xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 9344dade)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cputype.h>
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 /*
37  * All of this file is extremly similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48 static u32 cache_levels;
49 
50 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
51 #define CSSELR_MAX 12
52 
53 /* Which cache CCSIDR represents depends on CSSELR value. */
54 static u32 get_ccsidr(u32 csselr)
55 {
56 	u32 ccsidr;
57 
58 	/* Make sure noone else changes CSSELR during this! */
59 	local_irq_disable();
60 	/* Put value into CSSELR */
61 	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
62 	isb();
63 	/* Read result out of CCSIDR */
64 	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
65 	local_irq_enable();
66 
67 	return ccsidr;
68 }
69 
70 static void do_dc_cisw(u32 val)
71 {
72 	asm volatile("dc cisw, %x0" : : "r" (val));
73 	dsb();
74 }
75 
76 static void do_dc_csw(u32 val)
77 {
78 	asm volatile("dc csw, %x0" : : "r" (val));
79 	dsb();
80 }
81 
82 /* See note at ARM ARM B1.14.4 */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84 			const struct sys_reg_params *p,
85 			const struct sys_reg_desc *r)
86 {
87 	unsigned long val;
88 	int cpu;
89 
90 	if (!p->is_write)
91 		return read_from_write_only(vcpu, p);
92 
93 	cpu = get_cpu();
94 
95 	cpumask_setall(&vcpu->arch.require_dcache_flush);
96 	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
97 
98 	/* If we were already preempted, take the long way around */
99 	if (cpu != vcpu->arch.last_pcpu) {
100 		flush_cache_all();
101 		goto done;
102 	}
103 
104 	val = *vcpu_reg(vcpu, p->Rt);
105 
106 	switch (p->CRm) {
107 	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108 	case 14:		/* DCCISW */
109 		do_dc_cisw(val);
110 		break;
111 
112 	case 10:		/* DCCSW */
113 		do_dc_csw(val);
114 		break;
115 	}
116 
117 done:
118 	put_cpu();
119 
120 	return true;
121 }
122 
123 /*
124  * We could trap ID_DFR0 and tell the guest we don't support performance
125  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
126  * NAKed, so it will read the PMCR anyway.
127  *
128  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
129  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130  * all PM registers, which doesn't crash the guest kernel at least.
131  */
132 static bool pm_fake(struct kvm_vcpu *vcpu,
133 		    const struct sys_reg_params *p,
134 		    const struct sys_reg_desc *r)
135 {
136 	if (p->is_write)
137 		return ignore_write(vcpu, p);
138 	else
139 		return read_zero(vcpu, p);
140 }
141 
142 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
143 {
144 	u64 amair;
145 
146 	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
147 	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
148 }
149 
150 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
151 {
152 	/*
153 	 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
154 	 */
155 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
156 }
157 
158 /*
159  * Architected system registers.
160  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
161  */
162 static const struct sys_reg_desc sys_reg_descs[] = {
163 	/* DC ISW */
164 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
165 	  access_dcsw },
166 	/* DC CSW */
167 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
168 	  access_dcsw },
169 	/* DC CISW */
170 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
171 	  access_dcsw },
172 
173 	/* TEECR32_EL1 */
174 	{ Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175 	  NULL, reset_val, TEECR32_EL1, 0 },
176 	/* TEEHBR32_EL1 */
177 	{ Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178 	  NULL, reset_val, TEEHBR32_EL1, 0 },
179 	/* DBGVCR32_EL2 */
180 	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181 	  NULL, reset_val, DBGVCR32_EL2, 0 },
182 
183 	/* MPIDR_EL1 */
184 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185 	  NULL, reset_mpidr, MPIDR_EL1 },
186 	/* SCTLR_EL1 */
187 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188 	  NULL, reset_val, SCTLR_EL1, 0x00C50078 },
189 	/* CPACR_EL1 */
