xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 76ce0265)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30 
31 #include <trace/events/kvm.h>
32 
33 #include "sys_regs.h"
34 
35 #include "trace.h"
36 
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 				 struct sys_reg_params *params,
50 				 const struct sys_reg_desc *r)
51 {
52 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 	print_sys_reg_instr(params);
54 	kvm_inject_undefined(vcpu);
55 	return false;
56 }
57 
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 			       struct sys_reg_params *params,
60 			       const struct sys_reg_desc *r)
61 {
62 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 	print_sys_reg_instr(params);
64 	kvm_inject_undefined(vcpu);
65 	return false;
66 }
67 
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70 	if (!vcpu->arch.sysregs_loaded_on_cpu)
71 		goto immediate_read;
72 
73 	/*
74 	 * System registers listed in the switch are not saved on every
75 	 * exit from the guest but are only saved on vcpu_put.
76 	 *
77 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78 	 * should never be listed below, because the guest cannot modify its
79 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80 	 * thread when emulating cross-VCPU communication.
81 	 */
82 	switch (reg) {
83 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
84 	case SCTLR_EL1:		return read_sysreg_s(SYS_SCTLR_EL12);
85 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
86 	case CPACR_EL1:		return read_sysreg_s(SYS_CPACR_EL12);
87 	case TTBR0_EL1:		return read_sysreg_s(SYS_TTBR0_EL12);
88 	case TTBR1_EL1:		return read_sysreg_s(SYS_TTBR1_EL12);
89 	case TCR_EL1:		return read_sysreg_s(SYS_TCR_EL12);
90 	case ESR_EL1:		return read_sysreg_s(SYS_ESR_EL12);
91 	case AFSR0_EL1:		return read_sysreg_s(SYS_AFSR0_EL12);
92 	case AFSR1_EL1:		return read_sysreg_s(SYS_AFSR1_EL12);
93 	case FAR_EL1:		return read_sysreg_s(SYS_FAR_EL12);
94 	case MAIR_EL1:		return read_sysreg_s(SYS_MAIR_EL12);
95 	case VBAR_EL1:		return read_sysreg_s(SYS_VBAR_EL12);
96 	case CONTEXTIDR_EL1:	return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
98 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
99 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
100 	case AMAIR_EL1:		return read_sysreg_s(SYS_AMAIR_EL12);
101 	case CNTKCTL_EL1:	return read_sysreg_s(SYS_CNTKCTL_EL12);
102 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
103 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
104 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
105 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
106 	}
107 
108 immediate_read:
109 	return __vcpu_sys_reg(vcpu, reg);
110 }
111 
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114 	if (!vcpu->arch.sysregs_loaded_on_cpu)
115 		goto immediate_write;
116 
117 	/*
118 	 * System registers listed in the switch are not restored on every
119 	 * entry to the guest but are only restored on vcpu_load.
120 	 *
121 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122 	 * should never be listed below, because the the MPIDR should only be
123 	 * set once, before running the VCPU, and never changed later.
124 	 */
125 	switch (reg) {
126 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
127 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	return;
128 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
129 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	return;
130 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	return;
131 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	return;
132 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	return;
133 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	return;
134 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	return;
135 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	return;
136 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	return;
137 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	return;
138 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	return;
139 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
141 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
142 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
143 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	return;
144 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	return;
145 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
146 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
147 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
148 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
149 	}
150 
151 immediate_write:
152 	 __vcpu_sys_reg(vcpu, reg) = val;
153 }
154 
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157 
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160 
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
163 {
164 	u32 ccsidr;
165 
166 	/* Make sure noone else changes CSSELR during this! */
167 	local_irq_disable();
168 	write_sysreg(csselr, csselr_el1);
169 	isb();
170 	ccsidr = read_sysreg(ccsidr_el1);
171 	local_irq_enable();
172 
173 	return ccsidr;
174 }
175 
176 /*
177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178  */
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180 			struct sys_reg_params *p,
181 			const struct sys_reg_desc *r)
182 {
183 	if (!p->is_write)
184 		return read_from_write_only(vcpu, p, r);
185 
186 	/*
187 	 * Only track S/W ops if we don't have FWB. It still indicates
188 	 * that the guest is a bit broken (S/W operations should only
189 	 * be done by firmware, knowing that there is only a single
190 	 * CPU left in the system, and certainly not from non-secure
191 	 * software).
192 	 */
193 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194 		kvm_set_way_flush(vcpu);
195 
196 	return true;
197 }
198 
199 /*
200  * Generic accessor for VM registers. Only called as long as HCR_TVM
201  * is set. If the guest enables the MMU, we stop trapping the VM
202  * sys_regs and leave it in complete control of the caches.
203  */
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205 			  struct sys_reg_params *p,
206 			  const struct sys_reg_desc *r)
207 {
208 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
209 	u64 val;
210 	int reg = r->reg;
211 
212 	BUG_ON(!p->is_write);
213 
214 	/* See the 32bit mapping in kvm_host.h */
215 	if (p->is_aarch32)
216 		reg = r->reg / 2;
217 
218 	if (!p->is_aarch32 || !p->is_32bit) {
219 		val = p->regval;
220 	} else {
221 		val = vcpu_read_sys_reg(vcpu, reg);
222 		if (r->reg % 2)
223 			val = (p->regval << 32) | (u64)lower_32_bits(val);
224 		else
225 			val = ((u64)upper_32_bits(val) << 32) |
226 				lower_32_bits(p->regval);
227 	}
228 	vcpu_write_sys_reg(vcpu, val, reg);
229 
230 	kvm_toggle_cache(vcpu, was_enabled);
231 	return true;
232 }
233 
234 /*
235  * Trap handler for the GICv3 SGI generation system register.
236  * Forward the request to the VGIC emulation.
237  * The cp15_64 code makes sure this automatically works
238  * for both AArch64 and AArch32 accesses.
239  */
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241 			   struct sys_reg_params *p,
242 			   const struct sys_reg_desc *r)
243 {
244 	bool g1;
245 
246 	if (!p->is_write)
247 		return read_from_write_only(vcpu, p, r);
248 
249 	/*
250 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254 	 * group.
255 	 */
256 	if (p->is_aarch32) {
257 		switch (p->Op1) {
258 		default:		/* Keep GCC quiet */
259 		case 0:			/* ICC_SGI1R */
260 			g1 = true;
261 			break;
262 		case 1:			/* ICC_ASGI1R */
263 		case 2:			/* ICC_SGI0R */
264 			g1 = false;
265 			break;
266 		}
267 	} else {
268 		switch (p->Op2) {
269 		default:		/* Keep GCC quiet */
270 		case 5:			/* ICC_SGI1R_EL1 */
271 			g1 = true;
272 			break;
273 		case 6:			/* ICC_ASGI1R_EL1 */
274 		case 7:			/* ICC_SGI0R_EL1 */
275 			g1 = false;
276 			break;
277 		}
278 	}
279 
280 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281 
282 	return true;
283 }
284 
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286 			   struct sys_reg_params *p,
287 			   const struct sys_reg_desc *r)
288 {
289 	if (p->is_write)
290 		return ignore_write(vcpu, p);
291 
292 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293 	return true;
294 }
295 
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297 			struct sys_reg_params *p,
298 			const struct sys_reg_desc *r)
299 {
300 	if (p->is_write)
301 		return ignore_write(vcpu, p);
302 	else
303 		return read_zero(vcpu, p);
304 }
305 
306 /*
307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310  * treat it separately.
311  */
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313 			  struct sys_reg_params *p,
314 			  const struct sys_reg_desc *r)
315 {
316 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319 
320 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321 		kvm_inject_undefined(vcpu);
322 		return false;
323 	}
324 
325 	if (p->is_write && sr == SYS_LORID_EL1)
326 		return write_to_read_only(vcpu, p, r);
327 
328 	return trap_raz_wi(vcpu, p, r);
329 }
330 
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332 			   struct sys_reg_params *p,
333 			   const struct sys_reg_desc *r)
334 {
335 	if (p->is_write) {
336 		return ignore_write(vcpu, p);
337 	} else {
338 		p->regval = (1 << 3);
339 		return true;
340 	}
341 }
342 
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344 				   struct sys_reg_params *p,
345 				   const struct sys_reg_desc *r)
346 {
347 	if (p->is_write) {
348 		return ignore_write(vcpu, p);
349 	} else {
350 		p->regval = read_sysreg(dbgauthstatus_el1);
351 		return true;
352 	}
353 }
354 
355 /*
356  * We want to avoid world-switching all the DBG registers all the
357  * time:
358  *
359  * - If we've touched any debug register, it is likely that we're
360  *   going to touch more of them. It then makes sense to disable the
361  *   traps and start doing the save/restore dance
362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363  *   then mandatory to save/restore the registers, as the guest
364  *   depends on them.
365  *
366  * For this, we use a DIRTY bit, indicating the guest has modified the
367  * debug registers, used as follow:
368  *
369  * On guest entry:
370  * - If the dirty bit is set (because we're coming back from trapping),
371  *   disable the traps, save host registers, restore guest registers.
372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373  *   set the dirty bit, disable the traps, save host registers,
374  *   restore guest registers.
375  * - Otherwise, enable the traps
376  *
377  * On guest exit:
378  * - If the dirty bit is set, save guest registers, restore host
379  *   registers and clear the dirty bit. This ensure that the host can
380  *   now use the debug registers.
