xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28 
29 #include <trace/events/kvm.h>
30 
31 #include "sys_regs.h"
32 
33 #include "trace.h"
34 
35 /*
36  * All of this file is extremely similar to the ARM coproc.c, but the
37  * types are different. My gut feeling is that it should be pretty
38  * easy to merge, but that would be an ABI breakage -- again. VFP
39  * would also need to be abstracted.
40  *
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45 
46 #define reg_to_encoding(x)						\
47 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
48 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
49 
50 static bool read_from_write_only(struct kvm_vcpu *vcpu,
51 				 struct sys_reg_params *params,
52 				 const struct sys_reg_desc *r)
53 {
54 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
55 	print_sys_reg_instr(params);
56 	kvm_inject_undefined(vcpu);
57 	return false;
58 }
59 
60 static bool write_to_read_only(struct kvm_vcpu *vcpu,
61 			       struct sys_reg_params *params,
62 			       const struct sys_reg_desc *r)
63 {
64 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
65 	print_sys_reg_instr(params);
66 	kvm_inject_undefined(vcpu);
67 	return false;
68 }
69 
70 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
71 {
72 	u64 val = 0x8badf00d8badf00d;
73 
74 	if (vcpu->arch.sysregs_loaded_on_cpu &&
75 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
76 		return val;
77 
78 	return __vcpu_sys_reg(vcpu, reg);
79 }
80 
81 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
82 {
83 	if (vcpu->arch.sysregs_loaded_on_cpu &&
84 	    __vcpu_write_sys_reg_to_cpu(val, reg))
85 		return;
86 
87 	 __vcpu_sys_reg(vcpu, reg) = val;
88 }
89 
90 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
91 static u32 cache_levels;
92 
93 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
94 #define CSSELR_MAX 14
95 
96 /* Which cache CCSIDR represents depends on CSSELR value. */
97 static u32 get_ccsidr(u32 csselr)
98 {
99 	u32 ccsidr;
100 
101 	/* Make sure noone else changes CSSELR during this! */
102 	local_irq_disable();
103 	write_sysreg(csselr, csselr_el1);
104 	isb();
105 	ccsidr = read_sysreg(ccsidr_el1);
106 	local_irq_enable();
107 
108 	return ccsidr;
109 }
110 
111 /*
112  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
113  */
114 static bool access_dcsw(struct kvm_vcpu *vcpu,
115 			struct sys_reg_params *p,
116 			const struct sys_reg_desc *r)
117 {
118 	if (!p->is_write)
119 		return read_from_write_only(vcpu, p, r);
120 
121 	/*
122 	 * Only track S/W ops if we don't have FWB. It still indicates
123 	 * that the guest is a bit broken (S/W operations should only
124 	 * be done by firmware, knowing that there is only a single
125 	 * CPU left in the system, and certainly not from non-secure
126 	 * software).
127 	 */
128 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
129 		kvm_set_way_flush(vcpu);
130 
131 	return true;
132 }
133 
134 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
135 {
136 	switch (r->aarch32_map) {
137 	case AA32_LO:
138 		*mask = GENMASK_ULL(31, 0);
139 		*shift = 0;
140 		break;
141 	case AA32_HI:
142 		*mask = GENMASK_ULL(63, 32);
143 		*shift = 32;
144 		break;
145 	default:
146 		*mask = GENMASK_ULL(63, 0);
147 		*shift = 0;
148 		break;
149 	}
150 }
151 
152 /*
153  * Generic accessor for VM registers. Only called as long as HCR_TVM
154  * is set. If the guest enables the MMU, we stop trapping the VM
155  * sys_regs and leave it in complete control of the caches.
156  */
157 static bool access_vm_reg(struct kvm_vcpu *vcpu,
158 			  struct sys_reg_params *p,
159 			  const struct sys_reg_desc *r)
160 {
161 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
162 	u64 val, mask, shift;
163 
164 	BUG_ON(!p->is_write);
165 
166 	get_access_mask(r, &mask, &shift);
167 
168 	if (~mask) {
169 		val = vcpu_read_sys_reg(vcpu, r->reg);
170 		val &= ~mask;
171 	} else {
172 		val = 0;
173 	}
174 
175 	val |= (p->regval & (mask >> shift)) << shift;
176 	vcpu_write_sys_reg(vcpu, val, r->reg);
177 
178 	kvm_toggle_cache(vcpu, was_enabled);
179 	return true;
180 }
181 
182 static bool access_actlr(struct kvm_vcpu *vcpu,
183 			 struct sys_reg_params *p,
184 			 const struct sys_reg_desc *r)
185 {
186 	u64 mask, shift;
187 
188 	if (p->is_write)
189 		return ignore_write(vcpu, p);
190 
191 	get_access_mask(r, &mask, &shift);
192 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
193 
194 	return true;
195 }
196 
197 /*
198  * Trap handler for the GICv3 SGI generation system register.
199  * Forward the request to the VGIC emulation.
200  * The cp15_64 code makes sure this automatically works
201  * for both AArch64 and AArch32 accesses.
202  */
203 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
204 			   struct sys_reg_params *p,
205 			   const struct sys_reg_desc *r)
206 {
207 	bool g1;
208 
209 	if (!p->is_write)
210 		return read_from_write_only(vcpu, p, r);
211 
212 	/*
213 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
214 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
215 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
216 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
217 	 * group.
218 	 */
219 	if (p->Op0 == 0) {		/* AArch32 */
220 		switch (p->Op1) {
221 		default:		/* Keep GCC quiet */
222 		case 0:			/* ICC_SGI1R */
223 			g1 = true;
224 			break;
225 		case 1:			/* ICC_ASGI1R */
226 		case 2:			/* ICC_SGI0R */
227 			g1 = false;
228 			break;
229 		}
230 	} else {			/* AArch64 */
231 		switch (p->Op2) {
232 		default:		/* Keep GCC quiet */
233 		case 5:			/* ICC_SGI1R_EL1 */
234 			g1 = true;
235 			break;
236 		case 6:			/* ICC_ASGI1R_EL1 */
237 		case 7:			/* ICC_SGI0R_EL1 */
238 			g1 = false;
239 			break;
240 		}
241 	}
242 
243 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
244 
245 	return true;
246 }
247 
248 static bool access_gic_sre(struct kvm_vcpu *vcpu,
249 			   struct sys_reg_params *p,
250 			   const struct sys_reg_desc *r)
251 {
252 	if (p->is_write)
253 		return ignore_write(vcpu, p);
254 
255 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
256 	return true;
257 }
258 
259 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
260 			struct sys_reg_params *p,
261 			const struct sys_reg_desc *r)
262 {
263 	if (p->is_write)
264 		return ignore_write(vcpu, p);
265 	else
266 		return read_zero(vcpu, p);
267 }
268 
269 /*
270  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
271  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
272  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
273  * treat it separately.
274  */
275 static bool trap_loregion(struct kvm_vcpu *vcpu,
276 			  struct sys_reg_params *p,
277 			  const struct sys_reg_desc *r)
278 {
279 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
280 	u32 sr = reg_to_encoding(r);
281 
282 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
283 		kvm_inject_undefined(vcpu);
284 		return false;
285 	}
286 
287 	if (p->is_write && sr == SYS_LORID_EL1)
288 		return write_to_read_only(vcpu, p, r);
289 
290 	return trap_raz_wi(vcpu, p, r);
291 }
292 
293 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
294 			   struct sys_reg_params *p,
295 			   const struct sys_reg_desc *r)
296 {
297 	if (p->is_write) {
298 		return ignore_write(vcpu, p);
299 	} else {
300 		p->regval = (1 << 3);
301 		return true;
302 	}
303 }
304 
305 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
306 				   struct sys_reg_params *p,
307 				   const struct sys_reg_desc *r)
308 {
309 	if (p->is_write) {
310 		return ignore_write(vcpu, p);
311 	} else {
312 		p->regval = read_sysreg(dbgauthstatus_el1);
313 		return true;
314 	}
315 }
316 
317 /*
318  * We want to avoid world-switching all the DBG registers all the
319  * time:
320  *
321  * - If we've touched any debug register, it is likely that we're
322  *   going to touch more of them. It then makes sense to disable the
323  *   traps and start doing the save/restore dance
324  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
325  *   then mandatory to save/restore the registers, as the guest
326  *   depends on them.
327  *
328  * For this, we use a DIRTY bit, indicating the guest has modified the
329  * debug registers, used as follow:
330  *
331  * On guest entry:
332  * - If the dirty bit is set (because we're coming back from trapping),
333  *   disable the traps, save host registers, restore guest registers.
334  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
335  *   set the dirty bit, disable the traps, save host registers,
336  *   restore guest registers.
337  * - Otherwise, enable the traps
338  *
339  * On guest exit:
340  * - If the dirty bit is set, save guest registers, restore host
341  *   registers and clear the dirty bit. This ensure that the host can
342  *   now use the debug registers.
343  */
344 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
345 			    struct sys_reg_params *p,
346 			    const struct sys_reg_desc *r)
347 {
348 	if (p->is_write) {
349 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
350 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
351 	} else {
352 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
353 	}
354 
355 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
356 
357 	return true;
358 }
359 
360 /*
361  * reg_to_dbg/dbg_to_reg
362  *
363  * A 32 bit write to a debug register leave top bits alone
364  * A 32 bit read from a debug register only returns the bottom bits
365  *
366  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
367  * hyp.S code switches between host and guest values in future.
