xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 49cb93cb090a1515deaef7dcafe905ab25b2809e)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_asm.h>
35 #include <asm/kvm_coproc.h>
36 #include <asm/kvm_emulate.h>
37 #include <asm/kvm_host.h>
38 #include <asm/kvm_hyp.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/perf_event.h>
41 #include <asm/sysreg.h>
42 
43 #include <trace/events/kvm.h>
44 
45 #include "sys_regs.h"
46 
47 #include "trace.h"
48 
49 /*
50  * All of this file is extremly similar to the ARM coproc.c, but the
51  * types are different. My gut feeling is that it should be pretty
52  * easy to merge, but that would be an ABI breakage -- again. VFP
53  * would also need to be abstracted.
54  *
55  * For AArch32, we only take care of what is being trapped. Anything
56  * that has to do with init and userspace access has to go via the
57  * 64bit interface.
58  */
59 
60 static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 				 struct sys_reg_params *params,
62 				 const struct sys_reg_desc *r)
63 {
64 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
65 	print_sys_reg_instr(params);
66 	kvm_inject_undefined(vcpu);
67 	return false;
68 }
69 
70 static bool write_to_read_only(struct kvm_vcpu *vcpu,
71 			       struct sys_reg_params *params,
72 			       const struct sys_reg_desc *r)
73 {
74 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
75 	print_sys_reg_instr(params);
76 	kvm_inject_undefined(vcpu);
77 	return false;
78 }
79 
80 u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
81 {
82 	if (!vcpu->arch.sysregs_loaded_on_cpu)
83 		goto immediate_read;
84 
85 	/*
86 	 * System registers listed in the switch are not saved on every
87 	 * exit from the guest but are only saved on vcpu_put.
88 	 *
89 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
90 	 * should never be listed below, because the guest cannot modify its
91 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
92 	 * thread when emulating cross-VCPU communication.
93 	 */
94 	switch (reg) {
95 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
96 	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
97 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
98 	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
99 	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
100 	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
101 	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
102 	case ESR_EL1:		return read_sysreg_s(esr_EL12);
103 	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
104 	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
105 	case FAR_EL1:		return read_sysreg_s(far_EL12);
106 	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
107 	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
108 	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
109 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
110 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
111 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
112 	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
113 	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
114 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
115 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
116 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
117 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
118 	}
119 
120 immediate_read:
121 	return __vcpu_sys_reg(vcpu, reg);
122 }
123 
124 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
125 {
126 	if (!vcpu->arch.sysregs_loaded_on_cpu)
127 		goto immediate_write;
128 
129 	/*
130 	 * System registers listed in the switch are not restored on every
131 	 * entry to the guest but are only restored on vcpu_load.
132 	 *
133 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
134 	 * should never be listed below, because the the MPIDR should only be
135 	 * set once, before running the VCPU, and never changed later.
136 	 */
137 	switch (reg) {
138 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
139 	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
140 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
141 	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
142 	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
143 	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
144 	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
145 	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
146 	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
147 	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
148 	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
149 	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
150 	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
151 	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
152 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
153 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
154 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
155 	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
156 	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
157 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
158 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
159 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
160 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
161 	}
162 
163 immediate_write:
164 	 __vcpu_sys_reg(vcpu, reg) = val;
165 }
166 
167 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
168 static u32 cache_levels;
169 
170 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
171 #define CSSELR_MAX 12
172 
173 /* Which cache CCSIDR represents depends on CSSELR value. */
174 static u32 get_ccsidr(u32 csselr)
175 {
176 	u32 ccsidr;
177 
178 	/* Make sure noone else changes CSSELR during this! */
179 	local_irq_disable();
180 	write_sysreg(csselr, csselr_el1);
181 	isb();
182 	ccsidr = read_sysreg(ccsidr_el1);
183 	local_irq_enable();
184 
185 	return ccsidr;
186 }
187 
188 /*
189  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
190  */
191 static bool access_dcsw(struct kvm_vcpu *vcpu,
192 			struct sys_reg_params *p,
193 			const struct sys_reg_desc *r)
194 {
195 	if (!p->is_write)
196 		return read_from_write_only(vcpu, p, r);
197 
198 	kvm_set_way_flush(vcpu);
199 	return true;
200 }
201 
202 /*
203  * Generic accessor for VM registers. Only called as long as HCR_TVM
204  * is set. If the guest enables the MMU, we stop trapping the VM
205  * sys_regs and leave it in complete control of the caches.
206  */
207 static bool access_vm_reg(struct kvm_vcpu *vcpu,
208 			  struct sys_reg_params *p,
209 			  const struct sys_reg_desc *r)
210 {
211 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
212 	u64 val;
213 	int reg = r->reg;
214 
215 	BUG_ON(!p->is_write);
216 
217 	/* See the 32bit mapping in kvm_host.h */
218 	if (p->is_aarch32)
219 		reg = r->reg / 2;
220 
221 	if (!p->is_aarch32 || !p->is_32bit) {
222 		val = p->regval;
223 	} else {
224 		val = vcpu_read_sys_reg(vcpu, reg);
225 		if (r->reg % 2)
226 			val = (p->regval << 32) | (u64)lower_32_bits(val);
227 		else
228 			val = ((u64)upper_32_bits(val) << 32) |
229 				lower_32_bits(p->regval);
230 	}
231 	vcpu_write_sys_reg(vcpu, val, reg);
232 
233 	kvm_toggle_cache(vcpu, was_enabled);
234 	return true;
235 }
236 
237 /*
238  * Trap handler for the GICv3 SGI generation system register.
239  * Forward the request to the VGIC emulation.
240  * The cp15_64 code makes sure this automatically works
241  * for both AArch64 and AArch32 accesses.
242  */
243 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
244 			   struct sys_reg_params *p,
245 			   const struct sys_reg_desc *r)
246 {
247 	if (!p->is_write)
248 		return read_from_write_only(vcpu, p, r);
249 
250 	vgic_v3_dispatch_sgi(vcpu, p->regval);
251 
252 	return true;
253 }
254 
255 static bool access_gic_sre(struct kvm_vcpu *vcpu,
256 			   struct sys_reg_params *p,
257 			   const struct sys_reg_desc *r)
258 {
259 	if (p->is_write)
260 		return ignore_write(vcpu, p);
261 
262 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
263 	return true;
264 }
265 
266 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
267 			struct sys_reg_params *p,
268 			const struct sys_reg_desc *r)
269 {
270 	if (p->is_write)
271 		return ignore_write(vcpu, p);
272 	else
273 		return read_zero(vcpu, p);
274 }
275 
276 static bool trap_undef(struct kvm_vcpu *vcpu,
277 		       struct sys_reg_params *p,
278 		       const struct sys_reg_desc *r)
279 {
280 	kvm_inject_undefined(vcpu);
281 	return false;
282 }
283 
284 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
285 			   struct sys_reg_params *p,
286 			   const struct sys_reg_desc *r)
287 {
288 	if (p->is_write) {
289 		return ignore_write(vcpu, p);
290 	} else {
291 		p->regval = (1 << 3);
292 		return true;
293 	}
294 }
295 
296 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
297 				   struct sys_reg_params *p,
298 				   const struct sys_reg_desc *r)
299 {
300 	if (p->is_write) {
301 		return ignore_write(vcpu, p);
302 	} else {
303 		p->regval = read_sysreg(dbgauthstatus_el1);
304 		return true;
305 	}
306 }
307 
308 /*
309  * We want to avoid world-switching all the DBG registers all the
310  * time:
311  *
312  * - If we've touched any debug register, it is likely that we're
313  *   going to touch more of them. It then makes sense to disable the
314  *   traps and start doing the save/restore dance
315  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
316  *   then mandatory to save/restore the registers, as the guest
317  *   depends on them.
318  *
319  * For this, we use a DIRTY bit, indicating the guest has modified the
320  * debug registers, used as follow:
321  *
322  * On guest entry:
323  * - If the dirty bit is set (because we're coming back from trapping),
324  *   disable the traps, save host registers, restore guest registers.
325  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
326  *   set the dirty bit, disable the traps, save host registers,
327  *   restore guest registers.
328  * - Otherwise, enable the traps
329  *
330  * On guest exit:
331  * - If the dirty bit is set, save guest registers, restore host
332  *   registers and clear the dirty bit. This ensure that the host can
333  *   now use the debug registers.
334  */
335 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
336 			    struct sys_reg_params *p,
337 			    const struct sys_reg_desc *r)
338 {
339 	if (p->is_write) {
340 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
341 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
342 	} else {
343 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
344 	}
345 
346 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
347 
348 	return true;
349 }
350 
351 /*
352  * reg_to_dbg/dbg_to_reg
353  *
354  * A 32 bit write to a debug register leave top bits alone
355  * A 32 bit read from a debug register only returns the bottom bits
356  *
357  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
358  * hyp.S code switches between host and guest values in future.