381  */
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383 			    struct sys_reg_params *p,
384 			    const struct sys_reg_desc *r)
385 {
386 	if (p->is_write) {
387 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389 	} else {
390 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391 	}
392 
393 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394 
395 	return true;
396 }
397 
398 /*
399  * reg_to_dbg/dbg_to_reg
400  *
401  * A 32 bit write to a debug register leave top bits alone
402  * A 32 bit read from a debug register only returns the bottom bits
403  *
404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405  * hyp.S code switches between host and guest values in future.
406  */
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408 		       struct sys_reg_params *p,
409 		       u64 *dbg_reg)
410 {
411 	u64 val = p->regval;
412 
413 	if (p->is_32bit) {
414 		val &= 0xffffffffUL;
415 		val |= ((*dbg_reg >> 32) << 32);
416 	}
417 
418 	*dbg_reg = val;
419 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421 
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423 		       struct sys_reg_params *p,
424 		       u64 *dbg_reg)
425 {
426 	p->regval = *dbg_reg;
427 	if (p->is_32bit)
428 		p->regval &= 0xffffffffUL;
429 }
430 
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432 		     struct sys_reg_params *p,
433 		     const struct sys_reg_desc *rd)
434 {
435 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
436 
437 	if (p->is_write)
438 		reg_to_dbg(vcpu, p, dbg_reg);
439 	else
440 		dbg_to_reg(vcpu, p, dbg_reg);
441 
442 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
443 
444 	return true;
445 }
446 
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448 		const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
451 
452 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453 		return -EFAULT;
454 	return 0;
455 }
456 
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458 	const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
461 
462 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463 		return -EFAULT;
464 	return 0;
465 }
466 
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468 		      const struct sys_reg_desc *rd)
469 {
470 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
471 }
472 
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474 		     struct sys_reg_params *p,
475 		     const struct sys_reg_desc *rd)
476 {
477 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
478 
479 	if (p->is_write)
480 		reg_to_dbg(vcpu, p, dbg_reg);
481 	else
482 		dbg_to_reg(vcpu, p, dbg_reg);
483 
484 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
485 
486 	return true;
487 }
488 
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 		const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
493 
494 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495 		return -EFAULT;
496 
497 	return 0;
498 }
499 
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 	const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504 
505 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506 		return -EFAULT;
507 	return 0;
508 }
509 
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511 		      const struct sys_reg_desc *rd)
512 {
513 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
514 }
515 
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517 		     struct sys_reg_params *p,
518 		     const struct sys_reg_desc *rd)
519 {
520 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
521 
522 	if (p->is_write)
523 		reg_to_dbg(vcpu, p, dbg_reg);
524 	else
525 		dbg_to_reg(vcpu, p, dbg_reg);
526 
527 	trace_trap_reg(__func__, rd->reg, p->is_write,
528 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
529 
530 	return true;
531 }
532 
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534 		const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
537 
538 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539 		return -EFAULT;
540 	return 0;
541 }
542 
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544 	const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
547 
548 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549 		return -EFAULT;
550 	return 0;
551 }
552 
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554 		      const struct sys_reg_desc *rd)
555 {
556 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
557 }
558 
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560 		     struct sys_reg_params *p,
561 		     const struct sys_reg_desc *rd)
562 {
563 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
564 
565 	if (p->is_write)
566 		reg_to_dbg(vcpu, p, dbg_reg);
567 	else
568 		dbg_to_reg(vcpu, p, dbg_reg);
569 
570 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
571 
572 	return true;
573 }
574 
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 		const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
579 
580 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581 		return -EFAULT;
582 	return 0;
583 }
584 
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586 	const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
589 
590 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591 		return -EFAULT;
592 	return 0;
593 }
594 
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596 		      const struct sys_reg_desc *rd)
597 {
598 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
599 }
600 
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603 	u64 amair = read_sysreg(amair_el1);
604 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606 
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 mpidr;
610 
611 	/*
612 	 * Map the vcpu_id into the first three affinity level fields of
613 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
614 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615 	 * of the GICv3 to be able to address each CPU directly when
616 	 * sending IPIs.
617 	 */
618 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623 
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626 	u64 pmcr, val;
627 
628 	pmcr = read_sysreg(pmcr_el0);
629 	/*
630 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631 	 * except PMCR.E resetting to zero.
632 	 */
633 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635 	if (!system_supports_32bit_el0())
636 		val |= ARMV8_PMU_PMCR_LC;
637 	__vcpu_sys_reg(vcpu, r->reg) = val;
638 }
639 
640 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
641 {
642 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
643 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
644 
645 	if (!enabled)
646 		kvm_inject_undefined(vcpu);
647 
648 	return !enabled;
649 }
650 
651 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
652 {
653 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
654 }
655 
656 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
657 {
658 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
659 }
660 
661 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
662 {
663 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
664 }
665 
666 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
667 {
668 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
669 }
670 
671 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 			const struct sys_reg_desc *r)
673 {
674 	u64 val;
675 
676 	if (!kvm_arm_pmu_v3_ready(vcpu))
677 		return trap_raz_wi(vcpu, p, r);
678 
679 	if (pmu_access_el0_disabled(vcpu))
680 		return false;
681 
682 	if (p->is_write) {
683 		/* Only update writeable bits of PMCR */
684 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
685 		val &= ~ARMV8_PMU_PMCR_MASK;
686 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
687 		if (!system_supports_32bit_el0())
688 			val |= ARMV8_PMU_PMCR_LC;
689 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
690 		kvm_pmu_handle_pmcr(vcpu, val);
691 		kvm_vcpu_pmu_restore_guest(vcpu);
692 	} else {
693 		/* PMCR.P & PMCR.C are RAZ */
694 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
695 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
696 		p->regval = val;
697 	}
698 
699 	return true;
700 }
701 
702 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703 			  const struct sys_reg_desc *r)
704 {
705 	if (!kvm_arm_pmu_v3_ready(vcpu))
706 		return trap_raz_wi(vcpu, p, r);
707 
708 	if (pmu_access_event_counter_el0_disabled(vcpu))
709 		return false;
710 
711 	if (p->is_write)
712 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
713 	else
714 		/* return PMSELR.SEL field */
715 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
716 			    & ARMV8_PMU_COUNTER_MASK;
717 
718 	return true;
719 }
720 
721 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
722 			  const struct sys_reg_desc *r)
723 {
724 	u64 pmceid;
725 
726 	if (!kvm_arm_pmu_v3_ready(vcpu))
727 		return trap_raz_wi(vcpu, p, r);
728 
729 	BUG_ON(p->is_write);
730 
731 	if (pmu_access_el0_disabled(vcpu))
732 		return false;
733 
734 	if (!(p->Op2 & 1))
735 		pmceid = read_sysreg(pmceid0_el0);
736 	else
737 		pmceid = read_sysreg(pmceid1_el0);
738 
739 	p->regval = pmceid;
740 
741 	return true;
742 }
743 
744 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
745 {
746 	u64 pmcr, val;
747 
748 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
749 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
750 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
751 		kvm_inject_undefined(vcpu);
752 		return false;
753 	}
754 
755 	return true;
756 }
757 
758 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
759 			      struct sys_reg_params *p,
760 			      const struct sys_reg_desc *r)
761 {
762 	u64 idx;
763 
764 	if (!kvm_arm_pmu_v3_ready(vcpu))
765 		return trap_raz_wi(vcpu, p, r);
766 
767 	if (r->CRn == 9 && r->CRm == 13) {
768 		if (r->Op2 == 2) {
769 			/* PMXEVCNTR_EL0 */
770 			if (pmu_access_event_counter_el0_disabled(vcpu))
771 				return false;
772 
773 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
774 			      & ARMV8_PMU_COUNTER_MASK;
775 		} else if (r->Op2 == 0) {
776 			/* PMCCNTR_EL0 */
777 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
778 				return false;
779 
780 			idx = ARMV8_PMU_CYCLE_IDX;
781 		} else {
782 			return false;
783 		}
784 	} else if (r->CRn == 0 && r->CRm == 9) {
785 		/* PMCCNTR */
786 		if (pmu_access_event_counter_el0_disabled(vcpu))
787 			return false;
788 
789 		idx = ARMV8_PMU_CYCLE_IDX;
790 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
791 		/* PMEVCNTRn_EL0 */
792 		if (pmu_access_event_counter_el0_disabled(vcpu))
793 			return false;
794 
795 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
796 	} else {
797 		return false;
798 	}
799 
800 	if (!pmu_counter_idx_valid(vcpu, idx))
801 		return false;
802 
803 	if (p->is_write) {
804 		if (pmu_access_el0_disabled(vcpu))
805 			return false;
806 
807 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
808 	} else {
809 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
810 	}
811 
812 	return true;
813 }
814 
815 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
816 			       const struct sys_reg_desc *r)
817 {
818 	u64 idx, reg;
819 
820 	if (!kvm_arm_pmu_v3_ready(vcpu))
821 		return trap_raz_wi(vcpu, p, r);
822 