368  */
369 static void reg_to_dbg(struct kvm_vcpu *vcpu,
370 		       struct sys_reg_params *p,
371 		       const struct sys_reg_desc *rd,
372 		       u64 *dbg_reg)
373 {
374 	u64 mask, shift, val;
375 
376 	get_access_mask(rd, &mask, &shift);
377 
378 	val = *dbg_reg;
379 	val &= ~mask;
380 	val |= (p->regval & (mask >> shift)) << shift;
381 	*dbg_reg = val;
382 
383 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
384 }
385 
386 static void dbg_to_reg(struct kvm_vcpu *vcpu,
387 		       struct sys_reg_params *p,
388 		       const struct sys_reg_desc *rd,
389 		       u64 *dbg_reg)
390 {
391 	u64 mask, shift;
392 
393 	get_access_mask(rd, &mask, &shift);
394 	p->regval = (*dbg_reg & mask) >> shift;
395 }
396 
397 static bool trap_bvr(struct kvm_vcpu *vcpu,
398 		     struct sys_reg_params *p,
399 		     const struct sys_reg_desc *rd)
400 {
401 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
402 
403 	if (p->is_write)
404 		reg_to_dbg(vcpu, p, rd, dbg_reg);
405 	else
406 		dbg_to_reg(vcpu, p, rd, dbg_reg);
407 
408 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
409 
410 	return true;
411 }
412 
413 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
414 		const struct kvm_one_reg *reg, void __user *uaddr)
415 {
416 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
417 
418 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
419 		return -EFAULT;
420 	return 0;
421 }
422 
423 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
424 	const struct kvm_one_reg *reg, void __user *uaddr)
425 {
426 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
427 
428 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
429 		return -EFAULT;
430 	return 0;
431 }
432 
433 static void reset_bvr(struct kvm_vcpu *vcpu,
434 		      const struct sys_reg_desc *rd)
435 {
436 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
437 }
438 
439 static bool trap_bcr(struct kvm_vcpu *vcpu,
440 		     struct sys_reg_params *p,
441 		     const struct sys_reg_desc *rd)
442 {
443 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
444 
445 	if (p->is_write)
446 		reg_to_dbg(vcpu, p, rd, dbg_reg);
447 	else
448 		dbg_to_reg(vcpu, p, rd, dbg_reg);
449 
450 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
451 
452 	return true;
453 }
454 
455 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
456 		const struct kvm_one_reg *reg, void __user *uaddr)
457 {
458 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
459 
460 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
461 		return -EFAULT;
462 
463 	return 0;
464 }
465 
466 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
467 	const struct kvm_one_reg *reg, void __user *uaddr)
468 {
469 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
470 
471 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
472 		return -EFAULT;
473 	return 0;
474 }
475 
476 static void reset_bcr(struct kvm_vcpu *vcpu,
477 		      const struct sys_reg_desc *rd)
478 {
479 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
480 }
481 
482 static bool trap_wvr(struct kvm_vcpu *vcpu,
483 		     struct sys_reg_params *p,
484 		     const struct sys_reg_desc *rd)
485 {
486 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
487 
488 	if (p->is_write)
489 		reg_to_dbg(vcpu, p, rd, dbg_reg);
490 	else
491 		dbg_to_reg(vcpu, p, rd, dbg_reg);
492 
493 	trace_trap_reg(__func__, rd->reg, p->is_write,
494 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
495 
496 	return true;
497 }
498 
499 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
500 		const struct kvm_one_reg *reg, void __user *uaddr)
501 {
502 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
503 
504 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
505 		return -EFAULT;
506 	return 0;
507 }
508 
509 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
510 	const struct kvm_one_reg *reg, void __user *uaddr)
511 {
512 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
513 
514 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
515 		return -EFAULT;
516 	return 0;
517 }
518 
519 static void reset_wvr(struct kvm_vcpu *vcpu,
520 		      const struct sys_reg_desc *rd)
521 {
522 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
523 }
524 
525 static bool trap_wcr(struct kvm_vcpu *vcpu,
526 		     struct sys_reg_params *p,
527 		     const struct sys_reg_desc *rd)
528 {
529 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
530 
531 	if (p->is_write)
532 		reg_to_dbg(vcpu, p, rd, dbg_reg);
533 	else
534 		dbg_to_reg(vcpu, p, rd, dbg_reg);
535 
536 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
537 
538 	return true;
539 }
540 
541 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
542 		const struct kvm_one_reg *reg, void __user *uaddr)
543 {
544 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
545 
546 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
547 		return -EFAULT;
548 	return 0;
549 }
550 
551 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 	const struct kvm_one_reg *reg, void __user *uaddr)
553 {
554 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
555 
556 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
557 		return -EFAULT;
558 	return 0;
559 }
560 
561 static void reset_wcr(struct kvm_vcpu *vcpu,
562 		      const struct sys_reg_desc *rd)
563 {
564 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
565 }
566 
567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
568 {
569 	u64 amair = read_sysreg(amair_el1);
570 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
571 }
572 
573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
574 {
575 	u64 actlr = read_sysreg(actlr_el1);
576 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
577 }
578 
579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
580 {
581 	u64 mpidr;
582 
583 	/*
584 	 * Map the vcpu_id into the first three affinity level fields of
585 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
586 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
587 	 * of the GICv3 to be able to address each CPU directly when
588 	 * sending IPIs.
589 	 */
590 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
591 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
592 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
593 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
594 }
595 
596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
597 				   const struct sys_reg_desc *r)
598 {
599 	if (kvm_vcpu_has_pmu(vcpu))
600 		return 0;
601 
602 	return REG_HIDDEN;
603 }
604 
605 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
606 {
607 	u64 pmcr, val;
608 
609 	/* No PMU available, PMCR_EL0 may UNDEF... */
610 	if (!kvm_arm_support_pmu_v3())
611 		return;
612 
613 	pmcr = read_sysreg(pmcr_el0);
614 	/*
615 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
616 	 * except PMCR.E resetting to zero.
617 	 */
618 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
619 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
620 	if (!system_supports_32bit_el0())
621 		val |= ARMV8_PMU_PMCR_LC;
622 	__vcpu_sys_reg(vcpu, r->reg) = val;
623 }
624 
625 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
626 {
627 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
628 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
629 
630 	if (!enabled)
631 		kvm_inject_undefined(vcpu);
632 
633 	return !enabled;
634 }
635 
636 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
637 {
638 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
639 }
640 
641 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
642 {
643 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
644 }
645 
646 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
647 {
648 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
649 }
650 
651 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
652 {
653 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
654 }
655 
656 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
657 			const struct sys_reg_desc *r)
658 {
659 	u64 val;
660 
661 	if (pmu_access_el0_disabled(vcpu))
662 		return false;
663 
664 	if (p->is_write) {
665 		/* Only update writeable bits of PMCR */
666 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
667 		val &= ~ARMV8_PMU_PMCR_MASK;
668 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
669 		if (!system_supports_32bit_el0())
670 			val |= ARMV8_PMU_PMCR_LC;
671 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
672 		kvm_pmu_handle_pmcr(vcpu, val);
673 		kvm_vcpu_pmu_restore_guest(vcpu);
674 	} else {
675 		/* PMCR.P & PMCR.C are RAZ */
676 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
677 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
678 		p->regval = val;
679 	}
680 
681 	return true;
682 }
683 
684 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
685 			  const struct sys_reg_desc *r)
686 {
687 	if (pmu_access_event_counter_el0_disabled(vcpu))
688 		return false;
689 
690 	if (p->is_write)
691 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
692 	else
693 		/* return PMSELR.SEL field */
694 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
695 			    & ARMV8_PMU_COUNTER_MASK;
696 
697 	return true;
698 }
699 
700 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
701 			  const struct sys_reg_desc *r)
702 {
703 	u64 pmceid;
704 
705 	BUG_ON(p->is_write);
706 
707 	if (pmu_access_el0_disabled(vcpu))
708 		return false;
709 
710 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
711 
712 	p->regval = pmceid;
713 
714 	return true;
715 }
716 
717 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
718 {
719 	u64 pmcr, val;
720 
721 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
722 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
723 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
724 		kvm_inject_undefined(vcpu);
725 		return false;
726 	}
727 
728 	return true;
729 }
730 
731 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
732 			      struct sys_reg_params *p,
733 			      const struct sys_reg_desc *r)
734 {
735 	u64 idx = ~0UL;
736 
737 	if (r->CRn == 9 && r->CRm == 13) {
738 		if (r->Op2 == 2) {
739 			/* PMXEVCNTR_EL0 */
740 			if (pmu_access_event_counter_el0_disabled(vcpu))
741 				return false;
742 
743 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
744 			      & ARMV8_PMU_COUNTER_MASK;
745 		} else if (r->Op2 == 0) {
746 			/* PMCCNTR_EL0 */
747 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
748 				return false;
749 
750 			idx = ARMV8_PMU_CYCLE_IDX;
751 		}
752 	} else if (r->CRn == 0 && r->CRm == 9) {
753 		/* PMCCNTR */
754 		if (pmu_access_event_counter_el0_disabled(vcpu))
755 			return false;
756 
757 		idx = ARMV8_PMU_CYCLE_IDX;
758 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
759 		/* PMEVCNTRn_EL0 */
760 		if (pmu_access_event_counter_el0_disabled(vcpu))
761 			return false;
762 
763 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
764 	}
765 
766 	/* Catch any decoding mistake */
767 	WARN_ON(idx == ~0UL);
768 
769 	if (!pmu_counter_idx_valid(vcpu, idx))
770 		return false;
771 
772 	if (p->is_write) {
773 		if (pmu_access_el0_disabled(vcpu))
