xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 1f9f6a78)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35 
36 #include "sys_regs.h"
37 
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48 
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51 
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54 
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58 	u32 ccsidr;
59 
60 	/* Make sure noone else changes CSSELR during this! */
61 	local_irq_disable();
62 	/* Put value into CSSELR */
63 	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 	isb();
65 	/* Read result out of CCSIDR */
66 	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 	local_irq_enable();
68 
69 	return ccsidr;
70 }
71 
72 static void do_dc_cisw(u32 val)
73 {
74 	asm volatile("dc cisw, %x0" : : "r" (val));
75 	dsb(ish);
76 }
77 
78 static void do_dc_csw(u32 val)
79 {
80 	asm volatile("dc csw, %x0" : : "r" (val));
81 	dsb(ish);
82 }
83 
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86 			const struct sys_reg_params *p,
87 			const struct sys_reg_desc *r)
88 {
89 	unsigned long val;
90 	int cpu;
91 
92 	if (!p->is_write)
93 		return read_from_write_only(vcpu, p);
94 
95 	cpu = get_cpu();
96 
97 	cpumask_setall(&vcpu->arch.require_dcache_flush);
98 	cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99 
100 	/* If we were already preempted, take the long way around */
101 	if (cpu != vcpu->arch.last_pcpu) {
102 		flush_cache_all();
103 		goto done;
104 	}
105 
106 	val = *vcpu_reg(vcpu, p->Rt);
107 
108 	switch (p->CRm) {
109 	case 6:			/* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 	case 14:		/* DCCISW */
111 		do_dc_cisw(val);
112 		break;
113 
114 	case 10:		/* DCCSW */
115 		do_dc_csw(val);
116 		break;
117 	}
118 
119 done:
120 	put_cpu();
121 
122 	return true;
123 }
124 
125 /*
126  * Generic accessor for VM registers. Only called as long as HCR_TVM
127  * is set.
128  */
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 			  const struct sys_reg_params *p,
131 			  const struct sys_reg_desc *r)
132 {
133 	unsigned long val;
134 
135 	BUG_ON(!p->is_write);
136 
137 	val = *vcpu_reg(vcpu, p->Rt);
138 	if (!p->is_aarch32) {
139 		vcpu_sys_reg(vcpu, r->reg) = val;
140 	} else {
141 		if (!p->is_32bit)
142 			vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
143 		vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
144 	}
145 
146 	return true;
147 }
148 
149 /*
150  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
151  * guest enables the MMU, we stop trapping the VM sys_regs and leave
152  * it in complete control of the caches.
153  */
154 static bool access_sctlr(struct kvm_vcpu *vcpu,
155 			 const struct sys_reg_params *p,
156 			 const struct sys_reg_desc *r)
157 {
158 	access_vm_reg(vcpu, p, r);
159 
160 	if (vcpu_has_cache_enabled(vcpu)) {	/* MMU+Caches enabled? */
161 		vcpu->arch.hcr_el2 &= ~HCR_TVM;
162 		stage2_flush_vm(vcpu->kvm);
163 	}
164 
165 	return true;
166 }
167 
168 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169 			const struct sys_reg_params *p,
170 			const struct sys_reg_desc *r)
171 {
172 	if (p->is_write)
173 		return ignore_write(vcpu, p);
174 	else
175 		return read_zero(vcpu, p);
176 }
177 
178 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179 			   const struct sys_reg_params *p,
180 			   const struct sys_reg_desc *r)
181 {
182 	if (p->is_write) {
183 		return ignore_write(vcpu, p);
184 	} else {
185 		*vcpu_reg(vcpu, p->Rt) = (1 << 3);
186 		return true;
187 	}
188 }
189 
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191 				   const struct sys_reg_params *p,
192 				   const struct sys_reg_desc *r)
193 {
194 	if (p->is_write) {
195 		return ignore_write(vcpu, p);
196 	} else {
197 		u32 val;
198 		asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
199 		*vcpu_reg(vcpu, p->Rt) = val;
200 		return true;
201 	}
202 }
203 
204 /*
205  * We want to avoid world-switching all the DBG registers all the
206  * time:
207  *
208  * - If we've touched any debug register, it is likely that we're
209  *   going to touch more of them. It then makes sense to disable the
210  *   traps and start doing the save/restore dance
211  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
212  *   then mandatory to save/restore the registers, as the guest
213  *   depends on them.
214  *
215  * For this, we use a DIRTY bit, indicating the guest has modified the
216  * debug registers, used as follow:
217  *
218  * On guest entry:
219  * - If the dirty bit is set (because we're coming back from trapping),
220  *   disable the traps, save host registers, restore guest registers.
221  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
222  *   set the dirty bit, disable the traps, save host registers,
223  *   restore guest registers.
