xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 2bc7d3e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50 
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52 				 struct sys_reg_params *params,
53 				 const struct sys_reg_desc *r)
54 {
55 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56 	print_sys_reg_instr(params);
57 	kvm_inject_undefined(vcpu);
58 	return false;
59 }
60 
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62 			       struct sys_reg_params *params,
63 			       const struct sys_reg_desc *r)
64 {
65 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66 	print_sys_reg_instr(params);
67 	kvm_inject_undefined(vcpu);
68 	return false;
69 }
70 
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73 	u64 val = 0x8badf00d8badf00d;
74 
75 	if (vcpu->arch.sysregs_loaded_on_cpu &&
76 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
77 		return val;
78 
79 	return __vcpu_sys_reg(vcpu, reg);
80 }
81 
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84 	if (vcpu->arch.sysregs_loaded_on_cpu &&
85 	    __vcpu_write_sys_reg_to_cpu(val, reg))
86 		return;
87 
88 	 __vcpu_sys_reg(vcpu, reg) = val;
89 }
90 
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93 
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96 
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100 	u32 ccsidr;
101 
102 	/* Make sure noone else changes CSSELR during this! */
103 	local_irq_disable();
104 	write_sysreg(csselr, csselr_el1);
105 	isb();
106 	ccsidr = read_sysreg(ccsidr_el1);
107 	local_irq_enable();
108 
109 	return ccsidr;
110 }
111 
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116 			struct sys_reg_params *p,
117 			const struct sys_reg_desc *r)
118 {
119 	if (!p->is_write)
120 		return read_from_write_only(vcpu, p, r);
121 
122 	/*
123 	 * Only track S/W ops if we don't have FWB. It still indicates
124 	 * that the guest is a bit broken (S/W operations should only
125 	 * be done by firmware, knowing that there is only a single
126 	 * CPU left in the system, and certainly not from non-secure
127 	 * software).
128 	 */
129 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130 		kvm_set_way_flush(vcpu);
131 
132 	return true;
133 }
134 
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137 	switch (r->aarch32_map) {
138 	case AA32_LO:
139 		*mask = GENMASK_ULL(31, 0);
140 		*shift = 0;
141 		break;
142 	case AA32_HI:
143 		*mask = GENMASK_ULL(63, 32);
144 		*shift = 32;
145 		break;
146 	default:
147 		*mask = GENMASK_ULL(63, 0);
148 		*shift = 0;
149 		break;
150 	}
151 }
152 
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159 			  struct sys_reg_params *p,
160 			  const struct sys_reg_desc *r)
161 {
162 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
163 	u64 val, mask, shift;
164 
165 	BUG_ON(!p->is_write);
166 
167 	get_access_mask(r, &mask, &shift);
168 
169 	if (~mask) {
170 		val = vcpu_read_sys_reg(vcpu, r->reg);
171 		val &= ~mask;
172 	} else {
173 		val = 0;
174 	}
175 
176 	val |= (p->regval & (mask >> shift)) << shift;
177 	vcpu_write_sys_reg(vcpu, val, r->reg);
178 
179 	kvm_toggle_cache(vcpu, was_enabled);
180 	return true;
181 }
182 
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184 			 struct sys_reg_params *p,
185 			 const struct sys_reg_desc *r)
186 {
187 	u64 mask, shift;
188 
189 	if (p->is_write)
190 		return ignore_write(vcpu, p);
191 
192 	get_access_mask(r, &mask, &shift);
193 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194 
195 	return true;
196 }
197 
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205 			   struct sys_reg_params *p,
206 			   const struct sys_reg_desc *r)
207 {
208 	bool g1;
209 
210 	if (!p->is_write)
211 		return read_from_write_only(vcpu, p, r);
212 
213 	/*
214 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218 	 * group.
219 	 */
220 	if (p->Op0 == 0) {		/* AArch32 */
221 		switch (p->Op1) {
222 		default:		/* Keep GCC quiet */
223 		case 0:			/* ICC_SGI1R */
224 			g1 = true;
225 			break;
226 		case 1:			/* ICC_ASGI1R */
227 		case 2:			/* ICC_SGI0R */
228 			g1 = false;
229 			break;
230 		}
231 	} else {			/* AArch64 */
232 		switch (p->Op2) {
233 		default:		/* Keep GCC quiet */
234 		case 5:			/* ICC_SGI1R_EL1 */
235 			g1 = true;
236 			break;
237 		case 6:			/* ICC_ASGI1R_EL1 */
238 		case 7:			/* ICC_SGI0R_EL1 */
239 			g1 = false;
240 			break;
241 		}
242 	}
243 
244 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245 
246 	return true;
247 }
248 
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250 			   struct sys_reg_params *p,
251 			   const struct sys_reg_desc *r)
252 {
253 	if (p->is_write)
254 		return ignore_write(vcpu, p);
255 
256 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257 	return true;
258 }
259 
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261 			struct sys_reg_params *p,
262 			const struct sys_reg_desc *r)
263 {
264 	if (p->is_write)
265 		return ignore_write(vcpu, p);
266 	else
267 		return read_zero(vcpu, p);
268 }
269 
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277 			  struct sys_reg_params *p,
278 			  const struct sys_reg_desc *r)
279 {
280 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281 	u32 sr = reg_to_encoding(r);
282 
283 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284 		kvm_inject_undefined(vcpu);
285 		return false;
286 	}
287 
288 	if (p->is_write && sr == SYS_LORID_EL1)
289 		return write_to_read_only(vcpu, p, r);
290 
291 	return trap_raz_wi(vcpu, p, r);
292 }
293 
294 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295 			   struct sys_reg_params *p,
296 			   const struct sys_reg_desc *r)
297 {
298 	u64 oslsr;
299 
300 	if (!p->is_write)
301 		return read_from_write_only(vcpu, p, r);
302 
303 	/* Forward the OSLK bit to OSLSR */
304 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305 	if (p->regval & SYS_OSLAR_OSLK)
306 		oslsr |= SYS_OSLSR_OSLK;
307 
308 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309 	return true;
310 }
311 
312 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
313 			   struct sys_reg_params *p,
314 			   const struct sys_reg_desc *r)
315 {
316 	if (p->is_write)
317 		return write_to_read_only(vcpu, p, r);
318 
319 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
320 	return true;
321 }
322 
323 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 			 const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326 	u64 id = sys_reg_to_index(rd);
327 	u64 val;
328 	int err;
329 
330 	err = reg_from_user(&val, uaddr, id);
331 	if (err)
332 		return err;
333 
334 	/*
335 	 * The only modifiable bit is the OSLK bit. Refuse the write if
336 	 * userspace attempts to change any other bit in the register.
337 	 */
338 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
339 		return -EINVAL;
340 
341 	__vcpu_sys_reg(vcpu, rd->reg) = val;
342 	return 0;
343 }
344 
345 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
346 				   struct sys_reg_params *p,
347 				   const struct sys_reg_desc *r)
348 {
349 	if (p->is_write) {
350 		return ignore_write(vcpu, p);
351 	} else {
352 		p->regval = read_sysreg(dbgauthstatus_el1);
353 		return true;
354 	}
355 }
356 
357 /*
358  * We want to avoid world-switching all the DBG registers all the
359  * time:
360  *
361  * - If we've touched any debug register, it is likely that we're
362  *   going to touch more of them. It then makes sense to disable the
363  *   traps and start doing the save/restore dance
364  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365  *   then mandatory to save/restore the registers, as the guest
366  *   depends on them.
367  *
368  * For this, we use a DIRTY bit, indicating the guest has modified the
369  * debug registers, used as follow:
370  *
371  * On guest entry:
372  * - If the dirty bit is set (because we're coming back from trapping),
373  *   disable the traps, save host registers, restore guest registers.
374  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375  *   set the dirty bit, disable the traps, save host registers,
376  *   restore guest registers.
377  * - Otherwise, enable the traps
378  *
379  * On guest exit:
380  * - If the dirty bit is set, save guest registers, restore host
381  *   registers and clear the dirty bit. This ensure that the host can
382  *   now use the debug registers.
383  */
384 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
385 			    struct sys_reg_params *p,
386 			    const struct sys_reg_desc *r)
387 {
388 	if (p->is_write) {
389 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
390 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
391 	} else {
392 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393 	}
394 
395 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
396 
397 	return true;
398 }
399 
400 /*
401  * reg_to_dbg/dbg_to_reg
402  *
403  * A 32 bit write to a debug register leave top bits alone
404  * A 32 bit read from a debug register only returns the bottom bits
405  *
406  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407  * hyp.S code switches between host and guest values in future.