823 	if (pmu_access_el0_disabled(vcpu))
824 		return false;
825 
826 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
827 		/* PMXEVTYPER_EL0 */
828 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
829 		reg = PMEVTYPER0_EL0 + idx;
830 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
831 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
832 		if (idx == ARMV8_PMU_CYCLE_IDX)
833 			reg = PMCCFILTR_EL0;
834 		else
835 			/* PMEVTYPERn_EL0 */
836 			reg = PMEVTYPER0_EL0 + idx;
837 	} else {
838 		BUG();
839 	}
840 
841 	if (!pmu_counter_idx_valid(vcpu, idx))
842 		return false;
843 
844 	if (p->is_write) {
845 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
846 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
847 		kvm_vcpu_pmu_restore_guest(vcpu);
848 	} else {
849 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
850 	}
851 
852 	return true;
853 }
854 
855 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
856 			   const struct sys_reg_desc *r)
857 {
858 	u64 val, mask;
859 
860 	if (!kvm_arm_pmu_v3_ready(vcpu))
861 		return trap_raz_wi(vcpu, p, r);
862 
863 	if (pmu_access_el0_disabled(vcpu))
864 		return false;
865 
866 	mask = kvm_pmu_valid_counter_mask(vcpu);
867 	if (p->is_write) {
868 		val = p->regval & mask;
869 		if (r->Op2 & 0x1) {
870 			/* accessing PMCNTENSET_EL0 */
871 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872 			kvm_pmu_enable_counter_mask(vcpu, val);
873 			kvm_vcpu_pmu_restore_guest(vcpu);
874 		} else {
875 			/* accessing PMCNTENCLR_EL0 */
876 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877 			kvm_pmu_disable_counter_mask(vcpu, val);
878 		}
879 	} else {
880 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
881 	}
882 
883 	return true;
884 }
885 
886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887 			   const struct sys_reg_desc *r)
888 {
889 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
890 
891 	if (!kvm_arm_pmu_v3_ready(vcpu))
892 		return trap_raz_wi(vcpu, p, r);
893 
894 	if (!vcpu_mode_priv(vcpu)) {
895 		kvm_inject_undefined(vcpu);
896 		return false;
897 	}
898 
899 	if (p->is_write) {
900 		u64 val = p->regval & mask;
901 
902 		if (r->Op2 & 0x1)
903 			/* accessing PMINTENSET_EL1 */
904 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
905 		else
906 			/* accessing PMINTENCLR_EL1 */
907 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
908 	} else {
909 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
910 	}
911 
912 	return true;
913 }
914 
915 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
916 			 const struct sys_reg_desc *r)
917 {
918 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
919 
920 	if (!kvm_arm_pmu_v3_ready(vcpu))
921 		return trap_raz_wi(vcpu, p, r);
922 
923 	if (pmu_access_el0_disabled(vcpu))
924 		return false;
925 
926 	if (p->is_write) {
927 		if (r->CRm & 0x2)
928 			/* accessing PMOVSSET_EL0 */
929 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
930 		else
931 			/* accessing PMOVSCLR_EL0 */
932 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
933 	} else {
934 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
935 	}
936 
937 	return true;
938 }
939 
940 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
941 			   const struct sys_reg_desc *r)
942 {
943 	u64 mask;
944 
945 	if (!kvm_arm_pmu_v3_ready(vcpu))
946 		return trap_raz_wi(vcpu, p, r);
947 
948 	if (!p->is_write)
949 		return read_from_write_only(vcpu, p, r);
950 
951 	if (pmu_write_swinc_el0_disabled(vcpu))
952 		return false;
953 
954 	mask = kvm_pmu_valid_counter_mask(vcpu);
955 	kvm_pmu_software_increment(vcpu, p->regval & mask);
956 	return true;
957 }
958 
959 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960 			     const struct sys_reg_desc *r)
961 {
962 	if (!kvm_arm_pmu_v3_ready(vcpu))
963 		return trap_raz_wi(vcpu, p, r);
964 
965 	if (p->is_write) {
966 		if (!vcpu_mode_priv(vcpu)) {
967 			kvm_inject_undefined(vcpu);
968 			return false;
969 		}
970 
971 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
972 			       p->regval & ARMV8_PMU_USERENR_MASK;
973 	} else {
974 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
975 			    & ARMV8_PMU_USERENR_MASK;
976 	}
977 
978 	return true;
979 }
980 
981 #define reg_to_encoding(x)						\
982 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
983 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
984 
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
987 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
988 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
989 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
990 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
991 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
992 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
993 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
994 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
995 
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n)						\
998 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
999 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000 
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n)						\
1003 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1004 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005 
1006 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1007 			 struct sys_reg_params *p,
1008 			 const struct sys_reg_desc *rd)
1009 {
1010 	kvm_arm_vcpu_ptrauth_trap(vcpu);
1011 
1012 	/*
1013 	 * Return false for both cases as we never skip the trapped
1014 	 * instruction:
1015 	 *
1016 	 * - Either we re-execute the same key register access instruction
1017 	 *   after enabling ptrauth.
1018 	 * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1019 	 */
1020 	return false;
1021 }
1022 
1023 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1024 			const struct sys_reg_desc *rd)
1025 {
1026 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1027 }
1028 
1029 #define __PTRAUTH_KEY(k)						\
1030 	{ SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,		\
1031 	.visibility = ptrauth_visibility}
1032 
1033 #define PTRAUTH_KEY(k)							\
1034 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1035 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1036 
1037 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1038 			      struct sys_reg_params *p,
1039 			      const struct sys_reg_desc *r)
1040 {
1041 	enum kvm_arch_timers tmr;
1042 	enum kvm_arch_timer_regs treg;
1043 	u64 reg = reg_to_encoding(r);
1044 
1045 	switch (reg) {
1046 	case SYS_CNTP_TVAL_EL0:
1047 	case SYS_AARCH32_CNTP_TVAL:
1048 		tmr = TIMER_PTIMER;
1049 		treg = TIMER_REG_TVAL;
1050 		break;
1051 	case SYS_CNTP_CTL_EL0:
1052 	case SYS_AARCH32_CNTP_CTL:
1053 		tmr = TIMER_PTIMER;
1054 		treg = TIMER_REG_CTL;
1055 		break;
1056 	case SYS_CNTP_CVAL_EL0:
1057 	case SYS_AARCH32_CNTP_CVAL:
1058 		tmr = TIMER_PTIMER;
1059 		treg = TIMER_REG_CVAL;
1060 		break;
1061 	default:
1062 		BUG();
1063 	}
1064 
1065 	if (p->is_write)
1066 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1067 	else
1068 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1069 
1070 	return true;
1071 }
1072 
1073 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1074 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1075 		struct sys_reg_desc const *r, bool raz)
1076 {
1077 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1078 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1079 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1080 
1081 	if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1082 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1083 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1084 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1085 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1086 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1087 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1088 	}
1089 
1090 	return val;
1091 }
1092 
1093 /* cpufeature ID register access trap handlers */
1094 
1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096 			    struct sys_reg_params *p,
1097 			    const struct sys_reg_desc *r,
1098 			    bool raz)
1099 {
1100 	if (p->is_write)
1101 		return write_to_read_only(vcpu, p, r);
1102 
1103 	p->regval = read_id_reg(vcpu, r, raz);
1104 	return true;
1105 }
1106 
1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108 			  struct sys_reg_params *p,
1109 			  const struct sys_reg_desc *r)
1110 {
1111 	return __access_id_reg(vcpu, p, r, false);
1112 }
1113 
1114 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1115 			      struct sys_reg_params *p,
1116 			      const struct sys_reg_desc *r)
1117 {
1118 	return __access_id_reg(vcpu, p, r, true);
1119 }
1120 
1121 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1122 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1123 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1124 
1125 /* Visibility overrides for SVE-specific control registers */
1126 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1127 				   const struct sys_reg_desc *rd)
1128 {
1129 	if (vcpu_has_sve(vcpu))
1130 		return 0;
1131 
1132 	return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1133 }
1134 
1135 /* Visibility overrides for SVE-specific ID registers */
1136 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1137 				      const struct sys_reg_desc *rd)
1138 {
1139 	if (vcpu_has_sve(vcpu))
1140 		return 0;
1141 
1142 	return REG_HIDDEN_USER;
1143 }
1144 
1145 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1146 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1147 {
1148 	if (!vcpu_has_sve(vcpu))
1149 		return 0;
1150 
1151 	return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1152 }
1153 
1154 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1155 				   struct sys_reg_params *p,
1156 				   const struct sys_reg_desc *rd)
1157 {
1158 	if (p->is_write)
1159 		return write_to_read_only(vcpu, p, rd);
1160 
1161 	p->regval = guest_id_aa64zfr0_el1(vcpu);
1162 	return true;
1163 }
1164 
1165 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1166 		const struct sys_reg_desc *rd,
1167 		const struct kvm_one_reg *reg, void __user *uaddr)
1168 {
1169 	u64 val;
1170 
1171 	if (WARN_ON(!vcpu_has_sve(vcpu)))
1172 		return -ENOENT;
1173 
1174 	val = guest_id_aa64zfr0_el1(vcpu);
1175 	return reg_to_user(uaddr, &val, reg->id);
1176 }
1177 
1178 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1179 		const struct sys_reg_desc *rd,
1180 		const struct kvm_one_reg *reg, void __user *uaddr)
1181 {
1182 	const u64 id = sys_reg_to_index(rd);
1183 	int err;
1184 	u64 val;
1185 
1186 	if (WARN_ON(!vcpu_has_sve(vcpu)))
1187 		return -ENOENT;
1188 
1189 	err = reg_from_user(&val, uaddr, id);
1190 	if (err)
1191 		return err;
1192 
1193 	/* This is what we mean by invariant: you can't change it. */
1194 	if (val != guest_id_aa64zfr0_el1(vcpu))
1195 		return -EINVAL;
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * cpufeature ID register user accessors
1202  *
1203  * For now, these registers are immutable for userspace, so no values
1204  * are stored, and for set_id_reg() we don't allow the effective value
1205  * to be changed.
