xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 65b96377)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50 
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52 				 struct sys_reg_params *params,
53 				 const struct sys_reg_desc *r)
54 {
55 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56 	print_sys_reg_instr(params);
57 	kvm_inject_undefined(vcpu);
58 	return false;
59 }
60 
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62 			       struct sys_reg_params *params,
63 			       const struct sys_reg_desc *r)
64 {
65 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66 	print_sys_reg_instr(params);
67 	kvm_inject_undefined(vcpu);
68 	return false;
69 }
70 
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73 	u64 val = 0x8badf00d8badf00d;
74 
75 	if (vcpu->arch.sysregs_loaded_on_cpu &&
76 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
77 		return val;
78 
79 	return __vcpu_sys_reg(vcpu, reg);
80 }
81 
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84 	if (vcpu->arch.sysregs_loaded_on_cpu &&
85 	    __vcpu_write_sys_reg_to_cpu(val, reg))
86 		return;
87 
88 	 __vcpu_sys_reg(vcpu, reg) = val;
89 }
90 
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93 
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96 
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100 	u32 ccsidr;
101 
102 	/* Make sure noone else changes CSSELR during this! */
103 	local_irq_disable();
104 	write_sysreg(csselr, csselr_el1);
105 	isb();
106 	ccsidr = read_sysreg(ccsidr_el1);
107 	local_irq_enable();
108 
109 	return ccsidr;
110 }
111 
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116 			struct sys_reg_params *p,
117 			const struct sys_reg_desc *r)
118 {
119 	if (!p->is_write)
120 		return read_from_write_only(vcpu, p, r);
121 
122 	/*
123 	 * Only track S/W ops if we don't have FWB. It still indicates
124 	 * that the guest is a bit broken (S/W operations should only
125 	 * be done by firmware, knowing that there is only a single
126 	 * CPU left in the system, and certainly not from non-secure
127 	 * software).
128 	 */
129 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130 		kvm_set_way_flush(vcpu);
131 
132 	return true;
133 }
134 
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137 	switch (r->aarch32_map) {
138 	case AA32_LO:
139 		*mask = GENMASK_ULL(31, 0);
140 		*shift = 0;
141 		break;
142 	case AA32_HI:
143 		*mask = GENMASK_ULL(63, 32);
144 		*shift = 32;
145 		break;
146 	default:
147 		*mask = GENMASK_ULL(63, 0);
148 		*shift = 0;
149 		break;
150 	}
151 }
152 
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159 			  struct sys_reg_params *p,
160 			  const struct sys_reg_desc *r)
161 {
162 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
163 	u64 val, mask, shift;
164 
165 	BUG_ON(!p->is_write);
166 
167 	get_access_mask(r, &mask, &shift);
168 
169 	if (~mask) {
170 		val = vcpu_read_sys_reg(vcpu, r->reg);
171 		val &= ~mask;
172 	} else {
173 		val = 0;
174 	}
175 
176 	val |= (p->regval & (mask >> shift)) << shift;
177 	vcpu_write_sys_reg(vcpu, val, r->reg);
178 
179 	kvm_toggle_cache(vcpu, was_enabled);
180 	return true;
181 }
182 
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184 			 struct sys_reg_params *p,
185 			 const struct sys_reg_desc *r)
186 {
187 	u64 mask, shift;
188 
189 	if (p->is_write)
190 		return ignore_write(vcpu, p);
191 
192 	get_access_mask(r, &mask, &shift);
193 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194 
195 	return true;
196 }
197 
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205 			   struct sys_reg_params *p,
206 			   const struct sys_reg_desc *r)
207 {
208 	bool g1;
209 
210 	if (!p->is_write)
211 		return read_from_write_only(vcpu, p, r);
212 
213 	/*
214 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218 	 * group.
219 	 */
220 	if (p->Op0 == 0) {		/* AArch32 */
221 		switch (p->Op1) {
222 		default:		/* Keep GCC quiet */
223 		case 0:			/* ICC_SGI1R */
224 			g1 = true;
225 			break;
226 		case 1:			/* ICC_ASGI1R */
227 		case 2:			/* ICC_SGI0R */
228 			g1 = false;
229 			break;
230 		}
231 	} else {			/* AArch64 */
232 		switch (p->Op2) {
233 		default:		/* Keep GCC quiet */
234 		case 5:			/* ICC_SGI1R_EL1 */
235 			g1 = true;
236 			break;
237 		case 6:			/* ICC_ASGI1R_EL1 */
238 		case 7:			/* ICC_SGI0R_EL1 */
239 			g1 = false;
240 			break;
241 		}
242 	}
243 
244 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245 
246 	return true;
247 }
248 
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250 			   struct sys_reg_params *p,
251 			   const struct sys_reg_desc *r)
252 {
253 	if (p->is_write)
254 		return ignore_write(vcpu, p);
255 
256 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257 	return true;
258 }
259 
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261 			struct sys_reg_params *p,
262 			const struct sys_reg_desc *r)
263 {
264 	if (p->is_write)
265 		return ignore_write(vcpu, p);
266 	else
267 		return read_zero(vcpu, p);
268 }
269 
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277 			  struct sys_reg_params *p,
278 			  const struct sys_reg_desc *r)
279 {
280 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281 	u32 sr = reg_to_encoding(r);
282 
283 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284 		kvm_inject_undefined(vcpu);
285 		return false;
286 	}
287 
288 	if (p->is_write && sr == SYS_LORID_EL1)
289 		return write_to_read_only(vcpu, p, r);
290 
291 	return trap_raz_wi(vcpu, p, r);
292 }
293 
294 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295 			   struct sys_reg_params *p,
296 			   const struct sys_reg_desc *r)
297 {
298 	u64 oslsr;
299 
300 	if (!p->is_write)
301 		return read_from_write_only(vcpu, p, r);
302 
303 	/* Forward the OSLK bit to OSLSR */
304 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305 	if (p->regval & SYS_OSLAR_OSLK)
306 		oslsr |= SYS_OSLSR_OSLK;
307 
308 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309 	return true;
310 }
311 
312 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
313 			   struct sys_reg_params *p,
314 			   const struct sys_reg_desc *r)
315 {
316 	if (p->is_write)
317 		return write_to_read_only(vcpu, p, r);
318 
319 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
320 	return true;
321 }
322 
323 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 			 const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326 	u64 id = sys_reg_to_index(rd);
327 	u64 val;
328 	int err;
329 
330 	err = reg_from_user(&val, uaddr, id);
331 	if (err)
332 		return err;
333 
334 	/*
335 	 * The only modifiable bit is the OSLK bit. Refuse the write if
336 	 * userspace attempts to change any other bit in the register.
337 	 */
338 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
339 		return -EINVAL;
340 
341 	__vcpu_sys_reg(vcpu, rd->reg) = val;
342 	return 0;
343 }
344 
345 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
346 				   struct sys_reg_params *p,
347 				   const struct sys_reg_desc *r)
348 {
349 	if (p->is_write) {
350 		return ignore_write(vcpu, p);
351 	} else {
352 		p->regval = read_sysreg(dbgauthstatus_el1);
353 		return true;
354 	}
355 }
356 
357 /*
358  * We want to avoid world-switching all the DBG registers all the
359  * time:
360  *
361  * - If we've touched any debug register, it is likely that we're
362  *   going to touch more of them. It then makes sense to disable the
363  *   traps and start doing the save/restore dance
364  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365  *   then mandatory to save/restore the registers, as the guest
366  *   depends on them.
367  *
368  * For this, we use a DIRTY bit, indicating the guest has modified the
369  * debug registers, used as follow:
370  *
371  * On guest entry:
372  * - If the dirty bit is set (because we're coming back from trapping),
373  *   disable the traps, save host registers, restore guest registers.
374  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375  *   set the dirty bit, disable the traps, save host registers,
376  *   restore guest registers.
377  * - Otherwise, enable the traps
378  *
379  * On guest exit:
380  * - If the dirty bit is set, save guest registers, restore host
381  *   registers and clear the dirty bit. This ensure that the host can
382  *   now use the debug registers.
383  */
384 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
385 			    struct sys_reg_params *p,
386 			    const struct sys_reg_desc *r)
387 {
388 	if (p->is_write) {
389 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
390 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
391 	} else {
392 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393 	}
394 
395 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
396 
397 	return true;
398 }
399 
400 /*
401  * reg_to_dbg/dbg_to_reg
402  *
403  * A 32 bit write to a debug register leave top bits alone
404  * A 32 bit read from a debug register only returns the bottom bits
405  *
406  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407  * hyp.S code switches between host and guest values in future.
