xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 95777591)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41 
42 #include <trace/events/kvm.h>
43 
44 #include "sys_regs.h"
45 
46 #include "trace.h"
47 
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58 
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 				 struct sys_reg_params *params,
61 				 const struct sys_reg_desc *r)
62 {
63 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 	print_sys_reg_instr(params);
65 	kvm_inject_undefined(vcpu);
66 	return false;
67 }
68 
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 			       struct sys_reg_params *params,
71 			       const struct sys_reg_desc *r)
72 {
73 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 	print_sys_reg_instr(params);
75 	kvm_inject_undefined(vcpu);
76 	return false;
77 }
78 
79 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
80 {
81 	if (!vcpu->arch.sysregs_loaded_on_cpu)
82 		goto immediate_read;
83 
84 	/*
85 	 * System registers listed in the switch are not saved on every
86 	 * exit from the guest but are only saved on vcpu_put.
87 	 *
88 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89 	 * should never be listed below, because the guest cannot modify its
90 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91 	 * thread when emulating cross-VCPU communication.
92 	 */
93 	switch (reg) {
94 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
95 	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
96 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
97 	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
98 	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
99 	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
100 	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
101 	case ESR_EL1:		return read_sysreg_s(esr_EL12);
102 	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
103 	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
104 	case FAR_EL1:		return read_sysreg_s(far_EL12);
105 	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
106 	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
107 	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
108 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
109 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
110 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
111 	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
112 	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
113 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
114 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
115 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
116 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
117 	}
118 
119 immediate_read:
120 	return __vcpu_sys_reg(vcpu, reg);
121 }
122 
123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125 	if (!vcpu->arch.sysregs_loaded_on_cpu)
126 		goto immediate_write;
127 
128 	/*
129 	 * System registers listed in the switch are not restored on every
130 	 * entry to the guest but are only restored on vcpu_load.
131 	 *
132 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133 	 * should never be listed below, because the the MPIDR should only be
134 	 * set once, before running the VCPU, and never changed later.
135 	 */
136 	switch (reg) {
137 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
138 	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
139 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
140 	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
141 	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
142 	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
143 	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
144 	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
145 	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
146 	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
147 	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
148 	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
149 	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
150 	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
151 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
152 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
153 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
154 	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
155 	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
156 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
157 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
158 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
159 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
160 	}
161 
162 immediate_write:
163 	 __vcpu_sys_reg(vcpu, reg) = val;
164 }
165 
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168 
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171 
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175 	u32 ccsidr;
176 
177 	/* Make sure noone else changes CSSELR during this! */
178 	local_irq_disable();
179 	write_sysreg(csselr, csselr_el1);
180 	isb();
181 	ccsidr = read_sysreg(ccsidr_el1);
182 	local_irq_enable();
183 
184 	return ccsidr;
185 }
186 
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191 			struct sys_reg_params *p,
192 			const struct sys_reg_desc *r)
193 {
194 	if (!p->is_write)
195 		return read_from_write_only(vcpu, p, r);
196 
197 	/*
198 	 * Only track S/W ops if we don't have FWB. It still indicates
199 	 * that the guest is a bit broken (S/W operations should only
200 	 * be done by firmware, knowing that there is only a single
201 	 * CPU left in the system, and certainly not from non-secure
202 	 * software).
203 	 */
204 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205 		kvm_set_way_flush(vcpu);
206 
207 	return true;
208 }
209 
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216 			  struct sys_reg_params *p,
217 			  const struct sys_reg_desc *r)
218 {
219 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
220 	u64 val;
221 	int reg = r->reg;
222 
223 	BUG_ON(!p->is_write);
224 
225 	/* See the 32bit mapping in kvm_host.h */
226 	if (p->is_aarch32)
227 		reg = r->reg / 2;
228 
229 	if (!p->is_aarch32 || !p->is_32bit) {
230 		val = p->regval;
231 	} else {
232 		val = vcpu_read_sys_reg(vcpu, reg);
233 		if (r->reg % 2)
234 			val = (p->regval << 32) | (u64)lower_32_bits(val);
235 		else
236 			val = ((u64)upper_32_bits(val) << 32) |
237 				lower_32_bits(p->regval);
238 	}
239 	vcpu_write_sys_reg(vcpu, val, reg);
240 
241 	kvm_toggle_cache(vcpu, was_enabled);
242 	return true;
243 }
244 
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252 			   struct sys_reg_params *p,
253 			   const struct sys_reg_desc *r)
254 {
255 	bool g1;
256 
257 	if (!p->is_write)
258 		return read_from_write_only(vcpu, p, r);
259 
260 	/*
261 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265 	 * group.
266 	 */
267 	if (p->is_aarch32) {
268 		switch (p->Op1) {
269 		default:		/* Keep GCC quiet */
270 		case 0:			/* ICC_SGI1R */
271 			g1 = true;
272 			break;
273 		case 1:			/* ICC_ASGI1R */
274 		case 2:			/* ICC_SGI0R */
275 			g1 = false;
276 			break;
277 		}
278 	} else {
279 		switch (p->Op2) {
280 		default:		/* Keep GCC quiet */
281 		case 5:			/* ICC_SGI1R_EL1 */
282 			g1 = true;
283 			break;
284 		case 6:			/* ICC_ASGI1R_EL1 */
285 		case 7:			/* ICC_SGI0R_EL1 */
286 			g1 = false;
287 			break;
288 		}
289 	}
290 
291 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292 
293 	return true;
294 }
295 
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297 			   struct sys_reg_params *p,
298 			   const struct sys_reg_desc *r)
299 {
300 	if (p->is_write)
301 		return ignore_write(vcpu, p);
302 
303 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304 	return true;
305 }
306 
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308 			struct sys_reg_params *p,
309 			const struct sys_reg_desc *r)
310 {
311 	if (p->is_write)
312 		return ignore_write(vcpu, p);
313 	else
314 		return read_zero(vcpu, p);
315 }
316 
317 /*
318  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
319  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
320  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
321  * treat it separately.
322  */
323 static bool trap_loregion(struct kvm_vcpu *vcpu,
324 			  struct sys_reg_params *p,
325 			  const struct sys_reg_desc *r)
326 {
327 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
328 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
329 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
330 
331 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
332 		kvm_inject_undefined(vcpu);
333 		return false;
334 	}
335 
336 	if (p->is_write && sr == SYS_LORID_EL1)
337 		return write_to_read_only(vcpu, p, r);
338 
339 	return trap_raz_wi(vcpu, p, r);
340 }
341 
342 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343 			   struct sys_reg_params *p,
344 			   const struct sys_reg_desc *r)
345 {
346 	if (p->is_write) {
347 		return ignore_write(vcpu, p);
348 	} else {
349 		p->regval = (1 << 3);
350 		return true;
351 	}
352 }
353 
354 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355 				   struct sys_reg_params *p,
356 				   const struct sys_reg_desc *r)
357 {
358 	if (p->is_write) {
359 		return ignore_write(vcpu, p);
360 	} else {
361 		p->regval = read_sysreg(dbgauthstatus_el1);
362 		return true;
363 	}
364 }
365 
366 /*
367  * We want to avoid world-switching all the DBG registers all the
368  * time:
369  *
370  * - If we've touched any debug register, it is likely that we're
371  *   going to touch more of them. It then makes sense to disable the
372  *   traps and start doing the save/restore dance
373  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
374  *   then mandatory to save/restore the registers, as the guest
375  *   depends on them.
376  *
377  * For this, we use a DIRTY bit, indicating the guest has modified the
378  * debug registers, used as follow:
379  *
380  * On guest entry:
381  * - If the dirty bit is set (because we're coming back from trapping),
382  *   disable the traps, save host registers, restore guest registers.
383  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
384  *   set the dirty bit, disable the traps, save host registers,
385  *   restore guest registers.
386  * - Otherwise, enable the traps
387  *
388  * On guest exit:
389  * - If the dirty bit is set, save guest registers, restore host
390  *   registers and clear the dirty bit. This ensure that the host can
391  *   now use the debug registers.
392  */
393 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394 			    struct sys_reg_params *p,
395 			    const struct sys_reg_desc *r)
396 {
397 	if (p->is_write) {
398 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400 	} else {
401 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402 	}
403 
404 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405 
406 	return true;
407 }
408 
409 /*
410  * reg_to_dbg/dbg_to_reg
411  *
412  * A 32 bit write to a debug register leave top bits alone
413  * A 32 bit read from a debug register only returns the bottom bits
414  *
415  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
416  * hyp.S code switches between host and guest values in future.