359  */
360 static void reg_to_dbg(struct kvm_vcpu *vcpu,
361 		       struct sys_reg_params *p,
362 		       u64 *dbg_reg)
363 {
364 	u64 val = p->regval;
365 
366 	if (p->is_32bit) {
367 		val &= 0xffffffffUL;
368 		val |= ((*dbg_reg >> 32) << 32);
369 	}
370 
371 	*dbg_reg = val;
372 	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
373 }
374 
375 static void dbg_to_reg(struct kvm_vcpu *vcpu,
376 		       struct sys_reg_params *p,
377 		       u64 *dbg_reg)
378 {
379 	p->regval = *dbg_reg;
380 	if (p->is_32bit)
381 		p->regval &= 0xffffffffUL;
382 }
383 
384 static bool trap_bvr(struct kvm_vcpu *vcpu,
385 		     struct sys_reg_params *p,
386 		     const struct sys_reg_desc *rd)
387 {
388 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
389 
390 	if (p->is_write)
391 		reg_to_dbg(vcpu, p, dbg_reg);
392 	else
393 		dbg_to_reg(vcpu, p, dbg_reg);
394 
395 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
396 
397 	return true;
398 }
399 
400 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
401 		const struct kvm_one_reg *reg, void __user *uaddr)
402 {
403 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
404 
405 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
406 		return -EFAULT;
407 	return 0;
408 }
409 
410 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 	const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
414 
415 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
416 		return -EFAULT;
417 	return 0;
418 }
419 
420 static void reset_bvr(struct kvm_vcpu *vcpu,
421 		      const struct sys_reg_desc *rd)
422 {
423 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
424 }
425 
426 static bool trap_bcr(struct kvm_vcpu *vcpu,
427 		     struct sys_reg_params *p,
428 		     const struct sys_reg_desc *rd)
429 {
430 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
431 
432 	if (p->is_write)
433 		reg_to_dbg(vcpu, p, dbg_reg);
434 	else
435 		dbg_to_reg(vcpu, p, dbg_reg);
436 
437 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
438 
439 	return true;
440 }
441 
442 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
443 		const struct kvm_one_reg *reg, void __user *uaddr)
444 {
445 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
446 
447 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
448 		return -EFAULT;
449 
450 	return 0;
451 }
452 
453 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 	const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
457 
458 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 static void reset_bcr(struct kvm_vcpu *vcpu,
464 		      const struct sys_reg_desc *rd)
465 {
466 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
467 }
468 
469 static bool trap_wvr(struct kvm_vcpu *vcpu,
470 		     struct sys_reg_params *p,
471 		     const struct sys_reg_desc *rd)
472 {
473 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
474 
475 	if (p->is_write)
476 		reg_to_dbg(vcpu, p, dbg_reg);
477 	else
478 		dbg_to_reg(vcpu, p, dbg_reg);
479 
480 	trace_trap_reg(__func__, rd->reg, p->is_write,
481 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
482 
483 	return true;
484 }
485 
486 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
487 		const struct kvm_one_reg *reg, void __user *uaddr)
488 {
489 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
490 
491 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
492 		return -EFAULT;
493 	return 0;
494 }
495 
496 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497 	const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
500 
501 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
502 		return -EFAULT;
503 	return 0;
504 }
505 
506 static void reset_wvr(struct kvm_vcpu *vcpu,
507 		      const struct sys_reg_desc *rd)
508 {
509 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
510 }
511 
512 static bool trap_wcr(struct kvm_vcpu *vcpu,
513 		     struct sys_reg_params *p,
514 		     const struct sys_reg_desc *rd)
515 {
516 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
517 
518 	if (p->is_write)
519 		reg_to_dbg(vcpu, p, dbg_reg);
520 	else
521 		dbg_to_reg(vcpu, p, dbg_reg);
522 
523 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
524 
525 	return true;
526 }
527 
528 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
529 		const struct kvm_one_reg *reg, void __user *uaddr)
530 {
531 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
532 
533 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
534 		return -EFAULT;
535 	return 0;
536 }
537 
538 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 	const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
542 
543 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
544 		return -EFAULT;
545 	return 0;
546 }
547 
548 static void reset_wcr(struct kvm_vcpu *vcpu,
549 		      const struct sys_reg_desc *rd)
550 {
551 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
552 }
553 
554 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
555 {
556 	u64 amair = read_sysreg(amair_el1);
557 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
558 }
559 
560 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
561 {
562 	u64 mpidr;
563 
564 	/*
565 	 * Map the vcpu_id into the first three affinity level fields of
566 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
567 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
568 	 * of the GICv3 to be able to address each CPU directly when
569 	 * sending IPIs.
570 	 */
571 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
572 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
573 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
574 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
575 }
576 
577 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
578 {
579 	u64 pmcr, val;
580 
581 	pmcr = read_sysreg(pmcr_el0);
582 	/*
583 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
584 	 * except PMCR.E resetting to zero.
585 	 */
586 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
587 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
588 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
589 }
590 
591 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
592 {
593 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
594 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
595 
596 	if (!enabled)
597 		kvm_inject_undefined(vcpu);
598 
599 	return !enabled;
600 }
601 
602 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
603 {
604 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
605 }
606 
607 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
608 {
609 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
610 }
611 
612 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
613 {
614 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
615 }
616 
617 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
618 {
619 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
620 }
621 
622 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
623 			const struct sys_reg_desc *r)
624 {
625 	u64 val;
626 
627 	if (!kvm_arm_pmu_v3_ready(vcpu))
628 		return trap_raz_wi(vcpu, p, r);
629 
630 	if (pmu_access_el0_disabled(vcpu))
631 		return false;
632 
633 	if (p->is_write) {
634 		/* Only update writeable bits of PMCR */
635 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
636 		val &= ~ARMV8_PMU_PMCR_MASK;
637 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
638 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
639 		kvm_pmu_handle_pmcr(vcpu, val);
640 	} else {
641 		/* PMCR.P & PMCR.C are RAZ */
642 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
643 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
644 		p->regval = val;
645 	}
646 
647 	return true;
648 }
649 
650 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
651 			  const struct sys_reg_desc *r)
652 {
653 	if (!kvm_arm_pmu_v3_ready(vcpu))
654 		return trap_raz_wi(vcpu, p, r);
655 
656 	if (pmu_access_event_counter_el0_disabled(vcpu))
657 		return false;
658 
659 	if (p->is_write)
660 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
661 	else
662 		/* return PMSELR.SEL field */
663 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
664 			    & ARMV8_PMU_COUNTER_MASK;
665 
666 	return true;
667 }
668 
669 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670 			  const struct sys_reg_desc *r)
671 {
672 	u64 pmceid;
673 
674 	if (!kvm_arm_pmu_v3_ready(vcpu))
675 		return trap_raz_wi(vcpu, p, r);
676 
677 	BUG_ON(p->is_write);
678 
679 	if (pmu_access_el0_disabled(vcpu))
680 		return false;
681 
682 	if (!(p->Op2 & 1))
683 		pmceid = read_sysreg(pmceid0_el0);
684 	else
685 		pmceid = read_sysreg(pmceid1_el0);
686 
687 	p->regval = pmceid;
688 
689 	return true;
690 }
691 
692 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
693 {
694 	u64 pmcr, val;
695 
696 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
697 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
698 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
699 		kvm_inject_undefined(vcpu);
700 		return false;
701 	}
702 
703 	return true;
704 }
705 
706 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
707 			      struct sys_reg_params *p,
708 			      const struct sys_reg_desc *r)
709 {
710 	u64 idx;
711 
712 	if (!kvm_arm_pmu_v3_ready(vcpu))
713 		return trap_raz_wi(vcpu, p, r);
714 
715 	if (r->CRn == 9 && r->CRm == 13) {
716 		if (r->Op2 == 2) {
717 			/* PMXEVCNTR_EL0 */
718 			if (pmu_access_event_counter_el0_disabled(vcpu))
719 				return false;
720 
721 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722 			      & ARMV8_PMU_COUNTER_MASK;
723 		} else if (r->Op2 == 0) {
724 			/* PMCCNTR_EL0 */
725 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
726 				return false;
727 
728 			idx = ARMV8_PMU_CYCLE_IDX;
729 		} else {
730 			return false;
731 		}
732 	} else if (r->CRn == 0 && r->CRm == 9) {
733 		/* PMCCNTR */
734 		if (pmu_access_event_counter_el0_disabled(vcpu))
735 			return false;
736 
737 		idx = ARMV8_PMU_CYCLE_IDX;
738 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
739 		/* PMEVCNTRn_EL0 */
740 		if (pmu_access_event_counter_el0_disabled(vcpu))
741 			return false;
742 
743 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
744 	} else {
745 		return false;
746 	}
747 
748 	if (!pmu_counter_idx_valid(vcpu, idx))
749 		return false;
750 
751 	if (p->is_write) {
752 		if (pmu_access_el0_disabled(vcpu))
753 			return false;
754 