190 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191 	  NULL, reset_val, CPACR_EL1, 0 },
192 	/* TTBR0_EL1 */
193 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194 	  NULL, reset_unknown, TTBR0_EL1 },
195 	/* TTBR1_EL1 */
196 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197 	  NULL, reset_unknown, TTBR1_EL1 },
198 	/* TCR_EL1 */
199 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200 	  NULL, reset_val, TCR_EL1, 0 },
201 
202 	/* AFSR0_EL1 */
203 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204 	  NULL, reset_unknown, AFSR0_EL1 },
205 	/* AFSR1_EL1 */
206 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207 	  NULL, reset_unknown, AFSR1_EL1 },
208 	/* ESR_EL1 */
209 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210 	  NULL, reset_unknown, ESR_EL1 },
211 	/* FAR_EL1 */
212 	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213 	  NULL, reset_unknown, FAR_EL1 },
214 
215 	/* PMINTENSET_EL1 */
216 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
217 	  pm_fake },
218 	/* PMINTENCLR_EL1 */
219 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
220 	  pm_fake },
221 
222 	/* MAIR_EL1 */
223 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
224 	  NULL, reset_unknown, MAIR_EL1 },
225 	/* AMAIR_EL1 */
226 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
227 	  NULL, reset_amair_el1, AMAIR_EL1 },
228 
229 	/* VBAR_EL1 */
230 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
231 	  NULL, reset_val, VBAR_EL1, 0 },
232 	/* CONTEXTIDR_EL1 */
233 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
234 	  NULL, reset_val, CONTEXTIDR_EL1, 0 },
235 	/* TPIDR_EL1 */
236 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
237 	  NULL, reset_unknown, TPIDR_EL1 },
238 
239 	/* CNTKCTL_EL1 */
240 	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
241 	  NULL, reset_val, CNTKCTL_EL1, 0},
242 
243 	/* CSSELR_EL1 */
244 	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
245 	  NULL, reset_unknown, CSSELR_EL1 },
246 
247 	/* PMCR_EL0 */
248 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
249 	  pm_fake },
250 	/* PMCNTENSET_EL0 */
251 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
252 	  pm_fake },
253 	/* PMCNTENCLR_EL0 */
254 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
255 	  pm_fake },
256 	/* PMOVSCLR_EL0 */
257 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
258 	  pm_fake },
259 	/* PMSWINC_EL0 */
260 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
261 	  pm_fake },
262 	/* PMSELR_EL0 */
263 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
264 	  pm_fake },
265 	/* PMCEID0_EL0 */
266 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
267 	  pm_fake },
268 	/* PMCEID1_EL0 */
269 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
270 	  pm_fake },
271 	/* PMCCNTR_EL0 */
272 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
273 	  pm_fake },
274 	/* PMXEVTYPER_EL0 */
275 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
276 	  pm_fake },
277 	/* PMXEVCNTR_EL0 */
278 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
279 	  pm_fake },
280 	/* PMUSERENR_EL0 */
281 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
282 	  pm_fake },
283 	/* PMOVSSET_EL0 */
284 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
285 	  pm_fake },
286 
287 	/* TPIDR_EL0 */
288 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
289 	  NULL, reset_unknown, TPIDR_EL0 },
290 	/* TPIDRRO_EL0 */
291 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
292 	  NULL, reset_unknown, TPIDRRO_EL0 },
293 
294 	/* DACR32_EL2 */
295 	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
296 	  NULL, reset_unknown, DACR32_EL2 },
297 	/* IFSR32_EL2 */
298 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
299 	  NULL, reset_unknown, IFSR32_EL2 },
300 	/* FPEXC32_EL2 */
301 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
302 	  NULL, reset_val, FPEXC32_EL2, 0x70 },
303 };
304 
305 /* Trapped cp15 registers */
306 static const struct sys_reg_desc cp15_regs[] = {
307 	/*
308 	 * DC{C,I,CI}SW operations:
309 	 */
310 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
311 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