224  * - Otherwise, enable the traps
225  *
226  * On guest exit:
227  * - If the dirty bit is set, save guest registers, restore host
228  *   registers and clear the dirty bit. This ensure that the host can
229  *   now use the debug registers.
230  */
231 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
232 			    const struct sys_reg_params *p,
233 			    const struct sys_reg_desc *r)
234 {
235 	if (p->is_write) {
236 		vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
237 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238 	} else {
239 		*vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
240 	}
241 
242 	return true;
243 }
244 
245 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
246 {
247 	u64 amair;
248 
249 	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
250 	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
251 }
252 
253 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
254 {
255 	/*
256 	 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
257 	 */
258 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
259 }
260 
261 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
262 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
263 	/* DBGBVRn_EL1 */						\
264 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
265 	  trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },		\
266 	/* DBGBCRn_EL1 */						\
267 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
268 	  trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },		\
269 	/* DBGWVRn_EL1 */						\
270 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
271 	  trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },		\
272 	/* DBGWCRn_EL1 */						\
273 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
274 	  trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
275 
276 /*
277  * Architected system registers.
278  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
279  *
280  * We could trap ID_DFR0 and tell the guest we don't support performance
281  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
282  * NAKed, so it will read the PMCR anyway.
283  *
284  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
285  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286  * all PM registers, which doesn't crash the guest kernel at least.
287  *
288  * Debug handling: We do trap most, if not all debug related system
289  * registers. The implementation is good enough to ensure that a guest
290  * can use these with minimal performance degradation. The drawback is
291  * that we don't implement any of the external debug, none of the
292  * OSlock protocol. This should be revisited if we ever encounter a
293  * more demanding guest...
294  */
295 static const struct sys_reg_desc sys_reg_descs[] = {
296 	/* DC ISW */
297 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
298 	  access_dcsw },
299 	/* DC CSW */
300 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
301 	  access_dcsw },
302 	/* DC CISW */
303 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
304 	  access_dcsw },
305 
306 	DBG_BCR_BVR_WCR_WVR_EL1(0),
307 	DBG_BCR_BVR_WCR_WVR_EL1(1),
308 	/* MDCCINT_EL1 */
309 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
310 	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
311 	/* MDSCR_EL1 */
312 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
313 	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
314 	DBG_BCR_BVR_WCR_WVR_EL1(2),
315 	DBG_BCR_BVR_WCR_WVR_EL1(3),
316 	DBG_BCR_BVR_WCR_WVR_EL1(4),
317 	DBG_BCR_BVR_WCR_WVR_EL1(5),
318 	DBG_BCR_BVR_WCR_WVR_EL1(6),
319 	DBG_BCR_BVR_WCR_WVR_EL1(7),
320 	DBG_BCR_BVR_WCR_WVR_EL1(8),
321 	DBG_BCR_BVR_WCR_WVR_EL1(9),
322 	DBG_BCR_BVR_WCR_WVR_EL1(10),
323 	DBG_BCR_BVR_WCR_WVR_EL1(11),
324 	DBG_BCR_BVR_WCR_WVR_EL1(12),
325 	DBG_BCR_BVR_WCR_WVR_EL1(13),
326 	DBG_BCR_BVR_WCR_WVR_EL1(14),
327 	DBG_BCR_BVR_WCR_WVR_EL1(15),
328 
329 	/* MDRAR_EL1 */
330 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
331 	  trap_raz_wi },
332 	/* OSLAR_EL1 */
333 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
334 	  trap_raz_wi },
335 	/* OSLSR_EL1 */
336 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
337 	  trap_oslsr_el1 },
338 	/* OSDLR_EL1 */
339 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
340 	  trap_raz_wi },
341 	/* DBGPRCR_EL1 */
342 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
343 	  trap_raz_wi },
344 	/* DBGCLAIMSET_EL1 */
345 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
346 	  trap_raz_wi },
347 	/* DBGCLAIMCLR_EL1 */
348 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
349 	  trap_raz_wi },
350 	/* DBGAUTHSTATUS_EL1 */
351 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
352 	  trap_dbgauthstatus_el1 },
353 
354 	/* TEECR32_EL1 */
355 	{ Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
356 	  NULL, reset_val, TEECR32_EL1, 0 },
357 	/* TEEHBR32_EL1 */
358 	{ Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
359 	  NULL, reset_val, TEEHBR32_EL1, 0 },
360 
361 	/* MDCCSR_EL1 */
362 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
363 	  trap_raz_wi },
364 	/* DBGDTR_EL0 */
365 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
366 	  trap_raz_wi },
367 	/* DBGDTR[TR]X_EL0 */
368 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
369 	  trap_raz_wi },
370 
371 	/* DBGVCR32_EL2 */
372 	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
373 	  NULL, reset_val, DBGVCR32_EL2, 0 },
374 
375 	/* MPIDR_EL1 */
376 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
377 	  NULL, reset_mpidr, MPIDR_EL1 },
378 	/* SCTLR_EL1 */
379 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
380 	  access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
381 	/* CPACR_EL1 */
382 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
383 	  NULL, reset_val, CPACR_EL1, 0 },
384 	/* TTBR0_EL1 */
385 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
386 	  access_vm_reg, reset_unknown, TTBR0_EL1 },
387 	/* TTBR1_EL1 */