755 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
756 	} else {
757 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
758 	}
759 
760 	return true;
761 }
762 
763 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
764 			       const struct sys_reg_desc *r)
765 {
766 	u64 idx, reg;
767 
768 	if (!kvm_arm_pmu_v3_ready(vcpu))
769 		return trap_raz_wi(vcpu, p, r);
770 
771 	if (pmu_access_el0_disabled(vcpu))
772 		return false;
773 
774 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
775 		/* PMXEVTYPER_EL0 */
776 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
777 		reg = PMEVTYPER0_EL0 + idx;
778 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
779 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
780 		if (idx == ARMV8_PMU_CYCLE_IDX)
781 			reg = PMCCFILTR_EL0;
782 		else
783 			/* PMEVTYPERn_EL0 */
784 			reg = PMEVTYPER0_EL0 + idx;
785 	} else {
786 		BUG();
787 	}
788 
789 	if (!pmu_counter_idx_valid(vcpu, idx))
790 		return false;
791 
792 	if (p->is_write) {
793 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
794 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
795 	} else {
796 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
797 	}
798 
799 	return true;
800 }
801 
802 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
803 			   const struct sys_reg_desc *r)
804 {
805 	u64 val, mask;
806 
807 	if (!kvm_arm_pmu_v3_ready(vcpu))
808 		return trap_raz_wi(vcpu, p, r);
809 
810 	if (pmu_access_el0_disabled(vcpu))
811 		return false;
812 
813 	mask = kvm_pmu_valid_counter_mask(vcpu);
814 	if (p->is_write) {
815 		val = p->regval & mask;
816 		if (r->Op2 & 0x1) {
817 			/* accessing PMCNTENSET_EL0 */
818 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
819 			kvm_pmu_enable_counter(vcpu, val);
820 		} else {
821 			/* accessing PMCNTENCLR_EL0 */
822 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
823 			kvm_pmu_disable_counter(vcpu, val);
824 		}
825 	} else {
826 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
827 	}
828 
829 	return true;
830 }
831 
832 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
833 			   const struct sys_reg_desc *r)
834 {
835 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
836 
837 	if (!kvm_arm_pmu_v3_ready(vcpu))
838 		return trap_raz_wi(vcpu, p, r);
839 
840 	if (!vcpu_mode_priv(vcpu)) {
841 		kvm_inject_undefined(vcpu);
842 		return false;
843 	}
844 
845 	if (p->is_write) {
846 		u64 val = p->regval & mask;
847 
848 		if (r->Op2 & 0x1)
849 			/* accessing PMINTENSET_EL1 */
850 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
851 		else
852 			/* accessing PMINTENCLR_EL1 */
853 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
854 	} else {
855 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
856 	}
857 
858 	return true;
859 }
860 
861 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
862 			 const struct sys_reg_desc *r)
863 {
864 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
865 
866 	if (!kvm_arm_pmu_v3_ready(vcpu))
867 		return trap_raz_wi(vcpu, p, r);
868 
869 	if (pmu_access_el0_disabled(vcpu))
870 		return false;
871 
872 	if (p->is_write) {
873 		if (r->CRm & 0x2)
874 			/* accessing PMOVSSET_EL0 */
875 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
876 		else
877 			/* accessing PMOVSCLR_EL0 */
878 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
879 	} else {
880 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
881 	}
882 
883 	return true;
884 }
885 
886 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887 			   const struct sys_reg_desc *r)
888 {
889 	u64 mask;
890 
891 	if (!kvm_arm_pmu_v3_ready(vcpu))
892 		return trap_raz_wi(vcpu, p, r);
893 
894 	if (!p->is_write)
895 		return read_from_write_only(vcpu, p, r);
896 
897 	if (pmu_write_swinc_el0_disabled(vcpu))
898 		return false;
899 
900 	mask = kvm_pmu_valid_counter_mask(vcpu);
901 	kvm_pmu_software_increment(vcpu, p->regval & mask);
902 	return true;
903 }
904 
905 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
906 			     const struct sys_reg_desc *r)
907 {
908 	if (!kvm_arm_pmu_v3_ready(vcpu))
909 		return trap_raz_wi(vcpu, p, r);
910 
911 	if (p->is_write) {
912 		if (!vcpu_mode_priv(vcpu)) {
913 			kvm_inject_undefined(vcpu);
914 			return false;
915 		}
916 
917 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
918 			       p->regval & ARMV8_PMU_USERENR_MASK;
919 	} else {
920 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
921 			    & ARMV8_PMU_USERENR_MASK;
922 	}
923 
924 	return true;
925 }
926 
927 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
928 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
929 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
930 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
931 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
932 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
933 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
934 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
935 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
936 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
937 
938 /* Macro to expand the PMEVCNTRn_EL0 register */
939 #define PMU_PMEVCNTR_EL0(n)						\
940 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
941 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
942 
943 /* Macro to expand the PMEVTYPERn_EL0 register */
944 #define PMU_PMEVTYPER_EL0(n)						\
945 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
946 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
947 
948 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
949 		struct sys_reg_params *p,
950 		const struct sys_reg_desc *r)
951 {
952 	u64 now = kvm_phys_timer_read();
953 	u64 cval;
954 
955 	if (p->is_write) {
956 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
957 				      p->regval + now);
958 	} else {
959 		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
960 		p->regval = cval - now;
961 	}
962 
963 	return true;
964 }
965 
966 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
967 		struct sys_reg_params *p,
968 		const struct sys_reg_desc *r)
969 {
970 	if (p->is_write)
971 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
972 	else
973 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
974 
975 	return true;
976 }
977 
978 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
979 		struct sys_reg_params *p,
980 		const struct sys_reg_desc *r)
981 {
982 	if (p->is_write)
983 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
984 	else
985 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
986 
987 	return true;
988 }
989 
990 /* Read a sanitised cpufeature ID register by sys_reg_desc */
991 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
992 {
993 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
994 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
995 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
996 
997 	if (id == SYS_ID_AA64PFR0_EL1) {
998 		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
999 			kvm_debug("SVE unsupported for guests, suppressing\n");
1000 
1001 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1002 	} else if (id == SYS_ID_AA64MMFR1_EL1) {
1003 		if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
1004 			kvm_debug("LORegions unsupported for guests, suppressing\n");
1005 
1006 		val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
1007 	}
1008 
1009 	return val;
1010 }
1011 
1012 /* cpufeature ID register access trap handlers */
1013 
1014 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1015 			    struct sys_reg_params *p,
1016 			    const struct sys_reg_desc *r,
1017 			    bool raz)
1018 {
1019 	if (p->is_write)
1020 		return write_to_read_only(vcpu, p, r);
1021 
1022 	p->regval = read_id_reg(r, raz);
1023 	return true;
1024 }
1025 
1026 static bool access_id_reg(struct kvm_vcpu *vcpu,
1027 			  struct sys_reg_params *p,
1028 			  const struct sys_reg_desc *r)
1029 {
1030 	return __access_id_reg(vcpu, p, r, false);
1031 }
1032 
1033 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1034 			      struct sys_reg_params *p,
1035 			      const struct sys_reg_desc *r)
1036 {
1037 	return __access_id_reg(vcpu, p, r, true);
1038 }
1039 
1040 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1041 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1042 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1043 
1044 /*
1045  * cpufeature ID register user accessors
1046  *
1047  * For now, these registers are immutable for userspace, so no values
1048  * are stored, and for set_id_reg() we don't allow the effective value
1049  * to be changed.
1050  */
1051 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1052 			bool raz)
1053 {
1054 	const u64 id = sys_reg_to_index(rd);
1055 	const u64 val = read_id_reg(rd, raz);
1056 
1057 	return reg_to_user(uaddr, &val, id);
1058 }
1059 
1060 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1061 			bool raz)
1062 {
1063 	const u64 id = sys_reg_to_index(rd);
1064 	int err;
1065 	u64 val;
1066 
1067 	err = reg_from_user(&val, uaddr, id);
1068 	if (err)
1069 		return err;
1070 
1071 	/* This is what we mean by invariant: you can't change it. */
1072 	if (val != read_id_reg(rd, raz))
1073 		return -EINVAL;
1074 
1075 	return 0;
1076 }
1077 
1078 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1079 		      const struct kvm_one_reg *reg, void __user *uaddr)
1080 {
1081 	return __get_id_reg(rd, uaddr, false);
1082 }
1083 
1084 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1085 		      const struct kvm_one_reg *reg, void __user *uaddr)
1086 {
1087 	return __set_id_reg(rd, uaddr, false);
1088 }
1089 
1090 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1091 			  const struct kvm_one_reg *reg, void __user *uaddr)
1092 {
1093 	return __get_id_reg(rd, uaddr, true);
1094 }
1095 
1096 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1097 			  const struct kvm_one_reg *reg, void __user *uaddr)
1098 {
1099 	return __set_id_reg(rd, uaddr, true);
1100 }
1101 
1102 /* sys_reg_desc initialiser for known cpufeature ID registers */
1103 #define ID_SANITISED(name) {			\
1104 	SYS_DESC(SYS_##name),			\
1105 	.access	= access_id_reg,		\
1106 	.get_user = get_id_reg,			\
1107 	.set_user = set_id_reg,			\
1108 }
1109 
1110 /*
1111  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1112  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1113  * (1 <= crm < 8, 0 <= Op2 < 8).