312 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
313 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
314 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
315 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
316 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
317 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
318 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
319 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
320 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
321 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
322 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
323 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
324 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
325 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
326 };
327 
328 /* Target specific emulation tables */
329 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
330 
331 void kvm_register_target_sys_reg_table(unsigned int target,
332 				       struct kvm_sys_reg_target_table *table)
333 {
334 	target_tables[target] = table;
335 }
336 
337 /* Get specific register table for this target. */
338 static const struct sys_reg_desc *get_target_table(unsigned target,
339 						   bool mode_is_64,
340 						   size_t *num)
341 {
342 	struct kvm_sys_reg_target_table *table;
343 
344 	table = target_tables[target];
345 	if (mode_is_64) {
346 		*num = table->table64.num;
347 		return table->table64.table;
348 	} else {
349 		*num = table->table32.num;
350 		return table->table32.table;
351 	}
352 }
353 
354 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
355 					 const struct sys_reg_desc table[],
356 					 unsigned int num)
357 {
358 	unsigned int i;
359 
360 	for (i = 0; i < num; i++) {
361 		const struct sys_reg_desc *r = &table[i];
362 
363 		if (params->Op0 != r->Op0)
364 			continue;
365 		if (params->Op1 != r->Op1)
366 			continue;
367 		if (params->CRn != r->CRn)
368 			continue;
369 		if (params->CRm != r->CRm)
370 			continue;
371 		if (params->Op2 != r->Op2)
372 			continue;
373 
374 		return r;
375 	}
376 	return NULL;
377 }
378 
379 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
380 {
381 	kvm_inject_undefined(vcpu);
382 	return 1;
383 }
384 
385 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
386 {
387 	kvm_inject_undefined(vcpu);
388 	return 1;
389 }
390 
391 static void emulate_cp15(struct kvm_vcpu *vcpu,
392 			 const struct sys_reg_params *params)
393 {
394 	size_t num;
395 	const struct sys_reg_desc *table, *r;
396 
397 	table = get_target_table(vcpu->arch.target, false, &num);
398 
399 	/* Search target-specific then generic table. */
400 	r = find_reg(params, table, num);
401 	if (!r)
402 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
403 
404 	if (likely(r)) {
405 		/*
406 		 * Not having an accessor means that we have
407 		 * configured a trap that we don't know how to
408 		 * handle. This certainly qualifies as a gross bug
409 		 * that should be fixed right away.
410 		 */
411 		BUG_ON(!r->access);
412 
413 		if (likely(r->access(vcpu, params, r))) {
414 			/* Skip instruction, since it was emulated */
415 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
416 			return;
417 		}
418 		/* If access function fails, it should complain. */
419 	}
420 
421 	kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
422 	print_sys_reg_instr(params);
423 	kvm_inject_undefined(vcpu);
424 }
425 
426 /**
427  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
428  * @vcpu: The VCPU pointer
429  * @run:  The kvm_run struct
430  */
431 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
432 {
433 	struct sys_reg_params params;
434 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
435 	int Rt2 = (hsr >> 10) & 0xf;
436 
437 	params.CRm = (hsr >> 1) & 0xf;
438 	params.Rt = (hsr >> 5) & 0xf;
439 	params.is_write = ((hsr & 1) == 0);
440 
441 	params.Op0 = 0;
442 	params.Op1 = (hsr >> 16) & 0xf;
443 	params.Op2 = 0;
444 	params.CRn = 0;
445 
446 	/*
447 	 * Massive hack here. Store Rt2 in the top 32bits so we only
448 	 * have one register to deal with. As we use the same trap
449 	 * backends between AArch32 and AArch64, we get away with it.