1206  */
1207 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1208 			const struct sys_reg_desc *rd, void __user *uaddr,
1209 			bool raz)
1210 {
1211 	const u64 id = sys_reg_to_index(rd);
1212 	const u64 val = read_id_reg(vcpu, rd, raz);
1213 
1214 	return reg_to_user(uaddr, &val, id);
1215 }
1216 
1217 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1218 			const struct sys_reg_desc *rd, void __user *uaddr,
1219 			bool raz)
1220 {
1221 	const u64 id = sys_reg_to_index(rd);
1222 	int err;
1223 	u64 val;
1224 
1225 	err = reg_from_user(&val, uaddr, id);
1226 	if (err)
1227 		return err;
1228 
1229 	/* This is what we mean by invariant: you can't change it. */
1230 	if (val != read_id_reg(vcpu, rd, raz))
1231 		return -EINVAL;
1232 
1233 	return 0;
1234 }
1235 
1236 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1237 		      const struct kvm_one_reg *reg, void __user *uaddr)
1238 {
1239 	return __get_id_reg(vcpu, rd, uaddr, false);
1240 }
1241 
1242 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1243 		      const struct kvm_one_reg *reg, void __user *uaddr)
1244 {
1245 	return __set_id_reg(vcpu, rd, uaddr, false);
1246 }
1247 
1248 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1249 			  const struct kvm_one_reg *reg, void __user *uaddr)
1250 {
1251 	return __get_id_reg(vcpu, rd, uaddr, true);
1252 }
1253 
1254 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1255 			  const struct kvm_one_reg *reg, void __user *uaddr)
1256 {
1257 	return __set_id_reg(vcpu, rd, uaddr, true);
1258 }
1259 
1260 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261 		       const struct sys_reg_desc *r)
1262 {
1263 	if (p->is_write)
1264 		return write_to_read_only(vcpu, p, r);
1265 
1266 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1267 	return true;
1268 }
1269 
1270 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1271 			 const struct sys_reg_desc *r)
1272 {
1273 	if (p->is_write)
1274 		return write_to_read_only(vcpu, p, r);
1275 
1276 	p->regval = read_sysreg(clidr_el1);
1277 	return true;
1278 }
1279 
1280 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281 			  const struct sys_reg_desc *r)
1282 {
1283 	if (p->is_write)
1284 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1285 	else
1286 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1287 	return true;
1288 }
1289 
1290 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291 			  const struct sys_reg_desc *r)
1292 {
1293 	u32 csselr;
1294 
1295 	if (p->is_write)
1296 		return write_to_read_only(vcpu, p, r);
1297 
1298 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1299 	p->regval = get_ccsidr(csselr);
1300 
1301 	/*
1302 	 * Guests should not be doing cache operations by set/way at all, and
1303 	 * for this reason, we trap them and attempt to infer the intent, so
1304 	 * that we can flush the entire guest's address space at the appropriate
1305 	 * time.
1306 	 * To prevent this trapping from causing performance problems, let's
1307 	 * expose the geometry of all data and unified caches (which are
1308 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1309 	 * [If guests should attempt to infer aliasing properties from the
1310 	 * geometry (which is not permitted by the architecture), they would
1311 	 * only do so for virtually indexed caches.]
1312 	 */
1313 	if (!(csselr & 1)) // data or unified cache
1314 		p->regval &= ~GENMASK(27, 3);
1315 	return true;
1316 }
1317 
1318 /* sys_reg_desc initialiser for known cpufeature ID registers */
1319 #define ID_SANITISED(name) {			\
1320 	SYS_DESC(SYS_##name),			\
1321 	.access	= access_id_reg,		\
1322 	.get_user = get_id_reg,			\
1323 	.set_user = set_id_reg,			\
1324 }
1325 
1326 /*
1327  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1328  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1329  * (1 <= crm < 8, 0 <= Op2 < 8).
1330  */
1331 #define ID_UNALLOCATED(crm, op2) {			\
1332 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1333 	.access = access_raz_id_reg,			\
1334 	.get_user = get_raz_id_reg,			\
1335 	.set_user = set_raz_id_reg,			\
1336 }
1337 
1338 /*
1339  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1340  * For now, these are exposed just like unallocated ID regs: they appear
1341  * RAZ for the guest.
1342  */
1343 #define ID_HIDDEN(name) {			\
1344 	SYS_DESC(SYS_##name),			\
1345 	.access = access_raz_id_reg,		\
1346 	.get_user = get_raz_id_reg,		\
1347 	.set_user = set_raz_id_reg,		\
1348 }
1349 
1350 /*
1351  * Architected system registers.
1352  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1353  *
1354  * Debug handling: We do trap most, if not all debug related system
1355  * registers. The implementation is good enough to ensure that a guest
1356  * can use these with minimal performance degradation. The drawback is
1357  * that we don't implement any of the external debug, none of the
1358  * OSlock protocol. This should be revisited if we ever encounter a
1359  * more demanding guest...
1360  */
1361 static const struct sys_reg_desc sys_reg_descs[] = {
1362 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1363 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1364 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1365 
1366 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1367 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1368 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1369 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1370 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1371 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1372 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1373 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1374 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1375 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1376 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1377 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1378 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1379 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1380 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1381 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1382 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1383 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1384 
1385 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1386 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1387 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1388 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1389 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1390 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1391 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1392 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1393 
1394 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1395 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1396 	// DBGDTR[TR]X_EL0 share the same encoding
1397 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1398 
1399 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1400 
1401 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1402 
1403 	/*
1404 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1405 	 * entries in arm64_ftr_regs[].
1406 	 */
1407 
1408 	/* AArch64 mappings of the AArch32 ID registers */
1409 	/* CRm=1 */
1410 	ID_SANITISED(ID_PFR0_EL1),
1411 	ID_SANITISED(ID_PFR1_EL1),
1412 	ID_SANITISED(ID_DFR0_EL1),
1413 	ID_HIDDEN(ID_AFR0_EL1),
1414 	ID_SANITISED(ID_MMFR0_EL1),
1415 	ID_SANITISED(ID_MMFR1_EL1),
1416 	ID_SANITISED(ID_MMFR2_EL1),
1417 	ID_SANITISED(ID_MMFR3_EL1),
1418 
1419 	/* CRm=2 */
1420 	ID_SANITISED(ID_ISAR0_EL1),
1421 	ID_SANITISED(ID_ISAR1_EL1),
1422 	ID_SANITISED(ID_ISAR2_EL1),
1423 	ID_SANITISED(ID_ISAR3_EL1),
1424 	ID_SANITISED(ID_ISAR4_EL1),
1425 	ID_SANITISED(ID_ISAR5_EL1),
1426 	ID_SANITISED(ID_MMFR4_EL1),
1427 	ID_SANITISED(ID_ISAR6_EL1),
1428 
1429 	/* CRm=3 */
1430 	ID_SANITISED(MVFR0_EL1),
1431 	ID_SANITISED(MVFR1_EL1),
1432 	ID_SANITISED(MVFR2_EL1),
1433 	ID_UNALLOCATED(3,3),
1434 	ID_UNALLOCATED(3,4),
1435 	ID_UNALLOCATED(3,5),
1436 	ID_UNALLOCATED(3,6),
1437 	ID_UNALLOCATED(3,7),
1438 
1439 	/* AArch64 ID registers */
1440 	/* CRm=4 */
1441 	ID_SANITISED(ID_AA64PFR0_EL1),
1442 	ID_SANITISED(ID_AA64PFR1_EL1),
1443 	ID_UNALLOCATED(4,2),
1444 	ID_UNALLOCATED(4,3),
1445 	{ SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1446 	ID_UNALLOCATED(4,5),
1447 	ID_UNALLOCATED(4,6),
1448 	ID_UNALLOCATED(4,7),
1449 
1450 	/* CRm=5 */
1451 	ID_SANITISED(ID_AA64DFR0_EL1),
1452 	ID_SANITISED(ID_AA64DFR1_EL1),
1453 	ID_UNALLOCATED(5,2),
1454 	ID_UNALLOCATED(5,3),
1455 	ID_HIDDEN(ID_AA64AFR0_EL1),
1456 	ID_HIDDEN(ID_AA64AFR1_EL1),
1457 	ID_UNALLOCATED(5,6),
1458 	ID_UNALLOCATED(5,7),
1459 
1460 	/* CRm=6 */
1461 	ID_SANITISED(ID_AA64ISAR0_EL1),
1462 	ID_SANITISED(ID_AA64ISAR1_EL1),
1463 	ID_UNALLOCATED(6,2),
1464 	ID_UNALLOCATED(6,3),
1465 	ID_UNALLOCATED(6,4),
1466 	ID_UNALLOCATED(6,5),
1467 	ID_UNALLOCATED(6,6),
1468 	ID_UNALLOCATED(6,7),
1469 
1470 	/* CRm=7 */
1471 	ID_SANITISED(ID_AA64MMFR0_EL1),
1472 	ID_SANITISED(ID_AA64MMFR1_EL1),
1473 	ID_SANITISED(ID_AA64MMFR2_EL1),
1474 	ID_UNALLOCATED(7,3),
1475 	ID_UNALLOCATED(7,4),
1476 	ID_UNALLOCATED(7,5),
1477 	ID_UNALLOCATED(7,6),
1478 	ID_UNALLOCATED(7,7),
1479 
1480 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1481 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1482 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1483 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1484 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1485 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1486 
1487 	PTRAUTH_KEY(APIA),
1488 	PTRAUTH_KEY(APIB),
1489 	PTRAUTH_KEY(APDA),
1490 	PTRAUTH_KEY(APDB),
1491 	PTRAUTH_KEY(APGA),
1492 
1493 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1494 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1495 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1496 
1497 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1498 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1499 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1500 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1501 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1502 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1503 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1504 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1505 
1506 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1507 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1508 
1509 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1510 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1511 
1512 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1513 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1514 
1515 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1516 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1517 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1518 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1519 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1520 