417  */
418 static void reg_to_dbg(struct kvm_vcpu *vcpu,
419 		       struct sys_reg_params *p,
420 		       u64 *dbg_reg)
421 {
422 	u64 val = p->regval;
423 
424 	if (p->is_32bit) {
425 		val &= 0xffffffffUL;
426 		val |= ((*dbg_reg >> 32) << 32);
427 	}
428 
429 	*dbg_reg = val;
430 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 }
432 
433 static void dbg_to_reg(struct kvm_vcpu *vcpu,
434 		       struct sys_reg_params *p,
435 		       u64 *dbg_reg)
436 {
437 	p->regval = *dbg_reg;
438 	if (p->is_32bit)
439 		p->regval &= 0xffffffffUL;
440 }
441 
442 static bool trap_bvr(struct kvm_vcpu *vcpu,
443 		     struct sys_reg_params *p,
444 		     const struct sys_reg_desc *rd)
445 {
446 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
447 
448 	if (p->is_write)
449 		reg_to_dbg(vcpu, p, dbg_reg);
450 	else
451 		dbg_to_reg(vcpu, p, dbg_reg);
452 
453 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
454 
455 	return true;
456 }
457 
458 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
459 		const struct kvm_one_reg *reg, void __user *uaddr)
460 {
461 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462 
463 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464 		return -EFAULT;
465 	return 0;
466 }
467 
468 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
469 	const struct kvm_one_reg *reg, void __user *uaddr)
470 {
471 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
472 
473 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
474 		return -EFAULT;
475 	return 0;
476 }
477 
478 static void reset_bvr(struct kvm_vcpu *vcpu,
479 		      const struct sys_reg_desc *rd)
480 {
481 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
482 }
483 
484 static bool trap_bcr(struct kvm_vcpu *vcpu,
485 		     struct sys_reg_params *p,
486 		     const struct sys_reg_desc *rd)
487 {
488 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
489 
490 	if (p->is_write)
491 		reg_to_dbg(vcpu, p, dbg_reg);
492 	else
493 		dbg_to_reg(vcpu, p, dbg_reg);
494 
495 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
496 
497 	return true;
498 }
499 
500 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 		const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504 
505 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506 		return -EFAULT;
507 
508 	return 0;
509 }
510 
511 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512 	const struct kvm_one_reg *reg, void __user *uaddr)
513 {
514 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
515 
516 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
517 		return -EFAULT;
518 	return 0;
519 }
520 
521 static void reset_bcr(struct kvm_vcpu *vcpu,
522 		      const struct sys_reg_desc *rd)
523 {
524 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
525 }
526 
527 static bool trap_wvr(struct kvm_vcpu *vcpu,
528 		     struct sys_reg_params *p,
529 		     const struct sys_reg_desc *rd)
530 {
531 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
532 
533 	if (p->is_write)
534 		reg_to_dbg(vcpu, p, dbg_reg);
535 	else
536 		dbg_to_reg(vcpu, p, dbg_reg);
537 
538 	trace_trap_reg(__func__, rd->reg, p->is_write,
539 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
540 
541 	return true;
542 }
543 
544 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545 		const struct kvm_one_reg *reg, void __user *uaddr)
546 {
547 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548 
549 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550 		return -EFAULT;
551 	return 0;
552 }
553 
554 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555 	const struct kvm_one_reg *reg, void __user *uaddr)
556 {
557 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
558 
559 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
560 		return -EFAULT;
561 	return 0;
562 }
563 
564 static void reset_wvr(struct kvm_vcpu *vcpu,
565 		      const struct sys_reg_desc *rd)
566 {
567 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
568 }
569 
570 static bool trap_wcr(struct kvm_vcpu *vcpu,
571 		     struct sys_reg_params *p,
572 		     const struct sys_reg_desc *rd)
573 {
574 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
575 
576 	if (p->is_write)
577 		reg_to_dbg(vcpu, p, dbg_reg);
578 	else
579 		dbg_to_reg(vcpu, p, dbg_reg);
580 
581 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
582 
583 	return true;
584 }
585 
586 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
587 		const struct kvm_one_reg *reg, void __user *uaddr)
588 {
589 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590 
591 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592 		return -EFAULT;
593 	return 0;
594 }
595 
596 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
597 	const struct kvm_one_reg *reg, void __user *uaddr)
598 {
599 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
600 
601 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
602 		return -EFAULT;
603 	return 0;
604 }
605 
606 static void reset_wcr(struct kvm_vcpu *vcpu,
607 		      const struct sys_reg_desc *rd)
608 {
609 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
610 }
611 
612 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
613 {
614 	u64 amair = read_sysreg(amair_el1);
615 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 }
617 
618 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620 	u64 mpidr;
621 
622 	/*
623 	 * Map the vcpu_id into the first three affinity level fields of
624 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
625 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
626 	 * of the GICv3 to be able to address each CPU directly when
627 	 * sending IPIs.
628 	 */
629 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
630 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
631 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 }
634 
635 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
636 {
637 	u64 pmcr, val;
638 
639 	pmcr = read_sysreg(pmcr_el0);
640 	/*
641 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642 	 * except PMCR.E resetting to zero.
643 	 */
644 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
645 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
647 }
648 
649 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
650 {
651 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
652 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
653 
654 	if (!enabled)
655 		kvm_inject_undefined(vcpu);
656 
657 	return !enabled;
658 }
659 
660 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
661 {
662 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
663 }
664 
665 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
666 {
667 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
668 }
669 
670 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
671 {
672 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
673 }
674 
675 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
676 {
677 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
678 }
679 
680 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
681 			const struct sys_reg_desc *r)
682 {
683 	u64 val;
684 
685 	if (!kvm_arm_pmu_v3_ready(vcpu))
686 		return trap_raz_wi(vcpu, p, r);
687 
688 	if (pmu_access_el0_disabled(vcpu))
689 		return false;
690 
691 	if (p->is_write) {
692 		/* Only update writeable bits of PMCR */
693 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
694 		val &= ~ARMV8_PMU_PMCR_MASK;
695 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
696 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
697 		kvm_pmu_handle_pmcr(vcpu, val);
698 	} else {
699 		/* PMCR.P & PMCR.C are RAZ */
700 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
701 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
702 		p->regval = val;
703 	}
704 
705 	return true;
706 }
707 
708 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
709 			  const struct sys_reg_desc *r)
710 {
711 	if (!kvm_arm_pmu_v3_ready(vcpu))
712 		return trap_raz_wi(vcpu, p, r);
713 
714 	if (pmu_access_event_counter_el0_disabled(vcpu))
715 		return false;
716 
717 	if (p->is_write)
718 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
719 	else
720 		/* return PMSELR.SEL field */
721 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722 			    & ARMV8_PMU_COUNTER_MASK;
723 
724 	return true;
725 }
726 
727 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
728 			  const struct sys_reg_desc *r)
729 {
730 	u64 pmceid;
731 
732 	if (!kvm_arm_pmu_v3_ready(vcpu))
733 		return trap_raz_wi(vcpu, p, r);
734 
735 	BUG_ON(p->is_write);
736 
737 	if (pmu_access_el0_disabled(vcpu))
738 		return false;
739 
740 	if (!(p->Op2 & 1))
741 		pmceid = read_sysreg(pmceid0_el0);
742 	else
743 		pmceid = read_sysreg(pmceid1_el0);
744 
745 	p->regval = pmceid;
746 
747 	return true;
748 }
749 
750 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
751 {
752 	u64 pmcr, val;
753 
754 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
755 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
756 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
757 		kvm_inject_undefined(vcpu);
758 		return false;
759 	}
760 
761 	return true;
762 }
763 
764 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
765 			      struct sys_reg_params *p,
766 			      const struct sys_reg_desc *r)
767 {
768 	u64 idx;
769 
770 	if (!kvm_arm_pmu_v3_ready(vcpu))
771 		return trap_raz_wi(vcpu, p, r);
772 
773 	if (r->CRn == 9 && r->CRm == 13) {
774 		if (r->Op2 == 2) {
775 			/* PMXEVCNTR_EL0 */
776 			if (pmu_access_event_counter_el0_disabled(vcpu))
777 				return false;
778 
779 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780 			      & ARMV8_PMU_COUNTER_MASK;
781 		} else if (r->Op2 == 0) {
782 			/* PMCCNTR_EL0 */
783 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
784 				return false;
785 
786 			idx = ARMV8_PMU_CYCLE_IDX;
787 		} else {
788 			return false;
789 		}
790 	} else if (r->CRn == 0 && r->CRm == 9) {
791 		/* PMCCNTR */
792 		if (pmu_access_event_counter_el0_disabled(vcpu))
793 			return false;
794 
795 		idx = ARMV8_PMU_CYCLE_IDX;
796 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
797 		/* PMEVCNTRn_EL0 */
798 		if (pmu_access_event_counter_el0_disabled(vcpu))
799 			return false;
800 
801 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
802 	} else {
803 		return false;
804 	}
805 
806 	if (!pmu_counter_idx_valid(vcpu, idx))
807 		return false;
808 
809 	if (p->is_write) {
810 		if (pmu_access_el0_disabled(vcpu))
811 			return false;