774 			return false;
775 
776 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
777 	} else {
778 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
779 	}
780 
781 	return true;
782 }
783 
784 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
785 			       const struct sys_reg_desc *r)
786 {
787 	u64 idx, reg;
788 
789 	if (pmu_access_el0_disabled(vcpu))
790 		return false;
791 
792 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
793 		/* PMXEVTYPER_EL0 */
794 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
795 		reg = PMEVTYPER0_EL0 + idx;
796 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
797 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
798 		if (idx == ARMV8_PMU_CYCLE_IDX)
799 			reg = PMCCFILTR_EL0;
800 		else
801 			/* PMEVTYPERn_EL0 */
802 			reg = PMEVTYPER0_EL0 + idx;
803 	} else {
804 		BUG();
805 	}
806 
807 	if (!pmu_counter_idx_valid(vcpu, idx))
808 		return false;
809 
810 	if (p->is_write) {
811 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
812 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
813 		kvm_vcpu_pmu_restore_guest(vcpu);
814 	} else {
815 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
816 	}
817 
818 	return true;
819 }
820 
821 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822 			   const struct sys_reg_desc *r)
823 {
824 	u64 val, mask;
825 
826 	if (pmu_access_el0_disabled(vcpu))
827 		return false;
828 
829 	mask = kvm_pmu_valid_counter_mask(vcpu);
830 	if (p->is_write) {
831 		val = p->regval & mask;
832 		if (r->Op2 & 0x1) {
833 			/* accessing PMCNTENSET_EL0 */
834 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
835 			kvm_pmu_enable_counter_mask(vcpu, val);
836 			kvm_vcpu_pmu_restore_guest(vcpu);
837 		} else {
838 			/* accessing PMCNTENCLR_EL0 */
839 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
840 			kvm_pmu_disable_counter_mask(vcpu, val);
841 		}
842 	} else {
843 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
844 	}
845 
846 	return true;
847 }
848 
849 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
850 			   const struct sys_reg_desc *r)
851 {
852 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
853 
854 	if (check_pmu_access_disabled(vcpu, 0))
855 		return false;
856 
857 	if (p->is_write) {
858 		u64 val = p->regval & mask;
859 
860 		if (r->Op2 & 0x1)
861 			/* accessing PMINTENSET_EL1 */
862 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
863 		else
864 			/* accessing PMINTENCLR_EL1 */
865 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
866 	} else {
867 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
868 	}
869 
870 	return true;
871 }
872 
873 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
874 			 const struct sys_reg_desc *r)
875 {
876 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
877 
878 	if (pmu_access_el0_disabled(vcpu))
879 		return false;
880 
881 	if (p->is_write) {
882 		if (r->CRm & 0x2)
883 			/* accessing PMOVSSET_EL0 */
884 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
885 		else
886 			/* accessing PMOVSCLR_EL0 */
887 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
888 	} else {
889 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
890 	}
891 
892 	return true;
893 }
894 
895 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
896 			   const struct sys_reg_desc *r)
897 {
898 	u64 mask;
899 
900 	if (!p->is_write)
901 		return read_from_write_only(vcpu, p, r);
902 
903 	if (pmu_write_swinc_el0_disabled(vcpu))
904 		return false;
905 
906 	mask = kvm_pmu_valid_counter_mask(vcpu);
907 	kvm_pmu_software_increment(vcpu, p->regval & mask);
908 	return true;
909 }
910 
911 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
912 			     const struct sys_reg_desc *r)
913 {
914 	if (p->is_write) {
915 		if (!vcpu_mode_priv(vcpu)) {
916 			kvm_inject_undefined(vcpu);
917 			return false;
918 		}
919 
920 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
921 			       p->regval & ARMV8_PMU_USERENR_MASK;
922 	} else {
923 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
924 			    & ARMV8_PMU_USERENR_MASK;
925 	}
926 
927 	return true;
928 }
929 
930 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
931 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
932 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
933 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
934 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
935 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
936 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
937 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
938 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
939 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
940 
941 #define PMU_SYS_REG(r)						\
942 	SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
943 
944 /* Macro to expand the PMEVCNTRn_EL0 register */
945 #define PMU_PMEVCNTR_EL0(n)						\
946 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
947 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
948 
949 /* Macro to expand the PMEVTYPERn_EL0 register */
950 #define PMU_PMEVTYPER_EL0(n)						\
951 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
952 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
953 
954 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
955 			 const struct sys_reg_desc *r)
956 {
957 	kvm_inject_undefined(vcpu);
958 
959 	return false;
960 }
961 
962 /* Macro to expand the AMU counter and type registers*/
963 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
964 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
965 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
966 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
967 
968 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
969 			const struct sys_reg_desc *rd)
970 {
971 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
972 }
973 
974 /*
975  * If we land here on a PtrAuth access, that is because we didn't
976  * fixup the access on exit by allowing the PtrAuth sysregs. The only
977  * way this happens is when the guest does not have PtrAuth support
978  * enabled.
979  */
980 #define __PTRAUTH_KEY(k)						\
981 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
982 	.visibility = ptrauth_visibility}
983 
984 #define PTRAUTH_KEY(k)							\
985 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
986 	__PTRAUTH_KEY(k ## KEYHI_EL1)
987 
988 static bool access_arch_timer(struct kvm_vcpu *vcpu,
989 			      struct sys_reg_params *p,
990 			      const struct sys_reg_desc *r)
991 {
992 	enum kvm_arch_timers tmr;
993 	enum kvm_arch_timer_regs treg;
994 	u64 reg = reg_to_encoding(r);
995 
996 	switch (reg) {
997 	case SYS_CNTP_TVAL_EL0:
998 	case SYS_AARCH32_CNTP_TVAL:
999 		tmr = TIMER_PTIMER;
1000 		treg = TIMER_REG_TVAL;
1001 		break;
1002 	case SYS_CNTP_CTL_EL0:
1003 	case SYS_AARCH32_CNTP_CTL:
1004 		tmr = TIMER_PTIMER;
1005 		treg = TIMER_REG_CTL;
1006 		break;
1007 	case SYS_CNTP_CVAL_EL0:
1008 	case SYS_AARCH32_CNTP_CVAL:
1009 		tmr = TIMER_PTIMER;
1010 		treg = TIMER_REG_CVAL;
1011 		break;
1012 	default:
1013 		BUG();
1014 	}
1015 
1016 	if (p->is_write)
1017 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1018 	else
1019 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1020 
1021 	return true;
1022 }
1023 
1024 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1025 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1026 		struct sys_reg_desc const *r, bool raz)
1027 {
1028 	u32 id = reg_to_encoding(r);
1029 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1030 
1031 	if (id == SYS_ID_AA64PFR0_EL1) {
1032 		if (!vcpu_has_sve(vcpu))
1033 			val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1034 		val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1035 		val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1036 		val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1037 		val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1038 		val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1039 	} else if (id == SYS_ID_AA64PFR1_EL1) {
1040 		val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1041 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1042 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1043 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1044 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1045 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1046 	} else if (id == SYS_ID_AA64DFR0_EL1) {
1047 		u64 cap = 0;
1048 
1049 		/* Limit guests to PMUv3 for ARMv8.1 */
1050 		if (kvm_vcpu_has_pmu(vcpu))
1051 			cap = ID_AA64DFR0_PMUVER_8_1;
1052 
1053 		val = cpuid_feature_cap_perfmon_field(val,
1054 						ID_AA64DFR0_PMUVER_SHIFT,
1055 						cap);
1056 	} else if (id == SYS_ID_DFR0_EL1) {
1057 		/* Limit guests to PMUv3 for ARMv8.1 */
1058 		val = cpuid_feature_cap_perfmon_field(val,
1059 						ID_DFR0_PERFMON_SHIFT,
1060 						ID_DFR0_PERFMON_8_1);
1061 	}
1062 
1063 	return val;
1064 }
1065 
1066 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1067 				  const struct sys_reg_desc *r)
1068 {
1069 	u32 id = reg_to_encoding(r);
1070 
1071 	switch (id) {
1072 	case SYS_ID_AA64ZFR0_EL1:
1073 		if (!vcpu_has_sve(vcpu))
1074 			return REG_RAZ;
1075 		break;
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /* cpufeature ID register access trap handlers */
1082 
1083 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1084 			    struct sys_reg_params *p,
1085 			    const struct sys_reg_desc *r,
1086 			    bool raz)
1087 {
1088 	if (p->is_write)
1089 		return write_to_read_only(vcpu, p, r);
1090 
1091 	p->regval = read_id_reg(vcpu, r, raz);
1092 	return true;
1093 }
1094 
1095 static bool access_id_reg(struct kvm_vcpu *vcpu,
1096 			  struct sys_reg_params *p,
1097 			  const struct sys_reg_desc *r)
1098 {
1099 	bool raz = sysreg_visible_as_raz(vcpu, r);
1100 
1101 	return __access_id_reg(vcpu, p, r, raz);
1102 }
1103 
1104 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1105 			      struct sys_reg_params *p,
1106 			      const struct sys_reg_desc *r)
1107 {
1108 	return __access_id_reg(vcpu, p, r, true);
1109 }
1110 
1111 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1112 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1113 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1114 
1115 /* Visibility overrides for SVE-specific control registers */
1116 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1117 				   const struct sys_reg_desc *rd)
1118 {
1119 	if (vcpu_has_sve(vcpu))
1120 		return 0;
1121 
1122 	return REG_HIDDEN;
1123 }
1124 
1125 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1126 			       const struct sys_reg_desc *rd,
1127 			       const struct kvm_one_reg *reg, void __user *uaddr)
1128 {
1129 	const u64 id = sys_reg_to_index(rd);
1130 	u8 csv2, csv3;
1131 	int err;
1132 	u64 val;
1133 
1134 	err = reg_from_user(&val, uaddr, id);
1135 	if (err)
1136 		return err;
1137 
1138 	/*
1139 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1140 	 * it doesn't promise more than what is actually provided (the
1141 	 * guest could otherwise be covered in ectoplasmic residue).