388 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
389 	  access_vm_reg, reset_unknown, TTBR1_EL1 },
390 	/* TCR_EL1 */
391 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
392 	  access_vm_reg, reset_val, TCR_EL1, 0 },
393 
394 	/* AFSR0_EL1 */
395 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
396 	  access_vm_reg, reset_unknown, AFSR0_EL1 },
397 	/* AFSR1_EL1 */
398 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
399 	  access_vm_reg, reset_unknown, AFSR1_EL1 },
400 	/* ESR_EL1 */
401 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
402 	  access_vm_reg, reset_unknown, ESR_EL1 },
403 	/* FAR_EL1 */
404 	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
405 	  access_vm_reg, reset_unknown, FAR_EL1 },
406 	/* PAR_EL1 */
407 	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
408 	  NULL, reset_unknown, PAR_EL1 },
409 
410 	/* PMINTENSET_EL1 */
411 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
412 	  trap_raz_wi },
413 	/* PMINTENCLR_EL1 */
414 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
415 	  trap_raz_wi },
416 
417 	/* MAIR_EL1 */
418 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
419 	  access_vm_reg, reset_unknown, MAIR_EL1 },
420 	/* AMAIR_EL1 */
421 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
422 	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
423 
424 	/* VBAR_EL1 */
425 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
426 	  NULL, reset_val, VBAR_EL1, 0 },
427 
428 	/* ICC_SRE_EL1 */
429 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
430 	  trap_raz_wi },
431 
432 	/* CONTEXTIDR_EL1 */
433 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
434 	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
435 	/* TPIDR_EL1 */
436 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
437 	  NULL, reset_unknown, TPIDR_EL1 },
438 
439 	/* CNTKCTL_EL1 */
440 	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
441 	  NULL, reset_val, CNTKCTL_EL1, 0},
442 
443 	/* CSSELR_EL1 */
444 	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
445 	  NULL, reset_unknown, CSSELR_EL1 },
446 
447 	/* PMCR_EL0 */
448 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
449 	  trap_raz_wi },
450 	/* PMCNTENSET_EL0 */
451 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
452 	  trap_raz_wi },
453 	/* PMCNTENCLR_EL0 */
454 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
455 	  trap_raz_wi },
456 	/* PMOVSCLR_EL0 */
457 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
458 	  trap_raz_wi },
459 	/* PMSWINC_EL0 */
460 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
461 	  trap_raz_wi },
462 	/* PMSELR_EL0 */
463 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
464 	  trap_raz_wi },
465 	/* PMCEID0_EL0 */
466 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
467 	  trap_raz_wi },
468 	/* PMCEID1_EL0 */
469 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
470 	  trap_raz_wi },
471 	/* PMCCNTR_EL0 */
472 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
473 	  trap_raz_wi },
474 	/* PMXEVTYPER_EL0 */
475 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
476 	  trap_raz_wi },
477 	/* PMXEVCNTR_EL0 */
478 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
479 	  trap_raz_wi },
480 	/* PMUSERENR_EL0 */
481 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
482 	  trap_raz_wi },
483 	/* PMOVSSET_EL0 */
484 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
485 	  trap_raz_wi },
486 
487 	/* TPIDR_EL0 */
488 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
489 	  NULL, reset_unknown, TPIDR_EL0 },
490 	/* TPIDRRO_EL0 */
491 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
492 	  NULL, reset_unknown, TPIDRRO_EL0 },
493 
494 	/* DACR32_EL2 */
495 	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
496 	  NULL, reset_unknown, DACR32_EL2 },
497 	/* IFSR32_EL2 */
498 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
499 	  NULL, reset_unknown, IFSR32_EL2 },
500 	/* FPEXC32_EL2 */
501 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
502 	  NULL, reset_val, FPEXC32_EL2, 0x70 },
503 };
504 
505 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
506 			const struct sys_reg_params *p,
507 			const struct sys_reg_desc *r)
508 {
509 	if (p->is_write) {
510 		return ignore_write(vcpu, p);
511 	} else {
512 		u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
513 		u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
514 		u32 el3 = !!((pfr >> 12) & 0xf);
515 
516 		*vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
517 					  (((dfr >> 12) & 0xf) << 24) |
518 					  (((dfr >> 28) & 0xf) << 20) |
519 					  (6 << 16) | (el3 << 14) | (el3 << 12));
520 		return true;
521 	}
522 }
523 
524 static bool trap_debug32(struct kvm_vcpu *vcpu,
525 			 const struct sys_reg_params *p,
526 			 const struct sys_reg_desc *r)
527 {
528 	if (p->is_write) {
529 		vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
530 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
531 	} else {
532 		*vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
533 	}
534 
535 	return true;
536 }
537 
538 #define DBG_BCR_BVR_WCR_WVR(n)					\
539 	/* DBGBVRn */						\
540 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,	\
541 	  NULL, (cp14_DBGBVR0 + (n) * 2) },			\
542 	/* DBGBCRn */						\
543 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,	\
544 	  NULL, (cp14_DBGBCR0 + (n) * 2) },			\
545 	/* DBGWVRn */						\
546 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,	\
547 	  NULL, (cp14_DBGWVR0 + (n) * 2) },			\
548 	/* DBGWCRn */						\
549 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,	\
550 	  NULL, (cp14_DBGWCR0 + (n) * 2) }
551 
552 #define DBGBXVR(n)						\
553 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,	\
554 	  NULL, cp14_DBGBXVR0 + n * 2 }
555 
556 /*
557  * Trapped cp14 registers. We generally ignore most of the external
558  * debug, on the principle that they don't really make sense to a
559  * guest. Revisit this one day, whould this principle change.