408  */
409 static void reg_to_dbg(struct kvm_vcpu *vcpu,
410 		       struct sys_reg_params *p,
411 		       const struct sys_reg_desc *rd,
412 		       u64 *dbg_reg)
413 {
414 	u64 mask, shift, val;
415 
416 	get_access_mask(rd, &mask, &shift);
417 
418 	val = *dbg_reg;
419 	val &= ~mask;
420 	val |= (p->regval & (mask >> shift)) << shift;
421 	*dbg_reg = val;
422 
423 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
424 }
425 
426 static void dbg_to_reg(struct kvm_vcpu *vcpu,
427 		       struct sys_reg_params *p,
428 		       const struct sys_reg_desc *rd,
429 		       u64 *dbg_reg)
430 {
431 	u64 mask, shift;
432 
433 	get_access_mask(rd, &mask, &shift);
434 	p->regval = (*dbg_reg & mask) >> shift;
435 }
436 
437 static bool trap_bvr(struct kvm_vcpu *vcpu,
438 		     struct sys_reg_params *p,
439 		     const struct sys_reg_desc *rd)
440 {
441 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
442 
443 	if (p->is_write)
444 		reg_to_dbg(vcpu, p, rd, dbg_reg);
445 	else
446 		dbg_to_reg(vcpu, p, rd, dbg_reg);
447 
448 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
449 
450 	return true;
451 }
452 
453 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 		const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
457 
458 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 	const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
467 
468 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 static void reset_bvr(struct kvm_vcpu *vcpu,
474 		      const struct sys_reg_desc *rd)
475 {
476 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
477 }
478 
479 static bool trap_bcr(struct kvm_vcpu *vcpu,
480 		     struct sys_reg_params *p,
481 		     const struct sys_reg_desc *rd)
482 {
483 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
484 
485 	if (p->is_write)
486 		reg_to_dbg(vcpu, p, rd, dbg_reg);
487 	else
488 		dbg_to_reg(vcpu, p, rd, dbg_reg);
489 
490 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
491 
492 	return true;
493 }
494 
495 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 		const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
499 
500 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
501 		return -EFAULT;
502 
503 	return 0;
504 }
505 
506 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 	const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510 
511 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 		return -EFAULT;
513 	return 0;
514 }
515 
516 static void reset_bcr(struct kvm_vcpu *vcpu,
517 		      const struct sys_reg_desc *rd)
518 {
519 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
520 }
521 
522 static bool trap_wvr(struct kvm_vcpu *vcpu,
523 		     struct sys_reg_params *p,
524 		     const struct sys_reg_desc *rd)
525 {
526 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
527 
528 	if (p->is_write)
529 		reg_to_dbg(vcpu, p, rd, dbg_reg);
530 	else
531 		dbg_to_reg(vcpu, p, rd, dbg_reg);
532 
533 	trace_trap_reg(__func__, rd->CRm, p->is_write,
534 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
535 
536 	return true;
537 }
538 
539 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540 		const struct kvm_one_reg *reg, void __user *uaddr)
541 {
542 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
543 
544 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
545 		return -EFAULT;
546 	return 0;
547 }
548 
549 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550 	const struct kvm_one_reg *reg, void __user *uaddr)
551 {
552 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553 
554 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555 		return -EFAULT;
556 	return 0;
557 }
558 
559 static void reset_wvr(struct kvm_vcpu *vcpu,
560 		      const struct sys_reg_desc *rd)
561 {
562 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
563 }
564 
565 static bool trap_wcr(struct kvm_vcpu *vcpu,
566 		     struct sys_reg_params *p,
567 		     const struct sys_reg_desc *rd)
568 {
569 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
570 
571 	if (p->is_write)
572 		reg_to_dbg(vcpu, p, rd, dbg_reg);
573 	else
574 		dbg_to_reg(vcpu, p, rd, dbg_reg);
575 
576 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577 
578 	return true;
579 }
580 
581 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 		const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
585 
586 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
587 		return -EFAULT;
588 	return 0;
589 }
590 
591 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592 	const struct kvm_one_reg *reg, void __user *uaddr)
593 {
594 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
595 
596 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597 		return -EFAULT;
598 	return 0;
599 }
600 
601 static void reset_wcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
605 }
606 
607 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 amair = read_sysreg(amair_el1);
610 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
611 }
612 
613 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614 {
615 	u64 actlr = read_sysreg(actlr_el1);
616 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617 }
618 
619 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621 	u64 mpidr;
622 
623 	/*
624 	 * Map the vcpu_id into the first three affinity level fields of
625 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
626 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627 	 * of the GICv3 to be able to address each CPU directly when
628 	 * sending IPIs.
629 	 */
630 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
633 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
634 }
635 
636 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637 				   const struct sys_reg_desc *r)
638 {
639 	if (kvm_vcpu_has_pmu(vcpu))
640 		return 0;
641 
642 	return REG_HIDDEN;
643 }
644 
645 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648 
649 	/* No PMU available, any PMU reg may UNDEF... */
650 	if (!kvm_arm_support_pmu_v3())
651 		return;
652 
653 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654 	n &= ARMV8_PMU_PMCR_N_MASK;
655 	if (n)
656 		mask |= GENMASK(n - 1, 0);
657 
658 	reset_unknown(vcpu, r);
659 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
660 }
661 
662 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 	reset_unknown(vcpu, r);
665 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666 }
667 
668 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670 	reset_unknown(vcpu, r);
671 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672 }
673 
674 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675 {
676 	reset_unknown(vcpu, r);
677 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678 }
679 
680 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681 {
682 	u64 pmcr, val;
683 
684 	/* No PMU available, PMCR_EL0 may UNDEF... */
685 	if (!kvm_arm_support_pmu_v3())
686 		return;
687 
688 	pmcr = read_sysreg(pmcr_el0);
689 	/*
690 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
691 	 * except PMCR.E resetting to zero.
692 	 */
693 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
695 	if (!system_supports_32bit_el0())
696 		val |= ARMV8_PMU_PMCR_LC;
697 	__vcpu_sys_reg(vcpu, r->reg) = val;
698 }
699 
700 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
701 {
702 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
703 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
704 
705 	if (!enabled)
706 		kvm_inject_undefined(vcpu);
707 
708 	return !enabled;
709 }
710 
711 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
712 {
713 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714 }
715 
716 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717 {
718 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
719 }
720 
721 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722 {
723 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
724 }
725 
726 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727 {
728 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
729 }
730 
731 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732 			const struct sys_reg_desc *r)
733 {
734 	u64 val;
735 
736 	if (pmu_access_el0_disabled(vcpu))
737 		return false;
738 
739 	if (p->is_write) {
740 		/* Only update writeable bits of PMCR */
741 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
742 		val &= ~ARMV8_PMU_PMCR_MASK;
743 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
744 		if (!system_supports_32bit_el0())
745 			val |= ARMV8_PMU_PMCR_LC;
746 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
747 		kvm_pmu_handle_pmcr(vcpu, val);
748 		kvm_vcpu_pmu_restore_guest(vcpu);
749 	} else {
750 		/* PMCR.P & PMCR.C are RAZ */
751 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
752 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753 		p->regval = val;
754 	}
755 
756 	return true;
757 }
758 
759 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 			  const struct sys_reg_desc *r)
761 {
762 	if (pmu_access_event_counter_el0_disabled(vcpu))
763 		return false;
764 
765 	if (p->is_write)
766 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
767 	else
768 		/* return PMSELR.SEL field */
769 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770 			    & ARMV8_PMU_COUNTER_MASK;
771 
772 	return true;
773 }
774 
775 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776 			  const struct sys_reg_desc *r)
777 {
778 	u64 pmceid, mask, shift;
779 
780 	BUG_ON(p->is_write);
781 
782 	if (pmu_access_el0_disabled(vcpu))
783 		return false;
784 
785 	get_access_mask(r, &mask, &shift);
786 
787 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
788 	pmceid &= mask;
789 	pmceid >>= shift;
790 
791 	p->regval = pmceid;
792 
793 	return true;
794 }
795 
796 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797 {
798 	u64 pmcr, val;
799 
800 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
801 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
802 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803 		kvm_inject_undefined(vcpu);
804 		return false;
805 	}
806 
807 	return true;
808 }
809 
810 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811 			      struct sys_reg_params *p,
812 			      const struct sys_reg_desc *r)
813 {
814 	u64 idx = ~0UL;
815 
816 	if (r->CRn == 9 && r->CRm == 13) {
817 		if (r->Op2 == 2) {
818 			/* PMXEVCNTR_EL0 */
819 			if (pmu_access_event_counter_el0_disabled(vcpu))
820 				return false;
821 
822 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
823 			      & ARMV8_PMU_COUNTER_MASK;
824 		} else if (r->Op2 == 0) {
825 			/* PMCCNTR_EL0 */
826 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
827 				return false;
828 
829 			idx = ARMV8_PMU_CYCLE_IDX;
830 		}
831 	} else if (r->CRn == 0 && r->CRm == 9) {
832 		/* PMCCNTR */
833 		if (pmu_access_event_counter_el0_disabled(vcpu))
834 			return false;
835 
836 		idx = ARMV8_PMU_CYCLE_IDX;
837 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838 		/* PMEVCNTRn_EL0 */
839 		if (pmu_access_event_counter_el0_disabled(vcpu))
840 			return false;
841 
842 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843 	}
844 
845 	/* Catch any decoding mistake */
846 	WARN_ON(idx == ~0UL);
847 
848 	if (!pmu_counter_idx_valid(vcpu, idx))
849 		return false;
850 
851 	if (p->is_write) {
852 		if (pmu_access_el0_disabled(vcpu))
853 			return false;
854 
855 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
856 	} else {
857 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
858 	}
859 
860 	return true;
861 }
862 
863 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			       const struct sys_reg_desc *r)
865 {
866 	u64 idx, reg;
