENOENT; 1431 1432 err = reg_from_user(&val, uaddr, id); 1433 if (err) 1434 return err; 1435 1436 /* This is what we mean by invariant: you can't change it. */ 1437 if (r->val != val) 1438 return -EINVAL; 1439 1440 return 0; 1441 } 1442 1443 static bool is_valid_cache(u32 val) 1444 { 1445 u32 level, ctype; 1446 1447 if (val >= CSSELR_MAX) 1448 return false; 1449 1450 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ 1451 level = (val >> 1); 1452 ctype = (cache_levels >> (level * 3)) & 7; 1453 1454 switch (ctype) { 1455 case 0: /* No cache */ 1456 return false; 1457 case 1: /* Instruction cache only */ 1458 return (val & 1); 1459 case 2: /* Data cache only */ 1460 case 4: /* Unified cache */ 1461 return !(val & 1); 1462 case 3: /* Separate instruction and data caches */ 1463 return true; 1464 default: /* Reserved: we can't know instruction or data. */ 1465 return false; 1466 } 1467 } 1468 1469 static int demux_c15_get(u64 id, void __user *uaddr) 1470 { 1471 u32 val; 1472 u32 __user *uval = uaddr; 1473 1474 /* Fail if we have unknown bits set. */ 1475 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 1476 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 1477 return -ENOENT; 1478 1479 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 1480 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 1481 if (KVM_REG_SIZE(id) != 4) 1482 return -ENOENT; 1483 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 1484 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 1485 if (!is_valid_cache(val)) 1486 return -ENOENT; 1487 1488 return put_user(get_ccsidr(val), uval); 1489 default: 1490 return -ENOENT; 1491 } 1492 } 1493 1494 static int demux_c15_set(u64 id, void __user *uaddr) 1495 { 1496 u32 val, newval; 1497 u32 __user *uval = uaddr; 1498 1499 /* Fail if we have unknown bits set. */ 1500 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 1501 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 1502 return -ENOENT; 1503 1504 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 1505 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 1506 if (KVM_REG_SIZE(id) != 4) 1507 return -ENOENT; 1508 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 1509 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 1510 if (!is_valid_cache(val)) 1511 return -ENOENT; 1512 1513 if (get_user(newval, uval)) 1514 return -EFAULT; 1515 1516 /* This is also invariant: you can't change it. */ 1517 if (newval != get_ccsidr(val)) 1518 return -EINVAL; 1519 return 0; 1520 default: 1521 return -ENOENT; 1522 } 1523 } 1524 1525 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 1526 { 1527 const struct sys_reg_desc *r; 1528 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 1529 1530 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 1531 return demux_c15_get(reg->id, uaddr); 1532 1533 if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) 1534 return -ENOENT; 1535 1536 r = index_to_sys_reg_desc(vcpu, reg->id); 1537 if (!r) 1538 return get_invariant_sys_reg(reg->id, uaddr); 1539 1540 if (r->get_user) 1541 return (r->get_user)(vcpu, r, reg, uaddr); 1542 1543 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id); 1544 } 1545 1546 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 1547 { 1548 const struct sys_reg_desc *r; 1549 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 1550 1551 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 1552 return demux_c15_set(reg->id, uaddr); 1553 1554 if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) 1555 return -ENOENT; 1556 1557 r = index_to_sys_reg_desc(vcpu, reg->id); 1558 if (!r) 1559 return set_invariant_sys_reg(reg->id, uaddr); 1560 1561 if (r->set_user) 1562 return (r->set_user)(vcpu, r, reg, uaddr); 1563 1564 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); 1565 } 1566 1567 static unsigned int num_demux_regs(void) 1568 { 1569 unsigned int i, count = 0; 1570 1571 for (i = 0; i < CSSELR_MAX; i++) 1572 if (is_valid_cache(i)) 1573 count++; 1574 1575 return count; 1576 } 1577 1578 static int write_demux_regids(u64 __user *uindices) 1579 { 1580 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 1581 unsigned int i; 1582 1583 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 1584 for (i = 0; i < CSSELR_MAX; i++) { 1585 if (!is_valid_cache(i)) 1586 continue; 1587 if (put_user(val | i, uindices)) 1588 return -EFAULT; 1589 uindices++; 1590 } 1591 return 0; 1592 } 1593 1594 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 1595 { 1596 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 1597 KVM_REG_ARM64_SYSREG | 1598 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 1599 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 1600 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 1601 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 1602 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 1603 } 1604 1605 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 1606 { 1607 if (!