1142 	 */
1143 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1144 	if (csv2 > 1 ||
1145 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1146 		return -EINVAL;
1147 
1148 	/* Same thing for CSV3 */
1149 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1150 	if (csv3 > 1 ||
1151 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1152 		return -EINVAL;
1153 
1154 	/* We can only differ with CSV[23], and anything else is an error */
1155 	val ^= read_id_reg(vcpu, rd, false);
1156 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1157 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1158 	if (val)
1159 		return -EINVAL;
1160 
1161 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1162 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * cpufeature ID register user accessors
1169  *
1170  * For now, these registers are immutable for userspace, so no values
1171  * are stored, and for set_id_reg() we don't allow the effective value
1172  * to be changed.
1173  */
1174 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1175 			const struct sys_reg_desc *rd, void __user *uaddr,
1176 			bool raz)
1177 {
1178 	const u64 id = sys_reg_to_index(rd);
1179 	const u64 val = read_id_reg(vcpu, rd, raz);
1180 
1181 	return reg_to_user(uaddr, &val, id);
1182 }
1183 
1184 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1185 			const struct sys_reg_desc *rd, void __user *uaddr,
1186 			bool raz)
1187 {
1188 	const u64 id = sys_reg_to_index(rd);
1189 	int err;
1190 	u64 val;
1191 
1192 	err = reg_from_user(&val, uaddr, id);
1193 	if (err)
1194 		return err;
1195 
1196 	/* This is what we mean by invariant: you can't change it. */
1197 	if (val != read_id_reg(vcpu, rd, raz))
1198 		return -EINVAL;
1199 
1200 	return 0;
1201 }
1202 
1203 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1204 		      const struct kvm_one_reg *reg, void __user *uaddr)
1205 {
1206 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1207 
1208 	return __get_id_reg(vcpu, rd, uaddr, raz);
1209 }
1210 
1211 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1212 		      const struct kvm_one_reg *reg, void __user *uaddr)
1213 {
1214 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1215 
1216 	return __set_id_reg(vcpu, rd, uaddr, raz);
1217 }
1218 
1219 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1220 			  const struct kvm_one_reg *reg, void __user *uaddr)
1221 {
1222 	return __get_id_reg(vcpu, rd, uaddr, true);
1223 }
1224 
1225 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1226 			  const struct kvm_one_reg *reg, void __user *uaddr)
1227 {
1228 	return __set_id_reg(vcpu, rd, uaddr, true);
1229 }
1230 
1231 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1232 		       const struct sys_reg_desc *r)
1233 {
1234 	if (p->is_write)
1235 		return write_to_read_only(vcpu, p, r);
1236 
1237 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1238 	return true;
1239 }
1240 
1241 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1242 			 const struct sys_reg_desc *r)
1243 {
1244 	if (p->is_write)
1245 		return write_to_read_only(vcpu, p, r);
1246 
1247 	p->regval = read_sysreg(clidr_el1);
1248 	return true;
1249 }
1250 
1251 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1252 			  const struct sys_reg_desc *r)
1253 {
1254 	int reg = r->reg;
1255 
1256 	if (p->is_write)
1257 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1258 	else
1259 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1260 	return true;
1261 }
1262 
1263 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1264 			  const struct sys_reg_desc *r)
1265 {
1266 	u32 csselr;
1267 
1268 	if (p->is_write)
1269 		return write_to_read_only(vcpu, p, r);
1270 
1271 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1272 	p->regval = get_ccsidr(csselr);
1273 
1274 	/*
1275 	 * Guests should not be doing cache operations by set/way at all, and
1276 	 * for this reason, we trap them and attempt to infer the intent, so
1277 	 * that we can flush the entire guest's address space at the appropriate
1278 	 * time.
1279 	 * To prevent this trapping from causing performance problems, let's
1280 	 * expose the geometry of all data and unified caches (which are
1281 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1282 	 * [If guests should attempt to infer aliasing properties from the
1283 	 * geometry (which is not permitted by the architecture), they would
1284 	 * only do so for virtually indexed caches.]
1285 	 */
1286 	if (!(csselr & 1)) // data or unified cache
1287 		p->regval &= ~GENMASK(27, 3);
1288 	return true;
1289 }
1290 
1291 /* sys_reg_desc initialiser for known cpufeature ID registers */
1292 #define ID_SANITISED(name) {			\
1293 	SYS_DESC(SYS_##name),			\
1294 	.access	= access_id_reg,		\
1295 	.get_user = get_id_reg,			\
1296 	.set_user = set_id_reg,			\
1297 	.visibility = id_visibility,		\
1298 }
1299 
1300 /*
1301  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1302  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1303  * (1 <= crm < 8, 0 <= Op2 < 8).
1304  */
1305 #define ID_UNALLOCATED(crm, op2) {			\
1306 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1307 	.access = access_raz_id_reg,			\
1308 	.get_user = get_raz_id_reg,			\
1309 	.set_user = set_raz_id_reg,			\
1310 }
1311 
1312 /*
1313  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1314  * For now, these are exposed just like unallocated ID regs: they appear
1315  * RAZ for the guest.
1316  */
1317 #define ID_HIDDEN(name) {			\
1318 	SYS_DESC(SYS_##name),			\
1319 	.access = access_raz_id_reg,		\
1320 	.get_user = get_raz_id_reg,		\
1321 	.set_user = set_raz_id_reg,		\
1322 }
1323 
1324 /*
1325  * Architected system registers.
1326  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1327  *
1328  * Debug handling: We do trap most, if not all debug related system
1329  * registers. The implementation is good enough to ensure that a guest
1330  * can use these with minimal performance degradation. The drawback is
1331  * that we don't implement any of the external debug, none of the
1332  * OSlock protocol. This should be revisited if we ever encounter a
1333  * more demanding guest...
1334  */
1335 static const struct sys_reg_desc sys_reg_descs[] = {
1336 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1337 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1338 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1339 
1340 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1341 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1342 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1343 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1344 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1345 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1346 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1347 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1348 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1349 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1350 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1351 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1352 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1353 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1354 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1355 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1356 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1357 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1358 
1359 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1360 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1361 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1362 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1363 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1364 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1365 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1366 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1367 
1368 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1369 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1370 	// DBGDTR[TR]X_EL0 share the same encoding
1371 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1372 
1373 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1374 
1375 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1376 
1377 	/*
1378 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1379 	 * entries in arm64_ftr_regs[].
1380 	 */
1381 
1382 	/* AArch64 mappings of the AArch32 ID registers */
1383 	/* CRm=1 */
1384 	ID_SANITISED(ID_PFR0_EL1),
1385 	ID_SANITISED(ID_PFR1_EL1),
1386 	ID_SANITISED(ID_DFR0_EL1),
1387 	ID_HIDDEN(ID_AFR0_EL1),
1388 	ID_SANITISED(ID_MMFR0_EL1),
1389 	ID_SANITISED(ID_MMFR1_EL1),
1390 	ID_SANITISED(ID_MMFR2_EL1),
1391 	ID_SANITISED(ID_MMFR3_EL1),
1392 
1393 	/* CRm=2 */
1394 	ID_SANITISED(ID_ISAR0_EL1),
1395 	ID_SANITISED(ID_ISAR1_EL1),
1396 	ID_SANITISED(ID_ISAR2_EL1),
1397 	ID_SANITISED(ID_ISAR3_EL1),
1398 	ID_SANITISED(ID_ISAR4_EL1),
1399 	ID_SANITISED(ID_ISAR5_EL1),
1400 	ID_SANITISED(ID_MMFR4_EL1),
1401 	ID_SANITISED(ID_ISAR6_EL1),
1402 
1403 	/* CRm=3 */
1404 	ID_SANITISED(MVFR0_EL1),
1405 	ID_SANITISED(MVFR1_EL1),
1406 	ID_SANITISED(MVFR2_EL1),
1407 	ID_UNALLOCATED(3,3),
1408 	ID_SANITISED(ID_PFR2_EL1),
1409 	ID_HIDDEN(ID_DFR1_EL1),
1410 	ID_SANITISED(ID_MMFR5_EL1),
1411 	ID_UNALLOCATED(3,7),
1412 
1413 	/* AArch64 ID registers */
1414 	/* CRm=4 */
1415 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1416 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1417 	ID_SANITISED(ID_AA64PFR1_EL1),
1418 	ID_UNALLOCATED(4,2),
1419 	ID_UNALLOCATED(4,3),
1420 	ID_SANITISED(ID_AA64ZFR0_EL1),
1421 	ID_UNALLOCATED(4,5),
1422 	ID_UNALLOCATED(4,6),
1423 	ID_UNALLOCATED(4,7),
1424 
1425 	/* CRm=5 */
1426 	ID_SANITISED(ID_AA64DFR0_EL1),
1427 	ID_SANITISED(ID_AA64DFR1_EL1),
1428 	ID_UNALLOCATED(5,2),
1429 	ID_UNALLOCATED(5,3),
1430 	ID_HIDDEN(ID_AA64AFR0_EL1),
1431 	ID_HIDDEN(ID_AA64AFR1_EL1),
1432 	ID_UNALLOCATED(5,6),
1433 	ID_UNALLOCATED(5,7),
1434 
1435 	/* CRm=6 */
1436 	ID_SANITISED(ID_AA64ISAR0_EL1),
1437 	ID_SANITISED(ID_AA64ISAR1_EL1),
1438 	ID_UNALLOCATED(6,2),
1439 	ID_UNALLOCATED(6,3),
1440 	ID_UNALLOCATED(6,4),
1441 	ID_UNALLOCATED(6,5),
1442 	ID_UNALLOCATED(6,6),
1443 	ID_UNALLOCATED(6,7),
1444 
1445 	/* CRm=7 */
1446 	ID_SANITISED(ID_AA64MMFR0_EL1),
1447 	ID_SANITISED(ID_AA64MMFR1_EL1),
1448 	ID_SANITISED(ID_AA64MMFR2_EL1),
1449 	ID_UNALLOCATED(7,3),
1450 	ID_UNALLOCATED(7,4),
1451 	ID_UNALLOCATED(7,5),
1452 	ID_UNALLOCATED(7,6),
1453 	ID_UNALLOCATED(7,7),
1454 
1455 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1456 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1457 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1458 
1459 	{ SYS_DESC(SYS_RGSR_EL1), undef_access },