1114  */
1115 #define ID_UNALLOCATED(crm, op2) {			\
1116 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1117 	.access = access_raz_id_reg,			\
1118 	.get_user = get_raz_id_reg,			\
1119 	.set_user = set_raz_id_reg,			\
1120 }
1121 
1122 /*
1123  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1124  * For now, these are exposed just like unallocated ID regs: they appear
1125  * RAZ for the guest.
1126  */
1127 #define ID_HIDDEN(name) {			\
1128 	SYS_DESC(SYS_##name),			\
1129 	.access = access_raz_id_reg,		\
1130 	.get_user = get_raz_id_reg,		\
1131 	.set_user = set_raz_id_reg,		\
1132 }
1133 
1134 /*
1135  * Architected system registers.
1136  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1137  *
1138  * Debug handling: We do trap most, if not all debug related system
1139  * registers. The implementation is good enough to ensure that a guest
1140  * can use these with minimal performance degradation. The drawback is
1141  * that we don't implement any of the external debug, none of the
1142  * OSlock protocol. This should be revisited if we ever encounter a
1143  * more demanding guest...
1144  */
1145 static const struct sys_reg_desc sys_reg_descs[] = {
1146 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1147 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1148 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1149 
1150 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1151 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1152 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1153 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1154 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1155 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1156 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1157 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1158 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1159 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1160 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1161 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1162 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1163 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1164 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1165 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1166 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1167 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1168 
1169 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1170 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1171 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1172 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1173 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1174 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1175 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1176 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1177 
1178 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1179 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1180 	// DBGDTR[TR]X_EL0 share the same encoding
1181 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1182 
1183 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1184 
1185 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1186 
1187 	/*
1188 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1189 	 * entries in arm64_ftr_regs[].
1190 	 */
1191 
1192 	/* AArch64 mappings of the AArch32 ID registers */
1193 	/* CRm=1 */
1194 	ID_SANITISED(ID_PFR0_EL1),
1195 	ID_SANITISED(ID_PFR1_EL1),
1196 	ID_SANITISED(ID_DFR0_EL1),
1197 	ID_HIDDEN(ID_AFR0_EL1),
1198 	ID_SANITISED(ID_MMFR0_EL1),
1199 	ID_SANITISED(ID_MMFR1_EL1),
1200 	ID_SANITISED(ID_MMFR2_EL1),
1201 	ID_SANITISED(ID_MMFR3_EL1),
1202 
1203 	/* CRm=2 */
1204 	ID_SANITISED(ID_ISAR0_EL1),
1205 	ID_SANITISED(ID_ISAR1_EL1),
1206 	ID_SANITISED(ID_ISAR2_EL1),
1207 	ID_SANITISED(ID_ISAR3_EL1),
1208 	ID_SANITISED(ID_ISAR4_EL1),
1209 	ID_SANITISED(ID_ISAR5_EL1),
1210 	ID_SANITISED(ID_MMFR4_EL1),
1211 	ID_UNALLOCATED(2,7),
1212 
1213 	/* CRm=3 */
1214 	ID_SANITISED(MVFR0_EL1),
1215 	ID_SANITISED(MVFR1_EL1),
1216 	ID_SANITISED(MVFR2_EL1),
1217 	ID_UNALLOCATED(3,3),
1218 	ID_UNALLOCATED(3,4),
1219 	ID_UNALLOCATED(3,5),
1220 	ID_UNALLOCATED(3,6),
1221 	ID_UNALLOCATED(3,7),
1222 
1223 	/* AArch64 ID registers */
1224 	/* CRm=4 */
1225 	ID_SANITISED(ID_AA64PFR0_EL1),
1226 	ID_SANITISED(ID_AA64PFR1_EL1),
1227 	ID_UNALLOCATED(4,2),
1228 	ID_UNALLOCATED(4,3),
1229 	ID_UNALLOCATED(4,4),
1230 	ID_UNALLOCATED(4,5),
1231 	ID_UNALLOCATED(4,6),
1232 	ID_UNALLOCATED(4,7),
1233 
1234 	/* CRm=5 */
1235 	ID_SANITISED(ID_AA64DFR0_EL1),
1236 	ID_SANITISED(ID_AA64DFR1_EL1),
1237 	ID_UNALLOCATED(5,2),
1238 	ID_UNALLOCATED(5,3),
1239 	ID_HIDDEN(ID_AA64AFR0_EL1),
1240 	ID_HIDDEN(ID_AA64AFR1_EL1),
1241 	ID_UNALLOCATED(5,6),
1242 	ID_UNALLOCATED(5,7),
1243 
1244 	/* CRm=6 */
1245 	ID_SANITISED(ID_AA64ISAR0_EL1),
1246 	ID_SANITISED(ID_AA64ISAR1_EL1),
1247 	ID_UNALLOCATED(6,2),
1248 	ID_UNALLOCATED(6,3),
1249 	ID_UNALLOCATED(6,4),
1250 	ID_UNALLOCATED(6,5),
1251 	ID_UNALLOCATED(6,6),
1252 	ID_UNALLOCATED(6,7),
1253 
1254 	/* CRm=7 */
1255 	ID_SANITISED(ID_AA64MMFR0_EL1),
1256 	ID_SANITISED(ID_AA64MMFR1_EL1),
1257 	ID_SANITISED(ID_AA64MMFR2_EL1),
1258 	ID_UNALLOCATED(7,3),
1259 	ID_UNALLOCATED(7,4),
1260 	ID_UNALLOCATED(7,5),
1261 	ID_UNALLOCATED(7,6),
1262 	ID_UNALLOCATED(7,7),
1263 
1264 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1265 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1266 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1267 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1268 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1269 
1270 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1271 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1272 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1273 
1274 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1275 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1276 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1277 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1278 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1279 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1280 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1281 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1282 
1283 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1284 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1285 
1286 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1287 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1288 
1289 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1290 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1291 
1292 	{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
1293 	{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
1294 	{ SYS_DESC(SYS_LORN_EL1), trap_undef },
1295 	{ SYS_DESC(SYS_LORC_EL1), trap_undef },
1296 	{ SYS_DESC(SYS_LORID_EL1), trap_undef },
1297 
1298 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1299 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1300 
1301 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1302 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1303 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1304 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1305 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1306 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1307 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1308 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1309 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1310 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1311 
1312 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1313 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1314 
1315 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1316 
1317 	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1318 
1319 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1320 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1321 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1322 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1323 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1324 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1325 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1326 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1327 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1328 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1329 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1330 	/*
1331 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1332 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1333 	 */
1334 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1335 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1336 