812 
813 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814 	} else {
815 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816 	}
817 
818 	return true;
819 }
820 
821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822 			       const struct sys_reg_desc *r)
823 {
824 	u64 idx, reg;
825 
826 	if (!kvm_arm_pmu_v3_ready(vcpu))
827 		return trap_raz_wi(vcpu, p, r);
828 
829 	if (pmu_access_el0_disabled(vcpu))
830 		return false;
831 
832 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
833 		/* PMXEVTYPER_EL0 */
834 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
835 		reg = PMEVTYPER0_EL0 + idx;
836 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
837 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
838 		if (idx == ARMV8_PMU_CYCLE_IDX)
839 			reg = PMCCFILTR_EL0;
840 		else
841 			/* PMEVTYPERn_EL0 */
842 			reg = PMEVTYPER0_EL0 + idx;
843 	} else {
844 		BUG();
845 	}
846 
847 	if (!pmu_counter_idx_valid(vcpu, idx))
848 		return false;
849 
850 	if (p->is_write) {
851 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
852 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
853 	} else {
854 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
855 	}
856 
857 	return true;
858 }
859 
860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
861 			   const struct sys_reg_desc *r)
862 {
863 	u64 val, mask;
864 
865 	if (!kvm_arm_pmu_v3_ready(vcpu))
866 		return trap_raz_wi(vcpu, p, r);
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	mask = kvm_pmu_valid_counter_mask(vcpu);
872 	if (p->is_write) {
873 		val = p->regval & mask;
874 		if (r->Op2 & 0x1) {
875 			/* accessing PMCNTENSET_EL0 */
876 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
877 			kvm_pmu_enable_counter(vcpu, val);
878 		} else {
879 			/* accessing PMCNTENCLR_EL0 */
880 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
881 			kvm_pmu_disable_counter(vcpu, val);
882 		}
883 	} else {
884 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
885 	}
886 
887 	return true;
888 }
889 
890 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891 			   const struct sys_reg_desc *r)
892 {
893 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
894 
895 	if (!kvm_arm_pmu_v3_ready(vcpu))
896 		return trap_raz_wi(vcpu, p, r);
897 
898 	if (!vcpu_mode_priv(vcpu)) {
899 		kvm_inject_undefined(vcpu);
900 		return false;
901 	}
902 
903 	if (p->is_write) {
904 		u64 val = p->regval & mask;
905 
906 		if (r->Op2 & 0x1)
907 			/* accessing PMINTENSET_EL1 */
908 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
909 		else
910 			/* accessing PMINTENCLR_EL1 */
911 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
912 	} else {
913 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
914 	}
915 
916 	return true;
917 }
918 
919 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920 			 const struct sys_reg_desc *r)
921 {
922 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
923 
924 	if (!kvm_arm_pmu_v3_ready(vcpu))
925 		return trap_raz_wi(vcpu, p, r);
926 
927 	if (pmu_access_el0_disabled(vcpu))
928 		return false;
929 
930 	if (p->is_write) {
931 		if (r->CRm & 0x2)
932 			/* accessing PMOVSSET_EL0 */
933 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
934 		else
935 			/* accessing PMOVSCLR_EL0 */
936 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
937 	} else {
938 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
939 	}
940 
941 	return true;
942 }
943 
944 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
945 			   const struct sys_reg_desc *r)
946 {
947 	u64 mask;
948 
949 	if (!kvm_arm_pmu_v3_ready(vcpu))
950 		return trap_raz_wi(vcpu, p, r);
951 
952 	if (!p->is_write)
953 		return read_from_write_only(vcpu, p, r);
954 
955 	if (pmu_write_swinc_el0_disabled(vcpu))
956 		return false;
957 
958 	mask = kvm_pmu_valid_counter_mask(vcpu);
959 	kvm_pmu_software_increment(vcpu, p->regval & mask);
960 	return true;
961 }
962 
963 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
964 			     const struct sys_reg_desc *r)
965 {
966 	if (!kvm_arm_pmu_v3_ready(vcpu))
967 		return trap_raz_wi(vcpu, p, r);
968 
969 	if (p->is_write) {
970 		if (!vcpu_mode_priv(vcpu)) {
971 			kvm_inject_undefined(vcpu);
972 			return false;
973 		}
974 
975 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
976 			       p->regval & ARMV8_PMU_USERENR_MASK;
977 	} else {
978 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
979 			    & ARMV8_PMU_USERENR_MASK;
980 	}
981 
982 	return true;
983 }
984 
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
987 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
988 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
989 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
990 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
991 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
992 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
993 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
994 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
995 
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n)						\
998 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
999 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000 
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n)						\
1003 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1004 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005 
1006 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
1007 		struct sys_reg_params *p,
1008 		const struct sys_reg_desc *r)
1009 {
1010 	u64 now = kvm_phys_timer_read();
1011 	u64 cval;
1012 
1013 	if (p->is_write) {
1014 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
1015 				      p->regval + now);
1016 	} else {
1017 		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1018 		p->regval = cval - now;
1019 	}
1020 
1021 	return true;
1022 }
1023 
1024 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1025 		struct sys_reg_params *p,
1026 		const struct sys_reg_desc *r)
1027 {
1028 	if (p->is_write)
1029 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1030 	else
1031 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1032 
1033 	return true;
1034 }
1035 
1036 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1037 		struct sys_reg_params *p,
1038 		const struct sys_reg_desc *r)
1039 {
1040 	if (p->is_write)
1041 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1042 	else
1043 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1044 
1045 	return true;
1046 }
1047 
1048 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1049 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1050 {
1051 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1052 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1053 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1054 
1055 	if (id == SYS_ID_AA64PFR0_EL1) {
1056 		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1057 			kvm_debug("SVE unsupported for guests, suppressing\n");
1058 
1059 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1060 	} else if (id == SYS_ID_AA64ISAR1_EL1) {
1061 		const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1062 					 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1063 					 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1064 					 (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
1065 		if (val & ptrauth_mask)
1066 			kvm_debug("ptrauth unsupported for guests, suppressing\n");
1067 		val &= ~ptrauth_mask;
1068 	}
1069 
1070 	return val;
1071 }
1072 
1073 /* cpufeature ID register access trap handlers */
1074 
1075 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1076 			    struct sys_reg_params *p,
1077 			    const struct sys_reg_desc *r,
1078 			    bool raz)
1079 {
1080 	if (p->is_write)
1081 		return write_to_read_only(vcpu, p, r);
1082 
1083 	p->regval = read_id_reg(r, raz);
1084 	return true;
1085 }
1086 
1087 static bool access_id_reg(struct kvm_vcpu *vcpu,
1088 			  struct sys_reg_params *p,
1089 			  const struct sys_reg_desc *r)
1090 {
1091 	return __access_id_reg(vcpu, p, r, false);
1092 }
1093 
1094 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1095 			      struct sys_reg_params *p,
1096 			      const struct sys_reg_desc *r)
1097 {
1098 	return __access_id_reg(vcpu, p, r, true);
1099 }
1100 
1101 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1102 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1103 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1104 
1105 /*
1106  * cpufeature ID register user accessors
1107  *
1108  * For now, these registers are immutable for userspace, so no values
1109  * are stored, and for set_id_reg() we don't allow the effective value
1110  * to be changed.
1111  */
1112 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1113 			bool raz)
1114 {
1115 	const u64 id = sys_reg_to_index(rd);
1116 	const u64 val = read_id_reg(rd, raz);
1117 
1118 	return reg_to_user(uaddr, &val, id);
1119 }
1120 
1121 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1122 			bool raz)
1123 {
1124 	const u64 id = sys_reg_to_index(rd);
1125 	int err;
1126 	u64 val;
1127 
1128 	err = reg_from_user(&val, uaddr, id);
1129 	if (err)
1130 		return err;
1131 
1132 	/* This is what we mean by invariant: you can't change it. */
1133 	if (val != read_id_reg(rd, raz))
1134 		return -EINVAL;
1135 
1136 	return 0;
1137 }
1138 
1139 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1140 		      const struct kvm_one_reg *reg, void __user *uaddr)
1141 {
1142 	return __get_id_reg(rd, uaddr, false);
1143 }
1144 
1145 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1146 		      const struct kvm_one_reg *reg, void __user *uaddr)
1147 {
1148 	return __set_id_reg(rd, uaddr, false);
1149 }
1150 
1151 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1152 			  const struct kvm_one_reg *reg, void __user *uaddr)
1153 {
1154 	return __get_id_reg(rd, uaddr, true);
1155 }
1156 
1157 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1158 			  const struct kvm_one_reg *reg, void __user *uaddr)
1159 {
1160 	return __set_id_reg(rd, uaddr, true);
1161 }
1162 
1163 /* sys_reg_desc initialiser for known cpufeature ID registers */
1164 #define ID_SANITISED(name) {			\
1165 	SYS_DESC(SYS_##name),			\
1166 	.access	= access_id_reg,		\
1167 	.get_user = get_id_reg,			\
1168 	.set_user = set_id_reg,			\
1169 }
1170 
1171 /*
1172  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1173  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1174  * (1 <= crm < 8, 0 <= Op2 < 8).