1460 	{ SYS_DESC(SYS_GCR_EL1), undef_access },
1461 
1462 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1463 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1464 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1465 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1466 
1467 	PTRAUTH_KEY(APIA),
1468 	PTRAUTH_KEY(APIB),
1469 	PTRAUTH_KEY(APDA),
1470 	PTRAUTH_KEY(APDB),
1471 	PTRAUTH_KEY(APGA),
1472 
1473 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1474 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1475 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1476 
1477 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1478 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1479 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1480 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1481 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1482 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1483 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1484 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1485 
1486 	{ SYS_DESC(SYS_TFSR_EL1), undef_access },
1487 	{ SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1488 
1489 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1490 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1491 
1492 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1493 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1494 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1495 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1496 
1497 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1498 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1499 
1500 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1501 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1502 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1503 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1504 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1505 
1506 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1507 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1508 
1509 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1510 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1511 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1512 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1513 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1514 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1515 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1516 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1517 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1518 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1519 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1520 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1521 
1522 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1523 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1524 
1525 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1526 
1527 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1528 
1529 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1530 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1531 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1532 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1533 
1534 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1535 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1536 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1537 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1538 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1539 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1540 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1541 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1542 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1543 	  .access = access_pmswinc, .reg = PMSWINC_EL0 },
1544 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1545 	  .access = access_pmselr, .reg = PMSELR_EL0 },
1546 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1547 	  .access = access_pmceid, .reset = NULL },
1548 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1549 	  .access = access_pmceid, .reset = NULL },
1550 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1551 	  .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1552 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1553 	  .access = access_pmu_evtyper, .reset = NULL },
1554 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1555 	  .access = access_pmu_evcntr, .reset = NULL },
1556 	/*
1557 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1558 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1559 	 */
1560 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1561 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1562 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1563 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1564 
1565 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1567 
1568 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1569 
1570 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1571 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1572 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1573 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1574 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1575 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1576 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1577 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1578 	AMU_AMEVCNTR0_EL0(0),
1579 	AMU_AMEVCNTR0_EL0(1),
1580 	AMU_AMEVCNTR0_EL0(2),
1581 	AMU_AMEVCNTR0_EL0(3),
1582 	AMU_AMEVCNTR0_EL0(4),
1583 	AMU_AMEVCNTR0_EL0(5),
1584 	AMU_AMEVCNTR0_EL0(6),
1585 	AMU_AMEVCNTR0_EL0(7),
1586 	AMU_AMEVCNTR0_EL0(8),
1587 	AMU_AMEVCNTR0_EL0(9),
1588 	AMU_AMEVCNTR0_EL0(10),
1589 	AMU_AMEVCNTR0_EL0(11),
1590 	AMU_AMEVCNTR0_EL0(12),
1591 	AMU_AMEVCNTR0_EL0(13),
1592 	AMU_AMEVCNTR0_EL0(14),
1593 	AMU_AMEVCNTR0_EL0(15),
1594 	AMU_AMEVTYPER0_EL0(0),
1595 	AMU_AMEVTYPER0_EL0(1),
1596 	AMU_AMEVTYPER0_EL0(2),
1597 	AMU_AMEVTYPER0_EL0(3),
1598 	AMU_AMEVTYPER0_EL0(4),
1599 	AMU_AMEVTYPER0_EL0(5),
1600 	AMU_AMEVTYPER0_EL0(6),
1601 	AMU_AMEVTYPER0_EL0(7),
1602 	AMU_AMEVTYPER0_EL0(8),
1603 	AMU_AMEVTYPER0_EL0(9),
1604 	AMU_AMEVTYPER0_EL0(10),
1605 	AMU_AMEVTYPER0_EL0(11),
1606 	AMU_AMEVTYPER0_EL0(12),
1607 	AMU_AMEVTYPER0_EL0(13),
1608 	AMU_AMEVTYPER0_EL0(14),
1609 	AMU_AMEVTYPER0_EL0(15),
1610 	AMU_AMEVCNTR1_EL0(0),
1611 	AMU_AMEVCNTR1_EL0(1),
1612 	AMU_AMEVCNTR1_EL0(2),
1613 	AMU_AMEVCNTR1_EL0(3),
1614 	AMU_AMEVCNTR1_EL0(4),
1615 	AMU_AMEVCNTR1_EL0(5),
1616 	AMU_AMEVCNTR1_EL0(6),
1617 	AMU_AMEVCNTR1_EL0(7),
1618 	AMU_AMEVCNTR1_EL0(8),
1619 	AMU_AMEVCNTR1_EL0(9),
1620 	AMU_AMEVCNTR1_EL0(10),
1621 	AMU_AMEVCNTR1_EL0(11),
1622 	AMU_AMEVCNTR1_EL0(12),
1623 	AMU_AMEVCNTR1_EL0(13),
1624 	AMU_AMEVCNTR1_EL0(14),
1625 	AMU_AMEVCNTR1_EL0(15),
1626 	AMU_AMEVTYPER1_EL0(0),
1627 	AMU_AMEVTYPER1_EL0(1),
1628 	AMU_AMEVTYPER1_EL0(2),
1629 	AMU_AMEVTYPER1_EL0(3),
1630 	AMU_AMEVTYPER1_EL0(4),
1631 	AMU_AMEVTYPER1_EL0(5),
1632 	AMU_AMEVTYPER1_EL0(6),
1633 	AMU_AMEVTYPER1_EL0(7),
1634 	AMU_AMEVTYPER1_EL0(8),
1635 	AMU_AMEVTYPER1_EL0(9),
1636 	AMU_AMEVTYPER1_EL0(10),
1637 	AMU_AMEVTYPER1_EL0(11),
1638 	AMU_AMEVTYPER1_EL0(12),
1639 	AMU_AMEVTYPER1_EL0(13),
1640 	AMU_AMEVTYPER1_EL0(14),
1641 	AMU_AMEVTYPER1_EL0(15),
1642 
1643 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1644 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1645 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1646 
1647 	/* PMEVCNTRn_EL0 */
1648 	PMU_PMEVCNTR_EL0(0),
1649 	PMU_PMEVCNTR_EL0(1),
1650 	PMU_PMEVCNTR_EL0(2),
1651 	PMU_PMEVCNTR_EL0(3),
1652 	PMU_PMEVCNTR_EL0(4),
1653 	PMU_PMEVCNTR_EL0(5),
1654 	PMU_PMEVCNTR_EL0(6),
1655 	PMU_PMEVCNTR_EL0(7),
1656 	PMU_PMEVCNTR_EL0(8),
1657 	PMU_PMEVCNTR_EL0(9),
1658 	PMU_PMEVCNTR_EL0(10),
1659 	PMU_PMEVCNTR_EL0(11),
1660 	PMU_PMEVCNTR_EL0(12),
1661 	PMU_PMEVCNTR_EL0(13),
1662 	PMU_PMEVCNTR_EL0(14),
1663 	PMU_PMEVCNTR_EL0(15),
1664 	PMU_PMEVCNTR_EL0(16),
1665 	PMU_PMEVCNTR_EL0(17),
1666 	PMU_PMEVCNTR_EL0(18),
1667 	PMU_PMEVCNTR_EL0(19),
1668 	PMU_PMEVCNTR_EL0(20),
1669 	PMU_PMEVCNTR_EL0(21),
1670 	PMU_PMEVCNTR_EL0(22),
1671 	PMU_PMEVCNTR_EL0(23),
1672 	PMU_PMEVCNTR_EL0(24),
1673 	PMU_PMEVCNTR_EL0(25),
1674 	PMU_PMEVCNTR_EL0(26),
1675 	PMU_PMEVCNTR_EL0(27),
1676 	PMU_PMEVCNTR_EL0(28),
1677 	PMU_PMEVCNTR_EL0(29),
1678 	PMU_PMEVCNTR_EL0(30),
1679 	/* PMEVTYPERn_EL0 */
1680 	PMU_PMEVTYPER_EL0(0),
1681 	PMU_PMEVTYPER_EL0(1),
1682 	PMU_PMEVTYPER_EL0(2),
1683 	PMU_PMEVTYPER_EL0(3),
1684 	PMU_PMEVTYPER_EL0(4),
1685 	PMU_PMEVTYPER_EL0(5),
1686 	PMU_PMEVTYPER_EL0(6),
1687 	PMU_PMEVTYPER_EL0(7),
1688 	PMU_PMEVTYPER_EL0(8),
1689 	PMU_PMEVTYPER_EL0(9),
1690 	PMU_PMEVTYPER_EL0(10),
1691 	PMU_PMEVTYPER_EL0(11),
1692 	PMU_PMEVTYPER_EL0(12),
1693 	PMU_PMEVTYPER_EL0(13),
1694 	PMU_PMEVTYPER_EL0(14),
1695 	PMU_PMEVTYPER_EL0(15),
1696 	PMU_PMEVTYPER_EL0(16),
1697 	PMU_PMEVTYPER_EL0(17),
1698 	PMU_PMEVTYPER_EL0(18),
1699 	PMU_PMEVTYPER_EL0(19),
1700 	PMU_PMEVTYPER_EL0(20),
1701 	PMU_PMEVTYPER_EL0(21),
1702 	PMU_PMEVTYPER_EL0(22),
1703 	PMU_PMEVTYPER_EL0(23),
1704 	PMU_PMEVTYPER_EL0(24),
1705 	PMU_PMEVTYPER_EL0(25),
1706 	PMU_PMEVTYPER_EL0(26),
1707 	PMU_PMEVTYPER_EL0(27),
1708 	PMU_PMEVTYPER_EL0(28),
1709 	PMU_PMEVTYPER_EL0(29),
1710 	PMU_PMEVTYPER_EL0(30),
1711 	/*
1712 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1713 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1714 	 */
1715 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1716 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1717 
1718 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1719 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1720 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1721 };
1722 
1723 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1724 			struct sys_reg_params *p,
1725 			const struct sys_reg_desc *r)
1726 {
1727 	if (p->is_write) {
1728 		return ignore_write(vcpu, p);
1729 	} else {
1730 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1731 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1732 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1733 
1734 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1735 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1736 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1737 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1738 		return true;
1739 	}
1740 }
1741 
1742 /*
1743  * AArch32 debug register mappings
1744  *
1745  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1746  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1747  *
1748  * None of the other registers share their location, so treat them as
1749  * if they were 64bit.