1337 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1338 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1339 
1340 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1341 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1342 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1343 
1344 	/* PMEVCNTRn_EL0 */
1345 	PMU_PMEVCNTR_EL0(0),
1346 	PMU_PMEVCNTR_EL0(1),
1347 	PMU_PMEVCNTR_EL0(2),
1348 	PMU_PMEVCNTR_EL0(3),
1349 	PMU_PMEVCNTR_EL0(4),
1350 	PMU_PMEVCNTR_EL0(5),
1351 	PMU_PMEVCNTR_EL0(6),
1352 	PMU_PMEVCNTR_EL0(7),
1353 	PMU_PMEVCNTR_EL0(8),
1354 	PMU_PMEVCNTR_EL0(9),
1355 	PMU_PMEVCNTR_EL0(10),
1356 	PMU_PMEVCNTR_EL0(11),
1357 	PMU_PMEVCNTR_EL0(12),
1358 	PMU_PMEVCNTR_EL0(13),
1359 	PMU_PMEVCNTR_EL0(14),
1360 	PMU_PMEVCNTR_EL0(15),
1361 	PMU_PMEVCNTR_EL0(16),
1362 	PMU_PMEVCNTR_EL0(17),
1363 	PMU_PMEVCNTR_EL0(18),
1364 	PMU_PMEVCNTR_EL0(19),
1365 	PMU_PMEVCNTR_EL0(20),
1366 	PMU_PMEVCNTR_EL0(21),
1367 	PMU_PMEVCNTR_EL0(22),
1368 	PMU_PMEVCNTR_EL0(23),
1369 	PMU_PMEVCNTR_EL0(24),
1370 	PMU_PMEVCNTR_EL0(25),
1371 	PMU_PMEVCNTR_EL0(26),
1372 	PMU_PMEVCNTR_EL0(27),
1373 	PMU_PMEVCNTR_EL0(28),
1374 	PMU_PMEVCNTR_EL0(29),
1375 	PMU_PMEVCNTR_EL0(30),
1376 	/* PMEVTYPERn_EL0 */
1377 	PMU_PMEVTYPER_EL0(0),
1378 	PMU_PMEVTYPER_EL0(1),
1379 	PMU_PMEVTYPER_EL0(2),
1380 	PMU_PMEVTYPER_EL0(3),
1381 	PMU_PMEVTYPER_EL0(4),
1382 	PMU_PMEVTYPER_EL0(5),
1383 	PMU_PMEVTYPER_EL0(6),
1384 	PMU_PMEVTYPER_EL0(7),
1385 	PMU_PMEVTYPER_EL0(8),
1386 	PMU_PMEVTYPER_EL0(9),
1387 	PMU_PMEVTYPER_EL0(10),
1388 	PMU_PMEVTYPER_EL0(11),
1389 	PMU_PMEVTYPER_EL0(12),
1390 	PMU_PMEVTYPER_EL0(13),
1391 	PMU_PMEVTYPER_EL0(14),
1392 	PMU_PMEVTYPER_EL0(15),
1393 	PMU_PMEVTYPER_EL0(16),
1394 	PMU_PMEVTYPER_EL0(17),
1395 	PMU_PMEVTYPER_EL0(18),
1396 	PMU_PMEVTYPER_EL0(19),
1397 	PMU_PMEVTYPER_EL0(20),
1398 	PMU_PMEVTYPER_EL0(21),
1399 	PMU_PMEVTYPER_EL0(22),
1400 	PMU_PMEVTYPER_EL0(23),
1401 	PMU_PMEVTYPER_EL0(24),
1402 	PMU_PMEVTYPER_EL0(25),
1403 	PMU_PMEVTYPER_EL0(26),
1404 	PMU_PMEVTYPER_EL0(27),
1405 	PMU_PMEVTYPER_EL0(28),
1406 	PMU_PMEVTYPER_EL0(29),
1407 	PMU_PMEVTYPER_EL0(30),
1408 	/*
1409 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1410 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1411 	 */
1412 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1413 
1414 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1415 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1416 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1417 };
1418 
1419 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1420 			struct sys_reg_params *p,
1421 			const struct sys_reg_desc *r)
1422 {
1423 	if (p->is_write) {
1424 		return ignore_write(vcpu, p);
1425 	} else {
1426 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1427 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1428 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1429 
1430 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1431 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1432 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1433 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1434 		return true;
1435 	}
1436 }
1437 
1438 static bool trap_debug32(struct kvm_vcpu *vcpu,
1439 			 struct sys_reg_params *p,
1440 			 const struct sys_reg_desc *r)
1441 {
1442 	if (p->is_write) {
1443 		vcpu_cp14(vcpu, r->reg) = p->regval;
1444 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1445 	} else {
1446 		p->regval = vcpu_cp14(vcpu, r->reg);
1447 	}
1448 
1449 	return true;
1450 }
1451 
1452 /* AArch32 debug register mappings
1453  *
1454  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1455  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1456  *
1457  * All control registers and watchpoint value registers are mapped to
1458  * the lower 32 bits of their AArch64 equivalents. We share the trap
1459  * handlers with the above AArch64 code which checks what mode the
1460  * system is in.
1461  */
1462 
1463 static bool trap_xvr(struct kvm_vcpu *vcpu,
1464 		     struct sys_reg_params *p,
1465 		     const struct sys_reg_desc *rd)
1466 {
1467 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1468 
1469 	if (p->is_write) {
1470 		u64 val = *dbg_reg;
1471 
1472 		val &= 0xffffffffUL;
1473 		val |= p->regval << 32;
1474 		*dbg_reg = val;
1475 
1476 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1477 	} else {
1478 		p->regval = *dbg_reg >> 32;
1479 	}
1480 
1481 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1482 
1483 	return true;
1484 }
1485 
1486 #define DBG_BCR_BVR_WCR_WVR(n)						\
1487 	/* DBGBVRn */							\
1488 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1489 	/* DBGBCRn */							\
1490 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1491 	/* DBGWVRn */							\
1492 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1493 	/* DBGWCRn */							\
1494 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1495 
1496 #define DBGBXVR(n)							\
1497 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1498 
1499 /*
1500  * Trapped cp14 registers. We generally ignore most of the external
1501  * debug, on the principle that they don't really make sense to a
1502  * guest. Revisit this one day, would this principle change.
1503  */
1504 static const struct sys_reg_desc cp14_regs[] = {
1505 	/* DBGIDR */
1506 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1507 	/* DBGDTRRXext */
1508 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1509 
1510 	DBG_BCR_BVR_WCR_WVR(0),
1511 	/* DBGDSCRint */
1512 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1513 	DBG_BCR_BVR_WCR_WVR(1),
1514 	/* DBGDCCINT */
1515 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1516 	/* DBGDSCRext */
1517 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1518 	DBG_BCR_BVR_WCR_WVR(2),
1519 	/* DBGDTR[RT]Xint */
1520 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1521 	/* DBGDTR[RT]Xext */
1522 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1523 	DBG_BCR_BVR_WCR_WVR(3),
1524 	DBG_BCR_BVR_WCR_WVR(4),
1525 	DBG_BCR_BVR_WCR_WVR(5),
1526 	/* DBGWFAR */
1527 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1528 	/* DBGOSECCR */
1529 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1530 	DBG_BCR_BVR_WCR_WVR(6),
1531 	/* DBGVCR */
1532 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1533 	DBG_BCR_BVR_WCR_WVR(7),
1534 	DBG_BCR_BVR_WCR_WVR(8),
1535 	DBG_BCR_BVR_WCR_WVR(9),
1536 	DBG_BCR_BVR_WCR_WVR(10),
1537 	DBG_BCR_BVR_WCR_WVR(11),
1538 	DBG_BCR_BVR_WCR_WVR(12),
1539 	DBG_BCR_BVR_WCR_WVR(13),
1540 	DBG_BCR_BVR_WCR_WVR(14),
1541 	DBG_BCR_BVR_WCR_WVR(15),
1542 
1543 	/* DBGDRAR (32bit) */
1544 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1545 
1546 	DBGBXVR(0),
1547 	/* DBGOSLAR */
1548 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1549 	DBGBXVR(1),
1550 	/* DBGOSLSR */
1551 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1552 	DBGBXVR(2),
1553 	DBGBXVR(3),
1554 	/* DBGOSDLR */
1555 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1556 	DBGBXVR(4),
1557 	/* DBGPRCR */
1558 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1559 	DBGBXVR(5),
1560 	DBGBXVR(6),
1561 	DBGBXVR(7),
1562 	DBGBXVR(8),
1563 	DBGBXVR(9),
1564 	DBGBXVR(10),
1565 	DBGBXVR(11),
1566 	DBGBXVR(12),
1567 	DBGBXVR(13),
1568 	DBGBXVR(14),
1569 	DBGBXVR(15),
1570 
1571 	/* DBGDSAR (32bit) */
1572 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1573 
1574 	/* DBGDEVID2 */
1575 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1576 	/* DBGDEVID1 */
1577 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1578 	/* DBGDEVID */
1579 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1580 	/* DBGCLAIMSET */
1581 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1582 	/* DBGCLAIMCLR */
1583 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1584 	/* DBGAUTHSTATUS */
1585 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1586 };
1587 
1588 /* Trapped cp14 64bit registers */
1589 static const struct sys_reg_desc cp14_64_regs[] = {
1590 	/* DBGDRAR (64bit) */
1591 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1592 
1593 	/* DBGDSAR (64bit) */
1594 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1595 };
1596 
1597 /* Macro to expand the PMEVCNTRn register */
1598 #define PMU_PMEVCNTR(n)							\
1599 	/* PMEVCNTRn */							\
1600 	{ Op1(0), CRn(0b1110),						\
1601 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1602 	  access_pmu_evcntr }
1603 
1604 /* Macro to expand the PMEVTYPERn register */
1605 #define PMU_PMEVTYPER(n)						\
1606 	/* PMEVTYPERn */						\
1607 	{ Op1(0), CRn(0b1110),						\
1608 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1609 	  access_pmu_evtyper }
1610 
1611 /*
1612  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1613  * depending on the way they are accessed (as a 32bit or a 64bit
1614  * register).