1175  */
1176 #define ID_UNALLOCATED(crm, op2) {			\
1177 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1178 	.access = access_raz_id_reg,			\
1179 	.get_user = get_raz_id_reg,			\
1180 	.set_user = set_raz_id_reg,			\
1181 }
1182 
1183 /*
1184  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1185  * For now, these are exposed just like unallocated ID regs: they appear
1186  * RAZ for the guest.
1187  */
1188 #define ID_HIDDEN(name) {			\
1189 	SYS_DESC(SYS_##name),			\
1190 	.access = access_raz_id_reg,		\
1191 	.get_user = get_raz_id_reg,		\
1192 	.set_user = set_raz_id_reg,		\
1193 }
1194 
1195 /*
1196  * Architected system registers.
1197  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1198  *
1199  * Debug handling: We do trap most, if not all debug related system
1200  * registers. The implementation is good enough to ensure that a guest
1201  * can use these with minimal performance degradation. The drawback is
1202  * that we don't implement any of the external debug, none of the
1203  * OSlock protocol. This should be revisited if we ever encounter a
1204  * more demanding guest...
1205  */
1206 static const struct sys_reg_desc sys_reg_descs[] = {
1207 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1208 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1209 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1210 
1211 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1212 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1213 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1214 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1215 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1216 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1217 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1218 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1219 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1220 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1221 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1222 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1223 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1224 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1225 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1226 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1227 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1228 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1229 
1230 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1231 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1232 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1233 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1234 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1235 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1236 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1237 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1238 
1239 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1240 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1241 	// DBGDTR[TR]X_EL0 share the same encoding
1242 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1243 
1244 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1245 
1246 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1247 
1248 	/*
1249 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1250 	 * entries in arm64_ftr_regs[].
1251 	 */
1252 
1253 	/* AArch64 mappings of the AArch32 ID registers */
1254 	/* CRm=1 */
1255 	ID_SANITISED(ID_PFR0_EL1),
1256 	ID_SANITISED(ID_PFR1_EL1),
1257 	ID_SANITISED(ID_DFR0_EL1),
1258 	ID_HIDDEN(ID_AFR0_EL1),
1259 	ID_SANITISED(ID_MMFR0_EL1),
1260 	ID_SANITISED(ID_MMFR1_EL1),
1261 	ID_SANITISED(ID_MMFR2_EL1),
1262 	ID_SANITISED(ID_MMFR3_EL1),
1263 
1264 	/* CRm=2 */
1265 	ID_SANITISED(ID_ISAR0_EL1),
1266 	ID_SANITISED(ID_ISAR1_EL1),
1267 	ID_SANITISED(ID_ISAR2_EL1),
1268 	ID_SANITISED(ID_ISAR3_EL1),
1269 	ID_SANITISED(ID_ISAR4_EL1),
1270 	ID_SANITISED(ID_ISAR5_EL1),
1271 	ID_SANITISED(ID_MMFR4_EL1),
1272 	ID_UNALLOCATED(2,7),
1273 
1274 	/* CRm=3 */
1275 	ID_SANITISED(MVFR0_EL1),
1276 	ID_SANITISED(MVFR1_EL1),
1277 	ID_SANITISED(MVFR2_EL1),
1278 	ID_UNALLOCATED(3,3),
1279 	ID_UNALLOCATED(3,4),
1280 	ID_UNALLOCATED(3,5),
1281 	ID_UNALLOCATED(3,6),
1282 	ID_UNALLOCATED(3,7),
1283 
1284 	/* AArch64 ID registers */
1285 	/* CRm=4 */
1286 	ID_SANITISED(ID_AA64PFR0_EL1),
1287 	ID_SANITISED(ID_AA64PFR1_EL1),
1288 	ID_UNALLOCATED(4,2),
1289 	ID_UNALLOCATED(4,3),
1290 	ID_UNALLOCATED(4,4),
1291 	ID_UNALLOCATED(4,5),
1292 	ID_UNALLOCATED(4,6),
1293 	ID_UNALLOCATED(4,7),
1294 
1295 	/* CRm=5 */
1296 	ID_SANITISED(ID_AA64DFR0_EL1),
1297 	ID_SANITISED(ID_AA64DFR1_EL1),
1298 	ID_UNALLOCATED(5,2),
1299 	ID_UNALLOCATED(5,3),
1300 	ID_HIDDEN(ID_AA64AFR0_EL1),
1301 	ID_HIDDEN(ID_AA64AFR1_EL1),
1302 	ID_UNALLOCATED(5,6),
1303 	ID_UNALLOCATED(5,7),
1304 
1305 	/* CRm=6 */
1306 	ID_SANITISED(ID_AA64ISAR0_EL1),
1307 	ID_SANITISED(ID_AA64ISAR1_EL1),
1308 	ID_UNALLOCATED(6,2),
1309 	ID_UNALLOCATED(6,3),
1310 	ID_UNALLOCATED(6,4),
1311 	ID_UNALLOCATED(6,5),
1312 	ID_UNALLOCATED(6,6),
1313 	ID_UNALLOCATED(6,7),
1314 
1315 	/* CRm=7 */
1316 	ID_SANITISED(ID_AA64MMFR0_EL1),
1317 	ID_SANITISED(ID_AA64MMFR1_EL1),
1318 	ID_SANITISED(ID_AA64MMFR2_EL1),
1319 	ID_UNALLOCATED(7,3),
1320 	ID_UNALLOCATED(7,4),
1321 	ID_UNALLOCATED(7,5),
1322 	ID_UNALLOCATED(7,6),
1323 	ID_UNALLOCATED(7,7),
1324 
1325 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1326 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1327 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1328 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1329 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1330 
1331 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1332 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1333 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1334 
1335 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1336 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1337 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1338 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1339 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1340 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1341 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1342 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1343 
1344 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1345 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1346 
1347 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1348 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1349 
1350 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1351 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1352 
1353 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1354 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1355 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1356 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1357 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1358 
1359 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1360 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1361 
1362 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1363 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1364 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1365 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1366 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1367 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1368 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1369 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1370 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1371 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1372 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1373 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1374 
1375 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1376 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1377 
1378 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1379 
1380 	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1381 
1382 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1383 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1384 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1385 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1386 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1387 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1388 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1389 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1390 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1391 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1392 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1393 	/*
1394 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1395 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1396 	 */
1397 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1398 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1399 