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 		/* PMXEVTYPER_EL0 */
873 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874 		reg = PMEVTYPER0_EL0 + idx;
875 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 		if (idx == ARMV8_PMU_CYCLE_IDX)
878 			reg = PMCCFILTR_EL0;
879 		else
880 			/* PMEVTYPERn_EL0 */
881 			reg = PMEVTYPER0_EL0 + idx;
882 	} else {
883 		BUG();
884 	}
885 
886 	if (!pmu_counter_idx_valid(vcpu, idx))
887 		return false;
888 
889 	if (p->is_write) {
890 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892 		kvm_vcpu_pmu_restore_guest(vcpu);
893 	} else {
894 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895 	}
896 
897 	return true;
898 }
899 
900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 			   const struct sys_reg_desc *r)
902 {
903 	u64 val, mask;
904 
905 	if (pmu_access_el0_disabled(vcpu))
906 		return false;
907 
908 	mask = kvm_pmu_valid_counter_mask(vcpu);
909 	if (p->is_write) {
910 		val = p->regval & mask;
911 		if (r->Op2 & 0x1) {
912 			/* accessing PMCNTENSET_EL0 */
913 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
914 			kvm_pmu_enable_counter_mask(vcpu, val);
915 			kvm_vcpu_pmu_restore_guest(vcpu);
916 		} else {
917 			/* accessing PMCNTENCLR_EL0 */
918 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
919 			kvm_pmu_disable_counter_mask(vcpu, val);
920 		}
921 	} else {
922 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
923 	}
924 
925 	return true;
926 }
927 
928 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929 			   const struct sys_reg_desc *r)
930 {
931 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932 
933 	if (check_pmu_access_disabled(vcpu, 0))
934 		return false;
935 
936 	if (p->is_write) {
937 		u64 val = p->regval & mask;
938 
939 		if (r->Op2 & 0x1)
940 			/* accessing PMINTENSET_EL1 */
941 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
942 		else
943 			/* accessing PMINTENCLR_EL1 */
944 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
945 	} else {
946 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
947 	}
948 
949 	return true;
950 }
951 
952 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953 			 const struct sys_reg_desc *r)
954 {
955 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956 
957 	if (pmu_access_el0_disabled(vcpu))
958 		return false;
959 
960 	if (p->is_write) {
961 		if (r->CRm & 0x2)
962 			/* accessing PMOVSSET_EL0 */
963 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
964 		else
965 			/* accessing PMOVSCLR_EL0 */
966 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
967 	} else {
968 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
969 	}
970 
971 	return true;
972 }
973 
974 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975 			   const struct sys_reg_desc *r)
976 {
977 	u64 mask;
978 
979 	if (!p->is_write)
980 		return read_from_write_only(vcpu, p, r);
981 
982 	if (pmu_write_swinc_el0_disabled(vcpu))
983 		return false;
984 
985 	mask = kvm_pmu_valid_counter_mask(vcpu);
986 	kvm_pmu_software_increment(vcpu, p->regval & mask);
987 	return true;
988 }
989 
990 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991 			     const struct sys_reg_desc *r)
992 {
993 	if (p->is_write) {
994 		if (!vcpu_mode_priv(vcpu)) {
995 			kvm_inject_undefined(vcpu);
996 			return false;
997 		}
998 
999 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000 			       p->regval & ARMV8_PMU_USERENR_MASK;
1001 	} else {
1002 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1003 			    & ARMV8_PMU_USERENR_MASK;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1011 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1012 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1013 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1014 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1015 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1016 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1017 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1018 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1019 
1020 #define PMU_SYS_REG(r)						\
1021 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1022 
1023 /* Macro to expand the PMEVCNTRn_EL0 register */
1024 #define PMU_PMEVCNTR_EL0(n)						\
1025 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1026 	  .reset = reset_pmevcntr,					\
1027 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1028 
1029 /* Macro to expand the PMEVTYPERn_EL0 register */
1030 #define PMU_PMEVTYPER_EL0(n)						\
1031 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1032 	  .reset = reset_pmevtyper,					\
1033 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1034 
1035 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036 			 const struct sys_reg_desc *r)
1037 {
1038 	kvm_inject_undefined(vcpu);
1039 
1040 	return false;
1041 }
1042 
1043 /* Macro to expand the AMU counter and type registers*/
1044 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1048 
1049 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050 			const struct sys_reg_desc *rd)
1051 {
1052 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1053 }
1054 
1055 /*
1056  * If we land here on a PtrAuth access, that is because we didn't
1057  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058  * way this happens is when the guest does not have PtrAuth support
1059  * enabled.
1060  */
1061 #define __PTRAUTH_KEY(k)						\
1062 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1063 	.visibility = ptrauth_visibility}
1064 
1065 #define PTRAUTH_KEY(k)							\
1066 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1067 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1068 
1069 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070 			      struct sys_reg_params *p,
1071 			      const struct sys_reg_desc *r)
1072 {
1073 	enum kvm_arch_timers tmr;
1074 	enum kvm_arch_timer_regs treg;
1075 	u64 reg = reg_to_encoding(r);
1076 
1077 	switch (reg) {
1078 	case SYS_CNTP_TVAL_EL0:
1079 	case SYS_AARCH32_CNTP_TVAL:
1080 		tmr = TIMER_PTIMER;
1081 		treg = TIMER_REG_TVAL;
1082 		break;
1083 	case SYS_CNTP_CTL_EL0:
1084 	case SYS_AARCH32_CNTP_CTL:
1085 		tmr = TIMER_PTIMER;
1086 		treg = TIMER_REG_CTL;
1087 		break;
1088 	case SYS_CNTP_CVAL_EL0:
1089 	case SYS_AARCH32_CNTP_CVAL:
1090 		tmr = TIMER_PTIMER;
1091 		treg = TIMER_REG_CVAL;
1092 		break;
1093 	default:
1094 		BUG();
1095 	}
1096 
1097 	if (p->is_write)
1098 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1099 	else
1100 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1101 
1102 	return true;
1103 }
1104 
1105 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1106 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107 		struct sys_reg_desc const *r, bool raz)
1108 {
1109 	u32 id = reg_to_encoding(r);
1110 	u64 val;
1111 
1112 	if (raz)
1113 		return 0;
1114 
1115 	val = read_sanitised_ftr_reg(id);
1116 
1117 	switch (id) {
1118 	case SYS_ID_AA64PFR0_EL1:
1119 		if (!vcpu_has_sve(vcpu))
1120 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1126 		if (irqchip_in_kernel(vcpu->kvm) &&
1127 		    vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
1128 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1129 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1130 		}
1131 		break;
1132 	case SYS_ID_AA64PFR1_EL1:
1133 		if (!kvm_has_mte(vcpu->kvm))
1134 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1135 		break;
1136 	case SYS_ID_AA64ISAR1_EL1:
1137 		if (!vcpu_has_ptrauth(vcpu))
1138 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1139 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1140 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1141 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1142 		break;
1143 	case SYS_ID_AA64ISAR2_EL1:
1144 		if (!vcpu_has_ptrauth(vcpu))
1145 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1146 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1147 		break;
1148 	case SYS_ID_AA64DFR0_EL1:
1149 		/* Limit debug to ARMv8.0 */
1150 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1151 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1152 		/* Limit guests to PMUv3 for ARMv8.4 */
1153 		val = cpuid_feature_cap_perfmon_field(val,
1154 						      ID_AA64DFR0_PMUVER_SHIFT,
1155 						      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1156 		/* Hide SPE from guests */
1157 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1158 		break;
1159 	case SYS_ID_DFR0_EL1:
1160 		/* Limit guests to PMUv3 for ARMv8.4 */
1161 		val = cpuid_feature_cap_perfmon_field(val,
1162 						      ID_DFR0_PERFMON_SHIFT,
1163 						      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1164 		break;
1165 	}
1166 
1167 	return val;
1168 }
1169 
1170 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1171 				  const struct sys_reg_desc *r)
1172 {
1173 	u32 id = reg_to_encoding(r);
1174 
1175 	switch (id) {
1176 	case SYS_ID_AA64ZFR0_EL1:
1177 		if (!vcpu_has_sve(vcpu))
1178 			return REG_RAZ;
1179 		break;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 /* cpufeature ID register access trap handlers */
1186 
1187 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1188 			    struct sys_reg_params *p,
1189 			    const struct sys_reg_desc *r,
1190 			    bool raz)
1191 {
1192 	if (p->is_write)
1193 		return write_to_read_only(vcpu, p, r);
1194 
1195 	p->regval = read_id_reg(vcpu, r, raz);
1196 	return true;
1197 }
1198 
1199 static bool access_id_reg(struct kvm_vcpu *vcpu,
1200 			  struct sys_reg_params *p,
1201 			  const struct sys_reg_desc *r)
1202 {
1203 	bool raz = sysreg_visible_as_raz(vcpu, r);
1204 
1205 	return __access_id_reg(vcpu, p, r, raz);
1206 }
1207 
1208 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1209 			      struct sys_reg_params *p,
1210 			      const struct sys_reg_desc *r)
1211 {
1212 	return __access_id_reg(vcpu, p, r, true);
1213 }
1214 
1215 /* Visibility overrides for SVE-specific control registers */
1216 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1217 				   const struct sys_reg_desc *rd)
1218 {
1219 	if (vcpu_has_sve(vcpu))
1220 		return 0;
1221 
1222 	return REG_HIDDEN;
1223 }
1224 
1225 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1226 			       const struct sys_reg_desc *rd,
1227 			       const struct kvm_one_reg *reg, void __user *uaddr)
1228 {
1229 	const u64 id = sys_reg_to_index(rd);
1230 	u8 csv2, csv3;
1231 	int err;
1232 	u64 val;
1233 
1234 	err = reg_from_user(&val, uaddr, id);
1235 	if (err)
1236 		return err;
1237 
1238 	/*
1239 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1240 	 * it doesn't promise more than what is actually provided (the
1241 	 * guest could otherwise be covered in ectoplasmic residue).
1242 	 */
1243 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1244 	if (csv2 > 1 ||
1245 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1246 		return -EINVAL;
1247 
1248 	/* Same thing for CSV3 */
1249 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1250 	if (csv3 > 1 ||
1251 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1252 		return -EINVAL;
1253 
1254 	/* We can only differ with CSV[23], and anything else is an error */
1255 	val ^= read_id_reg(vcpu, rd, false);
1256 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1257 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1258 	if (val)
1259 		return -EINVAL;
1260 
1261 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1262 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * cpufeature ID register user accessors
1269  *
1270  * For now, these registers are immutable for userspace, so no values
1271  * are stored, and for set_id_reg() we don't allow the effective value
1272  * to be changed.