408  */
409 static void reg_to_dbg(struct kvm_vcpu *vcpu,
410 		       struct sys_reg_params *p,
411 		       const struct sys_reg_desc *rd,
412 		       u64 *dbg_reg)
413 {
414 	u64 mask, shift, val;
415 
416 	get_access_mask(rd, &mask, &shift);
417 
418 	val = *dbg_reg;
419 	val &= ~mask;
420 	val |= (p->regval & (mask >> shift)) << shift;
421 	*dbg_reg = val;
422 
423 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
424 }
425 
426 static void dbg_to_reg(struct kvm_vcpu *vcpu,
427 		       struct sys_reg_params *p,
428 		       const struct sys_reg_desc *rd,
429 		       u64 *dbg_reg)
430 {
431 	u64 mask, shift;
432 
433 	get_access_mask(rd, &mask, &shift);
434 	p->regval = (*dbg_reg & mask) >> shift;
435 }
436 
437 static bool trap_bvr(struct kvm_vcpu *vcpu,
438 		     struct sys_reg_params *p,
439 		     const struct sys_reg_desc *rd)
440 {
441 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
442 
443 	if (p->is_write)
444 		reg_to_dbg(vcpu, p, rd, dbg_reg);
445 	else
446 		dbg_to_reg(vcpu, p, rd, dbg_reg);
447 
448 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
449 
450 	return true;
451 }
452 
453 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 		const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
457 
458 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 	const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
467 
468 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 static void reset_bvr(struct kvm_vcpu *vcpu,
474 		      const struct sys_reg_desc *rd)
475 {
476 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
477 }
478 
479 static bool trap_bcr(struct kvm_vcpu *vcpu,
480 		     struct sys_reg_params *p,
481 		     const struct sys_reg_desc *rd)
482 {
483 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
484 
485 	if (p->is_write)
486 		reg_to_dbg(vcpu, p, rd, dbg_reg);
487 	else
488 		dbg_to_reg(vcpu, p, rd, dbg_reg);
489 
490 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
491 
492 	return true;
493 }
494 
495 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 		const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
499 
500 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
501 		return -EFAULT;
502 
503 	return 0;
504 }
505 
506 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 	const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510 
511 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 		return -EFAULT;
513 	return 0;
514 }
515 
516 static void reset_bcr(struct kvm_vcpu *vcpu,
517 		      const struct sys_reg_desc *rd)
518 {
519 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
520 }
521 
522 static bool trap_wvr(struct kvm_vcpu *vcpu,
523 		     struct sys_reg_params *p,
524 		     const struct sys_reg_desc *rd)
525 {
526 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
527 
528 	if (p->is_write)
529 		reg_to_dbg(vcpu, p, rd, dbg_reg);
530 	else
531 		dbg_to_reg(vcpu, p, rd, dbg_reg);
532 
533 	trace_trap_reg(__func__, rd->CRm, p->is_write,
534 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
535 
536 	return true;
537 }
538 
539 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540 		const struct kvm_one_reg *reg, void __user *uaddr)
541 {
542 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
543 
544 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
545 		return -EFAULT;
546 	return 0;
547 }
548 
549 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550 	const struct kvm_one_reg *reg, void __user *uaddr)
551 {
552 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553 
554 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555 		return -EFAULT;
556 	return 0;
557 }
558 
559 static void reset_wvr(struct kvm_vcpu *vcpu,
560 		      const struct sys_reg_desc *rd)
561 {
562 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
563 }
564 
565 static bool trap_wcr(struct kvm_vcpu *vcpu,
566 		     struct sys_reg_params *p,
567 		     const struct sys_reg_desc *rd)
568 {
569 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
570 
571 	if (p->is_write)
572 		reg_to_dbg(vcpu, p, rd, dbg_reg);
573 	else
574 		dbg_to_reg(vcpu, p, rd, dbg_reg);
575 
576 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577 
578 	return true;
579 }
580 
581 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 		const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
585 
586 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
587 		return -EFAULT;
588 	return 0;
589 }
590 
591 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592 	const struct kvm_one_reg *reg, void __user *uaddr)
593 {
594 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
595 
596 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597 		return -EFAULT;
598 	return 0;
599 }
600 
601 static void reset_wcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
605 }
606 
607 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 amair = read_sysreg(amair_el1);
610 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
611 }
612 
613 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614 {
615 	u64 actlr = read_sysreg(actlr_el1);
616 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617 }
618 
619 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621 	u64 mpidr;
622 
623 	/*
624 	 * Map the vcpu_id into the first three affinity level fields of
625 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
626 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627 	 * of the GICv3 to be able to address each CPU directly when
628 	 * sending IPIs.
629 	 */
630 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
633 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
634 }
635 
636 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637 				   const struct sys_reg_desc *r)
638 {
639 	if (kvm_vcpu_has_pmu(vcpu))
640 		return 0;
641 
642 	return REG_HIDDEN;
643 }
644 
645 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648 
649 	/* No PMU available, any PMU reg may UNDEF... */
650 	if (!kvm_arm_support_pmu_v3())
651 		return;
652 
653 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654 	n &= ARMV8_PMU_PMCR_N_MASK;
655 	if (n)
656 		mask |= GENMASK(n - 1, 0);
657 
658 	reset_unknown(vcpu, r);
659 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
660 }
661 
662 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 	reset_unknown(vcpu, r);
665 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666 }
667 
668 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670 	reset_unknown(vcpu, r);
671 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672 }
673 
674 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675 {
676 	reset_unknown(vcpu, r);
677 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678 }
679 
680 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681 {
682 	u64 pmcr, val;
683 
684 	/* No PMU available, PMCR_EL0 may UNDEF... */
685 	if (!kvm_arm_support_pmu_v3())
686 		return;
687 
688 	pmcr = read_sysreg(pmcr_el0);
689 	/*
690 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
691 	 * except PMCR.E resetting to zero.
692 	 */
693 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
695 	if (!system_supports_32bit_el0())
696 		val |= ARMV8_PMU_PMCR_LC;
697 	__vcpu_sys_reg(vcpu, r->reg) = val;
698 }
699 
700 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
701 {
702 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
703 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
704 
705 	if (!enabled)
706 		kvm_inject_undefined(vcpu);
707 
708 	return !enabled;
709 }
710 
711 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
712 {
713 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714 }
715 
716 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717 {
718 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
719 }
720 
721 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722 {
723 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
724 }
725 
726 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727 {
728 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
729 }
730 
731 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732 			const struct sys_reg_desc *r)
733 {
734 	u64 val;
735 
736 	if (pmu_access_el0_disabled(vcpu))
737 		return false;
738 
739 	if (p->is_write) {
740 		/* Only update writeable bits of PMCR */
741 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
742 		val &= ~ARMV8_PMU_PMCR_MASK;
743 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
744 		if (!system_supports_32bit_el0())
745 			val |= ARMV8_PMU_PMCR_LC;
746 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
747 		kvm_pmu_handle_pmcr(vcpu, val);
748 		kvm_vcpu_pmu_restore_guest(vcpu);
749 	} else {
750 		/* PMCR.P & PMCR.C are RAZ */
751 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
752 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753 		p->regval = val;
754 	}
755 
756 	return true;
757 }
758 
759 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 			  const struct sys_reg_desc *r)
761 {
762 	if (pmu_access_event_counter_el0_disabled(vcpu))
763 		return false;
764 
765 	if (p->is_write)
766 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
767 	else
768 		/* return PMSELR.SEL field */
769 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770 			    & ARMV8_PMU_COUNTER_MASK;
771 
772 	return true;
773 }
774 
775 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776 			  const struct sys_reg_desc *r)
777 {
778 	u64 pmceid, mask, shift;
779 
780 	BUG_ON(p->is_write);
781 
782 	if (pmu_access_el0_disabled(vcpu))
783 		return false;
784 
785 	get_access_mask(r, &mask, &shift);
786 
787 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
788 	pmceid &= mask;
789 	pmceid >>= shift;
790 
791 	p->regval = pmceid;
792 
793 	return true;
794 }
795 
796 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797 {
798 	u64 pmcr, val;
799 
800 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
801 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
802 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803 		kvm_inject_undefined(vcpu);
804 		return false;
805 	}
806 
807 	return true;
808 }
809 
810 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811 			      struct sys_reg_params *p,
812 			      const struct sys_reg_desc *r)
813 {
814 	u64 idx = ~0UL;
815 
816 	if (r->CRn == 9 && r->CRm == 13) {
817 		if (r->Op2 == 2) {
818 			/* PMXEVCNTR_EL0 */
819 			if (pmu_access_event_counter_el0_disabled(vcpu))
820 				return false;
821 
822 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
823 			      & ARMV8_PMU_COUNTER_MASK;
824 		} else if (r->Op2 == 0) {
825 			/* PMCCNTR_EL0 */
826 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
827 				return false;
828 
829 			idx = ARMV8_PMU_CYCLE_IDX;
830 		}
831 	} else if (r->CRn == 0 && r->CRm == 9) {
832 		/* PMCCNTR */
833 		if (pmu_access_event_counter_el0_disabled(vcpu))
834 			return false;
835 
836 		idx = ARMV8_PMU_CYCLE_IDX;
837 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838 		/* PMEVCNTRn_EL0 */
839 		if (pmu_access_event_counter_el0_disabled(vcpu))
840 			return false;
841 
842 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843 	}
844 
845 	/* Catch any decoding mistake */
846 	WARN_ON(idx == ~0UL);
847 
848 	if (!pmu_counter_idx_valid(vcpu, idx))
849 		return false;
850 
851 	if (p->is_write) {
852 		if (pmu_access_el0_disabled(vcpu))
853 			return false;
854 
855 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
856 	} else {
857 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
858 	}
859 
860 	return true;
861 }
862 
863 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			       const struct sys_reg_desc *r)
865 {
866 	u64 idx, reg;
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 		/* PMXEVTYPER_EL0 */
873 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874 		reg = PMEVTYPER0_EL0 + idx;
875 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 		if (idx == ARMV8_PMU_CYCLE_IDX)
878 			reg = PMCCFILTR_EL0;
879 		else
880 			/* PMEVTYPERn_EL0 */
881 			reg = PMEVTYPER0_EL0 + idx;
882 	} else {
883 		BUG();
884 	}
885 
886 	if (!pmu_counter_idx_valid(vcpu, idx))
887 		return false;
888 
889 	if (p->is_write) {
890 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892 		kvm_vcpu_pmu_restore_guest(vcpu);
893 	} else {
894 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895 	}
896 
897 	return true;
898 }
899 
900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 			   const struct sys_reg_desc *r)
902 {
903 	u64 val, mask;
904 
905 	if (pmu_access_el0_disabled(vcpu))
906 		return false;
907 
908 	mask = kvm_pmu_valid_counter_mask(vcpu);
909 	if (p->is_write) {
910 		val = p->regval & mask;
911 		if (r->Op2 & 0x1) {
912 			/* accessing PMCNTENSET_EL0 */
913 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
914 			kvm_pmu_enable_counter_mask(vcpu, val);
915 			kvm_vcpu_pmu_restore_guest(vcpu);
916 		} else {
917 			/* accessing PMCNTENCLR_EL0 */
918 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
919 			kvm_pmu_disable_counter_mask(vcpu, val);
920 		}
921 	} else {
922 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
923 	}
924 
925 	return true;
926 }
927 
928 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929 			   const struct sys_reg_desc *r)
930 {
931 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932 
933 	if (check_pmu_access_disabled(vcpu, 0))
934 		return false;
935 
936 	if (p->is_write) {
937 		u64 val = p->regval & mask;
938 
939 		if (r->Op2 & 0x1)
940 			/* accessing PMINTENSET_EL1 */
941 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
942 		else
943 			/* accessing PMINTENCLR_EL1 */
944 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
945 	} else {
946 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
947 	}
948 
949 	return true;
950 }
951 
952 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953 			 const struct sys_reg_desc *r)
954 {
955 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956 
957 	if (pmu_access_el0_disabled(vcpu))
958 		return false;
959 
960 	if (p->is_write) {
961 		if (r->CRm & 0x2)
962 			/* accessing PMOVSSET_EL0 */
963 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
964 		else
965 			/* accessing PMOVSCLR_EL0 */
966 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
967 	} else {
968 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
969 	}
970 
971 	return true;
972 }
973 
974 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975 			   const struct sys_reg_desc *r)
976 {
977 	u64 mask;
978 
979 	if (!p->is_write)
980 		return read_from_write_only(vcpu, p, r);
981 
982 	if (pmu_write_swinc_el0_disabled(vcpu))
983 		return false;
984 
985 	mask = kvm_pmu_valid_counter_mask(vcpu);
986 	kvm_pmu_software_increment(vcpu, p->regval & mask);
987 	return true;
988 }
989 
990 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991 			     const struct sys_reg_desc *r)
992 {
993 	if (p->is_write) {
994 		if (!vcpu_mode_priv(vcpu)) {
995 			kvm_inject_undefined(vcpu);
996 			return false;
997 		}
998 
999 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000 			       p->regval & ARMV8_PMU_USERENR_MASK;
1001 	} else {
1002 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1003 			    & ARMV8_PMU_USERENR_MASK;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1011 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1012 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1013 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1014 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1015 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1016 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1017 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1018 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1019 
1020 #define PMU_SYS_REG(r)						\
1021 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1022 
1023 /* Macro to expand the PMEVCNTRn_EL0 register */
1024 #define PMU_PMEVCNTR_EL0(n)						\
1025 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1026 	  .reset = reset_pmevcntr,					\
1027 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1028 
1029 /* Macro to expand the PMEVTYPERn_EL0 register */
1030 #define PMU_PMEVTYPER_EL0(n)						\
1031 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1032 	  .reset = reset_pmevtyper,					\
1033 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1034 
1035 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036 			 const struct sys_reg_desc *r)
1037 {
1038 	kvm_inject_undefined(vcpu);
1039 
1040 	return false;
1041 }
1042 
1043 /* Macro to expand the AMU counter and type registers*/
1044 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1048 
1049 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050 			const struct sys_reg_desc *rd)
1051 {
1052 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1053 }
1054 
1055 /*
1056  * If we land here on a PtrAuth access, that is because we didn't
1057  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058  * way this happens is when the guest does not have PtrAuth support
1059  * enabled.