450 	 */
451 	if (params.is_write) {
452 		u64 val = *vcpu_reg(vcpu, params.Rt);
453 		val &= 0xffffffff;
454 		val |= *vcpu_reg(vcpu, Rt2) << 32;
455 		*vcpu_reg(vcpu, params.Rt) = val;
456 	}
457 
458 	emulate_cp15(vcpu, &params);
459 
460 	/* Do the opposite hack for the read side */
461 	if (!params.is_write) {
462 		u64 val = *vcpu_reg(vcpu, params.Rt);
463 		val >>= 32;
464 		*vcpu_reg(vcpu, Rt2) = val;
465 	}
466 
467 	return 1;
468 }
469 
470 /**
471  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
472  * @vcpu: The VCPU pointer
473  * @run:  The kvm_run struct
474  */
475 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
476 {
477 	struct sys_reg_params params;
478 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
479 
480 	params.CRm = (hsr >> 1) & 0xf;
481 	params.Rt  = (hsr >> 5) & 0xf;
482 	params.is_write = ((hsr & 1) == 0);
483 	params.CRn = (hsr >> 10) & 0xf;
484 	params.Op0 = 0;
485 	params.Op1 = (hsr >> 14) & 0x7;
486 	params.Op2 = (hsr >> 17) & 0x7;
487 
488 	emulate_cp15(vcpu, &params);
489 	return 1;
490 }
491 
492 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
493 			   const struct sys_reg_params *params)
494 {
495 	size_t num;
496 	const struct sys_reg_desc *table, *r;
497 
498 	table = get_target_table(vcpu->arch.target, true, &num);
499 
500 	/* Search target-specific then generic table. */
501 	r = find_reg(params, table, num);
502 	if (!r)
503 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
504 
505 	if (likely(r)) {
506 		/*
507 		 * Not having an accessor means that we have
508 		 * configured a trap that we don't know how to
509 		 * handle. This certainly qualifies as a gross bug
510 		 * that should be fixed right away.
511 		 */
512 		BUG_ON(!r->access);
513 
514 		if (likely(r->access(vcpu, params, r))) {
515 			/* Skip instruction, since it was emulated */
516 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
517 			return 1;
518 		}
519 		/* If access function fails, it should complain. */
520 	} else {
521 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
522 			*vcpu_pc(vcpu));
523 		print_sys_reg_instr(params);
524 	}
525 	kvm_inject_undefined(vcpu);
526 	return 1;
527 }
528 
529 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
530 			      const struct sys_reg_desc *table, size_t num)
531 {
532 	unsigned long i;
533 
534 	for (i = 0; i < num; i++)
535 		if (table[i].reset)
536 			table[i].reset(vcpu, &table[i]);
537 }
538 
539 /**
540  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
541  * @vcpu: The VCPU pointer
542  * @run:  The kvm_run struct
543  */
544 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
545 {
546 	struct sys_reg_params params;
547 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
548 
549 	params.Op0 = (esr >> 20) & 3;
550 	params.Op1 = (esr >> 14) & 0x7;
551 	params.CRn = (esr >> 10) & 0xf;
552 	params.CRm = (esr >> 1) & 0xf;
553 	params.Op2 = (esr >> 17) & 0x7;
554 	params.Rt = (esr >> 5) & 0x1f;
555 	params.is_write = !(esr & 1);
556 
557 	return emulate_sys_reg(vcpu, &params);
558 }
559 
560 /******************************************************************************
561  * Userspace API
562  *****************************************************************************/
563 
564 static bool index_to_params(u64 id, struct sys_reg_params *params)
565 {
566 	switch (id & KVM_REG_SIZE_MASK) {
567 	case KVM_REG_SIZE_U64:
568 		/* Any unused index bits means it's not valid. */
569 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
570 			      | KVM_REG_ARM_COPROC_MASK
571 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
572 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
573 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
574 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
575 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
576 			return false;
577 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
578 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
579 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
580 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
581 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
582 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
583 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
584 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
585 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
586 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
587 		return true;
588 	default:
589 		return false;
590 	}
591 }
592 
593 /* Decode an index value, and find the sys_reg_desc entry. */
594 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
595 						    u64 id)
596 {
597 	size_t num;
598 	const struct sys_reg_desc *table, *r;
599 	struct sys_reg_params params;
600 
601 	/* We only do sys_reg for now. */
602 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
603 		return NULL;
604 
605 	if (!index_to_params(id, &params))
606 		return NULL;
607 
608 	table = get_target_table(vcpu->arch.target, true, &num);
609 	r = find_reg(&params, table, num);
610 	if (!r)
611 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
612 
613 	/* Not saved in the sys_reg array? */
614 	if (r && !r->reg)
615 		r = NULL;
616 
617 	return r;
618 }
619 
620 /*
621  * These are the invariant sys_reg registers: we let the guest see the
622  * host versions of these, so they're part of the guest state.