1273  */
1274 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1275 			const struct sys_reg_desc *rd, void __user *uaddr,
1276 			bool raz)
1277 {
1278 	const u64 id = sys_reg_to_index(rd);
1279 	const u64 val = read_id_reg(vcpu, rd, raz);
1280 
1281 	return reg_to_user(uaddr, &val, id);
1282 }
1283 
1284 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1285 			const struct sys_reg_desc *rd, void __user *uaddr,
1286 			bool raz)
1287 {
1288 	const u64 id = sys_reg_to_index(rd);
1289 	int err;
1290 	u64 val;
1291 
1292 	err = reg_from_user(&val, uaddr, id);
1293 	if (err)
1294 		return err;
1295 
1296 	/* This is what we mean by invariant: you can't change it. */
1297 	if (val != read_id_reg(vcpu, rd, raz))
1298 		return -EINVAL;
1299 
1300 	return 0;
1301 }
1302 
1303 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1304 		      const struct kvm_one_reg *reg, void __user *uaddr)
1305 {
1306 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1307 
1308 	return __get_id_reg(vcpu, rd, uaddr, raz);
1309 }
1310 
1311 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1312 		      const struct kvm_one_reg *reg, void __user *uaddr)
1313 {
1314 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1315 
1316 	return __set_id_reg(vcpu, rd, uaddr, raz);
1317 }
1318 
1319 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1320 			  const struct kvm_one_reg *reg, void __user *uaddr)
1321 {
1322 	return __set_id_reg(vcpu, rd, uaddr, true);
1323 }
1324 
1325 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1326 		       const struct kvm_one_reg *reg, void __user *uaddr)
1327 {
1328 	const u64 id = sys_reg_to_index(rd);
1329 	const u64 val = 0;
1330 
1331 	return reg_to_user(uaddr, &val, id);
1332 }
1333 
1334 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1335 		      const struct kvm_one_reg *reg, void __user *uaddr)
1336 {
1337 	int err;
1338 	u64 val;
1339 
1340 	/* Perform the access even if we are going to ignore the value */
1341 	err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1342 	if (err)
1343 		return err;
1344 
1345 	return 0;
1346 }
1347 
1348 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1349 		       const struct sys_reg_desc *r)
1350 {
1351 	if (p->is_write)
1352 		return write_to_read_only(vcpu, p, r);
1353 
1354 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1355 	return true;
1356 }
1357 
1358 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1359 			 const struct sys_reg_desc *r)
1360 {
1361 	if (p->is_write)
1362 		return write_to_read_only(vcpu, p, r);
1363 
1364 	p->regval = read_sysreg(clidr_el1);
1365 	return true;
1366 }
1367 
1368 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1369 			  const struct sys_reg_desc *r)
1370 {
1371 	int reg = r->reg;
1372 
1373 	if (p->is_write)
1374 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1375 	else
1376 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1377 	return true;
1378 }
1379 
1380 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1381 			  const struct sys_reg_desc *r)
1382 {
1383 	u32 csselr;
1384 
1385 	if (p->is_write)
1386 		return write_to_read_only(vcpu, p, r);
1387 
1388 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1389 	p->regval = get_ccsidr(csselr);
1390 
1391 	/*
1392 	 * Guests should not be doing cache operations by set/way at all, and
1393 	 * for this reason, we trap them and attempt to infer the intent, so
1394 	 * that we can flush the entire guest's address space at the appropriate
1395 	 * time.
1396 	 * To prevent this trapping from causing performance problems, let's
1397 	 * expose the geometry of all data and unified caches (which are
1398 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1399 	 * [If guests should attempt to infer aliasing properties from the
1400 	 * geometry (which is not permitted by the architecture), they would
1401 	 * only do so for virtually indexed caches.]
1402 	 */
1403 	if (!(csselr & 1)) // data or unified cache
1404 		p->regval &= ~GENMASK(27, 3);
1405 	return true;
1406 }
1407 
1408 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1409 				   const struct sys_reg_desc *rd)
1410 {
1411 	if (kvm_has_mte(vcpu->kvm))
1412 		return 0;
1413 
1414 	return REG_HIDDEN;
1415 }
1416 
1417 #define MTE_REG(name) {				\
1418 	SYS_DESC(SYS_##name),			\
1419 	.access = undef_access,			\
1420 	.reset = reset_unknown,			\
1421 	.reg = name,				\
1422 	.visibility = mte_visibility,		\
1423 }
1424 
1425 /* sys_reg_desc initialiser for known cpufeature ID registers */
1426 #define ID_SANITISED(name) {			\
1427 	SYS_DESC(SYS_##name),			\
1428 	.access	= access_id_reg,		\
1429 	.get_user = get_id_reg,			\
1430 	.set_user = set_id_reg,			\
1431 	.visibility = id_visibility,		\
1432 }
1433 
1434 /*
1435  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1436  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1437  * (1 <= crm < 8, 0 <= Op2 < 8).
1438  */
1439 #define ID_UNALLOCATED(crm, op2) {			\
1440 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1441 	.access = access_raz_id_reg,			\
1442 	.get_user = get_raz_reg,			\
1443 	.set_user = set_raz_id_reg,			\
1444 }
1445 
1446 /*
1447  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1448  * For now, these are exposed just like unallocated ID regs: they appear
1449  * RAZ for the guest.
1450  */
1451 #define ID_HIDDEN(name) {			\
1452 	SYS_DESC(SYS_##name),			\
1453 	.access = access_raz_id_reg,		\
1454 	.get_user = get_raz_reg,		\
1455 	.set_user = set_raz_id_reg,		\
1456 }
1457 
1458 /*
1459  * Architected system registers.
1460  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1461  *
1462  * Debug handling: We do trap most, if not all debug related system
1463  * registers. The implementation is good enough to ensure that a guest
1464  * can use these with minimal performance degradation. The drawback is
1465  * that we don't implement any of the external debug architecture.
1466  * This should be revisited if we ever encounter a more demanding
1467  * guest...
1468  */
1469 static const struct sys_reg_desc sys_reg_descs[] = {
1470 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1471 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1472 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1473 
1474 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1475 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1476 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1477 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1478 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1479 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1480 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1481 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1482 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1483 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1484 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1485 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1486 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1487 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1488 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1489 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1490 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1491 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1492 
1493 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1494 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1495 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1496 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1497 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1498 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1499 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1500 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1501 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1502 
1503 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1504 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1505 	// DBGDTR[TR]X_EL0 share the same encoding
1506 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1507 
1508 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1509 
1510 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1511 
1512 	/*
1513 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1514 	 * entries in arm64_ftr_regs[].
1515 	 */
1516 
1517 	/* AArch64 mappings of the AArch32 ID registers */
1518 	/* CRm=1 */
1519 	ID_SANITISED(ID_PFR0_EL1),
1520 	ID_SANITISED(ID_PFR1_EL1),
1521 	ID_SANITISED(ID_DFR0_EL1),
1522 	ID_HIDDEN(ID_AFR0_EL1),
1523 	ID_SANITISED(ID_MMFR0_EL1),
1524 	ID_SANITISED(ID_MMFR1_EL1),
1525 	ID_SANITISED(ID_MMFR2_EL1),
1526 	ID_SANITISED(ID_MMFR3_EL1),
1527 
1528 	/* CRm=2 */
1529 	ID_SANITISED(ID_ISAR0_EL1),
1530 	ID_SANITISED(ID_ISAR1_EL1),
1531 	ID_SANITISED(ID_ISAR2_EL1),
1532 	ID_SANITISED(ID_ISAR3_EL1),
1533 	ID_SANITISED(ID_ISAR4_EL1),
1534 	ID_SANITISED(ID_ISAR5_EL1),
1535 	ID_SANITISED(ID_MMFR4_EL1),
1536 	ID_SANITISED(ID_ISAR6_EL1),
1537 
1538 	/* CRm=3 */
1539 	ID_SANITISED(MVFR0_EL1),
1540 	ID_SANITISED(MVFR1_EL1),
1541 	ID_SANITISED(MVFR2_EL1),
1542 	ID_UNALLOCATED(3,3),
1543 	ID_SANITISED(ID_PFR2_EL1),
1544 	ID_HIDDEN(ID_DFR1_EL1),
1545 	ID_SANITISED(ID_MMFR5_EL1),
1546 	ID_UNALLOCATED(3,7),
1547 
1548 	/* AArch64 ID registers */
1549 	/* CRm=4 */
1550 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1551 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1552 	ID_SANITISED(ID_AA64PFR1_EL1),
1553 	ID_UNALLOCATED(4,2),
1554 	ID_UNALLOCATED(4,3),
1555 	ID_SANITISED(ID_AA64ZFR0_EL1),
1556 	ID_UNALLOCATED(4,5),
1557 	ID_UNALLOCATED(4,6),
1558 	ID_UNALLOCATED(4,7),
1559 
1560 	/* CRm=5 */
1561 	ID_SANITISED(ID_AA64DFR0_EL1),
1562 	ID_SANITISED(ID_AA64DFR1_EL1),
1563 	ID_UNALLOCATED(5,2),
1564 	ID_UNALLOCATED(5,3),
1565 	ID_HIDDEN(ID_AA64AFR0_EL1),
1566 	ID_HIDDEN(ID_AA64AFR1_EL1),
1567 	ID_UNALLOCATED(5,6),
1568 	ID_UNALLOCATED(5,7),
1569 
1570 	/* CRm=6 */
1571 	ID_SANITISED(ID_AA64ISAR0_EL1),
1572 	ID_SANITISED(ID_AA64ISAR1_EL1),
1573 	ID_SANITISED(ID_AA64ISAR2_EL1),
1574 	ID_UNALLOCATED(6,3),
1575 	ID_UNALLOCATED(6,4),
1576 	ID_UNALLOCATED(6,5),
1577 	ID_UNALLOCATED(6,6),
1578 	ID_UNALLOCATED(6,7),
1579 
1580 	/* CRm=7 */
1581 	ID_SANITISED(ID_AA64MMFR0_EL1),
1582 	ID_SANITISED(ID_AA64MMFR1_EL1),
1583 	ID_SANITISED(ID_AA64MMFR2_EL1),
1584 	ID_UNALLOCATED(7,3),
1585 	ID_UNALLOCATED(7,4),
1586 	ID_UNALLOCATED(7,5),
1587 	ID_UNALLOCATED(7,6),
1588 	ID_UNALLOCATED(7,7),
1589 
1590 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1591 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1592 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1593 
1594 	MTE_REG(RGSR_EL1),
1595 	MTE_REG(GCR_EL1),
1596 
1597 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1598 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1599 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1600 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1601 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1602 
1603 	PTRAUTH_KEY(APIA),
1604 	PTRAUTH_KEY(APIB),
1605 	PTRAUTH_KEY(APDA),
1606 	PTRAUTH_KEY(APDB),
1607 	PTRAUTH_KEY(APGA),
1608 
1609 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1610 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1611 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1612 
1613 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1614 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1615 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1616 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1617 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1618 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1619 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1620 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1621 
1622 	MTE_REG(TFSR_EL1),
1623 	MTE_REG(TFSRE0_EL1),
1624 
1625 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1626 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1627 
1628 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1629 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1630 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1631 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1632 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1633 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1634 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1635 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1636 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1637 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1638 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1639 	/* PMBIDR_EL1 is not trapped */
1640 
1641 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1642 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1643 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1644 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1645 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1646 
1647 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1648 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1649 
1650 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1651 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1652 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1653 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1654 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1655 
1656 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1657 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1658 
1659 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1660 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1661 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1662 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1663 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1664 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1665 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1666 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1667 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1668 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1669 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1670 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1671 
1672 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1673 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1674 
1675 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1676 
1677 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1678 
1679 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1680 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1681 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1682 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1683 
1684 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1685 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1686 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1687 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1688 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1689 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1690 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1691 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1692 	/*
1693 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1694 	 * previously (and pointlessly) advertised in the past...