1060  */
1061 #define __PTRAUTH_KEY(k)						\
1062 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1063 	.visibility = ptrauth_visibility}
1064 
1065 #define PTRAUTH_KEY(k)							\
1066 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1067 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1068 
1069 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070 			      struct sys_reg_params *p,
1071 			      const struct sys_reg_desc *r)
1072 {
1073 	enum kvm_arch_timers tmr;
1074 	enum kvm_arch_timer_regs treg;
1075 	u64 reg = reg_to_encoding(r);
1076 
1077 	switch (reg) {
1078 	case SYS_CNTP_TVAL_EL0:
1079 	case SYS_AARCH32_CNTP_TVAL:
1080 		tmr = TIMER_PTIMER;
1081 		treg = TIMER_REG_TVAL;
1082 		break;
1083 	case SYS_CNTP_CTL_EL0:
1084 	case SYS_AARCH32_CNTP_CTL:
1085 		tmr = TIMER_PTIMER;
1086 		treg = TIMER_REG_CTL;
1087 		break;
1088 	case SYS_CNTP_CVAL_EL0:
1089 	case SYS_AARCH32_CNTP_CVAL:
1090 		tmr = TIMER_PTIMER;
1091 		treg = TIMER_REG_CVAL;
1092 		break;
1093 	default:
1094 		BUG();
1095 	}
1096 
1097 	if (p->is_write)
1098 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1099 	else
1100 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1101 
1102 	return true;
1103 }
1104 
1105 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1106 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107 		struct sys_reg_desc const *r, bool raz)
1108 {
1109 	u32 id = reg_to_encoding(r);
1110 	u64 val;
1111 
1112 	if (raz)
1113 		return 0;
1114 
1115 	val = read_sanitised_ftr_reg(id);
1116 
1117 	switch (id) {
1118 	case SYS_ID_AA64PFR0_EL1:
1119 		if (!vcpu_has_sve(vcpu))
1120 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1126 		if (kvm_vgic_global_state.type == VGIC_V3) {
1127 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1128 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1129 		}
1130 		break;
1131 	case SYS_ID_AA64PFR1_EL1:
1132 		if (!kvm_has_mte(vcpu->kvm))
1133 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1134 
1135 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1136 		break;
1137 	case SYS_ID_AA64ISAR1_EL1:
1138 		if (!vcpu_has_ptrauth(vcpu))
1139 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1140 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1141 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1142 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1143 		break;
1144 	case SYS_ID_AA64ISAR2_EL1:
1145 		if (!vcpu_has_ptrauth(vcpu))
1146 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1147 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1148 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1149 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_WFXT);
1150 		break;
1151 	case SYS_ID_AA64DFR0_EL1:
1152 		/* Limit debug to ARMv8.0 */
1153 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1154 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1155 		/* Limit guests to PMUv3 for ARMv8.4 */
1156 		val = cpuid_feature_cap_perfmon_field(val,
1157 						      ID_AA64DFR0_PMUVER_SHIFT,
1158 						      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1159 		/* Hide SPE from guests */
1160 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1161 		break;
1162 	case SYS_ID_DFR0_EL1:
1163 		/* Limit guests to PMUv3 for ARMv8.4 */
1164 		val = cpuid_feature_cap_perfmon_field(val,
1165 						      ID_DFR0_PERFMON_SHIFT,
1166 						      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1167 		break;
1168 	}
1169 
1170 	return val;
1171 }
1172 
1173 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1174 				  const struct sys_reg_desc *r)
1175 {
1176 	u32 id = reg_to_encoding(r);
1177 
1178 	switch (id) {
1179 	case SYS_ID_AA64ZFR0_EL1:
1180 		if (!vcpu_has_sve(vcpu))
1181 			return REG_RAZ;
1182 		break;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 /* cpufeature ID register access trap handlers */
1189 
1190 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1191 			    struct sys_reg_params *p,
1192 			    const struct sys_reg_desc *r,
1193 			    bool raz)
1194 {
1195 	if (p->is_write)
1196 		return write_to_read_only(vcpu, p, r);
1197 
1198 	p->regval = read_id_reg(vcpu, r, raz);
1199 	return true;
1200 }
1201 
1202 static bool access_id_reg(struct kvm_vcpu *vcpu,
1203 			  struct sys_reg_params *p,
1204 			  const struct sys_reg_desc *r)
1205 {
1206 	bool raz = sysreg_visible_as_raz(vcpu, r);
1207 
1208 	return __access_id_reg(vcpu, p, r, raz);
1209 }
1210 
1211 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1212 			      struct sys_reg_params *p,
1213 			      const struct sys_reg_desc *r)
1214 {
1215 	return __access_id_reg(vcpu, p, r, true);
1216 }
1217 
1218 /* Visibility overrides for SVE-specific control registers */
1219 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1220 				   const struct sys_reg_desc *rd)
1221 {
1222 	if (vcpu_has_sve(vcpu))
1223 		return 0;
1224 
1225 	return REG_HIDDEN;
1226 }
1227 
1228 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1229 			       const struct sys_reg_desc *rd,
1230 			       const struct kvm_one_reg *reg, void __user *uaddr)
1231 {
1232 	const u64 id = sys_reg_to_index(rd);
1233 	u8 csv2, csv3;
1234 	int err;
1235 	u64 val;
1236 
1237 	err = reg_from_user(&val, uaddr, id);
1238 	if (err)
1239 		return err;
1240 
1241 	/*
1242 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1243 	 * it doesn't promise more than what is actually provided (the
1244 	 * guest could otherwise be covered in ectoplasmic residue).
1245 	 */
1246 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1247 	if (csv2 > 1 ||
1248 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1249 		return -EINVAL;
1250 
1251 	/* Same thing for CSV3 */
1252 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1253 	if (csv3 > 1 ||
1254 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1255 		return -EINVAL;
1256 
1257 	/* We can only differ with CSV[23], and anything else is an error */
1258 	val ^= read_id_reg(vcpu, rd, false);
1259 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1260 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1261 	if (val)
1262 		return -EINVAL;
1263 
1264 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1265 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * cpufeature ID register user accessors
1272  *
1273  * For now, these registers are immutable for userspace, so no values
1274  * are stored, and for set_id_reg() we don't allow the effective value
1275  * to be changed.