623  *
624  * A future CPU may provide a mechanism to present different values to
625  * the guest, or a future kvm may trap them.
626  */
627 
628 #define FUNCTION_INVARIANT(reg)						\
629 	static void get_##reg(struct kvm_vcpu *v,			\
630 			      const struct sys_reg_desc *r)		\
631 	{								\
632 		u64 val;						\
633 									\
634 		asm volatile("mrs %0, " __stringify(reg) "\n"		\
635 			     : "=r" (val));				\
636 		((struct sys_reg_desc *)r)->val = val;			\
637 	}
638 
639 FUNCTION_INVARIANT(midr_el1)
640 FUNCTION_INVARIANT(ctr_el0)
641 FUNCTION_INVARIANT(revidr_el1)
642 FUNCTION_INVARIANT(id_pfr0_el1)
643 FUNCTION_INVARIANT(id_pfr1_el1)
644 FUNCTION_INVARIANT(id_dfr0_el1)
645 FUNCTION_INVARIANT(id_afr0_el1)
646 FUNCTION_INVARIANT(id_mmfr0_el1)
647 FUNCTION_INVARIANT(id_mmfr1_el1)
648 FUNCTION_INVARIANT(id_mmfr2_el1)
649 FUNCTION_INVARIANT(id_mmfr3_el1)
650 FUNCTION_INVARIANT(id_isar0_el1)
651 FUNCTION_INVARIANT(id_isar1_el1)
652 FUNCTION_INVARIANT(id_isar2_el1)
653 FUNCTION_INVARIANT(id_isar3_el1)
654 FUNCTION_INVARIANT(id_isar4_el1)
655 FUNCTION_INVARIANT(id_isar5_el1)
656 FUNCTION_INVARIANT(clidr_el1)
657 FUNCTION_INVARIANT(aidr_el1)
658 
659 /* ->val is filled in by kvm_sys_reg_table_init() */
660 static struct sys_reg_desc invariant_sys_regs[] = {
661 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
662 	  NULL, get_midr_el1 },
663 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
664 	  NULL, get_revidr_el1 },
665 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
666 	  NULL, get_id_pfr0_el1 },
667 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
668 	  NULL, get_id_pfr1_el1 },
669 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
670 	  NULL, get_id_dfr0_el1 },
671 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
672 	  NULL, get_id_afr0_el1 },
673 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
674 	  NULL, get_id_mmfr0_el1 },
675 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
676 	  NULL, get_id_mmfr1_el1 },
677 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
678 	  NULL, get_id_mmfr2_el1 },
679 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
680 	  NULL, get_id_mmfr3_el1 },
681 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
682 	  NULL, get_id_isar0_el1 },
683 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
684 	  NULL, get_id_isar1_el1 },
685 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
686 	  NULL, get_id_isar2_el1 },
687 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
688 	  NULL, get_id_isar3_el1 },
689 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
690 	  NULL, get_id_isar4_el1 },
691 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
692 	  NULL, get_id_isar5_el1 },
693 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
694 	  NULL, get_clidr_el1 },
695 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
696 	  NULL, get_aidr_el1 },
697 	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
698 	  NULL, get_ctr_el0 },
699 };
700 
701 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
702 {
703 	/* This Just Works because we are little endian. */
704 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
705 		return -EFAULT;
706 	return 0;
707 }
708 
709 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
710 {
711 	/* This Just Works because we are little endian. */
712 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
713 		return -EFAULT;
714 	return 0;
715 }
716 
717 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
718 {
719 	struct sys_reg_params params;
720 	const struct sys_reg_desc *r;
721 
722 	if (!index_to_params(id, &params))
723 		return -ENOENT;
724 
725 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
726 	if (!r)
727 		return -ENOENT;
728 
729 	return reg_to_user(uaddr, &r->val, id);
730 }
731 
732 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
733 {
734 	struct sys_reg_params params;
735 	const struct sys_reg_desc *r;
736 	int err;
737 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
738 
739 	if (!index_to_params(id, &params))
740 		return -ENOENT;
741 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
742 	if (!r)
743 		return -ENOENT;
744 
745 	err = reg_from_user(&val, uaddr, id);
746 	if (err)
747 		return err;
748 
749 	/* This is what we mean by invariant: you can't change it. */
750 	if (r->val != val)
751 		return -EINVAL;
752 