1695 	 */
1696 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1697 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1698 	  .access = access_pmswinc, .reset = NULL },
1699 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1700 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1701 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1702 	  .access = access_pmceid, .reset = NULL },
1703 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1704 	  .access = access_pmceid, .reset = NULL },
1705 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1706 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1707 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1708 	  .access = access_pmu_evtyper, .reset = NULL },
1709 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1710 	  .access = access_pmu_evcntr, .reset = NULL },
1711 	/*
1712 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1713 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1714 	 */
1715 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1716 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1717 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1718 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1719 
1720 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1721 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1722 
1723 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1724 
1725 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1726 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1727 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1728 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1729 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1730 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1731 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1732 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1733 	AMU_AMEVCNTR0_EL0(0),
1734 	AMU_AMEVCNTR0_EL0(1),
1735 	AMU_AMEVCNTR0_EL0(2),
1736 	AMU_AMEVCNTR0_EL0(3),
1737 	AMU_AMEVCNTR0_EL0(4),
1738 	AMU_AMEVCNTR0_EL0(5),
1739 	AMU_AMEVCNTR0_EL0(6),
1740 	AMU_AMEVCNTR0_EL0(7),
1741 	AMU_AMEVCNTR0_EL0(8),
1742 	AMU_AMEVCNTR0_EL0(9),
1743 	AMU_AMEVCNTR0_EL0(10),
1744 	AMU_AMEVCNTR0_EL0(11),
1745 	AMU_AMEVCNTR0_EL0(12),
1746 	AMU_AMEVCNTR0_EL0(13),
1747 	AMU_AMEVCNTR0_EL0(14),
1748 	AMU_AMEVCNTR0_EL0(15),
1749 	AMU_AMEVTYPER0_EL0(0),
1750 	AMU_AMEVTYPER0_EL0(1),
1751 	AMU_AMEVTYPER0_EL0(2),
1752 	AMU_AMEVTYPER0_EL0(3),
1753 	AMU_AMEVTYPER0_EL0(4),
1754 	AMU_AMEVTYPER0_EL0(5),
1755 	AMU_AMEVTYPER0_EL0(6),
1756 	AMU_AMEVTYPER0_EL0(7),
1757 	AMU_AMEVTYPER0_EL0(8),
1758 	AMU_AMEVTYPER0_EL0(9),
1759 	AMU_AMEVTYPER0_EL0(10),
1760 	AMU_AMEVTYPER0_EL0(11),
1761 	AMU_AMEVTYPER0_EL0(12),
1762 	AMU_AMEVTYPER0_EL0(13),
1763 	AMU_AMEVTYPER0_EL0(14),
1764 	AMU_AMEVTYPER0_EL0(15),
1765 	AMU_AMEVCNTR1_EL0(0),
1766 	AMU_AMEVCNTR1_EL0(1),
1767 	AMU_AMEVCNTR1_EL0(2),
1768 	AMU_AMEVCNTR1_EL0(3),
1769 	AMU_AMEVCNTR1_EL0(4),
1770 	AMU_AMEVCNTR1_EL0(5),
1771 	AMU_AMEVCNTR1_EL0(6),
1772 	AMU_AMEVCNTR1_EL0(7),
1773 	AMU_AMEVCNTR1_EL0(8),
1774 	AMU_AMEVCNTR1_EL0(9),
1775 	AMU_AMEVCNTR1_EL0(10),
1776 	AMU_AMEVCNTR1_EL0(11),
1777 	AMU_AMEVCNTR1_EL0(12),
1778 	AMU_AMEVCNTR1_EL0(13),
1779 	AMU_AMEVCNTR1_EL0(14),
1780 	AMU_AMEVCNTR1_EL0(15),
1781 	AMU_AMEVTYPER1_EL0(0),
1782 	AMU_AMEVTYPER1_EL0(1),
1783 	AMU_AMEVTYPER1_EL0(2),
1784 	AMU_AMEVTYPER1_EL0(3),
1785 	AMU_AMEVTYPER1_EL0(4),
1786 	AMU_AMEVTYPER1_EL0(5),
1787 	AMU_AMEVTYPER1_EL0(6),
1788 	AMU_AMEVTYPER1_EL0(7),
1789 	AMU_AMEVTYPER1_EL0(8),
1790 	AMU_AMEVTYPER1_EL0(9),
1791 	AMU_AMEVTYPER1_EL0(10),
1792 	AMU_AMEVTYPER1_EL0(11),
1793 	AMU_AMEVTYPER1_EL0(12),
1794 	AMU_AMEVTYPER1_EL0(13),
1795 	AMU_AMEVTYPER1_EL0(14),
1796 	AMU_AMEVTYPER1_EL0(15),
1797 
1798 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1799 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1800 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1801 
1802 	/* PMEVCNTRn_EL0 */
1803 	PMU_PMEVCNTR_EL0(0),
1804 	PMU_PMEVCNTR_EL0(1),
1805 	PMU_PMEVCNTR_EL0(2),
1806 	PMU_PMEVCNTR_EL0(3),
1807 	PMU_PMEVCNTR_EL0(4),
1808 	PMU_PMEVCNTR_EL0(5),
1809 	PMU_PMEVCNTR_EL0(6),
1810 	PMU_PMEVCNTR_EL0(7),
1811 	PMU_PMEVCNTR_EL0(8),
1812 	PMU_PMEVCNTR_EL0(9),
1813 	PMU_PMEVCNTR_EL0(10),
1814 	PMU_PMEVCNTR_EL0(11),
1815 	PMU_PMEVCNTR_EL0(12),
1816 	PMU_PMEVCNTR_EL0(13),
1817 	PMU_PMEVCNTR_EL0(14),
1818 	PMU_PMEVCNTR_EL0(15),
1819 	PMU_PMEVCNTR_EL0(16),
1820 	PMU_PMEVCNTR_EL0(17),
1821 	PMU_PMEVCNTR_EL0(18),
1822 	PMU_PMEVCNTR_EL0(19),
1823 	PMU_PMEVCNTR_EL0(20),
1824 	PMU_PMEVCNTR_EL0(21),
1825 	PMU_PMEVCNTR_EL0(22),
1826 	PMU_PMEVCNTR_EL0(23),
1827 	PMU_PMEVCNTR_EL0(24),
1828 	PMU_PMEVCNTR_EL0(25),
1829 	PMU_PMEVCNTR_EL0(26),
1830 	PMU_PMEVCNTR_EL0(27),
1831 	PMU_PMEVCNTR_EL0(28),
1832 	PMU_PMEVCNTR_EL0(29),
1833 	PMU_PMEVCNTR_EL0(30),
1834 	/* PMEVTYPERn_EL0 */
1835 	PMU_PMEVTYPER_EL0(0),
1836 	PMU_PMEVTYPER_EL0(1),
1837 	PMU_PMEVTYPER_EL0(2),
1838 	PMU_PMEVTYPER_EL0(3),
1839 	PMU_PMEVTYPER_EL0(4),
1840 	PMU_PMEVTYPER_EL0(5),
1841 	PMU_PMEVTYPER_EL0(6),
1842 	PMU_PMEVTYPER_EL0(7),
1843 	PMU_PMEVTYPER_EL0(8),
1844 	PMU_PMEVTYPER_EL0(9),
1845 	PMU_PMEVTYPER_EL0(10),
1846 	PMU_PMEVTYPER_EL0(11),
1847 	PMU_PMEVTYPER_EL0(12),
1848 	PMU_PMEVTYPER_EL0(13),
1849 	PMU_PMEVTYPER_EL0(14),
1850 	PMU_PMEVTYPER_EL0(15),
1851 	PMU_PMEVTYPER_EL0(16),
1852 	PMU_PMEVTYPER_EL0(17),
1853 	PMU_PMEVTYPER_EL0(18),
1854 	PMU_PMEVTYPER_EL0(19),
1855 	PMU_PMEVTYPER_EL0(20),
1856 	PMU_PMEVTYPER_EL0(21),
1857 	PMU_PMEVTYPER_EL0(22),
1858 	PMU_PMEVTYPER_EL0(23),
1859 	PMU_PMEVTYPER_EL0(24),
1860 	PMU_PMEVTYPER_EL0(25),
1861 	PMU_PMEVTYPER_EL0(26),
1862 	PMU_PMEVTYPER_EL0(27),
1863 	PMU_PMEVTYPER_EL0(28),
1864 	PMU_PMEVTYPER_EL0(29),
1865 	PMU_PMEVTYPER_EL0(30),
1866 	/*
1867 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1868 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1869 	 */
1870 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1871 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1872 
1873 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1874 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1875 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1876 };
1877 
1878 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1879 			struct sys_reg_params *p,
1880 			const struct sys_reg_desc *r)
1881 {
1882 	if (p->is_write) {
1883 		return ignore_write(vcpu, p);
1884 	} else {
1885 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1886 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1887 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1888 
1889 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1890 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1891 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1892 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1893 		return true;
1894 	}
1895 }
1896 
1897 /*
1898  * AArch32 debug register mappings
1899  *
1900  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1901  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1902  *
1903  * None of the other registers share their location, so treat them as
1904  * if they were 64bit.