1521 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1522 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1523 
1524 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1525 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1526 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1527 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1528 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1529 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1530 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1531 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1532 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1533 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1534 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1535 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1536 
1537 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1538 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1539 
1540 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1541 
1542 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1543 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1544 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1545 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1546 
1547 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1548 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1549 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1550 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1551 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1552 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1553 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1554 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1555 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1556 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1557 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1558 	/*
1559 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1560 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1561 	 */
1562 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1563 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1564 
1565 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1567 
1568 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1569 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1570 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1571 
1572 	/* PMEVCNTRn_EL0 */
1573 	PMU_PMEVCNTR_EL0(0),
1574 	PMU_PMEVCNTR_EL0(1),
1575 	PMU_PMEVCNTR_EL0(2),
1576 	PMU_PMEVCNTR_EL0(3),
1577 	PMU_PMEVCNTR_EL0(4),
1578 	PMU_PMEVCNTR_EL0(5),
1579 	PMU_PMEVCNTR_EL0(6),
1580 	PMU_PMEVCNTR_EL0(7),
1581 	PMU_PMEVCNTR_EL0(8),
1582 	PMU_PMEVCNTR_EL0(9),
1583 	PMU_PMEVCNTR_EL0(10),
1584 	PMU_PMEVCNTR_EL0(11),
1585 	PMU_PMEVCNTR_EL0(12),
1586 	PMU_PMEVCNTR_EL0(13),
1587 	PMU_PMEVCNTR_EL0(14),
1588 	PMU_PMEVCNTR_EL0(15),
1589 	PMU_PMEVCNTR_EL0(16),
1590 	PMU_PMEVCNTR_EL0(17),
1591 	PMU_PMEVCNTR_EL0(18),
1592 	PMU_PMEVCNTR_EL0(19),
1593 	PMU_PMEVCNTR_EL0(20),
1594 	PMU_PMEVCNTR_EL0(21),
1595 	PMU_PMEVCNTR_EL0(22),
1596 	PMU_PMEVCNTR_EL0(23),
1597 	PMU_PMEVCNTR_EL0(24),
1598 	PMU_PMEVCNTR_EL0(25),
1599 	PMU_PMEVCNTR_EL0(26),
1600 	PMU_PMEVCNTR_EL0(27),
1601 	PMU_PMEVCNTR_EL0(28),
1602 	PMU_PMEVCNTR_EL0(29),
1603 	PMU_PMEVCNTR_EL0(30),
1604 	/* PMEVTYPERn_EL0 */
1605 	PMU_PMEVTYPER_EL0(0),
1606 	PMU_PMEVTYPER_EL0(1),
1607 	PMU_PMEVTYPER_EL0(2),
1608 	PMU_PMEVTYPER_EL0(3),
1609 	PMU_PMEVTYPER_EL0(4),
1610 	PMU_PMEVTYPER_EL0(5),
1611 	PMU_PMEVTYPER_EL0(6),
1612 	PMU_PMEVTYPER_EL0(7),
1613 	PMU_PMEVTYPER_EL0(8),
1614 	PMU_PMEVTYPER_EL0(9),
1615 	PMU_PMEVTYPER_EL0(10),
1616 	PMU_PMEVTYPER_EL0(11),
1617 	PMU_PMEVTYPER_EL0(12),
1618 	PMU_PMEVTYPER_EL0(13),
1619 	PMU_PMEVTYPER_EL0(14),
1620 	PMU_PMEVTYPER_EL0(15),
1621 	PMU_PMEVTYPER_EL0(16),
1622 	PMU_PMEVTYPER_EL0(17),
1623 	PMU_PMEVTYPER_EL0(18),
1624 	PMU_PMEVTYPER_EL0(19),
1625 	PMU_PMEVTYPER_EL0(20),
1626 	PMU_PMEVTYPER_EL0(21),
1627 	PMU_PMEVTYPER_EL0(22),
1628 	PMU_PMEVTYPER_EL0(23),
1629 	PMU_PMEVTYPER_EL0(24),
1630 	PMU_PMEVTYPER_EL0(25),
1631 	PMU_PMEVTYPER_EL0(26),
1632 	PMU_PMEVTYPER_EL0(27),
1633 	PMU_PMEVTYPER_EL0(28),
1634 	PMU_PMEVTYPER_EL0(29),
1635 	PMU_PMEVTYPER_EL0(30),
1636 	/*
1637 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1638 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1639 	 */
1640 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1641 
1642 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1643 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1644 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1645 };
1646 
1647 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1648 			struct sys_reg_params *p,
1649 			const struct sys_reg_desc *r)
1650 {
1651 	if (p->is_write) {
1652 		return ignore_write(vcpu, p);
1653 	} else {
1654 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1655 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1656 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1657 
1658 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1659 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1660 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1661 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1662 		return true;
1663 	}
1664 }
1665 
1666 static bool trap_debug32(struct kvm_vcpu *vcpu,
1667 			 struct sys_reg_params *p,
1668 			 const struct sys_reg_desc *r)
1669 {
1670 	if (p->is_write) {
1671 		vcpu_cp14(vcpu, r->reg) = p->regval;
1672 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1673 	} else {
1674 		p->regval = vcpu_cp14(vcpu, r->reg);
1675 	}
1676 
1677 	return true;
1678 }
1679 
1680 /* AArch32 debug register mappings
1681  *
1682  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1683  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1684  *
1685  * All control registers and watchpoint value registers are mapped to
1686  * the lower 32 bits of their AArch64 equivalents. We share the trap
1687  * handlers with the above AArch64 code which checks what mode the
1688  * system is in.
1689  */
1690 
1691 static bool trap_xvr(struct kvm_vcpu *vcpu,
1692 		     struct sys_reg_params *p,
1693 		     const struct sys_reg_desc *rd)
1694 {
1695 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1696 
1697 	if (p->is_write) {
1698 		u64 val = *dbg_reg;
1699 
1700 		val &= 0xffffffffUL;
1701 		val |= p->regval << 32;
1702 		*dbg_reg = val;
1703 
1704 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1705 	} else {
1706 		p->regval = *dbg_reg >> 32;
1707 	}
1708 
1709 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1710 
1711 	return true;
1712 }
1713 
1714 #define DBG_BCR_BVR_WCR_WVR(n)						\
1715 	/* DBGBVRn */							\
1716 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1717 	/* DBGBCRn */							\
1718 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1719 	/* DBGWVRn */							\
1720 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1721 	/* DBGWCRn */							\
1722 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1723 
1724 #define DBGBXVR(n)							\
1725 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1726 
1727 /*
1728  * Trapped cp14 registers. We generally ignore most of the external
1729  * debug, on the principle that they don't really make sense to a
1730  * guest. Revisit this one day, would this principle change.
1731  */
1732 static const struct sys_reg_desc cp14_regs[] = {
1733 	/* DBGIDR */
1734 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1735 	/* DBGDTRRXext */
1736 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1737 
1738 	DBG_BCR_BVR_WCR_WVR(0),
1739 	/* DBGDSCRint */
1740 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1741 	DBG_BCR_BVR_WCR_WVR(1),
1742 	/* DBGDCCINT */
1743 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1744 	/* DBGDSCRext */
1745 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1746 	DBG_BCR_BVR_WCR_WVR(2),
1747 	/* DBGDTR[RT]Xint */
1748 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1749 	/* DBGDTR[RT]Xext */
1750 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1751 	DBG_BCR_BVR_WCR_WVR(3),
1752 	DBG_BCR_BVR_WCR_WVR(4),
1753 	DBG_BCR_BVR_WCR_WVR(5),
1754 	/* DBGWFAR */
1755 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1756 	/* DBGOSECCR */
1757 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1758 	DBG_BCR_BVR_WCR_WVR(6),
1759 	/* DBGVCR */
1760 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1761 	DBG_BCR_BVR_WCR_WVR(7),
1762 	DBG_BCR_BVR_WCR_WVR(8),
1763 	DBG_BCR_BVR_WCR_WVR(9),
1764 	DBG_BCR_BVR_WCR_WVR(10),
1765 	DBG_BCR_BVR_WCR_WVR(11),
1766 	DBG_BCR_BVR_WCR_WVR(12),
1767 	DBG_BCR_BVR_WCR_WVR(13),
1768 	DBG_BCR_BVR_WCR_WVR(14),
1769 	DBG_BCR_BVR_WCR_WVR(15),
1770 
1771 	/* DBGDRAR (32bit) */
1772 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1773 
1774 	DBGBXVR(0),
1775 	/* DBGOSLAR */
1776 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1777 	DBGBXVR(1),
1778 	/* DBGOSLSR */
1779 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1780 	DBGBXVR(2),
1781 	DBGBXVR(3),
1782 	/* DBGOSDLR */
1783 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1784 	DBGBXVR(4),
1785 	/* DBGPRCR */
1786 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1787 	DBGBXVR(5),
1788 	DBGBXVR(6),
1789 	DBGBXVR(7),
1790 	DBGBXVR(8),
1791 	DBGBXVR(9),
1792 	DBGBXVR(10),
1793 	DBGBXVR(11),
1794 	DBGBXVR(12),
1795 	DBGBXVR(13),
1796 	DBGBXVR(14),
1797 	DBGBXVR(15),
1798 
1799 	/* DBGDSAR (32bit) */
1800 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1801 
1802 	/* DBGDEVID2 */
1803 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1804 	/* DBGDEVID1 */
1805 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1806 	/* DBGDEVID */
1807 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1808 	/* DBGCLAIMSET */
1809 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1810 	/* DBGCLAIMCLR */
1811 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1812 	/* DBGAUTHSTATUS */
1813 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1814 };
1815 
1816 /* Trapped cp14 64bit registers */
1817 static const struct sys_reg_desc cp14_64_regs[] = {
1818 	/* DBGDRAR (64bit) */
1819 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1820 
1821 	/* DBGDSAR (64bit) */
1822 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1823 };
1824 
1825 /* Macro to expand the PMEVCNTRn register */
1826 #define PMU_PMEVCNTR(n)							\
1827 	/* PMEVCNTRn */							\
1828 	{ Op1(0), CRn(0b1110),						\
1829 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1830 	  access_pmu_evcntr }
1831 
1832 /* Macro to expand the PMEVTYPERn register */
1833 #define PMU_PMEVTYPER(n)						\
1834 	/* PMEVTYPERn */						\
1835 	{ Op1(0), CRn(0b1110),						\
1836 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1837 	  access_pmu_evtyper }
1838 
1839 /*
1840  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1841  * depending on the way they are accessed (as a 32bit or a 64bit
1842  * register).