1400 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1401 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1402 
1403 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1404 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1405 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1406 
1407 	/* PMEVCNTRn_EL0 */
1408 	PMU_PMEVCNTR_EL0(0),
1409 	PMU_PMEVCNTR_EL0(1),
1410 	PMU_PMEVCNTR_EL0(2),
1411 	PMU_PMEVCNTR_EL0(3),
1412 	PMU_PMEVCNTR_EL0(4),
1413 	PMU_PMEVCNTR_EL0(5),
1414 	PMU_PMEVCNTR_EL0(6),
1415 	PMU_PMEVCNTR_EL0(7),
1416 	PMU_PMEVCNTR_EL0(8),
1417 	PMU_PMEVCNTR_EL0(9),
1418 	PMU_PMEVCNTR_EL0(10),
1419 	PMU_PMEVCNTR_EL0(11),
1420 	PMU_PMEVCNTR_EL0(12),
1421 	PMU_PMEVCNTR_EL0(13),
1422 	PMU_PMEVCNTR_EL0(14),
1423 	PMU_PMEVCNTR_EL0(15),
1424 	PMU_PMEVCNTR_EL0(16),
1425 	PMU_PMEVCNTR_EL0(17),
1426 	PMU_PMEVCNTR_EL0(18),
1427 	PMU_PMEVCNTR_EL0(19),
1428 	PMU_PMEVCNTR_EL0(20),
1429 	PMU_PMEVCNTR_EL0(21),
1430 	PMU_PMEVCNTR_EL0(22),
1431 	PMU_PMEVCNTR_EL0(23),
1432 	PMU_PMEVCNTR_EL0(24),
1433 	PMU_PMEVCNTR_EL0(25),
1434 	PMU_PMEVCNTR_EL0(26),
1435 	PMU_PMEVCNTR_EL0(27),
1436 	PMU_PMEVCNTR_EL0(28),
1437 	PMU_PMEVCNTR_EL0(29),
1438 	PMU_PMEVCNTR_EL0(30),
1439 	/* PMEVTYPERn_EL0 */
1440 	PMU_PMEVTYPER_EL0(0),
1441 	PMU_PMEVTYPER_EL0(1),
1442 	PMU_PMEVTYPER_EL0(2),
1443 	PMU_PMEVTYPER_EL0(3),
1444 	PMU_PMEVTYPER_EL0(4),
1445 	PMU_PMEVTYPER_EL0(5),
1446 	PMU_PMEVTYPER_EL0(6),
1447 	PMU_PMEVTYPER_EL0(7),
1448 	PMU_PMEVTYPER_EL0(8),
1449 	PMU_PMEVTYPER_EL0(9),
1450 	PMU_PMEVTYPER_EL0(10),
1451 	PMU_PMEVTYPER_EL0(11),
1452 	PMU_PMEVTYPER_EL0(12),
1453 	PMU_PMEVTYPER_EL0(13),
1454 	PMU_PMEVTYPER_EL0(14),
1455 	PMU_PMEVTYPER_EL0(15),
1456 	PMU_PMEVTYPER_EL0(16),
1457 	PMU_PMEVTYPER_EL0(17),
1458 	PMU_PMEVTYPER_EL0(18),
1459 	PMU_PMEVTYPER_EL0(19),
1460 	PMU_PMEVTYPER_EL0(20),
1461 	PMU_PMEVTYPER_EL0(21),
1462 	PMU_PMEVTYPER_EL0(22),
1463 	PMU_PMEVTYPER_EL0(23),
1464 	PMU_PMEVTYPER_EL0(24),
1465 	PMU_PMEVTYPER_EL0(25),
1466 	PMU_PMEVTYPER_EL0(26),
1467 	PMU_PMEVTYPER_EL0(27),
1468 	PMU_PMEVTYPER_EL0(28),
1469 	PMU_PMEVTYPER_EL0(29),
1470 	PMU_PMEVTYPER_EL0(30),
1471 	/*
1472 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1473 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1474 	 */
1475 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1476 
1477 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1478 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1479 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1480 };
1481 
1482 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1483 			struct sys_reg_params *p,
1484 			const struct sys_reg_desc *r)
1485 {
1486 	if (p->is_write) {
1487 		return ignore_write(vcpu, p);
1488 	} else {
1489 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1490 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1491 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1492 
1493 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1494 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1495 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1496 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1497 		return true;
1498 	}
1499 }
1500 
1501 static bool trap_debug32(struct kvm_vcpu *vcpu,
1502 			 struct sys_reg_params *p,
1503 			 const struct sys_reg_desc *r)
1504 {
1505 	if (p->is_write) {
1506 		vcpu_cp14(vcpu, r->reg) = p->regval;
1507 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1508 	} else {
1509 		p->regval = vcpu_cp14(vcpu, r->reg);
1510 	}
1511 
1512 	return true;
1513 }
1514 
1515 /* AArch32 debug register mappings
1516  *
1517  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1518  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1519  *
1520  * All control registers and watchpoint value registers are mapped to
1521  * the lower 32 bits of their AArch64 equivalents. We share the trap
1522  * handlers with the above AArch64 code which checks what mode the
1523  * system is in.
1524  */
1525 
1526 static bool trap_xvr(struct kvm_vcpu *vcpu,
1527 		     struct sys_reg_params *p,
1528 		     const struct sys_reg_desc *rd)
1529 {
1530 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1531 
1532 	if (p->is_write) {
1533 		u64 val = *dbg_reg;
1534 
1535 		val &= 0xffffffffUL;
1536 		val |= p->regval << 32;
1537 		*dbg_reg = val;
1538 
1539 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1540 	} else {
1541 		p->regval = *dbg_reg >> 32;
1542 	}
1543 
1544 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1545 
1546 	return true;
1547 }
1548 
1549 #define DBG_BCR_BVR_WCR_WVR(n)						\
1550 	/* DBGBVRn */							\
1551 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1552 	/* DBGBCRn */							\
1553 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1554 	/* DBGWVRn */							\
1555 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1556 	/* DBGWCRn */							\
1557 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1558 
1559 #define DBGBXVR(n)							\
1560 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1561 
1562 /*
1563  * Trapped cp14 registers. We generally ignore most of the external
1564  * debug, on the principle that they don't really make sense to a
1565  * guest. Revisit this one day, would this principle change.
1566  */
1567 static const struct sys_reg_desc cp14_regs[] = {
1568 	/* DBGIDR */
1569 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1570 	/* DBGDTRRXext */
1571 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1572 
1573 	DBG_BCR_BVR_WCR_WVR(0),
1574 	/* DBGDSCRint */
1575 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1576 	DBG_BCR_BVR_WCR_WVR(1),
1577 	/* DBGDCCINT */
1578 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1579 	/* DBGDSCRext */
1580 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1581 	DBG_BCR_BVR_WCR_WVR(2),
1582 	/* DBGDTR[RT]Xint */
1583 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1584 	/* DBGDTR[RT]Xext */
1585 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1586 	DBG_BCR_BVR_WCR_WVR(3),
1587 	DBG_BCR_BVR_WCR_WVR(4),
1588 	DBG_BCR_BVR_WCR_WVR(5),
1589 	/* DBGWFAR */
1590 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1591 	/* DBGOSECCR */
1592 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1593 	DBG_BCR_BVR_WCR_WVR(6),
1594 	/* DBGVCR */
1595 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1596 	DBG_BCR_BVR_WCR_WVR(7),
1597 	DBG_BCR_BVR_WCR_WVR(8),
1598 	DBG_BCR_BVR_WCR_WVR(9),
1599 	DBG_BCR_BVR_WCR_WVR(10),
1600 	DBG_BCR_BVR_WCR_WVR(11),
1601 	DBG_BCR_BVR_WCR_WVR(12),
1602 	DBG_BCR_BVR_WCR_WVR(13),
1603 	DBG_BCR_BVR_WCR_WVR(14),
1604 	DBG_BCR_BVR_WCR_WVR(15),
1605 
1606 	/* DBGDRAR (32bit) */
1607 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1608 
1609 	DBGBXVR(0),
1610 	/* DBGOSLAR */
1611 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1612 	DBGBXVR(1),
1613 	/* DBGOSLSR */
1614 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1615 	DBGBXVR(2),
1616 	DBGBXVR(3),
1617 	/* DBGOSDLR */
1618 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1619 	DBGBXVR(4),
1620 	/* DBGPRCR */
1621 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1622 	DBGBXVR(5),
1623 	DBGBXVR(6),
1624 	DBGBXVR(7),
1625 	DBGBXVR(8),
1626 	DBGBXVR(9),
1627 	DBGBXVR(10),
1628 	DBGBXVR(11),
1629 	DBGBXVR(12),
1630 	DBGBXVR(13),
1631 	DBGBXVR(14),
1632 	DBGBXVR(15),
1633 
1634 	/* DBGDSAR (32bit) */
1635 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1636 
1637 	/* DBGDEVID2 */
1638 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1639 	/* DBGDEVID1 */
1640 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1641 	/* DBGDEVID */
1642 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1643 	/* DBGCLAIMSET */
1644 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1645 	/* DBGCLAIMCLR */
1646 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1647 	/* DBGAUTHSTATUS */
1648 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1649 };
1650 
1651 /* Trapped cp14 64bit registers */
1652 static const struct sys_reg_desc cp14_64_regs[] = {
1653 	/* DBGDRAR (64bit) */
1654 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1655 
1656 	/* DBGDSAR (64bit) */
1657 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1658 };
1659 
1660 /* Macro to expand the PMEVCNTRn register */
1661 #define PMU_PMEVCNTR(n)							\
1662 	/* PMEVCNTRn */							\
1663 	{ Op1(0), CRn(0b1110),						\
1664 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1665 	  access_pmu_evcntr }
1666 
1667 /* Macro to expand the PMEVTYPERn register */
1668 #define PMU_PMEVTYPER(n)						\
1669 	/* PMEVTYPERn */						\
1670 	{ Op1(0), CRn(0b1110),						\
1671 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1672 	  access_pmu_evtyper }
1673 
1674 /*
1675  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1676  * depending on the way they are accessed (as a 32bit or a 64bit
1677  * register).