1905  */
1906 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1907 	/* DBGBVRn */							      \
1908 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1909 	/* DBGBCRn */							      \
1910 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1911 	/* DBGWVRn */							      \
1912 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1913 	/* DBGWCRn */							      \
1914 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1915 
1916 #define DBGBXVR(n)							      \
1917 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1918 
1919 /*
1920  * Trapped cp14 registers. We generally ignore most of the external
1921  * debug, on the principle that they don't really make sense to a
1922  * guest. Revisit this one day, would this principle change.
1923  */
1924 static const struct sys_reg_desc cp14_regs[] = {
1925 	/* DBGDIDR */
1926 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1927 	/* DBGDTRRXext */
1928 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1929 
1930 	DBG_BCR_BVR_WCR_WVR(0),
1931 	/* DBGDSCRint */
1932 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1933 	DBG_BCR_BVR_WCR_WVR(1),
1934 	/* DBGDCCINT */
1935 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1936 	/* DBGDSCRext */
1937 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1938 	DBG_BCR_BVR_WCR_WVR(2),
1939 	/* DBGDTR[RT]Xint */
1940 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1941 	/* DBGDTR[RT]Xext */
1942 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1943 	DBG_BCR_BVR_WCR_WVR(3),
1944 	DBG_BCR_BVR_WCR_WVR(4),
1945 	DBG_BCR_BVR_WCR_WVR(5),
1946 	/* DBGWFAR */
1947 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1948 	/* DBGOSECCR */
1949 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1950 	DBG_BCR_BVR_WCR_WVR(6),
1951 	/* DBGVCR */
1952 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1953 	DBG_BCR_BVR_WCR_WVR(7),
1954 	DBG_BCR_BVR_WCR_WVR(8),
1955 	DBG_BCR_BVR_WCR_WVR(9),
1956 	DBG_BCR_BVR_WCR_WVR(10),
1957 	DBG_BCR_BVR_WCR_WVR(11),
1958 	DBG_BCR_BVR_WCR_WVR(12),
1959 	DBG_BCR_BVR_WCR_WVR(13),
1960 	DBG_BCR_BVR_WCR_WVR(14),
1961 	DBG_BCR_BVR_WCR_WVR(15),
1962 
1963 	/* DBGDRAR (32bit) */
1964 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1965 
1966 	DBGBXVR(0),
1967 	/* DBGOSLAR */
1968 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1969 	DBGBXVR(1),
1970 	/* DBGOSLSR */
1971 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1972 	DBGBXVR(2),
1973 	DBGBXVR(3),
1974 	/* DBGOSDLR */
1975 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1976 	DBGBXVR(4),
1977 	/* DBGPRCR */
1978 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1979 	DBGBXVR(5),
1980 	DBGBXVR(6),
1981 	DBGBXVR(7),
1982 	DBGBXVR(8),
1983 	DBGBXVR(9),
1984 	DBGBXVR(10),
1985 	DBGBXVR(11),
1986 	DBGBXVR(12),
1987 	DBGBXVR(13),
1988 	DBGBXVR(14),
1989 	DBGBXVR(15),
1990 
1991 	/* DBGDSAR (32bit) */
1992 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1993 
1994 	/* DBGDEVID2 */
1995 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1996 	/* DBGDEVID1 */
1997 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1998 	/* DBGDEVID */
1999 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2000 	/* DBGCLAIMSET */
2001 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2002 	/* DBGCLAIMCLR */
2003 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2004 	/* DBGAUTHSTATUS */
2005 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2006 };
2007 
2008 /* Trapped cp14 64bit registers */
2009 static const struct sys_reg_desc cp14_64_regs[] = {
2010 	/* DBGDRAR (64bit) */
2011 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2012 
2013 	/* DBGDSAR (64bit) */
2014 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2015 };
2016 
2017 /* Macro to expand the PMEVCNTRn register */
2018 #define PMU_PMEVCNTR(n)							\
2019 	/* PMEVCNTRn */							\
2020 	{ Op1(0), CRn(0b1110),						\
2021 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2022 	  access_pmu_evcntr }
2023 
2024 /* Macro to expand the PMEVTYPERn register */
2025 #define PMU_PMEVTYPER(n)						\
2026 	/* PMEVTYPERn */						\
2027 	{ Op1(0), CRn(0b1110),						\
2028 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2029 	  access_pmu_evtyper }
2030 
2031 /*
2032  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2033  * depending on the way they are accessed (as a 32bit or a 64bit
2034  * register).
2035  */
2036 static const struct sys_reg_desc cp15_regs[] = {
2037 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2038 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2039 	/* ACTLR */
2040 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2041 	/* ACTLR2 */
2042 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2043 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2044 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2045 	/* TTBCR */
2046 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2047 	/* TTBCR2 */
2048 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2049 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2050 	/* DFSR */
2051 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2052 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2053 	/* ADFSR */
2054 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2055 	/* AIFSR */
2056 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2057 	/* DFAR */
2058 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2059 	/* IFAR */
2060 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2061 
2062 	/*
2063 	 * DC{C,I,CI}SW operations:
2064 	 */
2065 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2066 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2067 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2068 
2069 	/* PMU */
2070 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2071 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2072 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2073 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2074 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2075 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2076 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2077 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2078 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2079 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2080 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2081 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2082 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2083 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2084 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2085 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2086 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2087 	/* PMMIR */
2088 	{ Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2089 
2090 	/* PRRR/MAIR0 */
2091 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2092 	/* NMRR/MAIR1 */
2093 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2094 	/* AMAIR0 */
2095 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2096 	/* AMAIR1 */
2097 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2098 
2099 	/* ICC_SRE */
2100 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2101 
2102 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2103 
2104 	/* Arch Tmers */
2105 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2106 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2107 
2108 	/* PMEVCNTRn */
2109 	PMU_PMEVCNTR(0),
2110 	PMU_PMEVCNTR(1),
2111 	PMU_PMEVCNTR(2),
2112 	PMU_PMEVCNTR(3),
2113 	PMU_PMEVCNTR(4),
2114 	PMU_PMEVCNTR(5),
2115 	PMU_PMEVCNTR(6),
2116 	PMU_PMEVCNTR(7),
2117 	PMU_PMEVCNTR(8),
2118 	PMU_PMEVCNTR(9),
2119 	PMU_PMEVCNTR(10),
2120 	PMU_PMEVCNTR(11),
2121 	PMU_PMEVCNTR(12),
2122 	PMU_PMEVCNTR(13),
2123 	PMU_PMEVCNTR(14),
2124 	PMU_PMEVCNTR(15),
2125 	PMU_PMEVCNTR(16),
2126 	PMU_PMEVCNTR(17),
2127 	PMU_PMEVCNTR(18),
2128 	PMU_PMEVCNTR(19),
2129 	PMU_PMEVCNTR(20),
2130 	PMU_PMEVCNTR(21),
2131 	PMU_PMEVCNTR(22),
2132 	PMU_PMEVCNTR(23),
2133 	PMU_PMEVCNTR(24),
2134 	PMU_PMEVCNTR(25),
2135 	PMU_PMEVCNTR(26),
2136 	PMU_PMEVCNTR(27),
2137 	PMU_PMEVCNTR(28),
2138 	PMU_PMEVCNTR(29),
2139 	PMU_PMEVCNTR(30),
2140 	/* PMEVTYPERn */
2141 	PMU_PMEVTYPER(0),
2142 	PMU_PMEVTYPER(1),
2143 	PMU_PMEVTYPER(2),
2144 	PMU_PMEVTYPER(3),
2145 	PMU_PMEVTYPER(4),
2146 	PMU_PMEVTYPER(5),
2147 	PMU_PMEVTYPER(6),
2148 	PMU_PMEVTYPER(7),
2149 	PMU_PMEVTYPER(8),
2150 	PMU_PMEVTYPER(9),
2151 	PMU_PMEVTYPER(10),
2152 	PMU_PMEVTYPER(11),
2153 	PMU_PMEVTYPER(12),
2154 	PMU_PMEVTYPER(13),
2155 	PMU_PMEVTYPER(14),
2156 	PMU_PMEVTYPER(15),
2157 	PMU_PMEVTYPER(16),
2158 	PMU_PMEVTYPER(17),
2159 	PMU_PMEVTYPER(18),
2160 	PMU_PMEVTYPER(19),
2161 	PMU_PMEVTYPER(20),
2162 	PMU_PMEVTYPER(21),
2163 	PMU_PMEVTYPER(22),
2164 	PMU_PMEVTYPER(23),
2165 	PMU_PMEVTYPER(24),
2166 	PMU_PMEVTYPER(25),
2167 	PMU_PMEVTYPER(26),
2168 	PMU_PMEVTYPER(27),
2169 	PMU_PMEVTYPER(28),
2170 	PMU_PMEVTYPER(29),
2171 	PMU_PMEVTYPER(30),
2172 	/* PMCCFILTR */
2173 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2174 
2175 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2176 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2177 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2178 };
2179 
2180 static const struct sys_reg_desc cp15_64_regs[] = {
2181 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2182 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2183 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2184 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2185 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2186 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2187 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2188 };
2189 
2190 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2191 			      bool is_32)
2192 {
2193 	unsigned int i;
2194 
2195 	for (i = 0; i < n; i++) {
2196 		if (!is_32 && table[i].reg && !table[i].reset) {
2197 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2198 				table, i);
2199 			return 1;
2200 		}
2201 
2202 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2203 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2204 			return 1;
2205 		}
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2212 {
2213 	kvm_inject_undefined(vcpu);
2214 	return 1;
2215 }
2216 
2217 static void perform_access(struct kvm_vcpu *vcpu,
2218 			   struct sys_reg_params *params,
2219 			   const struct sys_reg_desc *r)
2220 {
2221 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2222 
2223 	/* Check for regs disabled by runtime config */
2224 	if (sysreg_hidden(vcpu, r)) {
2225 		kvm_inject_undefined(vcpu);
2226 		return;
2227 	}
2228 
2229 	/*
2230 	 * Not having an accessor means that we have configured a trap
2231 	 * that we don't know how to handle. This certainly qualifies
2232 	 * as a gross bug that should be fixed right away.