1276  */
1277 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1278 			const struct sys_reg_desc *rd, void __user *uaddr,
1279 			bool raz)
1280 {
1281 	const u64 id = sys_reg_to_index(rd);
1282 	const u64 val = read_id_reg(vcpu, rd, raz);
1283 
1284 	return reg_to_user(uaddr, &val, id);
1285 }
1286 
1287 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1288 			const struct sys_reg_desc *rd, void __user *uaddr,
1289 			bool raz)
1290 {
1291 	const u64 id = sys_reg_to_index(rd);
1292 	int err;
1293 	u64 val;
1294 
1295 	err = reg_from_user(&val, uaddr, id);
1296 	if (err)
1297 		return err;
1298 
1299 	/* This is what we mean by invariant: you can't change it. */
1300 	if (val != read_id_reg(vcpu, rd, raz))
1301 		return -EINVAL;
1302 
1303 	return 0;
1304 }
1305 
1306 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1307 		      const struct kvm_one_reg *reg, void __user *uaddr)
1308 {
1309 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1310 
1311 	return __get_id_reg(vcpu, rd, uaddr, raz);
1312 }
1313 
1314 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1315 		      const struct kvm_one_reg *reg, void __user *uaddr)
1316 {
1317 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1318 
1319 	return __set_id_reg(vcpu, rd, uaddr, raz);
1320 }
1321 
1322 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1323 			  const struct kvm_one_reg *reg, void __user *uaddr)
1324 {
1325 	return __set_id_reg(vcpu, rd, uaddr, true);
1326 }
1327 
1328 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1329 		       const struct kvm_one_reg *reg, void __user *uaddr)
1330 {
1331 	const u64 id = sys_reg_to_index(rd);
1332 	const u64 val = 0;
1333 
1334 	return reg_to_user(uaddr, &val, id);
1335 }
1336 
1337 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1338 		      const struct kvm_one_reg *reg, void __user *uaddr)
1339 {
1340 	int err;
1341 	u64 val;
1342 
1343 	/* Perform the access even if we are going to ignore the value */
1344 	err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1345 	if (err)
1346 		return err;
1347 
1348 	return 0;
1349 }
1350 
1351 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1352 		       const struct sys_reg_desc *r)
1353 {
1354 	if (p->is_write)
1355 		return write_to_read_only(vcpu, p, r);
1356 
1357 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1358 	return true;
1359 }
1360 
1361 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1362 			 const struct sys_reg_desc *r)
1363 {
1364 	if (p->is_write)
1365 		return write_to_read_only(vcpu, p, r);
1366 
1367 	p->regval = read_sysreg(clidr_el1);
1368 	return true;
1369 }
1370 
1371 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1372 			  const struct sys_reg_desc *r)
1373 {
1374 	int reg = r->reg;
1375 
1376 	if (p->is_write)
1377 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1378 	else
1379 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1380 	return true;
1381 }
1382 
1383 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1384 			  const struct sys_reg_desc *r)
1385 {
1386 	u32 csselr;
1387 
1388 	if (p->is_write)
1389 		return write_to_read_only(vcpu, p, r);
1390 
1391 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1392 	p->regval = get_ccsidr(csselr);
1393 
1394 	/*
1395 	 * Guests should not be doing cache operations by set/way at all, and
1396 	 * for this reason, we trap them and attempt to infer the intent, so
1397 	 * that we can flush the entire guest's address space at the appropriate
1398 	 * time.
1399 	 * To prevent this trapping from causing performance problems, let's
1400 	 * expose the geometry of all data and unified caches (which are
1401 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1402 	 * [If guests should attempt to infer aliasing properties from the
1403 	 * geometry (which is not permitted by the architecture), they would
1404 	 * only do so for virtually indexed caches.]
1405 	 */
1406 	if (!(csselr & 1)) // data or unified cache
1407 		p->regval &= ~GENMASK(27, 3);
1408 	return true;
1409 }
1410 
1411 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1412 				   const struct sys_reg_desc *rd)
1413 {
1414 	if (kvm_has_mte(vcpu->kvm))
1415 		return 0;
1416 
1417 	return REG_HIDDEN;
1418 }
1419 
1420 #define MTE_REG(name) {				\
1421 	SYS_DESC(SYS_##name),			\
1422 	.access = undef_access,			\
1423 	.reset = reset_unknown,			\
1424 	.reg = name,				\
1425 	.visibility = mte_visibility,		\
1426 }
1427 
1428 /* sys_reg_desc initialiser for known cpufeature ID registers */
1429 #define ID_SANITISED(name) {			\
1430 	SYS_DESC(SYS_##name),			\
1431 	.access	= access_id_reg,		\
1432 	.get_user = get_id_reg,			\
1433 	.set_user = set_id_reg,			\
1434 	.visibility = id_visibility,		\
1435 }
1436 
1437 /*
1438  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1439  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1440  * (1 <= crm < 8, 0 <= Op2 < 8).
1441  */
1442 #define ID_UNALLOCATED(crm, op2) {			\
1443 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1444 	.access = access_raz_id_reg,			\
1445 	.get_user = get_raz_reg,			\
1446 	.set_user = set_raz_id_reg,			\
1447 }
1448 
1449 /*
1450  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1451  * For now, these are exposed just like unallocated ID regs: they appear
1452  * RAZ for the guest.
1453  */
1454 #define ID_HIDDEN(name) {			\
1455 	SYS_DESC(SYS_##name),			\
1456 	.access = access_raz_id_reg,		\
1457 	.get_user = get_raz_reg,		\
1458 	.set_user = set_raz_id_reg,		\
1459 }
1460 
1461 /*
1462  * Architected system registers.
1463  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1464  *
1465  * Debug handling: We do trap most, if not all debug related system
1466  * registers. The implementation is good enough to ensure that a guest
1467  * can use these with minimal performance degradation. The drawback is
1468  * that we don't implement any of the external debug architecture.
1469  * This should be revisited if we ever encounter a more demanding
1470  * guest...
1471  */
1472 static const struct sys_reg_desc sys_reg_descs[] = {
1473 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1474 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1475 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1476 
1477 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1478 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1479 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1480 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1481 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1482 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1483 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1484 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1485 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1486 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1487 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1488 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1489 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1490 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1491 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1492 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1493 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1494 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1495 
1496 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1497 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1498 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1499 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1500 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1501 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1502 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1503 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1504 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1505 
1506 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1507 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1508 	// DBGDTR[TR]X_EL0 share the same encoding
1509 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1510 
1511 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1512 
1513 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1514 
1515 	/*
1516 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1517 	 * entries in arm64_ftr_regs[].
1518 	 */
1519 
1520 	/* AArch64 mappings of the AArch32 ID registers */
1521 	/* CRm=1 */
1522 	ID_SANITISED(ID_PFR0_EL1),
1523 	ID_SANITISED(ID_PFR1_EL1),
1524 	ID_SANITISED(ID_DFR0_EL1),
1525 	ID_HIDDEN(ID_AFR0_EL1),
1526 	ID_SANITISED(ID_MMFR0_EL1),
1527 	ID_SANITISED(ID_MMFR1_EL1),
1528 	ID_SANITISED(ID_MMFR2_EL1),
1529 	ID_SANITISED(ID_MMFR3_EL1),
1530 
1531 	/* CRm=2 */
1532 	ID_SANITISED(ID_ISAR0_EL1),
1533 	ID_SANITISED(ID_ISAR1_EL1),
1534 	ID_SANITISED(ID_ISAR2_EL1),
1535 	ID_SANITISED(ID_ISAR3_EL1),
1536 	ID_SANITISED(ID_ISAR4_EL1),
1537 	ID_SANITISED(ID_ISAR5_EL1),
1538 	ID_SANITISED(ID_MMFR4_EL1),
1539 	ID_SANITISED(ID_ISAR6_EL1),
1540 
1541 	/* CRm=3 */
1542 	ID_SANITISED(MVFR0_EL1),
1543 	ID_SANITISED(MVFR1_EL1),
1544 	ID_SANITISED(MVFR2_EL1),
1545 	ID_UNALLOCATED(3,3),
1546 	ID_SANITISED(ID_PFR2_EL1),
1547 	ID_HIDDEN(ID_DFR1_EL1),
1548 	ID_SANITISED(ID_MMFR5_EL1),
1549 	ID_UNALLOCATED(3,7),
1550 
1551 	/* AArch64 ID registers */
1552 	/* CRm=4 */
1553 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1554 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1555 	ID_SANITISED(ID_AA64PFR1_EL1),
1556 	ID_UNALLOCATED(4,2),
1557 	ID_UNALLOCATED(4,3),
1558 	ID_SANITISED(ID_AA64ZFR0_EL1),
1559 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1560 	ID_UNALLOCATED(4,6),
1561 	ID_UNALLOCATED(4,7),
1562 
1563 	/* CRm=5 */
1564 	ID_SANITISED(ID_AA64DFR0_EL1),
1565 	ID_SANITISED(ID_AA64DFR1_EL1),
1566 	ID_UNALLOCATED(5,2),
1567 	ID_UNALLOCATED(5,3),
1568 	ID_HIDDEN(ID_AA64AFR0_EL1),
1569 	ID_HIDDEN(ID_AA64AFR1_EL1),
1570 	ID_UNALLOCATED(5,6),
1571 	ID_UNALLOCATED(5,7),
1572 
1573 	/* CRm=6 */
1574 	ID_SANITISED(ID_AA64ISAR0_EL1),
1575 	ID_SANITISED(ID_AA64ISAR1_EL1),
1576 	ID_SANITISED(ID_AA64ISAR2_EL1),
1577 	ID_UNALLOCATED(6,3),
1578 	ID_UNALLOCATED(6,4),
1579 	ID_UNALLOCATED(6,5),
1580 	ID_UNALLOCATED(6,6),
1581 	ID_UNALLOCATED(6,7),
1582 
1583 	/* CRm=7 */
1584 	ID_SANITISED(ID_AA64MMFR0_EL1),
1585 	ID_SANITISED(ID_AA64MMFR1_EL1),
1586 	ID_SANITISED(ID_AA64MMFR2_EL1),
1587 	ID_UNALLOCATED(7,3),
1588 	ID_UNALLOCATED(7,4),
1589 	ID_UNALLOCATED(7,5),
1590 	ID_UNALLOCATED(7,6),
1591 	ID_UNALLOCATED(7,7),
1592 
1593 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1594 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1595 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1596 
1597 	MTE_REG(RGSR_EL1),
1598 	MTE_REG(GCR_EL1),
1599 
1600 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1601 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1602 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1603 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1604 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1605 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1606 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1607 
1608 	PTRAUTH_KEY(APIA),
1609 	PTRAUTH_KEY(APIB),
1610 	PTRAUTH_KEY(APDA),
1611 	PTRAUTH_KEY(APDB),
1612 	PTRAUTH_KEY(APGA),
1613 
1614 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1615 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1616 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1617 
1618 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1619 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1620 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1621 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1622 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1623 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1624 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1625 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1626 
1627 	MTE_REG(TFSR_EL1),
1628 	MTE_REG(TFSRE0_EL1),
1629 
1630 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1631 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1632 
1633 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1634 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1635 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1636 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1637 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1638 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1639 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1640 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1641 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1642 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1643 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1644 	/* PMBIDR_EL1 is not trapped */
1645 
1646 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1647 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1648 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1649 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1650 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1651 
1652 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1653 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1654 
1655 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1656 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1657 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1658 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1659 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1660 
1661 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1662 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1663 
1664 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1665 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1666 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1667 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1668 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1669 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1670 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1671 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1672 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1673 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1674 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1675 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1676 
1677 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1678 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1679 
1680 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1681 
1682 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1683 
1684 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1685 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1686 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1687 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1688 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1689 	{ SYS_DESC(SYS_SVCR), undef_access },
1690 
1691 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1692 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1693 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1694 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1695 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1696 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1697 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1698 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1699 	/*
1700 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1701 	 * previously (and pointlessly) advertised in the past...