1750  */
1751 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1752 	/* DBGBVRn */							      \
1753 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1754 	/* DBGBCRn */							      \
1755 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1756 	/* DBGWVRn */							      \
1757 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1758 	/* DBGWCRn */							      \
1759 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1760 
1761 #define DBGBXVR(n)							      \
1762 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1763 
1764 /*
1765  * Trapped cp14 registers. We generally ignore most of the external
1766  * debug, on the principle that they don't really make sense to a
1767  * guest. Revisit this one day, would this principle change.
1768  */
1769 static const struct sys_reg_desc cp14_regs[] = {
1770 	/* DBGIDR */
1771 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1772 	/* DBGDTRRXext */
1773 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1774 
1775 	DBG_BCR_BVR_WCR_WVR(0),
1776 	/* DBGDSCRint */
1777 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1778 	DBG_BCR_BVR_WCR_WVR(1),
1779 	/* DBGDCCINT */
1780 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1781 	/* DBGDSCRext */
1782 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1783 	DBG_BCR_BVR_WCR_WVR(2),
1784 	/* DBGDTR[RT]Xint */
1785 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1786 	/* DBGDTR[RT]Xext */
1787 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1788 	DBG_BCR_BVR_WCR_WVR(3),
1789 	DBG_BCR_BVR_WCR_WVR(4),
1790 	DBG_BCR_BVR_WCR_WVR(5),
1791 	/* DBGWFAR */
1792 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1793 	/* DBGOSECCR */
1794 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1795 	DBG_BCR_BVR_WCR_WVR(6),
1796 	/* DBGVCR */
1797 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1798 	DBG_BCR_BVR_WCR_WVR(7),
1799 	DBG_BCR_BVR_WCR_WVR(8),
1800 	DBG_BCR_BVR_WCR_WVR(9),
1801 	DBG_BCR_BVR_WCR_WVR(10),
1802 	DBG_BCR_BVR_WCR_WVR(11),
1803 	DBG_BCR_BVR_WCR_WVR(12),
1804 	DBG_BCR_BVR_WCR_WVR(13),
1805 	DBG_BCR_BVR_WCR_WVR(14),
1806 	DBG_BCR_BVR_WCR_WVR(15),
1807 
1808 	/* DBGDRAR (32bit) */
1809 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1810 
1811 	DBGBXVR(0),
1812 	/* DBGOSLAR */
1813 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1814 	DBGBXVR(1),
1815 	/* DBGOSLSR */
1816 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1817 	DBGBXVR(2),
1818 	DBGBXVR(3),
1819 	/* DBGOSDLR */
1820 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1821 	DBGBXVR(4),
1822 	/* DBGPRCR */
1823 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1824 	DBGBXVR(5),
1825 	DBGBXVR(6),
1826 	DBGBXVR(7),
1827 	DBGBXVR(8),
1828 	DBGBXVR(9),
1829 	DBGBXVR(10),
1830 	DBGBXVR(11),
1831 	DBGBXVR(12),
1832 	DBGBXVR(13),
1833 	DBGBXVR(14),
1834 	DBGBXVR(15),
1835 
1836 	/* DBGDSAR (32bit) */
1837 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1838 
1839 	/* DBGDEVID2 */
1840 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1841 	/* DBGDEVID1 */
1842 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1843 	/* DBGDEVID */
1844 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1845 	/* DBGCLAIMSET */
1846 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1847 	/* DBGCLAIMCLR */
1848 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1849 	/* DBGAUTHSTATUS */
1850 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1851 };
1852 
1853 /* Trapped cp14 64bit registers */
1854 static const struct sys_reg_desc cp14_64_regs[] = {
1855 	/* DBGDRAR (64bit) */
1856 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1857 
1858 	/* DBGDSAR (64bit) */
1859 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1860 };
1861 
1862 /* Macro to expand the PMEVCNTRn register */
1863 #define PMU_PMEVCNTR(n)							\
1864 	/* PMEVCNTRn */							\
1865 	{ Op1(0), CRn(0b1110),						\
1866 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1867 	  access_pmu_evcntr }
1868 
1869 /* Macro to expand the PMEVTYPERn register */
1870 #define PMU_PMEVTYPER(n)						\
1871 	/* PMEVTYPERn */						\
1872 	{ Op1(0), CRn(0b1110),						\
1873 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1874 	  access_pmu_evtyper }
1875 
1876 /*
1877  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1878  * depending on the way they are accessed (as a 32bit or a 64bit
1879  * register).
1880  */
1881 static const struct sys_reg_desc cp15_regs[] = {
1882 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1883 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1884 	/* ACTLR */
1885 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1886 	/* ACTLR2 */
1887 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1888 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1889 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1890 	/* TTBCR */
1891 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1892 	/* TTBCR2 */
1893 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1894 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1895 	/* DFSR */
1896 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1897 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1898 	/* ADFSR */
1899 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1900 	/* AIFSR */
1901 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1902 	/* DFAR */
1903 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1904 	/* IFAR */
1905 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1906 
1907 	/*
1908 	 * DC{C,I,CI}SW operations:
1909 	 */
1910 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1911 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1912 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1913 
1914 	/* PMU */
1915 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1916 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1917 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1918 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1919 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1920 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1921 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1922 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1923 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1924 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1925 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1926 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1927 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1928 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1929 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1930 
1931 	/* PRRR/MAIR0 */
1932 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1933 	/* NMRR/MAIR1 */
1934 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1935 	/* AMAIR0 */
1936 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1937 	/* AMAIR1 */
1938 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1939 
1940 	/* ICC_SRE */
1941 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1942 
1943 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1944 
1945 	/* Arch Tmers */
1946 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1947 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1948 
1949 	/* PMEVCNTRn */
1950 	PMU_PMEVCNTR(0),
1951 	PMU_PMEVCNTR(1),
1952 	PMU_PMEVCNTR(2),
1953 	PMU_PMEVCNTR(3),
1954 	PMU_PMEVCNTR(4),
1955 	PMU_PMEVCNTR(5),
1956 	PMU_PMEVCNTR(6),
1957 	PMU_PMEVCNTR(7),
1958 	PMU_PMEVCNTR(8),
1959 	PMU_PMEVCNTR(9),
1960 	PMU_PMEVCNTR(10),
1961 	PMU_PMEVCNTR(11),
1962 	PMU_PMEVCNTR(12),
1963 	PMU_PMEVCNTR(13),
1964 	PMU_PMEVCNTR(14),
1965 	PMU_PMEVCNTR(15),
1966 	PMU_PMEVCNTR(16),
1967 	PMU_PMEVCNTR(17),
1968 	PMU_PMEVCNTR(18),
1969 	PMU_PMEVCNTR(19),
1970 	PMU_PMEVCNTR(20),
1971 	PMU_PMEVCNTR(21),
1972 	PMU_PMEVCNTR(22),
1973 	PMU_PMEVCNTR(23),
1974 	PMU_PMEVCNTR(24),
1975 	PMU_PMEVCNTR(25),
1976 	PMU_PMEVCNTR(26),
1977 	PMU_PMEVCNTR(27),
1978 	PMU_PMEVCNTR(28),
1979 	PMU_PMEVCNTR(29),
1980 	PMU_PMEVCNTR(30),
1981 	/* PMEVTYPERn */
1982 	PMU_PMEVTYPER(0),
1983 	PMU_PMEVTYPER(1),
1984 	PMU_PMEVTYPER(2),
1985 	PMU_PMEVTYPER(3),
1986 	PMU_PMEVTYPER(4),
1987 	PMU_PMEVTYPER(5),
1988 	PMU_PMEVTYPER(6),
1989 	PMU_PMEVTYPER(7),
1990 	PMU_PMEVTYPER(8),
1991 	PMU_PMEVTYPER(9),
1992 	PMU_PMEVTYPER(10),
1993 	PMU_PMEVTYPER(11),
1994 	PMU_PMEVTYPER(12),
1995 	PMU_PMEVTYPER(13),
1996 	PMU_PMEVTYPER(14),
1997 	PMU_PMEVTYPER(15),
1998 	PMU_PMEVTYPER(16),
1999 	PMU_PMEVTYPER(17),
2000 	PMU_PMEVTYPER(18),
2001 	PMU_PMEVTYPER(19),
2002 	PMU_PMEVTYPER(20),
2003 	PMU_PMEVTYPER(21),
2004 	PMU_PMEVTYPER(22),
2005 	PMU_PMEVTYPER(23),
2006 	PMU_PMEVTYPER(24),
2007 	PMU_PMEVTYPER(25),
2008 	PMU_PMEVTYPER(26),
2009 	PMU_PMEVTYPER(27),
2010 	PMU_PMEVTYPER(28),
2011 	PMU_PMEVTYPER(29),
2012 	PMU_PMEVTYPER(30),
2013 	/* PMCCFILTR */
2014 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2015 
2016 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2017 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2018 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2019 };
2020 
2021 static const struct sys_reg_desc cp15_64_regs[] = {
2022 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2023 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2024 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2025 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2026 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2027 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2028 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2029 };
2030 
2031 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2032 			      bool is_32)
2033 {
2034 	unsigned int i;
2035 
2036 	for (i = 0; i < n; i++) {
2037 		if (!is_32 && table[i].reg && !table[i].reset) {
2038 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2039 				table, i);
2040 			return 1;
2041 		}
2042 
2043 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2044 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2045 			return 1;
2046 		}
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int match_sys_reg(const void *key, const void *elt)
2053 {
2054 	const unsigned long pval = (unsigned long)key;
2055 	const struct sys_reg_desc *r = elt;
2056 
2057 	return pval - reg_to_encoding(r);
2058 }
2059 
2060 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2061 					 const struct sys_reg_desc table[],
2062 					 unsigned int num)
2063 {
2064 	unsigned long pval = reg_to_encoding(params);
2065 
2066 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2067 }
2068 
2069 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2070 {
2071 	kvm_inject_undefined(vcpu);
2072 	return 1;
2073 }
2074 
2075 static void perform_access(struct kvm_vcpu *vcpu,
2076 			   struct sys_reg_params *params,
2077 			   const struct sys_reg_desc *r)
2078 {
2079 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2080 
2081 	/* Check for regs disabled by runtime config */
2082 	if (sysreg_hidden(vcpu, r)) {
2083 		kvm_inject_undefined(vcpu);
2084 		return;
2085 	}
2086 
2087 	/*
2088 	 * Not having an accessor means that we have configured a trap
2089 	 * that we don't know how to handle. This certainly qualifies
2090 	 * as a gross bug that should be fixed right away.