1678  */
1679 static const struct sys_reg_desc cp15_regs[] = {
1680 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1681 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1682 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1683 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1684 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1685 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1686 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1687 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1688 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1689 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1690 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1691 
1692 	/*
1693 	 * DC{C,I,CI}SW operations:
1694 	 */
1695 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1696 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1697 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1698 
1699 	/* PMU */
1700 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1701 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1702 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1703 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1704 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1705 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1706 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1707 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1708 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1709 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1710 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1711 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1712 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1713 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1714 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1715 
1716 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1717 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1718 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1719 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1720 
1721 	/* ICC_SRE */
1722 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1723 
1724 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1725 
1726 	/* CNTP_TVAL */
1727 	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1728 	/* CNTP_CTL */
1729 	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1730 
1731 	/* PMEVCNTRn */
1732 	PMU_PMEVCNTR(0),
1733 	PMU_PMEVCNTR(1),
1734 	PMU_PMEVCNTR(2),
1735 	PMU_PMEVCNTR(3),
1736 	PMU_PMEVCNTR(4),
1737 	PMU_PMEVCNTR(5),
1738 	PMU_PMEVCNTR(6),
1739 	PMU_PMEVCNTR(7),
1740 	PMU_PMEVCNTR(8),
1741 	PMU_PMEVCNTR(9),
1742 	PMU_PMEVCNTR(10),
1743 	PMU_PMEVCNTR(11),
1744 	PMU_PMEVCNTR(12),
1745 	PMU_PMEVCNTR(13),
1746 	PMU_PMEVCNTR(14),
1747 	PMU_PMEVCNTR(15),
1748 	PMU_PMEVCNTR(16),
1749 	PMU_PMEVCNTR(17),
1750 	PMU_PMEVCNTR(18),
1751 	PMU_PMEVCNTR(19),
1752 	PMU_PMEVCNTR(20),
1753 	PMU_PMEVCNTR(21),
1754 	PMU_PMEVCNTR(22),
1755 	PMU_PMEVCNTR(23),
1756 	PMU_PMEVCNTR(24),
1757 	PMU_PMEVCNTR(25),
1758 	PMU_PMEVCNTR(26),
1759 	PMU_PMEVCNTR(27),
1760 	PMU_PMEVCNTR(28),
1761 	PMU_PMEVCNTR(29),
1762 	PMU_PMEVCNTR(30),
1763 	/* PMEVTYPERn */
1764 	PMU_PMEVTYPER(0),
1765 	PMU_PMEVTYPER(1),
1766 	PMU_PMEVTYPER(2),
1767 	PMU_PMEVTYPER(3),
1768 	PMU_PMEVTYPER(4),
1769 	PMU_PMEVTYPER(5),
1770 	PMU_PMEVTYPER(6),
1771 	PMU_PMEVTYPER(7),
1772 	PMU_PMEVTYPER(8),
1773 	PMU_PMEVTYPER(9),
1774 	PMU_PMEVTYPER(10),
1775 	PMU_PMEVTYPER(11),
1776 	PMU_PMEVTYPER(12),
1777 	PMU_PMEVTYPER(13),
1778 	PMU_PMEVTYPER(14),
1779 	PMU_PMEVTYPER(15),
1780 	PMU_PMEVTYPER(16),
1781 	PMU_PMEVTYPER(17),
1782 	PMU_PMEVTYPER(18),
1783 	PMU_PMEVTYPER(19),
1784 	PMU_PMEVTYPER(20),
1785 	PMU_PMEVTYPER(21),
1786 	PMU_PMEVTYPER(22),
1787 	PMU_PMEVTYPER(23),
1788 	PMU_PMEVTYPER(24),
1789 	PMU_PMEVTYPER(25),
1790 	PMU_PMEVTYPER(26),
1791 	PMU_PMEVTYPER(27),
1792 	PMU_PMEVTYPER(28),
1793 	PMU_PMEVTYPER(29),
1794 	PMU_PMEVTYPER(30),
1795 	/* PMCCFILTR */
1796 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1797 };
1798 
1799 static const struct sys_reg_desc cp15_64_regs[] = {
1800 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1801 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1802 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1803 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1804 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1805 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1806 	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1807 };
1808 
1809 /* Target specific emulation tables */
1810 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1811 
1812 void kvm_register_target_sys_reg_table(unsigned int target,
1813 				       struct kvm_sys_reg_target_table *table)
1814 {
1815 	target_tables[target] = table;
1816 }
1817 
1818 /* Get specific register table for this target. */
1819 static const struct sys_reg_desc *get_target_table(unsigned target,
1820 						   bool mode_is_64,
1821 						   size_t *num)
1822 {
1823 	struct kvm_sys_reg_target_table *table;
1824 
1825 	table = target_tables[target];
1826 	if (mode_is_64) {
1827 		*num = table->table64.num;
1828 		return table->table64.table;
1829 	} else {
1830 		*num = table->table32.num;
1831 		return table->table32.table;
1832 	}
1833 }
1834 
1835 #define reg_to_match_value(x)						\
1836 	({								\
1837 		unsigned long val;					\
1838 		val  = (x)->Op0 << 14;					\
1839 		val |= (x)->Op1 << 11;					\
1840 		val |= (x)->CRn << 7;					\
1841 		val |= (x)->CRm << 3;					\
1842 		val |= (x)->Op2;					\
1843 		val;							\
1844 	 })
1845 
1846 static int match_sys_reg(const void *key, const void *elt)
1847 {
1848 	const unsigned long pval = (unsigned long)key;
1849 	const struct sys_reg_desc *r = elt;
1850 
1851 	return pval - reg_to_match_value(r);
1852 }
1853 
1854 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1855 					 const struct sys_reg_desc table[],
1856 					 unsigned int num)
1857 {
1858 	unsigned long pval = reg_to_match_value(params);
1859 
1860 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1861 }
1862 
1863 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1864 {
1865 	kvm_inject_undefined(vcpu);
1866 	return 1;
1867 }
1868 
1869 static void perform_access(struct kvm_vcpu *vcpu,
1870 			   struct sys_reg_params *params,
1871 			   const struct sys_reg_desc *r)
1872 {
1873 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
1874 
1875 	/*
1876 	 * Not having an accessor means that we have configured a trap
1877 	 * that we don't know how to handle. This certainly qualifies
1878 	 * as a gross bug that should be fixed right away.
1879 	 */
1880 	BUG_ON(!r->access);
1881 
1882 	/* Skip instruction if instructed so */
1883 	if (likely(r->access(vcpu, params, r)))
1884 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1885 }
1886 
1887 /*
1888  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1889  *                call the corresponding trap handler.
1890  *
1891  * @params: pointer to the descriptor of the access
1892  * @table: array of trap descriptors
1893  * @num: size of the trap descriptor array
1894  *
1895  * Return 0 if the access has been handled, and -1 if not.
1896  */
1897 static int emulate_cp(struct kvm_vcpu *vcpu,
1898 		      struct sys_reg_params *params,
1899 		      const struct sys_reg_desc *table,
1900 		      size_t num)
1901 {
1902 	const struct sys_reg_desc *r;
1903 
1904 	if (!table)
1905 		return -1;	/* Not handled */
1906 
1907 	r = find_reg(params, table, num);
1908 
1909 	if (r) {
1910 		perform_access(vcpu, params, r);
1911 		return 0;
1912 	}
1913 
1914 	/* Not handled */
1915 	return -1;
1916 }
1917 
1918 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1919 				struct sys_reg_params *params)
1920 {
1921 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1922 	int cp = -1;
1923 
1924 	switch(hsr_ec) {
1925 	case ESR_ELx_EC_CP15_32:
1926 	case ESR_ELx_EC_CP15_64:
1927 		cp = 15;
1928 		break;
1929 	case ESR_ELx_EC_CP14_MR:
1930 	case ESR_ELx_EC_CP14_64:
1931 		cp = 14;
1932 		break;
1933 	default:
1934 		WARN_ON(1);
1935 	}
1936 
1937 	kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
1938 		cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
1939 	print_sys_reg_instr(params);
1940 	kvm_inject_undefined(vcpu);
1941 }
1942 
1943 /**
1944  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1945  * @vcpu: The VCPU pointer
1946  * @run:  The kvm_run struct
1947  */
1948 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1949 			    const struct sys_reg_desc *global,
1950 			    size_t nr_global,
1951 			    const struct sys_reg_desc *target_specific,
1952 			    size_t nr_specific)
1953 {
1954 	struct sys_reg_params params;
1955 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1956 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1957 	int Rt2 = (hsr >> 10) & 0x1f;
1958 
1959 	params.is_aarch32 = true;
1960 	params.is_32bit = false;
1961 	params.CRm = (hsr >> 1) & 0xf;
1962 	params.is_write = ((hsr & 1) == 0);
1963 
1964 	params.Op0 = 0;
1965 	params.Op1 = (hsr >> 16) & 0xf;
1966 	params.Op2 = 0;
1967 	params.CRn = 0;
1968 
1969 	/*
1970 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1971 	 * backends between AArch32 and AArch64, we get away with it.