2233 	 */
2234 	BUG_ON(!r->access);
2235 
2236 	/* Skip instruction if instructed so */
2237 	if (likely(r->access(vcpu, params, r)))
2238 		kvm_incr_pc(vcpu);
2239 }
2240 
2241 /*
2242  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2243  *                call the corresponding trap handler.
2244  *
2245  * @params: pointer to the descriptor of the access
2246  * @table: array of trap descriptors
2247  * @num: size of the trap descriptor array
2248  *
2249  * Return 0 if the access has been handled, and -1 if not.
2250  */
2251 static int emulate_cp(struct kvm_vcpu *vcpu,
2252 		      struct sys_reg_params *params,
2253 		      const struct sys_reg_desc *table,
2254 		      size_t num)
2255 {
2256 	const struct sys_reg_desc *r;
2257 
2258 	if (!table)
2259 		return -1;	/* Not handled */
2260 
2261 	r = find_reg(params, table, num);
2262 
2263 	if (r) {
2264 		perform_access(vcpu, params, r);
2265 		return 0;
2266 	}
2267 
2268 	/* Not handled */
2269 	return -1;
2270 }
2271 
2272 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2273 				struct sys_reg_params *params)
2274 {
2275 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2276 	int cp = -1;
2277 
2278 	switch (esr_ec) {
2279 	case ESR_ELx_EC_CP15_32:
2280 	case ESR_ELx_EC_CP15_64:
2281 		cp = 15;
2282 		break;
2283 	case ESR_ELx_EC_CP14_MR:
2284 	case ESR_ELx_EC_CP14_64:
2285 		cp = 14;
2286 		break;
2287 	default:
2288 		WARN_ON(1);
2289 	}
2290 
2291 	print_sys_reg_msg(params,
2292 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2293 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2294 	kvm_inject_undefined(vcpu);
2295 }
2296 
2297 /**
2298  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2299  * @vcpu: The VCPU pointer
2300  * @run:  The kvm_run struct
2301  */
2302 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2303 			    const struct sys_reg_desc *global,
2304 			    size_t nr_global)
2305 {
2306 	struct sys_reg_params params;
2307 	u32 esr = kvm_vcpu_get_esr(vcpu);
2308 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2309 	int Rt2 = (esr >> 10) & 0x1f;
2310 
2311 	params.CRm = (esr >> 1) & 0xf;
2312 	params.is_write = ((esr & 1) == 0);
2313 
2314 	params.Op0 = 0;
2315 	params.Op1 = (esr >> 16) & 0xf;
2316 	params.Op2 = 0;
2317 	params.CRn = 0;
2318 
2319 	/*
2320 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2321 	 * backends between AArch32 and AArch64, we get away with it.
2322 	 */
2323 	if (params.is_write) {
2324 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2325 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2326 	}
2327 
2328 	/*
2329 	 * If the table contains a handler, handle the
2330 	 * potential register operation in the case of a read and return
2331 	 * with success.
2332 	 */
2333 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2334 		/* Split up the value between registers for the read side */
2335 		if (!params.is_write) {
2336 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2337 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2338 		}
2339 
2340 		return 1;
2341 	}
2342 
2343 	unhandled_cp_access(vcpu, &params);
2344 	return 1;
2345 }
2346 
2347 /**
2348  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2349  * @vcpu: The VCPU pointer
2350  * @run:  The kvm_run struct
2351  */
2352 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2353 			    const struct sys_reg_desc *global,
2354 			    size_t nr_global)
2355 {
2356 	struct sys_reg_params params;
2357 	u32 esr = kvm_vcpu_get_esr(vcpu);
2358 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2359 
2360 	params.CRm = (esr >> 1) & 0xf;
2361 	params.regval = vcpu_get_reg(vcpu, Rt);
2362 	params.is_write = ((esr & 1) == 0);
2363 	params.CRn = (esr >> 10) & 0xf;
2364 	params.Op0 = 0;
2365 	params.Op1 = (esr >> 14) & 0x7;
2366 	params.Op2 = (esr >> 17) & 0x7;
2367 
2368 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2369 		if (!params.is_write)
2370 			vcpu_set_reg(vcpu, Rt, params.regval);
2371 		return 1;
2372 	}
2373 
2374 	unhandled_cp_access(vcpu, &params);
2375 	return 1;
2376 }
2377 
2378 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2379 {
2380 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2381 }
2382 
2383 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2384 {
2385 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2386 }
2387 
2388 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2389 {
2390 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2391 }
2392 
2393 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2394 {
2395 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2396 }
2397 
2398 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2399 {
2400 	// See ARM DDI 0487E.a, section D12.3.2
2401 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2402 }
2403 
2404 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2405 			   struct sys_reg_params *params)
2406 {
2407 	const struct sys_reg_desc *r;
2408 
2409 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2410 
2411 	if (likely(r)) {
2412 		perform_access(vcpu, params, r);
2413 	} else if (is_imp_def_sys_reg(params)) {
2414 		kvm_inject_undefined(vcpu);
2415 	} else {
2416 		print_sys_reg_msg(params,
2417 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2418 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2419 		kvm_inject_undefined(vcpu);
2420 	}
2421 	return 1;
2422 }
2423 
2424 /**
2425  * kvm_reset_sys_regs - sets system registers to reset value
2426  * @vcpu: The VCPU pointer
2427  *
2428  * This function finds the right table above and sets the registers on the
2429  * virtual CPU struct to their architecturally defined reset values.
2430  */
2431 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2432 {
2433 	unsigned long i;
2434 
2435 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2436 		if (sys_reg_descs[i].reset)
2437 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2438 }
2439 
2440 /**
2441  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2442  * @vcpu: The VCPU pointer
2443  */
2444 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2445 {
2446 	struct sys_reg_params params;
2447 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2448 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2449 	int ret;
2450 
2451 	trace_kvm_handle_sys_reg(esr);
2452 
2453 	params = esr_sys64_to_params(esr);
2454 	params.regval = vcpu_get_reg(vcpu, Rt);
2455 
2456 	ret = emulate_sys_reg(vcpu, &params);
2457 
2458 	if (!params.is_write)
2459 		vcpu_set_reg(vcpu, Rt, params.regval);
2460 	return ret;
2461 }
2462 
2463 /******************************************************************************
2464  * Userspace API
2465  *****************************************************************************/
2466 
2467 static bool index_to_params(u64 id, struct sys_reg_params *params)
2468 {
2469 	switch (id & KVM_REG_SIZE_MASK) {
2470 	case KVM_REG_SIZE_U64:
2471 		/* Any unused index bits means it's not valid. */
2472 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2473 			      | KVM_REG_ARM_COPROC_MASK
2474 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2475 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2476 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2477 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2478 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2479 			return false;
2480 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2481 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2482 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2483 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2484 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2485 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2486 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2487 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2488 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2489 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2490 		return true;
2491 	default:
2492 		return false;
2493 	}
2494 }
2495 
2496 const struct sys_reg_desc *find_reg_by_id(u64 id,
2497 					  struct sys_reg_params *params,
2498 					  const struct sys_reg_desc table[],
2499 					  unsigned int num)
2500 {
2501 	if (!index_to_params(id, params))
2502 		return NULL;
2503 
2504 	return find_reg(params, table, num);
2505 }
2506 
2507 /* Decode an index value, and find the sys_reg_desc entry. */
2508 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2509 						    u64 id)
2510 {
2511 	const struct sys_reg_desc *r;
2512 	struct sys_reg_params params;
2513 
2514 	/* We only do sys_reg for now. */
2515 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2516 		return NULL;
2517 
2518 	if (!index_to_params(id, &params))
2519 		return NULL;
2520 
2521 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2522 
2523 	/* Not saved in the sys_reg array and not otherwise accessible? */
2524 	if (r && !(r->reg || r->get_user))
2525 		r = NULL;
2526 
2527 	return r;
2528 }
2529 
2530 /*
2531  * These are the invariant sys_reg registers: we let the guest see the
2532  * host versions of these, so they're part of the guest state.