1843  */
1844 static const struct sys_reg_desc cp15_regs[] = {
1845 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1846 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1847 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1848 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1849 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1850 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1851 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1852 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1853 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1854 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1855 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1856 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1857 
1858 	/*
1859 	 * DC{C,I,CI}SW operations:
1860 	 */
1861 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1862 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1863 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1864 
1865 	/* PMU */
1866 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1867 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1868 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1869 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1870 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1871 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1872 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1873 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1874 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1875 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1876 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1877 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1878 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1879 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1880 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1881 
1882 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1883 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1884 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1885 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1886 
1887 	/* ICC_SRE */
1888 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1889 
1890 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1891 
1892 	/* Arch Tmers */
1893 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1894 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1895 
1896 	/* PMEVCNTRn */
1897 	PMU_PMEVCNTR(0),
1898 	PMU_PMEVCNTR(1),
1899 	PMU_PMEVCNTR(2),
1900 	PMU_PMEVCNTR(3),
1901 	PMU_PMEVCNTR(4),
1902 	PMU_PMEVCNTR(5),
1903 	PMU_PMEVCNTR(6),
1904 	PMU_PMEVCNTR(7),
1905 	PMU_PMEVCNTR(8),
1906 	PMU_PMEVCNTR(9),
1907 	PMU_PMEVCNTR(10),
1908 	PMU_PMEVCNTR(11),
1909 	PMU_PMEVCNTR(12),
1910 	PMU_PMEVCNTR(13),
1911 	PMU_PMEVCNTR(14),
1912 	PMU_PMEVCNTR(15),
1913 	PMU_PMEVCNTR(16),
1914 	PMU_PMEVCNTR(17),
1915 	PMU_PMEVCNTR(18),
1916 	PMU_PMEVCNTR(19),
1917 	PMU_PMEVCNTR(20),
1918 	PMU_PMEVCNTR(21),
1919 	PMU_PMEVCNTR(22),
1920 	PMU_PMEVCNTR(23),
1921 	PMU_PMEVCNTR(24),
1922 	PMU_PMEVCNTR(25),
1923 	PMU_PMEVCNTR(26),
1924 	PMU_PMEVCNTR(27),
1925 	PMU_PMEVCNTR(28),
1926 	PMU_PMEVCNTR(29),
1927 	PMU_PMEVCNTR(30),
1928 	/* PMEVTYPERn */
1929 	PMU_PMEVTYPER(0),
1930 	PMU_PMEVTYPER(1),
1931 	PMU_PMEVTYPER(2),
1932 	PMU_PMEVTYPER(3),
1933 	PMU_PMEVTYPER(4),
1934 	PMU_PMEVTYPER(5),
1935 	PMU_PMEVTYPER(6),
1936 	PMU_PMEVTYPER(7),
1937 	PMU_PMEVTYPER(8),
1938 	PMU_PMEVTYPER(9),
1939 	PMU_PMEVTYPER(10),
1940 	PMU_PMEVTYPER(11),
1941 	PMU_PMEVTYPER(12),
1942 	PMU_PMEVTYPER(13),
1943 	PMU_PMEVTYPER(14),
1944 	PMU_PMEVTYPER(15),
1945 	PMU_PMEVTYPER(16),
1946 	PMU_PMEVTYPER(17),
1947 	PMU_PMEVTYPER(18),
1948 	PMU_PMEVTYPER(19),
1949 	PMU_PMEVTYPER(20),
1950 	PMU_PMEVTYPER(21),
1951 	PMU_PMEVTYPER(22),
1952 	PMU_PMEVTYPER(23),
1953 	PMU_PMEVTYPER(24),
1954 	PMU_PMEVTYPER(25),
1955 	PMU_PMEVTYPER(26),
1956 	PMU_PMEVTYPER(27),
1957 	PMU_PMEVTYPER(28),
1958 	PMU_PMEVTYPER(29),
1959 	PMU_PMEVTYPER(30),
1960 	/* PMCCFILTR */
1961 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1962 
1963 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1964 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1965 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1966 };
1967 
1968 static const struct sys_reg_desc cp15_64_regs[] = {
1969 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1970 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1971 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1972 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1973 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1974 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1975 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1976 };
1977 
1978 /* Target specific emulation tables */
1979 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1980 
1981 void kvm_register_target_sys_reg_table(unsigned int target,
1982 				       struct kvm_sys_reg_target_table *table)
1983 {
1984 	target_tables[target] = table;
1985 }
1986 
1987 /* Get specific register table for this target. */
1988 static const struct sys_reg_desc *get_target_table(unsigned target,
1989 						   bool mode_is_64,
1990 						   size_t *num)
1991 {
1992 	struct kvm_sys_reg_target_table *table;
1993 
1994 	table = target_tables[target];
1995 	if (mode_is_64) {
1996 		*num = table->table64.num;
1997 		return table->table64.table;
1998 	} else {
1999 		*num = table->table32.num;
2000 		return table->table32.table;
2001 	}
2002 }
2003 
2004 static int match_sys_reg(const void *key, const void *elt)
2005 {
2006 	const unsigned long pval = (unsigned long)key;
2007 	const struct sys_reg_desc *r = elt;
2008 
2009 	return pval - reg_to_encoding(r);
2010 }
2011 
2012 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2013 					 const struct sys_reg_desc table[],
2014 					 unsigned int num)
2015 {
2016 	unsigned long pval = reg_to_encoding(params);
2017 
2018 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2019 }
2020 
2021 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2022 {
2023 	kvm_inject_undefined(vcpu);
2024 	return 1;
2025 }
2026 
2027 static void perform_access(struct kvm_vcpu *vcpu,
2028 			   struct sys_reg_params *params,
2029 			   const struct sys_reg_desc *r)
2030 {
2031 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2032 
2033 	/* Check for regs disabled by runtime config */
2034 	if (sysreg_hidden_from_guest(vcpu, r)) {
2035 		kvm_inject_undefined(vcpu);
2036 		return;
2037 	}
2038 
2039 	/*
2040 	 * Not having an accessor means that we have configured a trap
2041 	 * that we don't know how to handle. This certainly qualifies
2042 	 * as a gross bug that should be fixed right away.
2043 	 */
2044 	BUG_ON(!r->access);
2045 
2046 	/* Skip instruction if instructed so */
2047 	if (likely(r->access(vcpu, params, r)))
2048 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2049 }
2050 
2051 /*
2052  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2053  *                call the corresponding trap handler.
2054  *
2055  * @params: pointer to the descriptor of the access
2056  * @table: array of trap descriptors
2057  * @num: size of the trap descriptor array
2058  *
2059  * Return 0 if the access has been handled, and -1 if not.
2060  */
2061 static int emulate_cp(struct kvm_vcpu *vcpu,
2062 		      struct sys_reg_params *params,
2063 		      const struct sys_reg_desc *table,
2064 		      size_t num)
2065 {
2066 	const struct sys_reg_desc *r;
2067 
2068 	if (!table)
2069 		return -1;	/* Not handled */
2070 
2071 	r = find_reg(params, table, num);
2072 
2073 	if (r) {
2074 		perform_access(vcpu, params, r);
2075 		return 0;
2076 	}
2077 
2078 	/* Not handled */
2079 	return -1;
2080 }
2081 
2082 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2083 				struct sys_reg_params *params)
2084 {
2085 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2086 	int cp = -1;
2087 
2088 	switch(hsr_ec) {
2089 	case ESR_ELx_EC_CP15_32:
2090 	case ESR_ELx_EC_CP15_64:
2091 		cp = 15;
2092 		break;
2093 	case ESR_ELx_EC_CP14_MR:
2094 	case ESR_ELx_EC_CP14_64:
2095 		cp = 14;
2096 		break;
2097 	default:
2098 		WARN_ON(1);
2099 	}
2100 
2101 	print_sys_reg_msg(params,
2102 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2103 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2104 	kvm_inject_undefined(vcpu);
2105 }
2106 
2107 /**
2108  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2109  * @vcpu: The VCPU pointer
2110  * @run:  The kvm_run struct
2111  */
2112 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2113 			    const struct sys_reg_desc *global,
2114 			    size_t nr_global,
2115 			    const struct sys_reg_desc *target_specific,
2116 			    size_t nr_specific)
2117 {
2118 	struct sys_reg_params params;
2119 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2120 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2121 	int Rt2 = (hsr >> 10) & 0x1f;
2122 
2123 	params.is_aarch32 = true;
2124 	params.is_32bit = false;
2125 	params.CRm = (hsr >> 1) & 0xf;
2126 	params.is_write = ((hsr & 1) == 0);
2127 
2128 	params.Op0 = 0;
2129 	params.Op1 = (hsr >> 16) & 0xf;
2130 	params.Op2 = 0;
2131 	params.CRn = 0;
2132 
2133 	/*
2134 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2135 	 * backends between AArch32 and AArch64, we get away with it.