1702 	 */
1703 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1704 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1705 	  .access = access_pmswinc, .reset = NULL },
1706 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1707 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1708 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1709 	  .access = access_pmceid, .reset = NULL },
1710 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1711 	  .access = access_pmceid, .reset = NULL },
1712 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1713 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1714 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1715 	  .access = access_pmu_evtyper, .reset = NULL },
1716 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1717 	  .access = access_pmu_evcntr, .reset = NULL },
1718 	/*
1719 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1720 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1721 	 */
1722 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1723 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1724 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1725 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1726 
1727 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1728 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1729 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1730 
1731 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1732 
1733 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1734 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1735 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1736 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1737 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1738 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1739 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1740 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1741 	AMU_AMEVCNTR0_EL0(0),
1742 	AMU_AMEVCNTR0_EL0(1),
1743 	AMU_AMEVCNTR0_EL0(2),
1744 	AMU_AMEVCNTR0_EL0(3),
1745 	AMU_AMEVCNTR0_EL0(4),
1746 	AMU_AMEVCNTR0_EL0(5),
1747 	AMU_AMEVCNTR0_EL0(6),
1748 	AMU_AMEVCNTR0_EL0(7),
1749 	AMU_AMEVCNTR0_EL0(8),
1750 	AMU_AMEVCNTR0_EL0(9),
1751 	AMU_AMEVCNTR0_EL0(10),
1752 	AMU_AMEVCNTR0_EL0(11),
1753 	AMU_AMEVCNTR0_EL0(12),
1754 	AMU_AMEVCNTR0_EL0(13),
1755 	AMU_AMEVCNTR0_EL0(14),
1756 	AMU_AMEVCNTR0_EL0(15),
1757 	AMU_AMEVTYPER0_EL0(0),
1758 	AMU_AMEVTYPER0_EL0(1),
1759 	AMU_AMEVTYPER0_EL0(2),
1760 	AMU_AMEVTYPER0_EL0(3),
1761 	AMU_AMEVTYPER0_EL0(4),
1762 	AMU_AMEVTYPER0_EL0(5),
1763 	AMU_AMEVTYPER0_EL0(6),
1764 	AMU_AMEVTYPER0_EL0(7),
1765 	AMU_AMEVTYPER0_EL0(8),
1766 	AMU_AMEVTYPER0_EL0(9),
1767 	AMU_AMEVTYPER0_EL0(10),
1768 	AMU_AMEVTYPER0_EL0(11),
1769 	AMU_AMEVTYPER0_EL0(12),
1770 	AMU_AMEVTYPER0_EL0(13),
1771 	AMU_AMEVTYPER0_EL0(14),
1772 	AMU_AMEVTYPER0_EL0(15),
1773 	AMU_AMEVCNTR1_EL0(0),
1774 	AMU_AMEVCNTR1_EL0(1),
1775 	AMU_AMEVCNTR1_EL0(2),
1776 	AMU_AMEVCNTR1_EL0(3),
1777 	AMU_AMEVCNTR1_EL0(4),
1778 	AMU_AMEVCNTR1_EL0(5),
1779 	AMU_AMEVCNTR1_EL0(6),
1780 	AMU_AMEVCNTR1_EL0(7),
1781 	AMU_AMEVCNTR1_EL0(8),
1782 	AMU_AMEVCNTR1_EL0(9),
1783 	AMU_AMEVCNTR1_EL0(10),
1784 	AMU_AMEVCNTR1_EL0(11),
1785 	AMU_AMEVCNTR1_EL0(12),
1786 	AMU_AMEVCNTR1_EL0(13),
1787 	AMU_AMEVCNTR1_EL0(14),
1788 	AMU_AMEVCNTR1_EL0(15),
1789 	AMU_AMEVTYPER1_EL0(0),
1790 	AMU_AMEVTYPER1_EL0(1),
1791 	AMU_AMEVTYPER1_EL0(2),
1792 	AMU_AMEVTYPER1_EL0(3),
1793 	AMU_AMEVTYPER1_EL0(4),
1794 	AMU_AMEVTYPER1_EL0(5),
1795 	AMU_AMEVTYPER1_EL0(6),
1796 	AMU_AMEVTYPER1_EL0(7),
1797 	AMU_AMEVTYPER1_EL0(8),
1798 	AMU_AMEVTYPER1_EL0(9),
1799 	AMU_AMEVTYPER1_EL0(10),
1800 	AMU_AMEVTYPER1_EL0(11),
1801 	AMU_AMEVTYPER1_EL0(12),
1802 	AMU_AMEVTYPER1_EL0(13),
1803 	AMU_AMEVTYPER1_EL0(14),
1804 	AMU_AMEVTYPER1_EL0(15),
1805 
1806 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1807 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1808 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1809 
1810 	/* PMEVCNTRn_EL0 */
1811 	PMU_PMEVCNTR_EL0(0),
1812 	PMU_PMEVCNTR_EL0(1),
1813 	PMU_PMEVCNTR_EL0(2),
1814 	PMU_PMEVCNTR_EL0(3),
1815 	PMU_PMEVCNTR_EL0(4),
1816 	PMU_PMEVCNTR_EL0(5),
1817 	PMU_PMEVCNTR_EL0(6),
1818 	PMU_PMEVCNTR_EL0(7),
1819 	PMU_PMEVCNTR_EL0(8),
1820 	PMU_PMEVCNTR_EL0(9),
1821 	PMU_PMEVCNTR_EL0(10),
1822 	PMU_PMEVCNTR_EL0(11),
1823 	PMU_PMEVCNTR_EL0(12),
1824 	PMU_PMEVCNTR_EL0(13),
1825 	PMU_PMEVCNTR_EL0(14),
1826 	PMU_PMEVCNTR_EL0(15),
1827 	PMU_PMEVCNTR_EL0(16),
1828 	PMU_PMEVCNTR_EL0(17),
1829 	PMU_PMEVCNTR_EL0(18),
1830 	PMU_PMEVCNTR_EL0(19),
1831 	PMU_PMEVCNTR_EL0(20),
1832 	PMU_PMEVCNTR_EL0(21),
1833 	PMU_PMEVCNTR_EL0(22),
1834 	PMU_PMEVCNTR_EL0(23),
1835 	PMU_PMEVCNTR_EL0(24),
1836 	PMU_PMEVCNTR_EL0(25),
1837 	PMU_PMEVCNTR_EL0(26),
1838 	PMU_PMEVCNTR_EL0(27),
1839 	PMU_PMEVCNTR_EL0(28),
1840 	PMU_PMEVCNTR_EL0(29),
1841 	PMU_PMEVCNTR_EL0(30),
1842 	/* PMEVTYPERn_EL0 */
1843 	PMU_PMEVTYPER_EL0(0),
1844 	PMU_PMEVTYPER_EL0(1),
1845 	PMU_PMEVTYPER_EL0(2),
1846 	PMU_PMEVTYPER_EL0(3),
1847 	PMU_PMEVTYPER_EL0(4),
1848 	PMU_PMEVTYPER_EL0(5),
1849 	PMU_PMEVTYPER_EL0(6),
1850 	PMU_PMEVTYPER_EL0(7),
1851 	PMU_PMEVTYPER_EL0(8),
1852 	PMU_PMEVTYPER_EL0(9),
1853 	PMU_PMEVTYPER_EL0(10),
1854 	PMU_PMEVTYPER_EL0(11),
1855 	PMU_PMEVTYPER_EL0(12),
1856 	PMU_PMEVTYPER_EL0(13),
1857 	PMU_PMEVTYPER_EL0(14),
1858 	PMU_PMEVTYPER_EL0(15),
1859 	PMU_PMEVTYPER_EL0(16),
1860 	PMU_PMEVTYPER_EL0(17),
1861 	PMU_PMEVTYPER_EL0(18),
1862 	PMU_PMEVTYPER_EL0(19),
1863 	PMU_PMEVTYPER_EL0(20),
1864 	PMU_PMEVTYPER_EL0(21),
1865 	PMU_PMEVTYPER_EL0(22),
1866 	PMU_PMEVTYPER_EL0(23),
1867 	PMU_PMEVTYPER_EL0(24),
1868 	PMU_PMEVTYPER_EL0(25),
1869 	PMU_PMEVTYPER_EL0(26),
1870 	PMU_PMEVTYPER_EL0(27),
1871 	PMU_PMEVTYPER_EL0(28),
1872 	PMU_PMEVTYPER_EL0(29),
1873 	PMU_PMEVTYPER_EL0(30),
1874 	/*
1875 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1876 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1877 	 */
1878 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1879 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1880 
1881 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1882 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1883 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1884 };
1885 
1886 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1887 			struct sys_reg_params *p,
1888 			const struct sys_reg_desc *r)
1889 {
1890 	if (p->is_write) {
1891 		return ignore_write(vcpu, p);
1892 	} else {
1893 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1894 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1895 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1896 
1897 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1898 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1899 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1900 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1901 		return true;
1902 	}
1903 }
1904 
1905 /*
1906  * AArch32 debug register mappings
1907  *
1908  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1909  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1910  *
1911  * None of the other registers share their location, so treat them as
1912  * if they were 64bit.
1913  */
1914 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1915 	/* DBGBVRn */							      \
1916 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1917 	/* DBGBCRn */							      \
1918 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1919 	/* DBGWVRn */							      \
1920 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1921 	/* DBGWCRn */							      \
1922 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1923 
1924 #define DBGBXVR(n)							      \
1925 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1926 
1927 /*
1928  * Trapped cp14 registers. We generally ignore most of the external
1929  * debug, on the principle that they don't really make sense to a
1930  * guest. Revisit this one day, would this principle change.