1615  */
1616 static const struct sys_reg_desc cp15_regs[] = {
1617 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1618 
1619 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1620 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1621 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1622 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1623 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1624 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1625 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1626 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1627 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1628 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1629 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1630 
1631 	/*
1632 	 * DC{C,I,CI}SW operations:
1633 	 */
1634 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1635 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1636 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1637 
1638 	/* PMU */
1639 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1640 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1641 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1642 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1643 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1644 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1645 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1646 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1647 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1648 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1649 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1650 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1651 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1652 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1653 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1654 
1655 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1656 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1657 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1658 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1659 
1660 	/* ICC_SRE */
1661 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1662 
1663 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1664 
1665 	/* CNTP_TVAL */
1666 	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1667 	/* CNTP_CTL */
1668 	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1669 
1670 	/* PMEVCNTRn */
1671 	PMU_PMEVCNTR(0),
1672 	PMU_PMEVCNTR(1),
1673 	PMU_PMEVCNTR(2),
1674 	PMU_PMEVCNTR(3),
1675 	PMU_PMEVCNTR(4),
1676 	PMU_PMEVCNTR(5),
1677 	PMU_PMEVCNTR(6),
1678 	PMU_PMEVCNTR(7),
1679 	PMU_PMEVCNTR(8),
1680 	PMU_PMEVCNTR(9),
1681 	PMU_PMEVCNTR(10),
1682 	PMU_PMEVCNTR(11),
1683 	PMU_PMEVCNTR(12),
1684 	PMU_PMEVCNTR(13),
1685 	PMU_PMEVCNTR(14),
1686 	PMU_PMEVCNTR(15),
1687 	PMU_PMEVCNTR(16),
1688 	PMU_PMEVCNTR(17),
1689 	PMU_PMEVCNTR(18),
1690 	PMU_PMEVCNTR(19),
1691 	PMU_PMEVCNTR(20),
1692 	PMU_PMEVCNTR(21),
1693 	PMU_PMEVCNTR(22),
1694 	PMU_PMEVCNTR(23),
1695 	PMU_PMEVCNTR(24),
1696 	PMU_PMEVCNTR(25),
1697 	PMU_PMEVCNTR(26),
1698 	PMU_PMEVCNTR(27),
1699 	PMU_PMEVCNTR(28),
1700 	PMU_PMEVCNTR(29),
1701 	PMU_PMEVCNTR(30),
1702 	/* PMEVTYPERn */
1703 	PMU_PMEVTYPER(0),
1704 	PMU_PMEVTYPER(1),
1705 	PMU_PMEVTYPER(2),
1706 	PMU_PMEVTYPER(3),
1707 	PMU_PMEVTYPER(4),
1708 	PMU_PMEVTYPER(5),
1709 	PMU_PMEVTYPER(6),
1710 	PMU_PMEVTYPER(7),
1711 	PMU_PMEVTYPER(8),
1712 	PMU_PMEVTYPER(9),
1713 	PMU_PMEVTYPER(10),
1714 	PMU_PMEVTYPER(11),
1715 	PMU_PMEVTYPER(12),
1716 	PMU_PMEVTYPER(13),
1717 	PMU_PMEVTYPER(14),
1718 	PMU_PMEVTYPER(15),
1719 	PMU_PMEVTYPER(16),
1720 	PMU_PMEVTYPER(17),
1721 	PMU_PMEVTYPER(18),
1722 	PMU_PMEVTYPER(19),
1723 	PMU_PMEVTYPER(20),
1724 	PMU_PMEVTYPER(21),
1725 	PMU_PMEVTYPER(22),
1726 	PMU_PMEVTYPER(23),
1727 	PMU_PMEVTYPER(24),
1728 	PMU_PMEVTYPER(25),
1729 	PMU_PMEVTYPER(26),
1730 	PMU_PMEVTYPER(27),
1731 	PMU_PMEVTYPER(28),
1732 	PMU_PMEVTYPER(29),
1733 	PMU_PMEVTYPER(30),
1734 	/* PMCCFILTR */
1735 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1736 };
1737 
1738 static const struct sys_reg_desc cp15_64_regs[] = {
1739 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1740 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1741 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1742 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1743 	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1744 };
1745 
1746 /* Target specific emulation tables */
1747 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1748 
1749 void kvm_register_target_sys_reg_table(unsigned int target,
1750 				       struct kvm_sys_reg_target_table *table)
1751 {
1752 	target_tables[target] = table;
1753 }
1754 
1755 /* Get specific register table for this target. */
1756 static const struct sys_reg_desc *get_target_table(unsigned target,
1757 						   bool mode_is_64,
1758 						   size_t *num)
1759 {
1760 	struct kvm_sys_reg_target_table *table;
1761 
1762 	table = target_tables[target];
1763 	if (mode_is_64) {
1764 		*num = table->table64.num;
1765 		return table->table64.table;
1766 	} else {
1767 		*num = table->table32.num;
1768 		return table->table32.table;
1769 	}
1770 }
1771 
1772 #define reg_to_match_value(x)						\
1773 	({								\
1774 		unsigned long val;					\
1775 		val  = (x)->Op0 << 14;					\
1776 		val |= (x)->Op1 << 11;					\
1777 		val |= (x)->CRn << 7;					\
1778 		val |= (x)->CRm << 3;					\
1779 		val |= (x)->Op2;					\
1780 		val;							\
1781 	 })
1782 
1783 static int match_sys_reg(const void *key, const void *elt)
1784 {
1785 	const unsigned long pval = (unsigned long)key;
1786 	const struct sys_reg_desc *r = elt;
1787 
1788 	return pval - reg_to_match_value(r);
1789 }
1790 
1791 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1792 					 const struct sys_reg_desc table[],
1793 					 unsigned int num)
1794 {
1795 	unsigned long pval = reg_to_match_value(params);
1796 
1797 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1798 }
1799 
1800 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1801 {
1802 	kvm_inject_undefined(vcpu);
1803 	return 1;
1804 }
1805 
1806 static void perform_access(struct kvm_vcpu *vcpu,
1807 			   struct sys_reg_params *params,
1808 			   const struct sys_reg_desc *r)
1809 {
1810 	/*
1811 	 * Not having an accessor means that we have configured a trap
1812 	 * that we don't know how to handle. This certainly qualifies
1813 	 * as a gross bug that should be fixed right away.
1814 	 */
1815 	BUG_ON(!r->access);
1816 
1817 	/* Skip instruction if instructed so */
1818 	if (likely(r->access(vcpu, params, r)))
1819 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1820 }
1821 
1822 /*
1823  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1824  *                call the corresponding trap handler.
1825  *
1826  * @params: pointer to the descriptor of the access
1827  * @table: array of trap descriptors
1828  * @num: size of the trap descriptor array
1829  *
1830  * Return 0 if the access has been handled, and -1 if not.
1831  */
1832 static int emulate_cp(struct kvm_vcpu *vcpu,
1833 		      struct sys_reg_params *params,
1834 		      const struct sys_reg_desc *table,
1835 		      size_t num)
1836 {
1837 	const struct sys_reg_desc *r;
1838 
1839 	if (!table)
1840 		return -1;	/* Not handled */
1841 
1842 	r = find_reg(params, table, num);
1843 
1844 	if (r) {
1845 		perform_access(vcpu, params, r);
1846 		return 0;
1847 	}
1848 
1849 	/* Not handled */
1850 	return -1;
1851 }
1852 
1853 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1854 				struct sys_reg_params *params)
1855 {
1856 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1857 	int cp = -1;
1858 
1859 	switch(hsr_ec) {
1860 	case ESR_ELx_EC_CP15_32:
1861 	case ESR_ELx_EC_CP15_64:
1862 		cp = 15;
1863 		break;
1864 	case ESR_ELx_EC_CP14_MR:
1865 	case ESR_ELx_EC_CP14_64:
1866 		cp = 14;
1867 		break;
1868 	default:
1869 		WARN_ON(1);
1870 	}
1871 
1872 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1873 		cp, *vcpu_pc(vcpu));
1874 	print_sys_reg_instr(params);
1875 	kvm_inject_undefined(vcpu);
1876 }
1877 
1878 /**
1879  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1880  * @vcpu: The VCPU pointer
1881  * @run:  The kvm_run struct
1882  */
1883 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1884 			    const struct sys_reg_desc *global,
1885 			    size_t nr_global,
1886 			    const struct sys_reg_desc *target_specific,
1887 			    size_t nr_specific)
1888 {
1889 	struct sys_reg_params params;
1890 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1891 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1892 	int Rt2 = (hsr >> 10) & 0x1f;
1893 
1894 	params.is_aarch32 = true;
1895 	params.is_32bit = false;
1896 	params.CRm = (hsr >> 1) & 0xf;
1897 	params.is_write = ((hsr & 1) == 0);
1898 
1899 	params.Op0 = 0;
1900 	params.Op1 = (hsr >> 16) & 0xf;
1901 	params.Op2 = 0;
1902 	params.CRn = 0;
1903 
1904 	/*
1905 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1906 	 * backends between AArch32 and AArch64, we get away with it.