753 	return 0;
754 }
755 
756 static bool is_valid_cache(u32 val)
757 {
758 	u32 level, ctype;
759 
760 	if (val >= CSSELR_MAX)
761 		return -ENOENT;
762 
763 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
764 	level = (val >> 1);
765 	ctype = (cache_levels >> (level * 3)) & 7;
766 
767 	switch (ctype) {
768 	case 0: /* No cache */
769 		return false;
770 	case 1: /* Instruction cache only */
771 		return (val & 1);
772 	case 2: /* Data cache only */
773 	case 4: /* Unified cache */
774 		return !(val & 1);
775 	case 3: /* Separate instruction and data caches */
776 		return true;
777 	default: /* Reserved: we can't know instruction or data. */
778 		return false;
779 	}
780 }
781 
782 static int demux_c15_get(u64 id, void __user *uaddr)
783 {
784 	u32 val;
785 	u32 __user *uval = uaddr;
786 
787 	/* Fail if we have unknown bits set. */
788 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
789 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
790 		return -ENOENT;
791 
792 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
793 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
794 		if (KVM_REG_SIZE(id) != 4)
795 			return -ENOENT;
796 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
797 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
798 		if (!is_valid_cache(val))
799 			return -ENOENT;
800 
801 		return put_user(get_ccsidr(val), uval);
802 	default:
803 		return -ENOENT;
804 	}
805 }
806 
807 static int demux_c15_set(u64 id, void __user *uaddr)
808 {
809 	u32 val, newval;
810 	u32 __user *uval = uaddr;
811 
812 	/* Fail if we have unknown bits set. */
813 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
814 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
815 		return -ENOENT;
816 
817 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
818 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
819 		if (KVM_REG_SIZE(id) != 4)
820 			return -ENOENT;
821 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
822 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
823 		if (!is_valid_cache(val))
824 			return -ENOENT;
825 
826 		if (get_user(newval, uval))
827 			return -EFAULT;
828 
829 		/* This is also invariant: you can't change it. */
830 		if (newval != get_ccsidr(val))
831 			return -EINVAL;
832 		return 0;
833 	default:
834 		return -ENOENT;
835 	}
836 }
837 
838 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
839 {
840 	const struct sys_reg_desc *r;
841 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
842 
843 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
844 		return demux_c15_get(reg->id, uaddr);
845 
846 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
847 		return -ENOENT;
848 
849 	r = index_to_sys_reg_desc(vcpu, reg->id);
850 	if (!r)
851 		return get_invariant_sys_reg(reg->id, uaddr);
852 
853 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
854 }
855 
856 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
857 {
858 	const struct sys_reg_desc *r;
859 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
860 
861 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
862 		return demux_c15_set(reg->id, uaddr);
863 
864 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
865 		return -ENOENT;
866 
867 	r = index_to_sys_reg_desc(vcpu, reg->id);
868 	if (!r)
869 		return set_invariant_sys_reg(reg->id, uaddr);
870 
871 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
872 }
873 
874 static unsigned int num_demux_regs(void)
875 {
876 	unsigned int i, count = 0;
877 
878 	for (i = 0; i < CSSELR_MAX; i++)
879 		if (is_valid_cache(i))
880 			count++;
881 
882 	return count;
883 }
884 
885 static int write_demux_regids(u64 __user *uindices)
886 {
887 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
888 	unsigned int i;
889 
890 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
891 	for (i = 0; i < CSSELR_MAX; i++) {
892 		if (!is_valid_cache(i))
893 			continue;
894 		if (put_user(val | i, uindices))
895 			return -EFAULT;
896 		uindices++;
897 	}
898 	return 0;
899 }
900 
901 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
902 {
903 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
904 		KVM_REG_ARM64_SYSREG |
905 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
906 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
907 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