1931  */
1932 static const struct sys_reg_desc cp14_regs[] = {
1933 	/* DBGDIDR */
1934 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1935 	/* DBGDTRRXext */
1936 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1937 
1938 	DBG_BCR_BVR_WCR_WVR(0),
1939 	/* DBGDSCRint */
1940 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1941 	DBG_BCR_BVR_WCR_WVR(1),
1942 	/* DBGDCCINT */
1943 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1944 	/* DBGDSCRext */
1945 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1946 	DBG_BCR_BVR_WCR_WVR(2),
1947 	/* DBGDTR[RT]Xint */
1948 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1949 	/* DBGDTR[RT]Xext */
1950 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1951 	DBG_BCR_BVR_WCR_WVR(3),
1952 	DBG_BCR_BVR_WCR_WVR(4),
1953 	DBG_BCR_BVR_WCR_WVR(5),
1954 	/* DBGWFAR */
1955 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1956 	/* DBGOSECCR */
1957 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1958 	DBG_BCR_BVR_WCR_WVR(6),
1959 	/* DBGVCR */
1960 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1961 	DBG_BCR_BVR_WCR_WVR(7),
1962 	DBG_BCR_BVR_WCR_WVR(8),
1963 	DBG_BCR_BVR_WCR_WVR(9),
1964 	DBG_BCR_BVR_WCR_WVR(10),
1965 	DBG_BCR_BVR_WCR_WVR(11),
1966 	DBG_BCR_BVR_WCR_WVR(12),
1967 	DBG_BCR_BVR_WCR_WVR(13),
1968 	DBG_BCR_BVR_WCR_WVR(14),
1969 	DBG_BCR_BVR_WCR_WVR(15),
1970 
1971 	/* DBGDRAR (32bit) */
1972 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1973 
1974 	DBGBXVR(0),
1975 	/* DBGOSLAR */
1976 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1977 	DBGBXVR(1),
1978 	/* DBGOSLSR */
1979 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1980 	DBGBXVR(2),
1981 	DBGBXVR(3),
1982 	/* DBGOSDLR */
1983 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1984 	DBGBXVR(4),
1985 	/* DBGPRCR */
1986 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1987 	DBGBXVR(5),
1988 	DBGBXVR(6),
1989 	DBGBXVR(7),
1990 	DBGBXVR(8),
1991 	DBGBXVR(9),
1992 	DBGBXVR(10),
1993 	DBGBXVR(11),
1994 	DBGBXVR(12),
1995 	DBGBXVR(13),
1996 	DBGBXVR(14),
1997 	DBGBXVR(15),
1998 
1999 	/* DBGDSAR (32bit) */
2000 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2001 
2002 	/* DBGDEVID2 */
2003 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2004 	/* DBGDEVID1 */
2005 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2006 	/* DBGDEVID */
2007 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2008 	/* DBGCLAIMSET */
2009 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2010 	/* DBGCLAIMCLR */
2011 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2012 	/* DBGAUTHSTATUS */
2013 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2014 };
2015 
2016 /* Trapped cp14 64bit registers */
2017 static const struct sys_reg_desc cp14_64_regs[] = {
2018 	/* DBGDRAR (64bit) */
2019 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2020 
2021 	/* DBGDSAR (64bit) */
2022 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2023 };
2024 
2025 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2026 	AA32(_map),							\
2027 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2028 	.visibility = pmu_visibility
2029 
2030 /* Macro to expand the PMEVCNTRn register */
2031 #define PMU_PMEVCNTR(n)							\
2032 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2033 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2034 	  .access = access_pmu_evcntr }
2035 
2036 /* Macro to expand the PMEVTYPERn register */
2037 #define PMU_PMEVTYPER(n)						\
2038 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2039 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2040 	  .access = access_pmu_evtyper }
2041 /*
2042  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2043  * depending on the way they are accessed (as a 32bit or a 64bit
2044  * register).
2045  */
2046 static const struct sys_reg_desc cp15_regs[] = {
2047 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2048 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2049 	/* ACTLR */
2050 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2051 	/* ACTLR2 */
2052 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2053 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2054 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2055 	/* TTBCR */
2056 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2057 	/* TTBCR2 */
2058 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2059 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2060 	/* DFSR */
2061 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2062 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2063 	/* ADFSR */
2064 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2065 	/* AIFSR */
2066 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2067 	/* DFAR */
2068 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2069 	/* IFAR */
2070 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2071 
2072 	/*
2073 	 * DC{C,I,CI}SW operations:
2074 	 */
2075 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2076 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2077 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2078 
2079 	/* PMU */
2080 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2081 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2082 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2083 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2084 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2085 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2086 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2087 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2088 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2089 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2090 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2091 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2092 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2093 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2094 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2095 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2096 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2097 	/* PMMIR */
2098 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2099 
2100 	/* PRRR/MAIR0 */
2101 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2102 	/* NMRR/MAIR1 */
2103 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2104 	/* AMAIR0 */
2105 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2106 	/* AMAIR1 */
2107 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2108 
2109 	/* ICC_SRE */
2110 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2111 
2112 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2113 
2114 	/* Arch Tmers */
2115 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2116 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2117 
2118 	/* PMEVCNTRn */
2119 	PMU_PMEVCNTR(0),
2120 	PMU_PMEVCNTR(1),
2121 	PMU_PMEVCNTR(2),
2122 	PMU_PMEVCNTR(3),
2123 	PMU_PMEVCNTR(4),
2124 	PMU_PMEVCNTR(5),
2125 	PMU_PMEVCNTR(6),
2126 	PMU_PMEVCNTR(7),
2127 	PMU_PMEVCNTR(8),
2128 	PMU_PMEVCNTR(9),
2129 	PMU_PMEVCNTR(10),
2130 	PMU_PMEVCNTR(11),
2131 	PMU_PMEVCNTR(12),
2132 	PMU_PMEVCNTR(13),
2133 	PMU_PMEVCNTR(14),
2134 	PMU_PMEVCNTR(15),
2135 	PMU_PMEVCNTR(16),
2136 	PMU_PMEVCNTR(17),
2137 	PMU_PMEVCNTR(18),
2138 	PMU_PMEVCNTR(19),
2139 	PMU_PMEVCNTR(20),
2140 	PMU_PMEVCNTR(21),
2141 	PMU_PMEVCNTR(22),
2142 	PMU_PMEVCNTR(23),
2143 	PMU_PMEVCNTR(24),
2144 	PMU_PMEVCNTR(25),
2145 	PMU_PMEVCNTR(26),
2146 	PMU_PMEVCNTR(27),
2147 	PMU_PMEVCNTR(28),
2148 	PMU_PMEVCNTR(29),
2149 	PMU_PMEVCNTR(30),
2150 	/* PMEVTYPERn */
2151 	PMU_PMEVTYPER(0),
2152 	PMU_PMEVTYPER(1),
2153 	PMU_PMEVTYPER(2),
2154 	PMU_PMEVTYPER(3),
2155 	PMU_PMEVTYPER(4),
2156 	PMU_PMEVTYPER(5),
2157 	PMU_PMEVTYPER(6),
2158 	PMU_PMEVTYPER(7),
2159 	PMU_PMEVTYPER(8),
2160 	PMU_PMEVTYPER(9),
2161 	PMU_PMEVTYPER(10),
2162 	PMU_PMEVTYPER(11),
2163 	PMU_PMEVTYPER(12),
2164 	PMU_PMEVTYPER(13),
2165 	PMU_PMEVTYPER(14),
2166 	PMU_PMEVTYPER(15),
2167 	PMU_PMEVTYPER(16),
2168 	PMU_PMEVTYPER(17),
2169 	PMU_PMEVTYPER(18),
2170 	PMU_PMEVTYPER(19),
2171 	PMU_PMEVTYPER(20),
2172 	PMU_PMEVTYPER(21),
2173 	PMU_PMEVTYPER(22),
2174 	PMU_PMEVTYPER(23),
2175 	PMU_PMEVTYPER(24),
2176 	PMU_PMEVTYPER(25),
2177 	PMU_PMEVTYPER(26),
2178 	PMU_PMEVTYPER(27),
2179 	PMU_PMEVTYPER(28),
2180 	PMU_PMEVTYPER(29),
2181 	PMU_PMEVTYPER(30),
2182 	/* PMCCFILTR */
2183 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2184 
2185 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2186 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2187 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2188 };
2189 
2190 static const struct sys_reg_desc cp15_64_regs[] = {
2191 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2192 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2193 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2194 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2195 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2196 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2197 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2198 };
2199 
2200 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2201 			       bool is_32)
2202 {
2203 	unsigned int i;
2204 
2205 	for (i = 0; i < n; i++) {
2206 		if (!is_32 && table[i].reg && !table[i].reset) {
2207 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2208 			return false;
2209 		}
2210 
2211 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2212 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2213 			return false;
2214 		}
2215 	}
2216 
2217 	return true;
2218 }
2219 
2220 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2221 {
2222 	kvm_inject_undefined(vcpu);
2223 	return 1;
2224 }
2225 
2226 static void perform_access(struct kvm_vcpu *vcpu,
2227 			   struct sys_reg_params *params,
2228 			   const struct sys_reg_desc *r)
2229 {
2230 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2231 
2232 	/* Check for regs disabled by runtime config */
2233 	if (sysreg_hidden(vcpu, r)) {
2234 		kvm_inject_undefined(vcpu);
2235 		return;
2236 	}
2237 
2238 	/*
2239 	 * Not having an accessor means that we have configured a trap
2240 	 * that we don't know how to handle. This certainly qualifies
2241 	 * as a gross bug that should be fixed right away.
2242 	 */
2243 	BUG_ON(!r->access);
2244 
2245 	/* Skip instruction if instructed so */
2246 	if (likely(r->access(vcpu, params, r)))
2247 		kvm_incr_pc(vcpu);
2248 }
2249 
2250 /*
2251  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2252  *                call the corresponding trap handler.
2253  *
2254  * @params: pointer to the descriptor of the access
2255  * @table: array of trap descriptors
2256  * @num: size of the trap descriptor array
2257  *
2258  * Return true if the access has been handled, false if not.