1907 	 */
1908 	if (params.is_write) {
1909 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1910 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1911 	}
1912 
1913 	/*
1914 	 * Try to emulate the coprocessor access using the target
1915 	 * specific table first, and using the global table afterwards.
1916 	 * If either of the tables contains a handler, handle the
1917 	 * potential register operation in the case of a read and return
1918 	 * with success.
1919 	 */
1920 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1921 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1922 		/* Split up the value between registers for the read side */
1923 		if (!params.is_write) {
1924 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1925 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1926 		}
1927 
1928 		return 1;
1929 	}
1930 
1931 	unhandled_cp_access(vcpu, &params);
1932 	return 1;
1933 }
1934 
1935 /**
1936  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1937  * @vcpu: The VCPU pointer
1938  * @run:  The kvm_run struct
1939  */
1940 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1941 			    const struct sys_reg_desc *global,
1942 			    size_t nr_global,
1943 			    const struct sys_reg_desc *target_specific,
1944 			    size_t nr_specific)
1945 {
1946 	struct sys_reg_params params;
1947 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1948 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1949 
1950 	params.is_aarch32 = true;
1951 	params.is_32bit = true;
1952 	params.CRm = (hsr >> 1) & 0xf;
1953 	params.regval = vcpu_get_reg(vcpu, Rt);
1954 	params.is_write = ((hsr & 1) == 0);
1955 	params.CRn = (hsr >> 10) & 0xf;
1956 	params.Op0 = 0;
1957 	params.Op1 = (hsr >> 14) & 0x7;
1958 	params.Op2 = (hsr >> 17) & 0x7;
1959 
1960 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1961 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1962 		if (!params.is_write)
1963 			vcpu_set_reg(vcpu, Rt, params.regval);
1964 		return 1;
1965 	}
1966 
1967 	unhandled_cp_access(vcpu, &params);
1968 	return 1;
1969 }
1970 
1971 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1972 {
1973 	const struct sys_reg_desc *target_specific;
1974 	size_t num;
1975 
1976 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1977 	return kvm_handle_cp_64(vcpu,
1978 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1979 				target_specific, num);
1980 }
1981 
1982 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1983 {
1984 	const struct sys_reg_desc *target_specific;
1985 	size_t num;
1986 
1987 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1988 	return kvm_handle_cp_32(vcpu,
1989 				cp15_regs, ARRAY_SIZE(cp15_regs),
1990 				target_specific, num);
1991 }
1992 
1993 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1994 {
1995 	return kvm_handle_cp_64(vcpu,
1996 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1997 				NULL, 0);
1998 }
1999 
2000 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2001 {
2002 	return kvm_handle_cp_32(vcpu,
2003 				cp14_regs, ARRAY_SIZE(cp14_regs),
2004 				NULL, 0);
2005 }
2006 
2007 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2008 			   struct sys_reg_params *params)
2009 {
2010 	size_t num;
2011 	const struct sys_reg_desc *table, *r;
2012 
2013 	table = get_target_table(vcpu->arch.target, true, &num);
2014 
2015 	/* Search target-specific then generic table. */
2016 	r = find_reg(params, table, num);
2017 	if (!r)
2018 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2019 
2020 	if (likely(r)) {
2021 		perform_access(vcpu, params, r);
2022 	} else {
2023 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
2024 			*vcpu_pc(vcpu));
2025 		print_sys_reg_instr(params);
2026 		kvm_inject_undefined(vcpu);
2027 	}
2028 	return 1;
2029 }
2030 
2031 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2032 			      const struct sys_reg_desc *table, size_t num)
2033 {
2034 	unsigned long i;
2035 
2036 	for (i = 0; i < num; i++)
2037 		if (table[i].reset)
2038 			table[i].reset(vcpu, &table[i]);
2039 }
2040 
2041 /**
2042  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2043  * @vcpu: The VCPU pointer
2044  * @run:  The kvm_run struct
2045  */
2046 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2047 {
2048 	struct sys_reg_params params;
2049 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2050 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2051 	int ret;
2052 
2053 	trace_kvm_handle_sys_reg(esr);
2054 
2055 	params.is_aarch32 = false;
2056 	params.is_32bit = false;
2057 	params.Op0 = (esr >> 20) & 3;
2058 	params.Op1 = (esr >> 14) & 0x7;
2059 	params.CRn = (esr >> 10) & 0xf;
2060 	params.CRm = (esr >> 1) & 0xf;
2061 	params.Op2 = (esr >> 17) & 0x7;
2062 	params.regval = vcpu_get_reg(vcpu, Rt);
2063 	params.is_write = !(esr & 1);
2064 
2065 	ret = emulate_sys_reg(vcpu, &params);
2066 
2067 	if (!params.is_write)
2068 		vcpu_set_reg(vcpu, Rt, params.regval);
2069 	return ret;
2070 }
2071 
2072 /******************************************************************************
2073  * Userspace API
2074  *****************************************************************************/
2075 
2076 static bool index_to_params(u64 id, struct sys_reg_params *params)
2077 {
2078 	switch (id & KVM_REG_SIZE_MASK) {
2079 	case KVM_REG_SIZE_U64:
2080 		/* Any unused index bits means it's not valid. */
2081 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2082 			      | KVM_REG_ARM_COPROC_MASK
2083 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2084 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2085 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2086 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2087 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2088 			return false;
2089 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2090 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2091 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2092 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2093 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2094 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2095 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2096 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2097 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2098 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2099 		return true;
2100 	default:
2101 		return false;
2102 	}
2103 }
2104 
2105 const struct sys_reg_desc *find_reg_by_id(u64 id,
2106 					  struct sys_reg_params *params,
2107 					  const struct sys_reg_desc table[],
2108 					  unsigned int num)
2109 {
2110 	if (!index_to_params(id, params))
2111 		return NULL;
2112 
2113 	return find_reg(params, table, num);
2114 }
2115 
2116 /* Decode an index value, and find the sys_reg_desc entry. */
2117 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2118 						    u64 id)
2119 {
2120 	size_t num;
2121 	const struct sys_reg_desc *table, *r;
2122 	struct sys_reg_params params;
2123 
2124 	/* We only do sys_reg for now. */
2125 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2126 		return NULL;
2127 
2128 	table = get_target_table(vcpu->arch.target, true, &num);
2129 	r = find_reg_by_id(id, &params, table, num);
2130 	if (!r)
2131 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2132 
2133 	/* Not saved in the sys_reg array and not otherwise accessible? */
2134 	if (r && !(r->reg || r->get_user))
2135 		r = NULL;
2136 
2137 	return r;
2138 }
2139 
2140 /*
2141  * These are the invariant sys_reg registers: we let the guest see the
2142  * host versions of these, so they're part of the guest state.
2143  *
2144  * A future CPU may provide a mechanism to present different values to
2145  * the guest, or a future kvm may trap them.