1972 	 */
1973 	if (params.is_write) {
1974 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1975 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1976 	}
1977 
1978 	/*
1979 	 * Try to emulate the coprocessor access using the target
1980 	 * specific table first, and using the global table afterwards.
1981 	 * If either of the tables contains a handler, handle the
1982 	 * potential register operation in the case of a read and return
1983 	 * with success.
1984 	 */
1985 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1986 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1987 		/* Split up the value between registers for the read side */
1988 		if (!params.is_write) {
1989 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1990 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1991 		}
1992 
1993 		return 1;
1994 	}
1995 
1996 	unhandled_cp_access(vcpu, &params);
1997 	return 1;
1998 }
1999 
2000 /**
2001  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2002  * @vcpu: The VCPU pointer
2003  * @run:  The kvm_run struct
2004  */
2005 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2006 			    const struct sys_reg_desc *global,
2007 			    size_t nr_global,
2008 			    const struct sys_reg_desc *target_specific,
2009 			    size_t nr_specific)
2010 {
2011 	struct sys_reg_params params;
2012 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2013 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2014 
2015 	params.is_aarch32 = true;
2016 	params.is_32bit = true;
2017 	params.CRm = (hsr >> 1) & 0xf;
2018 	params.regval = vcpu_get_reg(vcpu, Rt);
2019 	params.is_write = ((hsr & 1) == 0);
2020 	params.CRn = (hsr >> 10) & 0xf;
2021 	params.Op0 = 0;
2022 	params.Op1 = (hsr >> 14) & 0x7;
2023 	params.Op2 = (hsr >> 17) & 0x7;
2024 
2025 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2026 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2027 		if (!params.is_write)
2028 			vcpu_set_reg(vcpu, Rt, params.regval);
2029 		return 1;
2030 	}
2031 
2032 	unhandled_cp_access(vcpu, &params);
2033 	return 1;
2034 }
2035 
2036 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2037 {
2038 	const struct sys_reg_desc *target_specific;
2039 	size_t num;
2040 
2041 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2042 	return kvm_handle_cp_64(vcpu,
2043 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2044 				target_specific, num);
2045 }
2046 
2047 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2048 {
2049 	const struct sys_reg_desc *target_specific;
2050 	size_t num;
2051 
2052 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2053 	return kvm_handle_cp_32(vcpu,
2054 				cp15_regs, ARRAY_SIZE(cp15_regs),
2055 				target_specific, num);
2056 }
2057 
2058 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2059 {
2060 	return kvm_handle_cp_64(vcpu,
2061 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2062 				NULL, 0);
2063 }
2064 
2065 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2066 {
2067 	return kvm_handle_cp_32(vcpu,
2068 				cp14_regs, ARRAY_SIZE(cp14_regs),
2069 				NULL, 0);
2070 }
2071 
2072 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2073 			   struct sys_reg_params *params)
2074 {
2075 	size_t num;
2076 	const struct sys_reg_desc *table, *r;
2077 
2078 	table = get_target_table(vcpu->arch.target, true, &num);
2079 
2080 	/* Search target-specific then generic table. */
2081 	r = find_reg(params, table, num);
2082 	if (!r)
2083 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2084 
2085 	if (likely(r)) {
2086 		perform_access(vcpu, params, r);
2087 	} else {
2088 		kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2089 			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2090 		print_sys_reg_instr(params);
2091 		kvm_inject_undefined(vcpu);
2092 	}
2093 	return 1;
2094 }
2095 
2096 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2097 			      const struct sys_reg_desc *table, size_t num)
2098 {
2099 	unsigned long i;
2100 
2101 	for (i = 0; i < num; i++)
2102 		if (table[i].reset)
2103 			table[i].reset(vcpu, &table[i]);
2104 }
2105 
2106 /**
2107  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2108  * @vcpu: The VCPU pointer
2109  * @run:  The kvm_run struct
2110  */
2111 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2112 {
2113 	struct sys_reg_params params;
2114 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2115 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2116 	int ret;
2117 
2118 	trace_kvm_handle_sys_reg(esr);
2119 
2120 	params.is_aarch32 = false;
2121 	params.is_32bit = false;
2122 	params.Op0 = (esr >> 20) & 3;
2123 	params.Op1 = (esr >> 14) & 0x7;
2124 	params.CRn = (esr >> 10) & 0xf;
2125 	params.CRm = (esr >> 1) & 0xf;
2126 	params.Op2 = (esr >> 17) & 0x7;
2127 	params.regval = vcpu_get_reg(vcpu, Rt);
2128 	params.is_write = !(esr & 1);
2129 
2130 	ret = emulate_sys_reg(vcpu, &params);
2131 
2132 	if (!params.is_write)
2133 		vcpu_set_reg(vcpu, Rt, params.regval);
2134 	return ret;
2135 }
2136 
2137 /******************************************************************************
2138  * Userspace API
2139  *****************************************************************************/
2140 
2141 static bool index_to_params(u64 id, struct sys_reg_params *params)
2142 {
2143 	switch (id & KVM_REG_SIZE_MASK) {
2144 	case KVM_REG_SIZE_U64:
2145 		/* Any unused index bits means it's not valid. */
2146 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2147 			      | KVM_REG_ARM_COPROC_MASK
2148 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2149 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2150 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2151 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2152 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2153 			return false;
2154 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2155 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2156 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2157 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2158 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2159 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2160 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2161 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2162 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2163 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2164 		return true;
2165 	default:
2166 		return false;
2167 	}
2168 }
2169 
2170 const struct sys_reg_desc *find_reg_by_id(u64 id,
2171 					  struct sys_reg_params *params,
2172 					  const struct sys_reg_desc table[],
2173 					  unsigned int num)
2174 {
2175 	if (!index_to_params(id, params))
2176 		return NULL;
2177 
2178 	return find_reg(params, table, num);
2179 }
2180 
2181 /* Decode an index value, and find the sys_reg_desc entry. */
2182 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2183 						    u64 id)
2184 {
2185 	size_t num;
2186 	const struct sys_reg_desc *table, *r;
2187 	struct sys_reg_params params;
2188 
2189 	/* We only do sys_reg for now. */
2190 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2191 		return NULL;
2192 
2193 	table = get_target_table(vcpu->arch.target, true, &num);
2194 	r = find_reg_by_id(id, &params, table, num);
2195 	if (!r)
2196 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2197 
2198 	/* Not saved in the sys_reg array and not otherwise accessible? */
2199 	if (r && !(r->reg || r->get_user))
2200 		r = NULL;
2201 
2202 	return r;
2203 }
2204 
2205 /*
2206  * These are the invariant sys_reg registers: we let the guest see the
2207  * host versions of these, so they're part of the guest state.
2208  *
2209  * A future CPU may provide a mechanism to present different values to
2210  * the guest, or a future kvm may trap them.