*uind) 1608 return true; 1609 1610 if (put_user(sys_reg_to_index(reg), *uind)) 1611 return false; 1612 1613 (*uind)++; 1614 return true; 1615 } 1616 1617 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 1618 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 1619 { 1620 const struct sys_reg_desc *i1, *i2, *end1, *end2; 1621 unsigned int total = 0; 1622 size_t num; 1623 1624 /* We check for duplicates here, to allow arch-specific overrides. */ 1625 i1 = get_target_table(vcpu->arch.target, true, &num); 1626 end1 = i1 + num; 1627 i2 = sys_reg_descs; 1628 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 1629 1630 BUG_ON(i1 == end1 || i2 == end2); 1631 1632 /* Walk carefully, as both tables may refer to the same register. */ 1633 while (i1 || i2) { 1634 int cmp = cmp_sys_reg(i1, i2); 1635 /* target-specific overrides generic entry. */ 1636 if (cmp <= 0) { 1637 /* Ignore registers we trap but don't save. */ 1638 if (i1->reg) { 1639 if (!copy_reg_to_user(i1, &uind)) 1640 return -EFAULT; 1641 total++; 1642 } 1643 } else { 1644 /* Ignore registers we trap but don't save. */ 1645 if (i2->reg) { 1646 if (!copy_reg_to_user(i2, &uind)) 1647 return -EFAULT; 1648 total++; 1649 } 1650 } 1651 1652 if (cmp <= 0 && ++i1 == end1) 1653 i1 = NULL; 1654 if (cmp >= 0 && ++i2 == end2) 1655 i2 = NULL; 1656 } 1657 return total; 1658 } 1659 1660 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 1661 { 1662 return ARRAY_SIZE(invariant_sys_regs) 1663 + num_demux_regs() 1664 + walk_sys_regs(vcpu, (u64 __user *)NULL); 1665 } 1666 1667 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 1668 { 1669 unsigned int i; 1670 int err; 1671 1672 /* Then give them all the invariant registers' indices. */ 1673 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 1674 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 1675 return -EFAULT; 1676 uindices++; 1677 } 1678 1679 err = walk_sys_regs(vcpu, uindices); 1680 if (err < 0) 1681 return err; 1682 uindices += err; 1683 1684 return write_demux_regids(uindices); 1685 } 1686 1687 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n) 1688 { 1689 unsigned int i; 1690 1691 for (i = 1; i < n; i++) { 1692 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 1693 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1); 1694 return 1; 1695 } 1696 } 1697 1698 return 0; 1699 } 1700 1701 void kvm_sys_reg_table_init(void) 1702 { 1703 unsigned int i; 1704 struct sys_reg_desc clidr; 1705 1706 /* Make sure tables are unique and in order. */ 1707 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs))); 1708 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs))); 1709 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs))); 1710 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs))); 1711 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs))); 1712 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs))); 1713 1714 /* We abuse the reset function to overwrite the table itself. */ 1715 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 1716 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 1717 1718 /* 1719 * CLIDR format is awkward, so clean it up. See ARM B4.1.20: 1720 * 1721 * If software reads the Cache Type fields from Ctype1 1722 * upwards, once it has seen a value of 0b000, no caches 1723 * exist at further-out levels of the hierarchy. So, for 1724 * example, if Ctype3 is the first Cache Type field with a 1725 * value of 0b000, the values of Ctype4 to Ctype7 must be 1726 * ignored. 1727 */ 1728 get_clidr_el1(NULL, &clidr); /* Ugly... */ 1729 cache_levels = clidr.val; 1730 for (i = 0; i < 7; i++) 1731 if (((cache_levels >> (i*3)) & 7) == 0) 1732 break; 1733 /* Clear all higher bits. */ 1734 cache_levels &= (1 << (i*3))-1; 1735 } 1736 1737 /** 1738 * kvm_reset_sys_regs - sets system registers to reset value 1739 * @vcpu: The VCPU pointer 1740 * 1741 * This function finds the right table above and sets the registers on the 1742 * virtual CPU struct to their architecturally defined reset values. 1743 */ 1744 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 1745 { 1746 size_t num; 1747 const struct sys_reg_desc *table; 1748 1749 /* Catch someone adding a register without putting in reset entry. */ 1750 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs)); 1751 1752 /* Generic chip reset first (so target could override). */ 1753 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 1754 1755 table = get_target_table(vcpu->arch.target, true, &num); 1756 reset_sys_reg_descs(vcpu, table, num); 1757 1758 for (num = 1; num < NR_SYS_REGS; num++) 1759 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242) 1760 panic("Didn't reset vcpu_sys_reg(%zi)", num); 1761 } 1762