2091 	 */
2092 	BUG_ON(!r->access);
2093 
2094 	/* Skip instruction if instructed so */
2095 	if (likely(r->access(vcpu, params, r)))
2096 		kvm_incr_pc(vcpu);
2097 }
2098 
2099 /*
2100  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2101  *                call the corresponding trap handler.
2102  *
2103  * @params: pointer to the descriptor of the access
2104  * @table: array of trap descriptors
2105  * @num: size of the trap descriptor array
2106  *
2107  * Return 0 if the access has been handled, and -1 if not.
2108  */
2109 static int emulate_cp(struct kvm_vcpu *vcpu,
2110 		      struct sys_reg_params *params,
2111 		      const struct sys_reg_desc *table,
2112 		      size_t num)
2113 {
2114 	const struct sys_reg_desc *r;
2115 
2116 	if (!table)
2117 		return -1;	/* Not handled */
2118 
2119 	r = find_reg(params, table, num);
2120 
2121 	if (r) {
2122 		perform_access(vcpu, params, r);
2123 		return 0;
2124 	}
2125 
2126 	/* Not handled */
2127 	return -1;
2128 }
2129 
2130 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2131 				struct sys_reg_params *params)
2132 {
2133 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2134 	int cp = -1;
2135 
2136 	switch (esr_ec) {
2137 	case ESR_ELx_EC_CP15_32:
2138 	case ESR_ELx_EC_CP15_64:
2139 		cp = 15;
2140 		break;
2141 	case ESR_ELx_EC_CP14_MR:
2142 	case ESR_ELx_EC_CP14_64:
2143 		cp = 14;
2144 		break;
2145 	default:
2146 		WARN_ON(1);
2147 	}
2148 
2149 	print_sys_reg_msg(params,
2150 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2151 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2152 	kvm_inject_undefined(vcpu);
2153 }
2154 
2155 /**
2156  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2157  * @vcpu: The VCPU pointer
2158  * @run:  The kvm_run struct
2159  */
2160 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2161 			    const struct sys_reg_desc *global,
2162 			    size_t nr_global)
2163 {
2164 	struct sys_reg_params params;
2165 	u32 esr = kvm_vcpu_get_esr(vcpu);
2166 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2167 	int Rt2 = (esr >> 10) & 0x1f;
2168 
2169 	params.CRm = (esr >> 1) & 0xf;
2170 	params.is_write = ((esr & 1) == 0);
2171 
2172 	params.Op0 = 0;
2173 	params.Op1 = (esr >> 16) & 0xf;
2174 	params.Op2 = 0;
2175 	params.CRn = 0;
2176 
2177 	/*
2178 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2179 	 * backends between AArch32 and AArch64, we get away with it.
2180 	 */
2181 	if (params.is_write) {
2182 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2183 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2184 	}
2185 
2186 	/*
2187 	 * If the table contains a handler, handle the
2188 	 * potential register operation in the case of a read and return
2189 	 * with success.
2190 	 */
2191 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2192 		/* Split up the value between registers for the read side */
2193 		if (!params.is_write) {
2194 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2195 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2196 		}
2197 
2198 		return 1;
2199 	}
2200 
2201 	unhandled_cp_access(vcpu, &params);
2202 	return 1;
2203 }
2204 
2205 /**
2206  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2207  * @vcpu: The VCPU pointer
2208  * @run:  The kvm_run struct
2209  */
2210 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2211 			    const struct sys_reg_desc *global,
2212 			    size_t nr_global)
2213 {
2214 	struct sys_reg_params params;
2215 	u32 esr = kvm_vcpu_get_esr(vcpu);
2216 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2217 
2218 	params.CRm = (esr >> 1) & 0xf;
2219 	params.regval = vcpu_get_reg(vcpu, Rt);
2220 	params.is_write = ((esr & 1) == 0);
2221 	params.CRn = (esr >> 10) & 0xf;
2222 	params.Op0 = 0;
2223 	params.Op1 = (esr >> 14) & 0x7;
2224 	params.Op2 = (esr >> 17) & 0x7;
2225 
2226 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2227 		if (!params.is_write)
2228 			vcpu_set_reg(vcpu, Rt, params.regval);
2229 		return 1;
2230 	}
2231 
2232 	unhandled_cp_access(vcpu, &params);
2233 	return 1;
2234 }
2235 
2236 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2237 {
2238 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2239 }
2240 
2241 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2242 {
2243 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2244 }
2245 
2246 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2247 {
2248 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2249 }
2250 
2251 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2252 {
2253 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2254 }
2255 
2256 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2257 {
2258 	// See ARM DDI 0487E.a, section D12.3.2
2259 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2260 }
2261 
2262 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2263 			   struct sys_reg_params *params)
2264 {
2265 	const struct sys_reg_desc *r;
2266 
2267 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2268 
2269 	if (likely(r)) {
2270 		perform_access(vcpu, params, r);
2271 	} else if (is_imp_def_sys_reg(params)) {
2272 		kvm_inject_undefined(vcpu);
2273 	} else {
2274 		print_sys_reg_msg(params,
2275 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2276 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2277 		kvm_inject_undefined(vcpu);
2278 	}
2279 	return 1;
2280 }
2281 
2282 /**
2283  * kvm_reset_sys_regs - sets system registers to reset value
2284  * @vcpu: The VCPU pointer
2285  *
2286  * This function finds the right table above and sets the registers on the
2287  * virtual CPU struct to their architecturally defined reset values.
2288  */
2289 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2290 {
2291 	unsigned long i;
2292 
2293 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2294 		if (sys_reg_descs[i].reset)
2295 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2296 }
2297 
2298 /**
2299  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2300  * @vcpu: The VCPU pointer
2301  */
2302 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2303 {
2304 	struct sys_reg_params params;
2305 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2306 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2307 	int ret;
2308 
2309 	trace_kvm_handle_sys_reg(esr);
2310 
2311 	params.Op0 = (esr >> 20) & 3;
2312 	params.Op1 = (esr >> 14) & 0x7;
2313 	params.CRn = (esr >> 10) & 0xf;
2314 	params.CRm = (esr >> 1) & 0xf;
2315 	params.Op2 = (esr >> 17) & 0x7;
2316 	params.regval = vcpu_get_reg(vcpu, Rt);
2317 	params.is_write = !(esr & 1);
2318 
2319 	ret = emulate_sys_reg(vcpu, &params);
2320 
2321 	if (!params.is_write)
2322 		vcpu_set_reg(vcpu, Rt, params.regval);
2323 	return ret;
2324 }
2325 
2326 /******************************************************************************
2327  * Userspace API
2328  *****************************************************************************/
2329 
2330 static bool index_to_params(u64 id, struct sys_reg_params *params)
2331 {
2332 	switch (id & KVM_REG_SIZE_MASK) {
2333 	case KVM_REG_SIZE_U64:
2334 		/* Any unused index bits means it's not valid. */
2335 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2336 			      | KVM_REG_ARM_COPROC_MASK
2337 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2338 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2339 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2340 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2341 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2342 			return false;
2343 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2344 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2345 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2346 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2347 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2348 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2349 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2350 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2351 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2352 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2353 		return true;
2354 	default:
2355 		return false;
2356 	}
2357 }
2358 
2359 const struct sys_reg_desc *find_reg_by_id(u64 id,
2360 					  struct sys_reg_params *params,
2361 					  const struct sys_reg_desc table[],
2362 					  unsigned int num)
2363 {
2364 	if (!index_to_params(id, params))
2365 		return NULL;
2366 
2367 	return find_reg(params, table, num);
2368 }
2369 
2370 /* Decode an index value, and find the sys_reg_desc entry. */
2371 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2372 						    u64 id)
2373 {
2374 	const struct sys_reg_desc *r;
2375 	struct sys_reg_params params;
2376 
2377 	/* We only do sys_reg for now. */
2378 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2379 		return NULL;
2380 
2381 	if (!index_to_params(id, &params))
2382 		return NULL;
2383 
2384 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2385 
2386 	/* Not saved in the sys_reg array and not otherwise accessible? */
2387 	if (r && !(r->reg || r->get_user))
2388 		r = NULL;
2389 
2390 	return r;
2391 }
2392 
2393 /*
2394  * These are the invariant sys_reg registers: we let the guest see the
2395  * host versions of these, so they're part of the guest state.