2211  */
2212 
2213 #define FUNCTION_INVARIANT(reg)						\
2214 	static void get_##reg(struct kvm_vcpu *v,			\
2215 			      const struct sys_reg_desc *r)		\
2216 	{								\
2217 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2218 	}
2219 
2220 FUNCTION_INVARIANT(midr_el1)
2221 FUNCTION_INVARIANT(ctr_el0)
2222 FUNCTION_INVARIANT(revidr_el1)
2223 FUNCTION_INVARIANT(clidr_el1)
2224 FUNCTION_INVARIANT(aidr_el1)
2225 
2226 /* ->val is filled in by kvm_sys_reg_table_init() */
2227 static struct sys_reg_desc invariant_sys_regs[] = {
2228 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2229 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2230 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2231 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2232 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2233 };
2234 
2235 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2236 {
2237 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2238 		return -EFAULT;
2239 	return 0;
2240 }
2241 
2242 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2243 {
2244 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2245 		return -EFAULT;
2246 	return 0;
2247 }
2248 
2249 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2250 {
2251 	struct sys_reg_params params;
2252 	const struct sys_reg_desc *r;
2253 
2254 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2255 			   ARRAY_SIZE(invariant_sys_regs));
2256 	if (!r)
2257 		return -ENOENT;
2258 
2259 	return reg_to_user(uaddr, &r->val, id);
2260 }
2261 
2262 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2263 {
2264 	struct sys_reg_params params;
2265 	const struct sys_reg_desc *r;
2266 	int err;
2267 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2268 
2269 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2270 			   ARRAY_SIZE(invariant_sys_regs));
2271 	if (!r)
2272 		return -ENOENT;
2273 
2274 	err = reg_from_user(&val, uaddr, id);
2275 	if (err)
2276 		return err;
2277 
2278 	/* This is what we mean by invariant: you can't change it. */
2279 	if (r->val != val)
2280 		return -EINVAL;
2281 
2282 	return 0;
2283 }
2284 
2285 static bool is_valid_cache(u32 val)
2286 {
2287 	u32 level, ctype;
2288 
2289 	if (val >= CSSELR_MAX)
2290 		return false;
2291 
2292 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2293 	level = (val >> 1);
2294 	ctype = (cache_levels >> (level * 3)) & 7;
2295 
2296 	switch (ctype) {
2297 	case 0: /* No cache */
2298 		return false;
2299 	case 1: /* Instruction cache only */
2300 		return (val & 1);
2301 	case 2: /* Data cache only */
2302 	case 4: /* Unified cache */
2303 		return !(val & 1);
2304 	case 3: /* Separate instruction and data caches */
2305 		return true;
2306 	default: /* Reserved: we can't know instruction or data. */
2307 		return false;
2308 	}
2309 }
2310 
2311 static int demux_c15_get(u64 id, void __user *uaddr)
2312 {
2313 	u32 val;
2314 	u32 __user *uval = uaddr;
2315 
2316 	/* Fail if we have unknown bits set. */
2317 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2318 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2319 		return -ENOENT;
2320 
2321 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2322 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2323 		if (KVM_REG_SIZE(id) != 4)
2324 			return -ENOENT;
2325 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2326 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2327 		if (!is_valid_cache(val))
2328 			return -ENOENT;
2329 
2330 		return put_user(get_ccsidr(val), uval);
2331 	default:
2332 		return -ENOENT;
2333 	}
2334 }
2335 
2336 static int demux_c15_set(u64 id, void __user *uaddr)
2337 {
2338 	u32 val, newval;
2339 	u32 __user *uval = uaddr;
2340 
2341 	/* Fail if we have unknown bits set. */
2342 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2343 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2344 		return -ENOENT;
2345 
2346 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2347 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2348 		if (KVM_REG_SIZE(id) != 4)
2349 			return -ENOENT;
2350 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2351 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2352 		if (!is_valid_cache(val))
2353 			return -ENOENT;
2354 
2355 		if (get_user(newval, uval))
2356 			return -EFAULT;
2357 
2358 		/* This is also invariant: you can't change it. */
2359 		if (newval != get_ccsidr(val))
2360 			return -EINVAL;
2361 		return 0;
2362 	default:
2363 		return -ENOENT;
2364 	}
2365 }
2366 
2367 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2368 {
2369 	const struct sys_reg_desc *r;
2370 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2371 
2372 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2373 		return demux_c15_get(reg->id, uaddr);
2374 
2375 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2376 		return -ENOENT;
2377 
2378 	r = index_to_sys_reg_desc(vcpu, reg->id);
2379 	if (!r)
2380 		return get_invariant_sys_reg(reg->id, uaddr);
2381 
2382 	if (r->get_user)
2383 		return (r->get_user)(vcpu, r, reg, uaddr);
2384 
2385 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2386 }
2387 
2388 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2389 {
2390 	const struct sys_reg_desc *r;
2391 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2392 
2393 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2394 		return demux_c15_set(reg->id, uaddr);
2395 
2396 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2397 		return -ENOENT;
2398 
2399 	r = index_to_sys_reg_desc(vcpu, reg->id);
2400 	if (!r)
2401 		return set_invariant_sys_reg(reg->id, uaddr);
2402 
2403 	if (r->set_user)
2404 		return (r->set_user)(vcpu, r, reg, uaddr);
2405 
2406 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2407 }
2408 
2409 static unsigned int num_demux_regs(void)
2410 {
2411 	unsigned int i, count = 0;
2412 
2413 	for (i = 0; i < CSSELR_MAX; i++)
2414 		if (is_valid_cache(i))
2415 			count++;
2416 
2417 	return count;
2418 }
2419 
2420 static int write_demux_regids(u64 __user *uindices)
2421 {
2422 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2423 	unsigned int i;
2424 
2425 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2426 	for (i = 0; i < CSSELR_MAX; i++) {
2427 		if (!is_valid_cache(i))
2428 			continue;
2429 		if (put_user(val | i, uindices))
2430 			return -EFAULT;
2431 		uindices++;
2432 	}
2433 	return 0;
2434 }
2435 
2436 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2437 {
2438 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2439 		KVM_REG_ARM64_SYSREG |
2440 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2441 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2442 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2443 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2444 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2445 }
2446 
2447 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2448 {
2449 	if (!*uind)
2450 		return true;
2451 
2452 	if (put_user(sys_reg_to_index(reg), *uind))
2453 		return false;
2454 
2455 	(*uind)++;
2456 	return true;
2457 }
2458 
2459 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2460 			    u64 __user **uind,
2461 			    unsigned int *total)
2462 {
2463 	/*
2464 	 * Ignore registers we trap but don't save,
2465 	 * and for which no custom user accessor is provided.
2466 	 */
2467 	if (!(rd->reg || rd->get_user))
2468 		return 0;
2469 
2470 	if (!copy_reg_to_user(rd, uind))
2471 		return -EFAULT;
2472 
2473 	(*total)++;
2474 	return 0;
2475 }
2476 
2477 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2478 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2479 {
2480 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2481 	unsigned int total = 0;
2482 	size_t num;
2483 	int err;
2484 
2485 	/* We check for duplicates here, to allow arch-specific overrides. */
2486 	i1 = get_target_table(vcpu->arch.target, true, &num);
2487 	end1 = i1 + num;
2488 	i2 = sys_reg_descs;
2489 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2490 
2491 	BUG_ON(i1 == end1 || i2 == end2);
2492 
2493 	/* Walk carefully, as both tables may refer to the same register. */
2494 	while (i1 || i2) {
2495 		int cmp = cmp_sys_reg(i1, i2);
2496 		/* target-specific overrides generic entry. */
2497 		if (cmp <= 0)
2498 			err = walk_one_sys_reg(i1, &uind, &total);
2499 		else
2500 			err = walk_one_sys_reg(i2, &uind, &total);
2501 
2502 		if (err)
2503 			return err;
2504 
2505 		if (cmp <= 0 && ++i1 == end1)
2506 			i1 = NULL;
2507 		if (cmp >= 0 && ++i2 == end2)
2508 			i2 = NULL;
2509 	}
2510 	return total;
2511 }
2512 
2513 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2514 {
2515 	return ARRAY_SIZE(invariant_sys_regs)
2516 		+ num_demux_regs()
2517 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2518 }
2519 
2520 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2521 {
2522 	unsigned int i;
2523 	int err;
2524 
2525 	/* Then give them all the invariant registers' indices. */
2526 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2527 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2528 			return -EFAULT;
2529 		uindices++;
2530 	}
2531 
2532 	err = walk_sys_regs(vcpu, uindices);
2533 	if (err < 0)
2534 		return err;
2535 	uindices += err;
2536 
2537 	return write_demux_regids(uindices);
2538 }
2539 
2540 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2541 {
2542 	unsigned int i;
2543 
2544 	for (i = 1; i < n; i++) {
2545 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2546 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2547 			return 1;
2548 		}
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 void kvm_sys_reg_table_init(void)
2555 {
2556 	unsigned int i;
2557 	struct sys_reg_desc clidr;
2558 
2559 	/* Make sure tables are unique and in order. */
2560 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2561 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2562 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2563 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2564 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2565 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2566 
2567 	/* We abuse the reset function to overwrite the table itself. */
2568 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2569 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2570 
2571 	/*
2572 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2573 	 *
2574 	 *   If software reads the Cache Type fields from Ctype1
2575 	 *   upwards, once it has seen a value of 0b000, no caches
2576 	 *   exist at further-out levels of the hierarchy. So, for
2577 	 *   example, if Ctype3 is the first Cache Type field with a
2578 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2579 	 *   ignored.
2580 	 */
2581 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2582 	cache_levels = clidr.val;
2583 	for (i = 0; i < 7; i++)
2584 		if (((cache_levels >> (i*3)) & 7) == 0)
2585 			break;
2586 	/* Clear all higher bits. */
2587 	cache_levels &= (1 << (i*3))-1;
2588 }
2589 
2590 /**
2591  * kvm_reset_sys_regs - sets system registers to reset value
2592  * @vcpu: The VCPU pointer
2593  *
2594  * This function finds the right table above and sets the registers on the
2595  * virtual CPU struct to their architecturally defined reset values.
2596  */
2597 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2598 {
2599 	size_t num;
2600 	const struct sys_reg_desc *table;
2601 
2602 	/* Catch someone adding a register without putting in reset entry. */
2603 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2604 
2605 	/* Generic chip reset first (so target could override). */
2606 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2607 
2608 	table = get_target_table(vcpu->arch.target, true, &num);
2609 	reset_sys_reg_descs(vcpu, table, num);
2610 
2611 	for (num = 1; num < NR_SYS_REGS; num++) {
2612 		if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
2613 			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2614 			break;
2615 	}
2616 }
2617