2146  */
2147 
2148 #define FUNCTION_INVARIANT(reg)						\
2149 	static void get_##reg(struct kvm_vcpu *v,			\
2150 			      const struct sys_reg_desc *r)		\
2151 	{								\
2152 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2153 	}
2154 
2155 FUNCTION_INVARIANT(midr_el1)
2156 FUNCTION_INVARIANT(ctr_el0)
2157 FUNCTION_INVARIANT(revidr_el1)
2158 FUNCTION_INVARIANT(clidr_el1)
2159 FUNCTION_INVARIANT(aidr_el1)
2160 
2161 /* ->val is filled in by kvm_sys_reg_table_init() */
2162 static struct sys_reg_desc invariant_sys_regs[] = {
2163 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2164 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2165 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2166 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2167 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2168 };
2169 
2170 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2171 {
2172 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2173 		return -EFAULT;
2174 	return 0;
2175 }
2176 
2177 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2178 {
2179 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2180 		return -EFAULT;
2181 	return 0;
2182 }
2183 
2184 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2185 {
2186 	struct sys_reg_params params;
2187 	const struct sys_reg_desc *r;
2188 
2189 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2190 			   ARRAY_SIZE(invariant_sys_regs));
2191 	if (!r)
2192 		return -ENOENT;
2193 
2194 	return reg_to_user(uaddr, &r->val, id);
2195 }
2196 
2197 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2198 {
2199 	struct sys_reg_params params;
2200 	const struct sys_reg_desc *r;
2201 	int err;
2202 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2203 
2204 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2205 			   ARRAY_SIZE(invariant_sys_regs));
2206 	if (!r)
2207 		return -ENOENT;
2208 
2209 	err = reg_from_user(&val, uaddr, id);
2210 	if (err)
2211 		return err;
2212 
2213 	/* This is what we mean by invariant: you can't change it. */
2214 	if (r->val != val)
2215 		return -EINVAL;
2216 
2217 	return 0;
2218 }
2219 
2220 static bool is_valid_cache(u32 val)
2221 {
2222 	u32 level, ctype;
2223 
2224 	if (val >= CSSELR_MAX)
2225 		return false;
2226 
2227 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2228 	level = (val >> 1);
2229 	ctype = (cache_levels >> (level * 3)) & 7;
2230 
2231 	switch (ctype) {
2232 	case 0: /* No cache */
2233 		return false;
2234 	case 1: /* Instruction cache only */
2235 		return (val & 1);
2236 	case 2: /* Data cache only */
2237 	case 4: /* Unified cache */
2238 		return !(val & 1);
2239 	case 3: /* Separate instruction and data caches */
2240 		return true;
2241 	default: /* Reserved: we can't know instruction or data. */
2242 		return false;
2243 	}
2244 }
2245 
2246 static int demux_c15_get(u64 id, void __user *uaddr)
2247 {
2248 	u32 val;
2249 	u32 __user *uval = uaddr;
2250 
2251 	/* Fail if we have unknown bits set. */
2252 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2253 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2254 		return -ENOENT;
2255 
2256 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2257 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2258 		if (KVM_REG_SIZE(id) != 4)
2259 			return -ENOENT;
2260 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2261 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2262 		if (!is_valid_cache(val))
2263 			return -ENOENT;
2264 
2265 		return put_user(get_ccsidr(val), uval);
2266 	default:
2267 		return -ENOENT;
2268 	}
2269 }
2270 
2271 static int demux_c15_set(u64 id, void __user *uaddr)
2272 {
2273 	u32 val, newval;
2274 	u32 __user *uval = uaddr;
2275 
2276 	/* Fail if we have unknown bits set. */
2277 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2278 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2279 		return -ENOENT;
2280 
2281 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2282 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2283 		if (KVM_REG_SIZE(id) != 4)
2284 			return -ENOENT;
2285 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2286 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2287 		if (!is_valid_cache(val))
2288 			return -ENOENT;
2289 
2290 		if (get_user(newval, uval))
2291 			return -EFAULT;
2292 
2293 		/* This is also invariant: you can't change it. */
2294 		if (newval != get_ccsidr(val))
2295 			return -EINVAL;
2296 		return 0;
2297 	default:
2298 		return -ENOENT;
2299 	}
2300 }
2301 
2302 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2303 {
2304 	const struct sys_reg_desc *r;
2305 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2306 
2307 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2308 		return demux_c15_get(reg->id, uaddr);
2309 
2310 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2311 		return -ENOENT;
2312 
2313 	r = index_to_sys_reg_desc(vcpu, reg->id);
2314 	if (!r)
2315 		return get_invariant_sys_reg(reg->id, uaddr);
2316 
2317 	if (r->get_user)
2318 		return (r->get_user)(vcpu, r, reg, uaddr);
2319 
2320 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2321 }
2322 
2323 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2324 {
2325 	const struct sys_reg_desc *r;
2326 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2327 
2328 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2329 		return demux_c15_set(reg->id, uaddr);
2330 
2331 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2332 		return -ENOENT;
2333 
2334 	r = index_to_sys_reg_desc(vcpu, reg->id);
2335 	if (!r)
2336 		return set_invariant_sys_reg(reg->id, uaddr);
2337 
2338 	if (r->set_user)
2339 		return (r->set_user)(vcpu, r, reg, uaddr);
2340 
2341 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2342 }
2343 
2344 static unsigned int num_demux_regs(void)
2345 {
2346 	unsigned int i, count = 0;
2347 
2348 	for (i = 0; i < CSSELR_MAX; i++)
2349 		if (is_valid_cache(i))
2350 			count++;
2351 
2352 	return count;
2353 }
2354 
2355 static int write_demux_regids(u64 __user *uindices)
2356 {
2357 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2358 	unsigned int i;
2359 
2360 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2361 	for (i = 0; i < CSSELR_MAX; i++) {
2362 		if (!is_valid_cache(i))
2363 			continue;
2364 		if (put_user(val | i, uindices))
2365 			return -EFAULT;
2366 		uindices++;
2367 	}
2368 	return 0;
2369 }
2370 
2371 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2372 {
2373 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2374 		KVM_REG_ARM64_SYSREG |
2375 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2376 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2377 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2378 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2379 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2380 }
2381 
2382 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2383 {
2384 	if (!*uind)
2385 		return true;
2386 
2387 	if (put_user(sys_reg_to_index(reg), *uind))
2388 		return false;
2389 
2390 	(*uind)++;
2391 	return true;
2392 }
2393 
2394 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2395 			    u64 __user **uind,
2396 			    unsigned int *total)
2397 {
2398 	/*
2399 	 * Ignore registers we trap but don't save,
2400 	 * and for which no custom user accessor is provided.
2401 	 */
2402 	if (!(rd->reg || rd->get_user))
2403 		return 0;
2404 
2405 	if (!copy_reg_to_user(rd, uind))
2406 		return -EFAULT;
2407 
2408 	(*total)++;
2409 	return 0;
2410 }
2411 
2412 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2413 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2414 {
2415 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2416 	unsigned int total = 0;
2417 	size_t num;
2418 	int err;
2419 
2420 	/* We check for duplicates here, to allow arch-specific overrides. */
2421 	i1 = get_target_table(vcpu->arch.target, true, &num);
2422 	end1 = i1 + num;
2423 	i2 = sys_reg_descs;
2424 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2425 
2426 	BUG_ON(i1 == end1 || i2 == end2);
2427 
2428 	/* Walk carefully, as both tables may refer to the same register. */
2429 	while (i1 || i2) {
2430 		int cmp = cmp_sys_reg(i1, i2);
2431 		/* target-specific overrides generic entry. */
2432 		if (cmp <= 0)
2433 			err = walk_one_sys_reg(i1, &uind, &total);
2434 		else
2435 			err = walk_one_sys_reg(i2, &uind, &total);
2436 
2437 		if (err)
2438 			return err;
2439 
2440 		if (cmp <= 0 && ++i1 == end1)
2441 			i1 = NULL;
2442 		if (cmp >= 0 && ++i2 == end2)
2443 			i2 = NULL;
2444 	}
2445 	return total;
2446 }
2447 
2448 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2449 {
2450 	return ARRAY_SIZE(invariant_sys_regs)
2451 		+ num_demux_regs()
2452 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2453 }
2454 
2455 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2456 {
2457 	unsigned int i;
2458 	int err;
2459 
2460 	/* Then give them all the invariant registers' indices. */
2461 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2462 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2463 			return -EFAULT;
2464 		uindices++;
2465 	}
2466 
2467 	err = walk_sys_regs(vcpu, uindices);
2468 	if (err < 0)
2469 		return err;
2470 	uindices += err;
2471 
2472 	return write_demux_regids(uindices);
2473 }
2474 
2475 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2476 {
2477 	unsigned int i;
2478 
2479 	for (i = 1; i < n; i++) {
2480 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2481 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2482 			return 1;
2483 		}
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 void kvm_sys_reg_table_init(void)
2490 {
2491 	unsigned int i;
2492 	struct sys_reg_desc clidr;
2493 
2494 	/* Make sure tables are unique and in order. */
2495 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2496 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2497 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2498 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2499 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2500 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2501 
2502 	/* We abuse the reset function to overwrite the table itself. */
2503 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2504 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2505 
2506 	/*
2507 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2508 	 *
2509 	 *   If software reads the Cache Type fields from Ctype1
2510 	 *   upwards, once it has seen a value of 0b000, no caches
2511 	 *   exist at further-out levels of the hierarchy. So, for
2512 	 *   example, if Ctype3 is the first Cache Type field with a
2513 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2514 	 *   ignored.
2515 	 */
2516 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2517 	cache_levels = clidr.val;
2518 	for (i = 0; i < 7; i++)
2519 		if (((cache_levels >> (i*3)) & 7) == 0)
2520 			break;
2521 	/* Clear all higher bits. */
2522 	cache_levels &= (1 << (i*3))-1;
2523 }
2524 
2525 /**
2526  * kvm_reset_sys_regs - sets system registers to reset value
2527  * @vcpu: The VCPU pointer
2528  *
2529  * This function finds the right table above and sets the registers on the
2530  * virtual CPU struct to their architecturally defined reset values.
2531  */
2532 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2533 {
2534 	size_t num;
2535 	const struct sys_reg_desc *table;
2536 
2537 	/* Catch someone adding a register without putting in reset entry. */
2538 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2539 
2540 	/* Generic chip reset first (so target could override). */
2541 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2542 
2543 	table = get_target_table(vcpu->arch.target, true, &num);
2544 	reset_sys_reg_descs(vcpu, table, num);
2545 
2546 	for (num = 1; num < NR_SYS_REGS; num++)
2547 		if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2548 			panic("Didn't reset __vcpu_sys_reg(%zi)", num);
2549 }
2550