2396  *
2397  * A future CPU may provide a mechanism to present different values to
2398  * the guest, or a future kvm may trap them.
2399  */
2400 
2401 #define FUNCTION_INVARIANT(reg)						\
2402 	static void get_##reg(struct kvm_vcpu *v,			\
2403 			      const struct sys_reg_desc *r)		\
2404 	{								\
2405 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2406 	}
2407 
2408 FUNCTION_INVARIANT(midr_el1)
2409 FUNCTION_INVARIANT(revidr_el1)
2410 FUNCTION_INVARIANT(clidr_el1)
2411 FUNCTION_INVARIANT(aidr_el1)
2412 
2413 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2414 {
2415 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2416 }
2417 
2418 /* ->val is filled in by kvm_sys_reg_table_init() */
2419 static struct sys_reg_desc invariant_sys_regs[] = {
2420 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2421 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2422 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2423 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2424 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2425 };
2426 
2427 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2428 {
2429 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2430 		return -EFAULT;
2431 	return 0;
2432 }
2433 
2434 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2435 {
2436 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2437 		return -EFAULT;
2438 	return 0;
2439 }
2440 
2441 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2442 {
2443 	struct sys_reg_params params;
2444 	const struct sys_reg_desc *r;
2445 
2446 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2447 			   ARRAY_SIZE(invariant_sys_regs));
2448 	if (!r)
2449 		return -ENOENT;
2450 
2451 	return reg_to_user(uaddr, &r->val, id);
2452 }
2453 
2454 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2455 {
2456 	struct sys_reg_params params;
2457 	const struct sys_reg_desc *r;
2458 	int err;
2459 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2460 
2461 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2462 			   ARRAY_SIZE(invariant_sys_regs));
2463 	if (!r)
2464 		return -ENOENT;
2465 
2466 	err = reg_from_user(&val, uaddr, id);
2467 	if (err)
2468 		return err;
2469 
2470 	/* This is what we mean by invariant: you can't change it. */
2471 	if (r->val != val)
2472 		return -EINVAL;
2473 
2474 	return 0;
2475 }
2476 
2477 static bool is_valid_cache(u32 val)
2478 {
2479 	u32 level, ctype;
2480 
2481 	if (val >= CSSELR_MAX)
2482 		return false;
2483 
2484 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2485 	level = (val >> 1);
2486 	ctype = (cache_levels >> (level * 3)) & 7;
2487 
2488 	switch (ctype) {
2489 	case 0: /* No cache */
2490 		return false;
2491 	case 1: /* Instruction cache only */
2492 		return (val & 1);
2493 	case 2: /* Data cache only */
2494 	case 4: /* Unified cache */
2495 		return !(val & 1);
2496 	case 3: /* Separate instruction and data caches */
2497 		return true;
2498 	default: /* Reserved: we can't know instruction or data. */
2499 		return false;
2500 	}
2501 }
2502 
2503 static int demux_c15_get(u64 id, void __user *uaddr)
2504 {
2505 	u32 val;
2506 	u32 __user *uval = uaddr;
2507 
2508 	/* Fail if we have unknown bits set. */
2509 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2510 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2511 		return -ENOENT;
2512 
2513 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2514 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2515 		if (KVM_REG_SIZE(id) != 4)
2516 			return -ENOENT;
2517 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2518 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2519 		if (!is_valid_cache(val))
2520 			return -ENOENT;
2521 
2522 		return put_user(get_ccsidr(val), uval);
2523 	default:
2524 		return -ENOENT;
2525 	}
2526 }
2527 
2528 static int demux_c15_set(u64 id, void __user *uaddr)
2529 {
2530 	u32 val, newval;
2531 	u32 __user *uval = uaddr;
2532 
2533 	/* Fail if we have unknown bits set. */
2534 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2535 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2536 		return -ENOENT;
2537 
2538 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2539 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2540 		if (KVM_REG_SIZE(id) != 4)
2541 			return -ENOENT;
2542 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2543 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2544 		if (!is_valid_cache(val))
2545 			return -ENOENT;
2546 
2547 		if (get_user(newval, uval))
2548 			return -EFAULT;
2549 
2550 		/* This is also invariant: you can't change it. */
2551 		if (newval != get_ccsidr(val))
2552 			return -EINVAL;
2553 		return 0;
2554 	default:
2555 		return -ENOENT;
2556 	}
2557 }
2558 
2559 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2560 {
2561 	const struct sys_reg_desc *r;
2562 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2563 
2564 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2565 		return demux_c15_get(reg->id, uaddr);
2566 
2567 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2568 		return -ENOENT;
2569 
2570 	r = index_to_sys_reg_desc(vcpu, reg->id);
2571 	if (!r)
2572 		return get_invariant_sys_reg(reg->id, uaddr);
2573 
2574 	/* Check for regs disabled by runtime config */
2575 	if (sysreg_hidden(vcpu, r))
2576 		return -ENOENT;
2577 
2578 	if (r->get_user)
2579 		return (r->get_user)(vcpu, r, reg, uaddr);
2580 
2581 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2582 }
2583 
2584 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2585 {
2586 	const struct sys_reg_desc *r;
2587 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2588 
2589 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2590 		return demux_c15_set(reg->id, uaddr);
2591 
2592 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2593 		return -ENOENT;
2594 
2595 	r = index_to_sys_reg_desc(vcpu, reg->id);
2596 	if (!r)
2597 		return set_invariant_sys_reg(reg->id, uaddr);
2598 
2599 	/* Check for regs disabled by runtime config */
2600 	if (sysreg_hidden(vcpu, r))
2601 		return -ENOENT;
2602 
2603 	if (r->set_user)
2604 		return (r->set_user)(vcpu, r, reg, uaddr);
2605 
2606 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2607 }
2608 
2609 static unsigned int num_demux_regs(void)
2610 {
2611 	unsigned int i, count = 0;
2612 
2613 	for (i = 0; i < CSSELR_MAX; i++)
2614 		if (is_valid_cache(i))
2615 			count++;
2616 
2617 	return count;
2618 }
2619 
2620 static int write_demux_regids(u64 __user *uindices)
2621 {
2622 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2623 	unsigned int i;
2624 
2625 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2626 	for (i = 0; i < CSSELR_MAX; i++) {
2627 		if (!is_valid_cache(i))
2628 			continue;
2629 		if (put_user(val | i, uindices))
2630 			return -EFAULT;
2631 		uindices++;
2632 	}
2633 	return 0;
2634 }
2635 
2636 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2637 {
2638 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2639 		KVM_REG_ARM64_SYSREG |
2640 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2641 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2642 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2643 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2644 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2645 }
2646 
2647 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2648 {
2649 	if (!*uind)
2650 		return true;
2651 
2652 	if (put_user(sys_reg_to_index(reg), *uind))
2653 		return false;
2654 
2655 	(*uind)++;
2656 	return true;
2657 }
2658 
2659 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2660 			    const struct sys_reg_desc *rd,
2661 			    u64 __user **uind,
2662 			    unsigned int *total)
2663 {
2664 	/*
2665 	 * Ignore registers we trap but don't save,
2666 	 * and for which no custom user accessor is provided.
2667 	 */
2668 	if (!(rd->reg || rd->get_user))
2669 		return 0;
2670 
2671 	if (sysreg_hidden(vcpu, rd))
2672 		return 0;
2673 
2674 	if (!copy_reg_to_user(rd, uind))
2675 		return -EFAULT;
2676 
2677 	(*total)++;
2678 	return 0;
2679 }
2680 
2681 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2682 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2683 {
2684 	const struct sys_reg_desc *i2, *end2;
2685 	unsigned int total = 0;
2686 	int err;
2687 
2688 	i2 = sys_reg_descs;
2689 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2690 
2691 	while (i2 != end2) {
2692 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2693 		if (err)
2694 			return err;
2695 	}
2696 	return total;
2697 }
2698 
2699 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2700 {
2701 	return ARRAY_SIZE(invariant_sys_regs)
2702 		+ num_demux_regs()
2703 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2704 }
2705 
2706 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2707 {
2708 	unsigned int i;
2709 	int err;
2710 
2711 	/* Then give them all the invariant registers' indices. */
2712 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2713 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2714 			return -EFAULT;
2715 		uindices++;
2716 	}
2717 
2718 	err = walk_sys_regs(vcpu, uindices);
2719 	if (err < 0)
2720 		return err;
2721 	uindices += err;
2722 
2723 	return write_demux_regids(uindices);
2724 }
2725 
2726 void kvm_sys_reg_table_init(void)
2727 {
2728 	unsigned int i;
2729 	struct sys_reg_desc clidr;
2730 
2731 	/* Make sure tables are unique and in order. */
2732 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2733 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2734 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2735 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2736 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2737 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2738 
2739 	/* We abuse the reset function to overwrite the table itself. */
2740 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2741 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2742 
2743 	/*
2744 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2745 	 *
2746 	 *   If software reads the Cache Type fields from Ctype1
2747 	 *   upwards, once it has seen a value of 0b000, no caches
2748 	 *   exist at further-out levels of the hierarchy. So, for
2749 	 *   example, if Ctype3 is the first Cache Type field with a
2750 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2751 	 *   ignored.
2752 	 */
2753 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2754 	cache_levels = clidr.val;
2755 	for (i = 0; i < 7; i++)
2756 		if (((cache_levels >> (i*3)) & 7) == 0)
2757 			break;
2758 	/* Clear all higher bits. */
2759 	cache_levels &= (1 << (i*3))-1;
2760 }
2761