2533  *
2534  * A future CPU may provide a mechanism to present different values to
2535  * the guest, or a future kvm may trap them.
2536  */
2537 
2538 #define FUNCTION_INVARIANT(reg)						\
2539 	static void get_##reg(struct kvm_vcpu *v,			\
2540 			      const struct sys_reg_desc *r)		\
2541 	{								\
2542 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2543 	}
2544 
2545 FUNCTION_INVARIANT(midr_el1)
2546 FUNCTION_INVARIANT(revidr_el1)
2547 FUNCTION_INVARIANT(clidr_el1)
2548 FUNCTION_INVARIANT(aidr_el1)
2549 
2550 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2551 {
2552 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2553 }
2554 
2555 /* ->val is filled in by kvm_sys_reg_table_init() */
2556 static struct sys_reg_desc invariant_sys_regs[] = {
2557 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2558 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2559 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2560 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2561 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2562 };
2563 
2564 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2565 {
2566 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2567 		return -EFAULT;
2568 	return 0;
2569 }
2570 
2571 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2572 {
2573 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2574 		return -EFAULT;
2575 	return 0;
2576 }
2577 
2578 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2579 {
2580 	struct sys_reg_params params;
2581 	const struct sys_reg_desc *r;
2582 
2583 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2584 			   ARRAY_SIZE(invariant_sys_regs));
2585 	if (!r)
2586 		return -ENOENT;
2587 
2588 	return reg_to_user(uaddr, &r->val, id);
2589 }
2590 
2591 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2592 {
2593 	struct sys_reg_params params;
2594 	const struct sys_reg_desc *r;
2595 	int err;
2596 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2597 
2598 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2599 			   ARRAY_SIZE(invariant_sys_regs));
2600 	if (!r)
2601 		return -ENOENT;
2602 
2603 	err = reg_from_user(&val, uaddr, id);
2604 	if (err)
2605 		return err;
2606 
2607 	/* This is what we mean by invariant: you can't change it. */
2608 	if (r->val != val)
2609 		return -EINVAL;
2610 
2611 	return 0;
2612 }
2613 
2614 static bool is_valid_cache(u32 val)
2615 {
2616 	u32 level, ctype;
2617 
2618 	if (val >= CSSELR_MAX)
2619 		return false;
2620 
2621 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2622 	level = (val >> 1);
2623 	ctype = (cache_levels >> (level * 3)) & 7;
2624 
2625 	switch (ctype) {
2626 	case 0: /* No cache */
2627 		return false;
2628 	case 1: /* Instruction cache only */
2629 		return (val & 1);
2630 	case 2: /* Data cache only */
2631 	case 4: /* Unified cache */
2632 		return !(val & 1);
2633 	case 3: /* Separate instruction and data caches */
2634 		return true;
2635 	default: /* Reserved: we can't know instruction or data. */
2636 		return false;
2637 	}
2638 }
2639 
2640 static int demux_c15_get(u64 id, void __user *uaddr)
2641 {
2642 	u32 val;
2643 	u32 __user *uval = uaddr;
2644 
2645 	/* Fail if we have unknown bits set. */
2646 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2647 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2648 		return -ENOENT;
2649 
2650 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2651 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2652 		if (KVM_REG_SIZE(id) != 4)
2653 			return -ENOENT;
2654 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2655 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2656 		if (!is_valid_cache(val))
2657 			return -ENOENT;
2658 
2659 		return put_user(get_ccsidr(val), uval);
2660 	default:
2661 		return -ENOENT;
2662 	}
2663 }
2664 
2665 static int demux_c15_set(u64 id, void __user *uaddr)
2666 {
2667 	u32 val, newval;
2668 	u32 __user *uval = uaddr;
2669 
2670 	/* Fail if we have unknown bits set. */
2671 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2672 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2673 		return -ENOENT;
2674 
2675 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2676 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2677 		if (KVM_REG_SIZE(id) != 4)
2678 			return -ENOENT;
2679 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2680 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2681 		if (!is_valid_cache(val))
2682 			return -ENOENT;
2683 
2684 		if (get_user(newval, uval))
2685 			return -EFAULT;
2686 
2687 		/* This is also invariant: you can't change it. */
2688 		if (newval != get_ccsidr(val))
2689 			return -EINVAL;
2690 		return 0;
2691 	default:
2692 		return -ENOENT;
2693 	}
2694 }
2695 
2696 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2697 {
2698 	const struct sys_reg_desc *r;
2699 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2700 
2701 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2702 		return demux_c15_get(reg->id, uaddr);
2703 
2704 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2705 		return -ENOENT;
2706 
2707 	r = index_to_sys_reg_desc(vcpu, reg->id);
2708 	if (!r)
2709 		return get_invariant_sys_reg(reg->id, uaddr);
2710 
2711 	/* Check for regs disabled by runtime config */
2712 	if (sysreg_hidden(vcpu, r))
2713 		return -ENOENT;
2714 
2715 	if (r->get_user)
2716 		return (r->get_user)(vcpu, r, reg, uaddr);
2717 
2718 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2719 }
2720 
2721 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2722 {
2723 	const struct sys_reg_desc *r;
2724 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2725 
2726 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2727 		return demux_c15_set(reg->id, uaddr);
2728 
2729 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2730 		return -ENOENT;
2731 
2732 	r = index_to_sys_reg_desc(vcpu, reg->id);
2733 	if (!r)
2734 		return set_invariant_sys_reg(reg->id, uaddr);
2735 
2736 	/* Check for regs disabled by runtime config */
2737 	if (sysreg_hidden(vcpu, r))
2738 		return -ENOENT;
2739 
2740 	if (r->set_user)
2741 		return (r->set_user)(vcpu, r, reg, uaddr);
2742 
2743 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2744 }
2745 
2746 static unsigned int num_demux_regs(void)
2747 {
2748 	unsigned int i, count = 0;
2749 
2750 	for (i = 0; i < CSSELR_MAX; i++)
2751 		if (is_valid_cache(i))
2752 			count++;
2753 
2754 	return count;
2755 }
2756 
2757 static int write_demux_regids(u64 __user *uindices)
2758 {
2759 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2760 	unsigned int i;
2761 
2762 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2763 	for (i = 0; i < CSSELR_MAX; i++) {
2764 		if (!is_valid_cache(i))
2765 			continue;
2766 		if (put_user(val | i, uindices))
2767 			return -EFAULT;
2768 		uindices++;
2769 	}
2770 	return 0;
2771 }
2772 
2773 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2774 {
2775 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2776 		KVM_REG_ARM64_SYSREG |
2777 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2778 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2779 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2780 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2781 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2782 }
2783 
2784 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2785 {
2786 	if (!*uind)
2787 		return true;
2788 
2789 	if (put_user(sys_reg_to_index(reg), *uind))
2790 		return false;
2791 
2792 	(*uind)++;
2793 	return true;
2794 }
2795 
2796 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2797 			    const struct sys_reg_desc *rd,
2798 			    u64 __user **uind,
2799 			    unsigned int *total)
2800 {
2801 	/*
2802 	 * Ignore registers we trap but don't save,
2803 	 * and for which no custom user accessor is provided.
2804 	 */
2805 	if (!(rd->reg || rd->get_user))
2806 		return 0;
2807 
2808 	if (sysreg_hidden(vcpu, rd))
2809 		return 0;
2810 
2811 	if (!copy_reg_to_user(rd, uind))
2812 		return -EFAULT;
2813 
2814 	(*total)++;
2815 	return 0;
2816 }
2817 
2818 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2819 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2820 {
2821 	const struct sys_reg_desc *i2, *end2;
2822 	unsigned int total = 0;
2823 	int err;
2824 
2825 	i2 = sys_reg_descs;
2826 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2827 
2828 	while (i2 != end2) {
2829 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2830 		if (err)
2831 			return err;
2832 	}
2833 	return total;
2834 }
2835 
2836 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2837 {
2838 	return ARRAY_SIZE(invariant_sys_regs)
2839 		+ num_demux_regs()
2840 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2841 }
2842 
2843 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2844 {
2845 	unsigned int i;
2846 	int err;
2847 
2848 	/* Then give them all the invariant registers' indices. */
2849 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2850 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2851 			return -EFAULT;
2852 		uindices++;
2853 	}
2854 
2855 	err = walk_sys_regs(vcpu, uindices);
2856 	if (err < 0)
2857 		return err;
2858 	uindices += err;
2859 
2860 	return write_demux_regids(uindices);
2861 }
2862 
2863 void kvm_sys_reg_table_init(void)
2864 {
2865 	unsigned int i;
2866 	struct sys_reg_desc clidr;
2867 
2868 	/* Make sure tables are unique and in order. */
2869 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2870 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2871 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2872 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2873 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2874 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2875 
2876 	/* We abuse the reset function to overwrite the table itself. */
2877 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2878 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2879 
2880 	/*
2881 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2882 	 *
2883 	 *   If software reads the Cache Type fields from Ctype1
2884 	 *   upwards, once it has seen a value of 0b000, no caches
2885 	 *   exist at further-out levels of the hierarchy. So, for
2886 	 *   example, if Ctype3 is the first Cache Type field with a
2887 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2888 	 *   ignored.
2889 	 */
2890 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2891 	cache_levels = clidr.val;
2892 	for (i = 0; i < 7; i++)
2893 		if (((cache_levels >> (i*3)) & 7) == 0)
2894 			break;
2895 	/* Clear all higher bits. */
2896 	cache_levels &= (1 << (i*3))-1;
2897 }
2898