2259  */
2260 static bool emulate_cp(struct kvm_vcpu *vcpu,
2261 		       struct sys_reg_params *params,
2262 		       const struct sys_reg_desc *table,
2263 		       size_t num)
2264 {
2265 	const struct sys_reg_desc *r;
2266 
2267 	if (!table)
2268 		return false;	/* Not handled */
2269 
2270 	r = find_reg(params, table, num);
2271 
2272 	if (r) {
2273 		perform_access(vcpu, params, r);
2274 		return true;
2275 	}
2276 
2277 	/* Not handled */
2278 	return false;
2279 }
2280 
2281 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2282 				struct sys_reg_params *params)
2283 {
2284 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2285 	int cp = -1;
2286 
2287 	switch (esr_ec) {
2288 	case ESR_ELx_EC_CP15_32:
2289 	case ESR_ELx_EC_CP15_64:
2290 		cp = 15;
2291 		break;
2292 	case ESR_ELx_EC_CP14_MR:
2293 	case ESR_ELx_EC_CP14_64:
2294 		cp = 14;
2295 		break;
2296 	default:
2297 		WARN_ON(1);
2298 	}
2299 
2300 	print_sys_reg_msg(params,
2301 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2302 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2303 	kvm_inject_undefined(vcpu);
2304 }
2305 
2306 /**
2307  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2308  * @vcpu: The VCPU pointer
2309  * @run:  The kvm_run struct
2310  */
2311 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2312 			    const struct sys_reg_desc *global,
2313 			    size_t nr_global)
2314 {
2315 	struct sys_reg_params params;
2316 	u64 esr = kvm_vcpu_get_esr(vcpu);
2317 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2318 	int Rt2 = (esr >> 10) & 0x1f;
2319 
2320 	params.CRm = (esr >> 1) & 0xf;
2321 	params.is_write = ((esr & 1) == 0);
2322 
2323 	params.Op0 = 0;
2324 	params.Op1 = (esr >> 16) & 0xf;
2325 	params.Op2 = 0;
2326 	params.CRn = 0;
2327 
2328 	/*
2329 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2330 	 * backends between AArch32 and AArch64, we get away with it.
2331 	 */
2332 	if (params.is_write) {
2333 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2334 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2335 	}
2336 
2337 	/*
2338 	 * If the table contains a handler, handle the
2339 	 * potential register operation in the case of a read and return
2340 	 * with success.
2341 	 */
2342 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2343 		/* Split up the value between registers for the read side */
2344 		if (!params.is_write) {
2345 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2346 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2347 		}
2348 
2349 		return 1;
2350 	}
2351 
2352 	unhandled_cp_access(vcpu, &params);
2353 	return 1;
2354 }
2355 
2356 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2357 
2358 /*
2359  * The CP10 ID registers are architecturally mapped to AArch64 feature
2360  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2361  * from AArch32.
2362  */
2363 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2364 {
2365 	u8 reg_id = (esr >> 10) & 0xf;
2366 	bool valid;
2367 
2368 	params->is_write = ((esr & 1) == 0);
2369 	params->Op0 = 3;
2370 	params->Op1 = 0;
2371 	params->CRn = 0;
2372 	params->CRm = 3;
2373 
2374 	/* CP10 ID registers are read-only */
2375 	valid = !params->is_write;
2376 
2377 	switch (reg_id) {
2378 	/* MVFR0 */
2379 	case 0b0111:
2380 		params->Op2 = 0;
2381 		break;
2382 	/* MVFR1 */
2383 	case 0b0110:
2384 		params->Op2 = 1;
2385 		break;
2386 	/* MVFR2 */
2387 	case 0b0101:
2388 		params->Op2 = 2;
2389 		break;
2390 	default:
2391 		valid = false;
2392 	}
2393 
2394 	if (valid)
2395 		return true;
2396 
2397 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2398 		      params->is_write ? "write" : "read", reg_id);
2399 	return false;
2400 }
2401 
2402 /**
2403  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2404  *			  VFP Register' from AArch32.
2405  * @vcpu: The vCPU pointer
2406  *
2407  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2408  * Work out the correct AArch64 system register encoding and reroute to the
2409  * AArch64 system register emulation.
2410  */
2411 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2412 {
2413 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2414 	u64 esr = kvm_vcpu_get_esr(vcpu);
2415 	struct sys_reg_params params;
2416 
2417 	/* UNDEF on any unhandled register access */
2418 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2419 		kvm_inject_undefined(vcpu);
2420 		return 1;
2421 	}
2422 
2423 	if (emulate_sys_reg(vcpu, &params))
2424 		vcpu_set_reg(vcpu, Rt, params.regval);
2425 
2426 	return 1;
2427 }
2428 
2429 /**
2430  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2431  *			       CRn=0, which corresponds to the AArch32 feature
2432  *			       registers.
2433  * @vcpu: the vCPU pointer
2434  * @params: the system register access parameters.
2435  *
2436  * Our cp15 system register tables do not enumerate the AArch32 feature
2437  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2438  * register encoding can be trivially remapped into the AArch64 for the feature
2439  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2440  *
2441  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2442  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2443  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2444  * treat undefined registers in this range as RAZ.
2445  */
2446 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2447 				   struct sys_reg_params *params)
2448 {
2449 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2450 
2451 	/* Treat impossible writes to RO registers as UNDEFINED */
2452 	if (params->is_write) {
2453 		unhandled_cp_access(vcpu, params);
2454 		return 1;
2455 	}
2456 
2457 	params->Op0 = 3;
2458 
2459 	/*
2460 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2461 	 * Avoid conflicting with future expansion of AArch64 feature registers
2462 	 * and simply treat them as RAZ here.
2463 	 */
2464 	if (params->CRm > 3)
2465 		params->regval = 0;
2466 	else if (!emulate_sys_reg(vcpu, params))
2467 		return 1;
2468 
2469 	vcpu_set_reg(vcpu, Rt, params->regval);
2470 	return 1;
2471 }
2472 
2473 /**
2474  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2475  * @vcpu: The VCPU pointer
2476  * @run:  The kvm_run struct
2477  */
2478 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2479 			    struct sys_reg_params *params,
2480 			    const struct sys_reg_desc *global,
2481 			    size_t nr_global)
2482 {
2483 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2484 
2485 	params->regval = vcpu_get_reg(vcpu, Rt);
2486 
2487 	if (emulate_cp(vcpu, params, global, nr_global)) {
2488 		if (!params->is_write)
2489 			vcpu_set_reg(vcpu, Rt, params->regval);
2490 		return 1;
2491 	}
2492 
2493 	unhandled_cp_access(vcpu, params);
2494 	return 1;
2495 }
2496 
2497 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2498 {
2499 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2500 }
2501 
2502 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2503 {
2504 	struct sys_reg_params params;
2505 
2506 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2507 
2508 	/*
2509 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
2510 	 * system register table. Registers in the ID range where CRm=0 are
2511 	 * excluded from this scheme as they do not trivially map into AArch64
2512 	 * system register encodings.
2513 	 */
2514 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2515 		return kvm_emulate_cp15_id_reg(vcpu, &params);
2516 
2517 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2518 }
2519 
2520 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2521 {
2522 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2523 }
2524 
2525 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2526 {
2527 	struct sys_reg_params params;
2528 
2529 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2530 
2531 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2532 }
2533 
2534 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2535 {
2536 	// See ARM DDI 0487E.a, section D12.3.2
2537 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2538 }
2539 
2540 /**
2541  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2542  * @vcpu: The VCPU pointer
2543  * @params: Decoded system register parameters
2544  *
2545  * Return: true if the system register access was successful, false otherwise.
2546  */
2547 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2548 			   struct sys_reg_params *params)
2549 {
2550 	const struct sys_reg_desc *r;
2551 
2552 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2553 
2554 	if (likely(r)) {
2555 		perform_access(vcpu, params, r);
2556 		return true;
2557 	}
2558 
2559 	if (is_imp_def_sys_reg(params)) {
2560 		kvm_inject_undefined(vcpu);
2561 	} else {
2562 		print_sys_reg_msg(params,
2563 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2564 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2565 		kvm_inject_undefined(vcpu);
2566 	}
2567 	return false;
2568 }
2569 
2570 /**
2571  * kvm_reset_sys_regs - sets system registers to reset value
2572  * @vcpu: The VCPU pointer
2573  *
2574  * This function finds the right table above and sets the registers on the
2575  * virtual CPU struct to their architecturally defined reset values.
2576  */
2577 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2578 {
2579 	unsigned long i;
2580 
2581 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2582 		if (sys_reg_descs[i].reset)
2583 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2584 }
2585 
2586 /**
2587  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2588  * @vcpu: The VCPU pointer
2589  */
2590 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2591 {
2592 	struct sys_reg_params params;
2593 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2594 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2595 
2596 	trace_kvm_handle_sys_reg(esr);
2597 
2598 	params = esr_sys64_to_params(esr);
2599 	params.regval = vcpu_get_reg(vcpu, Rt);
2600 
2601 	if (!emulate_sys_reg(vcpu, &params))
2602 		return 1;
2603 
2604 	if (!params.is_write)
2605 		vcpu_set_reg(vcpu, Rt, params.regval);
2606 	return 1;
2607 }
2608 
2609 /******************************************************************************
2610  * Userspace API
2611  *****************************************************************************/
2612 
2613 static bool index_to_params(u64 id, struct sys_reg_params *params)
2614 {
2615 	switch (id & KVM_REG_SIZE_MASK) {
2616 	case KVM_REG_SIZE_U64:
2617 		/* Any unused index bits means it's not valid. */
2618 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2619 			      | KVM_REG_ARM_COPROC_MASK
2620 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2621 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2622 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2623 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2624 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2625 			return false;
2626 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2627 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2628 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2629 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2630 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2631 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2632 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2633 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2634 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2635 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2636 		return true;
2637 	default:
2638 		return false;
2639 	}
2640 }
2641 
2642 const struct sys_reg_desc *find_reg_by_id(u64 id,
2643 					  struct sys_reg_params *params,
2644 					  const struct sys_reg_desc table[],
2645 					  unsigned int num)
2646 {
2647 	if (!index_to_params(id, params))
2648 		return NULL;
2649 
2650 	return find_reg(params, table, num);
2651 }
2652 
2653 /* Decode an index value, and find the sys_reg_desc entry. */
2654 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2655 						    u64 id)
2656 {
2657 	const struct sys_reg_desc *r;
2658 	struct sys_reg_params params;
2659 
2660 	/* We only do sys_reg for now. */
2661 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2662 		return NULL;
2663 
2664 	if (!index_to_params(id, &params))
2665 		return NULL;
2666 
2667 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2668 
2669 	/* Not saved in the sys_reg array and not otherwise accessible? */
2670 	if (r && !(r->reg || r->get_user))
2671 		r = NULL;
2672 
2673 	return r;
2674 }
2675 
2676 /*
2677  * These are the invariant sys_reg registers: we let the guest see the
2678  * host versions of these, so they're part of the guest state.