908 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
909 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
910 }
911 
912 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
913 {
914 	if (!*uind)
915 		return true;
916 
917 	if (put_user(sys_reg_to_index(reg), *uind))
918 		return false;
919 
920 	(*uind)++;
921 	return true;
922 }
923 
924 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
925 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
926 {
927 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
928 	unsigned int total = 0;
929 	size_t num;
930 
931 	/* We check for duplicates here, to allow arch-specific overrides. */
932 	i1 = get_target_table(vcpu->arch.target, true, &num);
933 	end1 = i1 + num;
934 	i2 = sys_reg_descs;
935 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
936 
937 	BUG_ON(i1 == end1 || i2 == end2);
938 
939 	/* Walk carefully, as both tables may refer to the same register. */
940 	while (i1 || i2) {
941 		int cmp = cmp_sys_reg(i1, i2);
942 		/* target-specific overrides generic entry. */
943 		if (cmp <= 0) {
944 			/* Ignore registers we trap but don't save. */
945 			if (i1->reg) {
946 				if (!copy_reg_to_user(i1, &uind))
947 					return -EFAULT;
948 				total++;
949 			}
950 		} else {
951 			/* Ignore registers we trap but don't save. */
952 			if (i2->reg) {
953 				if (!copy_reg_to_user(i2, &uind))
954 					return -EFAULT;
955 				total++;
956 			}
957 		}
958 
959 		if (cmp <= 0 && ++i1 == end1)
960 			i1 = NULL;
961 		if (cmp >= 0 && ++i2 == end2)
962 			i2 = NULL;
963 	}
964 	return total;
965 }
966 
967 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
968 {
969 	return ARRAY_SIZE(invariant_sys_regs)
970 		+ num_demux_regs()
971 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
972 }
973 
974 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
975 {
976 	unsigned int i;
977 	int err;
978 
979 	/* Then give them all the invariant registers' indices. */
980 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
981 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
982 			return -EFAULT;
983 		uindices++;
984 	}
985 
986 	err = walk_sys_regs(vcpu, uindices);
987 	if (err < 0)
988 		return err;
989 	uindices += err;
990 
991 	return write_demux_regids(uindices);
992 }
993 
994 void kvm_sys_reg_table_init(void)
995 {
996 	unsigned int i;
997 	struct sys_reg_desc clidr;
998 
999 	/* Make sure tables are unique and in order. */
1000 	for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1001 		BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1002 
1003 	/* We abuse the reset function to overwrite the table itself. */
1004 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1005 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1006 
1007 	/*
1008 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1009 	 *
1010 	 *   If software reads the Cache Type fields from Ctype1
1011 	 *   upwards, once it has seen a value of 0b000, no caches
1012 	 *   exist at further-out levels of the hierarchy. So, for
1013 	 *   example, if Ctype3 is the first Cache Type field with a
1014 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1015 	 *   ignored.
1016 	 */
1017 	get_clidr_el1(NULL, &clidr); /* Ugly... */
1018 	cache_levels = clidr.val;
1019 	for (i = 0; i < 7; i++)
1020 		if (((cache_levels >> (i*3)) & 7) == 0)
1021 			break;
1022 	/* Clear all higher bits. */
1023 	cache_levels &= (1 << (i*3))-1;
1024 }
1025 
1026 /**
1027  * kvm_reset_sys_regs - sets system registers to reset value
1028  * @vcpu: The VCPU pointer
1029  *
1030  * This function finds the right table above and sets the registers on the
1031  * virtual CPU struct to their architecturally defined reset values.
1032  */
1033 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1034 {
1035 	size_t num;
1036 	const struct sys_reg_desc *table;
1037 
1038 	/* Catch someone adding a register without putting in reset entry. */
1039 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1040 
1041 	/* Generic chip reset first (so target could override). */
1042 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1043 
1044 	table = get_target_table(vcpu->arch.target, true, &num);
1045 	reset_sys_reg_descs(vcpu, table, num);
1046 
1047 	for (num = 1; num < NR_SYS_REGS; num++)
1048 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1049 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
1050 }
1051