2136 	 */
2137 	if (params.is_write) {
2138 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2139 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2140 	}
2141 
2142 	/*
2143 	 * Try to emulate the coprocessor access using the target
2144 	 * specific table first, and using the global table afterwards.
2145 	 * If either of the tables contains a handler, handle the
2146 	 * potential register operation in the case of a read and return
2147 	 * with success.
2148 	 */
2149 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2150 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2151 		/* Split up the value between registers for the read side */
2152 		if (!params.is_write) {
2153 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2154 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2155 		}
2156 
2157 		return 1;
2158 	}
2159 
2160 	unhandled_cp_access(vcpu, &params);
2161 	return 1;
2162 }
2163 
2164 /**
2165  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2166  * @vcpu: The VCPU pointer
2167  * @run:  The kvm_run struct
2168  */
2169 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2170 			    const struct sys_reg_desc *global,
2171 			    size_t nr_global,
2172 			    const struct sys_reg_desc *target_specific,
2173 			    size_t nr_specific)
2174 {
2175 	struct sys_reg_params params;
2176 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2177 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2178 
2179 	params.is_aarch32 = true;
2180 	params.is_32bit = true;
2181 	params.CRm = (hsr >> 1) & 0xf;
2182 	params.regval = vcpu_get_reg(vcpu, Rt);
2183 	params.is_write = ((hsr & 1) == 0);
2184 	params.CRn = (hsr >> 10) & 0xf;
2185 	params.Op0 = 0;
2186 	params.Op1 = (hsr >> 14) & 0x7;
2187 	params.Op2 = (hsr >> 17) & 0x7;
2188 
2189 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2190 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2191 		if (!params.is_write)
2192 			vcpu_set_reg(vcpu, Rt, params.regval);
2193 		return 1;
2194 	}
2195 
2196 	unhandled_cp_access(vcpu, &params);
2197 	return 1;
2198 }
2199 
2200 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2201 {
2202 	const struct sys_reg_desc *target_specific;
2203 	size_t num;
2204 
2205 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2206 	return kvm_handle_cp_64(vcpu,
2207 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2208 				target_specific, num);
2209 }
2210 
2211 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2212 {
2213 	const struct sys_reg_desc *target_specific;
2214 	size_t num;
2215 
2216 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2217 	return kvm_handle_cp_32(vcpu,
2218 				cp15_regs, ARRAY_SIZE(cp15_regs),
2219 				target_specific, num);
2220 }
2221 
2222 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2223 {
2224 	return kvm_handle_cp_64(vcpu,
2225 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2226 				NULL, 0);
2227 }
2228 
2229 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2230 {
2231 	return kvm_handle_cp_32(vcpu,
2232 				cp14_regs, ARRAY_SIZE(cp14_regs),
2233 				NULL, 0);
2234 }
2235 
2236 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2237 {
2238 	// See ARM DDI 0487E.a, section D12.3.2
2239 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2240 }
2241 
2242 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2243 			   struct sys_reg_params *params)
2244 {
2245 	size_t num;
2246 	const struct sys_reg_desc *table, *r;
2247 
2248 	table = get_target_table(vcpu->arch.target, true, &num);
2249 
2250 	/* Search target-specific then generic table. */
2251 	r = find_reg(params, table, num);
2252 	if (!r)
2253 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2254 
2255 	if (likely(r)) {
2256 		perform_access(vcpu, params, r);
2257 	} else if (is_imp_def_sys_reg(params)) {
2258 		kvm_inject_undefined(vcpu);
2259 	} else {
2260 		print_sys_reg_msg(params,
2261 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2262 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2263 		kvm_inject_undefined(vcpu);
2264 	}
2265 	return 1;
2266 }
2267 
2268 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2269 				const struct sys_reg_desc *table, size_t num,
2270 				unsigned long *bmap)
2271 {
2272 	unsigned long i;
2273 
2274 	for (i = 0; i < num; i++)
2275 		if (table[i].reset) {
2276 			int reg = table[i].reg;
2277 
2278 			table[i].reset(vcpu, &table[i]);
2279 			if (reg > 0 && reg < NR_SYS_REGS)
2280 				set_bit(reg, bmap);
2281 		}
2282 }
2283 
2284 /**
2285  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2286  * @vcpu: The VCPU pointer
2287  * @run:  The kvm_run struct
2288  */
2289 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2290 {
2291 	struct sys_reg_params params;
2292 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2293 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2294 	int ret;
2295 
2296 	trace_kvm_handle_sys_reg(esr);
2297 
2298 	params.is_aarch32 = false;
2299 	params.is_32bit = false;
2300 	params.Op0 = (esr >> 20) & 3;
2301 	params.Op1 = (esr >> 14) & 0x7;
2302 	params.CRn = (esr >> 10) & 0xf;
2303 	params.CRm = (esr >> 1) & 0xf;
2304 	params.Op2 = (esr >> 17) & 0x7;
2305 	params.regval = vcpu_get_reg(vcpu, Rt);
2306 	params.is_write = !(esr & 1);
2307 
2308 	ret = emulate_sys_reg(vcpu, &params);
2309 
2310 	if (!params.is_write)
2311 		vcpu_set_reg(vcpu, Rt, params.regval);
2312 	return ret;
2313 }
2314 
2315 /******************************************************************************
2316  * Userspace API
2317  *****************************************************************************/
2318 
2319 static bool index_to_params(u64 id, struct sys_reg_params *params)
2320 {
2321 	switch (id & KVM_REG_SIZE_MASK) {
2322 	case KVM_REG_SIZE_U64:
2323 		/* Any unused index bits means it's not valid. */
2324 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2325 			      | KVM_REG_ARM_COPROC_MASK
2326 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2327 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2328 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2329 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2330 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2331 			return false;
2332 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2333 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2334 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2335 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2336 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2337 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2338 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2339 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2340 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2341 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2342 		return true;
2343 	default:
2344 		return false;
2345 	}
2346 }
2347 
2348 const struct sys_reg_desc *find_reg_by_id(u64 id,
2349 					  struct sys_reg_params *params,
2350 					  const struct sys_reg_desc table[],
2351 					  unsigned int num)
2352 {
2353 	if (!index_to_params(id, params))
2354 		return NULL;
2355 
2356 	return find_reg(params, table, num);
2357 }
2358 
2359 /* Decode an index value, and find the sys_reg_desc entry. */
2360 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2361 						    u64 id)
2362 {
2363 	size_t num;
2364 	const struct sys_reg_desc *table, *r;
2365 	struct sys_reg_params params;
2366 
2367 	/* We only do sys_reg for now. */
2368 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2369 		return NULL;
2370 
2371 	if (!index_to_params(id, &params))
2372 		return NULL;
2373 
2374 	table = get_target_table(vcpu->arch.target, true, &num);
2375 	r = find_reg(&params, table, num);
2376 	if (!r)
2377 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2378 
2379 	/* Not saved in the sys_reg array and not otherwise accessible? */
2380 	if (r && !(r->reg || r->get_user))
2381 		r = NULL;
2382 
2383 	return r;
2384 }
2385 
2386 /*
2387  * These are the invariant sys_reg registers: we let the guest see the
2388  * host versions of these, so they're part of the guest state.
2389  *
2390  * A future CPU may provide a mechanism to present different values to
2391  * the guest, or a future kvm may trap them.