2679  *
2680  * A future CPU may provide a mechanism to present different values to
2681  * the guest, or a future kvm may trap them.
2682  */
2683 
2684 #define FUNCTION_INVARIANT(reg)						\
2685 	static void get_##reg(struct kvm_vcpu *v,			\
2686 			      const struct sys_reg_desc *r)		\
2687 	{								\
2688 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2689 	}
2690 
2691 FUNCTION_INVARIANT(midr_el1)
2692 FUNCTION_INVARIANT(revidr_el1)
2693 FUNCTION_INVARIANT(clidr_el1)
2694 FUNCTION_INVARIANT(aidr_el1)
2695 
2696 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2697 {
2698 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2699 }
2700 
2701 /* ->val is filled in by kvm_sys_reg_table_init() */
2702 static struct sys_reg_desc invariant_sys_regs[] = {
2703 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2704 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2705 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2706 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2707 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2708 };
2709 
2710 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2711 {
2712 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2713 		return -EFAULT;
2714 	return 0;
2715 }
2716 
2717 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2718 {
2719 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2720 		return -EFAULT;
2721 	return 0;
2722 }
2723 
2724 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2725 {
2726 	struct sys_reg_params params;
2727 	const struct sys_reg_desc *r;
2728 
2729 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2730 			   ARRAY_SIZE(invariant_sys_regs));
2731 	if (!r)
2732 		return -ENOENT;
2733 
2734 	return reg_to_user(uaddr, &r->val, id);
2735 }
2736 
2737 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2738 {
2739 	struct sys_reg_params params;
2740 	const struct sys_reg_desc *r;
2741 	int err;
2742 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2743 
2744 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2745 			   ARRAY_SIZE(invariant_sys_regs));
2746 	if (!r)
2747 		return -ENOENT;
2748 
2749 	err = reg_from_user(&val, uaddr, id);
2750 	if (err)
2751 		return err;
2752 
2753 	/* This is what we mean by invariant: you can't change it. */
2754 	if (r->val != val)
2755 		return -EINVAL;
2756 
2757 	return 0;
2758 }
2759 
2760 static bool is_valid_cache(u32 val)
2761 {
2762 	u32 level, ctype;
2763 
2764 	if (val >= CSSELR_MAX)
2765 		return false;
2766 
2767 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2768 	level = (val >> 1);
2769 	ctype = (cache_levels >> (level * 3)) & 7;
2770 
2771 	switch (ctype) {
2772 	case 0: /* No cache */
2773 		return false;
2774 	case 1: /* Instruction cache only */
2775 		return (val & 1);
2776 	case 2: /* Data cache only */
2777 	case 4: /* Unified cache */
2778 		return !(val & 1);
2779 	case 3: /* Separate instruction and data caches */
2780 		return true;
2781 	default: /* Reserved: we can't know instruction or data. */
2782 		return false;
2783 	}
2784 }
2785 
2786 static int demux_c15_get(u64 id, void __user *uaddr)
2787 {
2788 	u32 val;
2789 	u32 __user *uval = uaddr;
2790 
2791 	/* Fail if we have unknown bits set. */
2792 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2793 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2794 		return -ENOENT;
2795 
2796 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2797 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2798 		if (KVM_REG_SIZE(id) != 4)
2799 			return -ENOENT;
2800 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2801 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2802 		if (!is_valid_cache(val))
2803 			return -ENOENT;
2804 
2805 		return put_user(get_ccsidr(val), uval);
2806 	default:
2807 		return -ENOENT;
2808 	}
2809 }
2810 
2811 static int demux_c15_set(u64 id, void __user *uaddr)
2812 {
2813 	u32 val, newval;
2814 	u32 __user *uval = uaddr;
2815 
2816 	/* Fail if we have unknown bits set. */
2817 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2818 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2819 		return -ENOENT;
2820 
2821 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2822 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2823 		if (KVM_REG_SIZE(id) != 4)
2824 			return -ENOENT;
2825 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2826 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2827 		if (!is_valid_cache(val))
2828 			return -ENOENT;
2829 
2830 		if (get_user(newval, uval))
2831 			return -EFAULT;
2832 
2833 		/* This is also invariant: you can't change it. */
2834 		if (newval != get_ccsidr(val))
2835 			return -EINVAL;
2836 		return 0;
2837 	default:
2838 		return -ENOENT;
2839 	}
2840 }
2841 
2842 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2843 {
2844 	const struct sys_reg_desc *r;
2845 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2846 
2847 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2848 		return demux_c15_get(reg->id, uaddr);
2849 
2850 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2851 		return -ENOENT;
2852 
2853 	r = index_to_sys_reg_desc(vcpu, reg->id);
2854 	if (!r)
2855 		return get_invariant_sys_reg(reg->id, uaddr);
2856 
2857 	/* Check for regs disabled by runtime config */
2858 	if (sysreg_hidden(vcpu, r))
2859 		return -ENOENT;
2860 
2861 	if (r->get_user)
2862 		return (r->get_user)(vcpu, r, reg, uaddr);
2863 
2864 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2865 }
2866 
2867 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2868 {
2869 	const struct sys_reg_desc *r;
2870 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2871 
2872 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2873 		return demux_c15_set(reg->id, uaddr);
2874 
2875 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2876 		return -ENOENT;
2877 
2878 	r = index_to_sys_reg_desc(vcpu, reg->id);
2879 	if (!r)
2880 		return set_invariant_sys_reg(reg->id, uaddr);
2881 
2882 	/* Check for regs disabled by runtime config */
2883 	if (sysreg_hidden(vcpu, r))
2884 		return -ENOENT;
2885 
2886 	if (r->set_user)
2887 		return (r->set_user)(vcpu, r, reg, uaddr);
2888 
2889 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2890 }
2891 
2892 static unsigned int num_demux_regs(void)
2893 {
2894 	unsigned int i, count = 0;
2895 
2896 	for (i = 0; i < CSSELR_MAX; i++)
2897 		if (is_valid_cache(i))
2898 			count++;
2899 
2900 	return count;
2901 }
2902 
2903 static int write_demux_regids(u64 __user *uindices)
2904 {
2905 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2906 	unsigned int i;
2907 
2908 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2909 	for (i = 0; i < CSSELR_MAX; i++) {
2910 		if (!is_valid_cache(i))
2911 			continue;
2912 		if (put_user(val | i, uindices))
2913 			return -EFAULT;
2914 		uindices++;
2915 	}
2916 	return 0;
2917 }
2918 
2919 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2920 {
2921 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2922 		KVM_REG_ARM64_SYSREG |
2923 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2924 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2925 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2926 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2927 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2928 }
2929 
2930 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2931 {
2932 	if (!*uind)
2933 		return true;
2934 
2935 	if (put_user(sys_reg_to_index(reg), *uind))
2936 		return false;
2937 
2938 	(*uind)++;
2939 	return true;
2940 }
2941 
2942 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2943 			    const struct sys_reg_desc *rd,
2944 			    u64 __user **uind,
2945 			    unsigned int *total)
2946 {
2947 	/*
2948 	 * Ignore registers we trap but don't save,
2949 	 * and for which no custom user accessor is provided.
2950 	 */
2951 	if (!(rd->reg || rd->get_user))
2952 		return 0;
2953 
2954 	if (sysreg_hidden(vcpu, rd))
2955 		return 0;
2956 
2957 	if (!copy_reg_to_user(rd, uind))
2958 		return -EFAULT;
2959 
2960 	(*total)++;
2961 	return 0;
2962 }
2963 
2964 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2965 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2966 {
2967 	const struct sys_reg_desc *i2, *end2;
2968 	unsigned int total = 0;
2969 	int err;
2970 
2971 	i2 = sys_reg_descs;
2972 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2973 
2974 	while (i2 != end2) {
2975 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2976 		if (err)
2977 			return err;
2978 	}
2979 	return total;
2980 }
2981 
2982 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2983 {
2984 	return ARRAY_SIZE(invariant_sys_regs)
2985 		+ num_demux_regs()
2986 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2987 }
2988 
2989 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2990 {
2991 	unsigned int i;
2992 	int err;
2993 
2994 	/* Then give them all the invariant registers' indices. */
2995 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2996 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2997 			return -EFAULT;
2998 		uindices++;
2999 	}
3000 
3001 	err = walk_sys_regs(vcpu, uindices);
3002 	if (err < 0)
3003 		return err;
3004 	uindices += err;
3005 
3006 	return write_demux_regids(uindices);
3007 }
3008 
3009 int kvm_sys_reg_table_init(void)
3010 {
3011 	bool valid = true;
3012 	unsigned int i;
3013 	struct sys_reg_desc clidr;
3014 
3015 	/* Make sure tables are unique and in order. */
3016 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3017 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3018 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3019 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3020 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3021 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3022 
3023 	if (!valid)
3024 		return -EINVAL;
3025 
3026 	/* We abuse the reset function to overwrite the table itself. */
3027 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3028 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3029 
3030 	/*
3031 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
3032 	 *
3033 	 *   If software reads the Cache Type fields from Ctype1
3034 	 *   upwards, once it has seen a value of 0b000, no caches
3035 	 *   exist at further-out levels of the hierarchy. So, for
3036 	 *   example, if Ctype3 is the first Cache Type field with a
3037 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
3038 	 *   ignored.
3039 	 */
3040 	get_clidr_el1(NULL, &clidr); /* Ugly... */
3041 	cache_levels = clidr.val;
3042 	for (i = 0; i < 7; i++)
3043 		if (((cache_levels >> (i*3)) & 7) == 0)
3044 			break;
3045 	/* Clear all higher bits. */
3046 	cache_levels &= (1 << (i*3))-1;
3047 
3048 	return 0;
3049 }
3050