2392  */
2393 
2394 #define FUNCTION_INVARIANT(reg)						\
2395 	static void get_##reg(struct kvm_vcpu *v,			\
2396 			      const struct sys_reg_desc *r)		\
2397 	{								\
2398 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2399 	}
2400 
2401 FUNCTION_INVARIANT(midr_el1)
2402 FUNCTION_INVARIANT(revidr_el1)
2403 FUNCTION_INVARIANT(clidr_el1)
2404 FUNCTION_INVARIANT(aidr_el1)
2405 
2406 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2407 {
2408 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2409 }
2410 
2411 /* ->val is filled in by kvm_sys_reg_table_init() */
2412 static struct sys_reg_desc invariant_sys_regs[] = {
2413 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2414 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2415 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2416 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2417 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2418 };
2419 
2420 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2421 {
2422 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2423 		return -EFAULT;
2424 	return 0;
2425 }
2426 
2427 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2428 {
2429 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2430 		return -EFAULT;
2431 	return 0;
2432 }
2433 
2434 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2435 {
2436 	struct sys_reg_params params;
2437 	const struct sys_reg_desc *r;
2438 
2439 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2440 			   ARRAY_SIZE(invariant_sys_regs));
2441 	if (!r)
2442 		return -ENOENT;
2443 
2444 	return reg_to_user(uaddr, &r->val, id);
2445 }
2446 
2447 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2448 {
2449 	struct sys_reg_params params;
2450 	const struct sys_reg_desc *r;
2451 	int err;
2452 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2453 
2454 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2455 			   ARRAY_SIZE(invariant_sys_regs));
2456 	if (!r)
2457 		return -ENOENT;
2458 
2459 	err = reg_from_user(&val, uaddr, id);
2460 	if (err)
2461 		return err;
2462 
2463 	/* This is what we mean by invariant: you can't change it. */
2464 	if (r->val != val)
2465 		return -EINVAL;
2466 
2467 	return 0;
2468 }
2469 
2470 static bool is_valid_cache(u32 val)
2471 {
2472 	u32 level, ctype;
2473 
2474 	if (val >= CSSELR_MAX)
2475 		return false;
2476 
2477 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2478 	level = (val >> 1);
2479 	ctype = (cache_levels >> (level * 3)) & 7;
2480 
2481 	switch (ctype) {
2482 	case 0: /* No cache */
2483 		return false;
2484 	case 1: /* Instruction cache only */
2485 		return (val & 1);
2486 	case 2: /* Data cache only */
2487 	case 4: /* Unified cache */
2488 		return !(val & 1);
2489 	case 3: /* Separate instruction and data caches */
2490 		return true;
2491 	default: /* Reserved: we can't know instruction or data. */
2492 		return false;
2493 	}
2494 }
2495 
2496 static int demux_c15_get(u64 id, void __user *uaddr)
2497 {
2498 	u32 val;
2499 	u32 __user *uval = uaddr;
2500 
2501 	/* Fail if we have unknown bits set. */
2502 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2503 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2504 		return -ENOENT;
2505 
2506 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2507 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2508 		if (KVM_REG_SIZE(id) != 4)
2509 			return -ENOENT;
2510 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2511 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2512 		if (!is_valid_cache(val))
2513 			return -ENOENT;
2514 
2515 		return put_user(get_ccsidr(val), uval);
2516 	default:
2517 		return -ENOENT;
2518 	}
2519 }
2520 
2521 static int demux_c15_set(u64 id, void __user *uaddr)
2522 {
2523 	u32 val, newval;
2524 	u32 __user *uval = uaddr;
2525 
2526 	/* Fail if we have unknown bits set. */
2527 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2528 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2529 		return -ENOENT;
2530 
2531 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2532 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2533 		if (KVM_REG_SIZE(id) != 4)
2534 			return -ENOENT;
2535 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2536 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2537 		if (!is_valid_cache(val))
2538 			return -ENOENT;
2539 
2540 		if (get_user(newval, uval))
2541 			return -EFAULT;
2542 
2543 		/* This is also invariant: you can't change it. */
2544 		if (newval != get_ccsidr(val))
2545 			return -EINVAL;
2546 		return 0;
2547 	default:
2548 		return -ENOENT;
2549 	}
2550 }
2551 
2552 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2553 {
2554 	const struct sys_reg_desc *r;
2555 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2556 
2557 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2558 		return demux_c15_get(reg->id, uaddr);
2559 
2560 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2561 		return -ENOENT;
2562 
2563 	r = index_to_sys_reg_desc(vcpu, reg->id);
2564 	if (!r)
2565 		return get_invariant_sys_reg(reg->id, uaddr);
2566 
2567 	/* Check for regs disabled by runtime config */
2568 	if (sysreg_hidden_from_user(vcpu, r))
2569 		return -ENOENT;
2570 
2571 	if (r->get_user)
2572 		return (r->get_user)(vcpu, r, reg, uaddr);
2573 
2574 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2575 }
2576 
2577 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2578 {
2579 	const struct sys_reg_desc *r;
2580 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2581 
2582 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2583 		return demux_c15_set(reg->id, uaddr);
2584 
2585 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2586 		return -ENOENT;
2587 
2588 	r = index_to_sys_reg_desc(vcpu, reg->id);
2589 	if (!r)
2590 		return set_invariant_sys_reg(reg->id, uaddr);
2591 
2592 	/* Check for regs disabled by runtime config */
2593 	if (sysreg_hidden_from_user(vcpu, r))
2594 		return -ENOENT;
2595 
2596 	if (r->set_user)
2597 		return (r->set_user)(vcpu, r, reg, uaddr);
2598 
2599 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2600 }
2601 
2602 static unsigned int num_demux_regs(void)
2603 {
2604 	unsigned int i, count = 0;
2605 
2606 	for (i = 0; i < CSSELR_MAX; i++)
2607 		if (is_valid_cache(i))
2608 			count++;
2609 
2610 	return count;
2611 }
2612 
2613 static int write_demux_regids(u64 __user *uindices)
2614 {
2615 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2616 	unsigned int i;
2617 
2618 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2619 	for (i = 0; i < CSSELR_MAX; i++) {
2620 		if (!is_valid_cache(i))
2621 			continue;
2622 		if (put_user(val | i, uindices))
2623 			return -EFAULT;
2624 		uindices++;
2625 	}
2626 	return 0;
2627 }
2628 
2629 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2630 {
2631 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2632 		KVM_REG_ARM64_SYSREG |
2633 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2634 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2635 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2636 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2637 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2638 }
2639 
2640 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2641 {
2642 	if (!*uind)
2643 		return true;
2644 
2645 	if (put_user(sys_reg_to_index(reg), *uind))
2646 		return false;
2647 
2648 	(*uind)++;
2649 	return true;
2650 }
2651 
2652 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2653 			    const struct sys_reg_desc *rd,
2654 			    u64 __user **uind,
2655 			    unsigned int *total)
2656 {
2657 	/*
2658 	 * Ignore registers we trap but don't save,
2659 	 * and for which no custom user accessor is provided.
2660 	 */
2661 	if (!(rd->reg || rd->get_user))
2662 		return 0;
2663 
2664 	if (sysreg_hidden_from_user(vcpu, rd))
2665 		return 0;
2666 
2667 	if (!copy_reg_to_user(rd, uind))
2668 		return -EFAULT;
2669 
2670 	(*total)++;
2671 	return 0;
2672 }
2673 
2674 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2675 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2676 {
2677 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2678 	unsigned int total = 0;
2679 	size_t num;
2680 	int err;
2681 
2682 	/* We check for duplicates here, to allow arch-specific overrides. */
2683 	i1 = get_target_table(vcpu->arch.target, true, &num);
2684 	end1 = i1 + num;
2685 	i2 = sys_reg_descs;
2686 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2687 
2688 	BUG_ON(i1 == end1 || i2 == end2);
2689 
2690 	/* Walk carefully, as both tables may refer to the same register. */
2691 	while (i1 || i2) {
2692 		int cmp = cmp_sys_reg(i1, i2);
2693 		/* target-specific overrides generic entry. */
2694 		if (cmp <= 0)
2695 			err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2696 		else
2697 			err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2698 
2699 		if (err)
2700 			return err;
2701 
2702 		if (cmp <= 0 && ++i1 == end1)
2703 			i1 = NULL;
2704 		if (cmp >= 0 && ++i2 == end2)
2705 			i2 = NULL;
2706 	}
2707 	return total;
2708 }
2709 
2710 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2711 {
2712 	return ARRAY_SIZE(invariant_sys_regs)
2713 		+ num_demux_regs()
2714 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2715 }
2716 
2717 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2718 {
2719 	unsigned int i;
2720 	int err;
2721 
2722 	/* Then give them all the invariant registers' indices. */
2723 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2724 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2725 			return -EFAULT;
2726 		uindices++;
2727 	}
2728 
2729 	err = walk_sys_regs(vcpu, uindices);
2730 	if (err < 0)
2731 		return err;
2732 	uindices += err;
2733 
2734 	return write_demux_regids(uindices);
2735 }
2736 
2737 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2738 {
2739 	unsigned int i;
2740 
2741 	for (i = 1; i < n; i++) {
2742 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2743 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2744 			return 1;
2745 		}
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 void kvm_sys_reg_table_init(void)
2752 {
2753 	unsigned int i;
2754 	struct sys_reg_desc clidr;
2755 
2756 	/* Make sure tables are unique and in order. */
2757 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2758 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2759 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2760 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2761 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2762 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2763 
2764 	/* We abuse the reset function to overwrite the table itself. */
2765 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2766 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2767 
2768 	/*
2769 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2770 	 *
2771 	 *   If software reads the Cache Type fields from Ctype1
2772 	 *   upwards, once it has seen a value of 0b000, no caches
2773 	 *   exist at further-out levels of the hierarchy. So, for
2774 	 *   example, if Ctype3 is the first Cache Type field with a
2775 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2776 	 *   ignored.
2777 	 */
2778 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2779 	cache_levels = clidr.val;
2780 	for (i = 0; i < 7; i++)
2781 		if (((cache_levels >> (i*3)) & 7) == 0)
2782 			break;
2783 	/* Clear all higher bits. */
2784 	cache_levels &= (1 << (i*3))-1;
2785 }
2786 
2787 /**
2788  * kvm_reset_sys_regs - sets system registers to reset value
2789  * @vcpu: The VCPU pointer
2790  *
2791  * This function finds the right table above and sets the registers on the
2792  * virtual CPU struct to their architecturally defined reset values.
2793  */
2794 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2795 {
2796 	size_t num;
2797 	const struct sys_reg_desc *table;
2798 	DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2799 
2800 	/* Generic chip reset first (so target could override). */
2801 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2802 
2803 	table = get_target_table(vcpu->arch.target, true, &num);
2804 	reset_sys_reg_descs(vcpu, table, num, bmap);
2805 
2806 	for (num = 1; num < NR_SYS_REGS; num++) {
2807 		if (WARN(!test_bit(num, bmap),
2808 			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2809 			break;
2810 	}
2811 }
2812