560  */
561 static const struct sys_reg_desc cp14_regs[] = {
562 	/* DBGIDR */
563 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
564 	/* DBGDTRRXext */
565 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
566 
567 	DBG_BCR_BVR_WCR_WVR(0),
568 	/* DBGDSCRint */
569 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
570 	DBG_BCR_BVR_WCR_WVR(1),
571 	/* DBGDCCINT */
572 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
573 	/* DBGDSCRext */
574 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
575 	DBG_BCR_BVR_WCR_WVR(2),
576 	/* DBGDTR[RT]Xint */
577 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
578 	/* DBGDTR[RT]Xext */
579 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
580 	DBG_BCR_BVR_WCR_WVR(3),
581 	DBG_BCR_BVR_WCR_WVR(4),
582 	DBG_BCR_BVR_WCR_WVR(5),
583 	/* DBGWFAR */
584 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
585 	/* DBGOSECCR */
586 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
587 	DBG_BCR_BVR_WCR_WVR(6),
588 	/* DBGVCR */
589 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
590 	DBG_BCR_BVR_WCR_WVR(7),
591 	DBG_BCR_BVR_WCR_WVR(8),
592 	DBG_BCR_BVR_WCR_WVR(9),
593 	DBG_BCR_BVR_WCR_WVR(10),
594 	DBG_BCR_BVR_WCR_WVR(11),
595 	DBG_BCR_BVR_WCR_WVR(12),
596 	DBG_BCR_BVR_WCR_WVR(13),
597 	DBG_BCR_BVR_WCR_WVR(14),
598 	DBG_BCR_BVR_WCR_WVR(15),
599 
600 	/* DBGDRAR (32bit) */
601 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
602 
603 	DBGBXVR(0),
604 	/* DBGOSLAR */
605 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
606 	DBGBXVR(1),
607 	/* DBGOSLSR */
608 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
609 	DBGBXVR(2),
610 	DBGBXVR(3),
611 	/* DBGOSDLR */
612 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
613 	DBGBXVR(4),
614 	/* DBGPRCR */
615 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
616 	DBGBXVR(5),
617 	DBGBXVR(6),
618 	DBGBXVR(7),
619 	DBGBXVR(8),
620 	DBGBXVR(9),
621 	DBGBXVR(10),
622 	DBGBXVR(11),
623 	DBGBXVR(12),
624 	DBGBXVR(13),
625 	DBGBXVR(14),
626 	DBGBXVR(15),
627 
628 	/* DBGDSAR (32bit) */
629 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
630 
631 	/* DBGDEVID2 */
632 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
633 	/* DBGDEVID1 */
634 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
635 	/* DBGDEVID */
636 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
637 	/* DBGCLAIMSET */
638 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
639 	/* DBGCLAIMCLR */
640 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
641 	/* DBGAUTHSTATUS */
642 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
643 };
644 
645 /* Trapped cp14 64bit registers */
646 static const struct sys_reg_desc cp14_64_regs[] = {
647 	/* DBGDRAR (64bit) */
648 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
649 
650 	/* DBGDSAR (64bit) */
651 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
652 };
653 
654 /*
655  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
656  * depending on the way they are accessed (as a 32bit or a 64bit
657  * register).
658  */
659 static const struct sys_reg_desc cp15_regs[] = {
660 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
661 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
662 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
663 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
664 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
665 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
666 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
667 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
668 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
669 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
670 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
671 
672 	/*
673 	 * DC{C,I,CI}SW operations:
674 	 */
675 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
676 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
677 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
678 
679 	/* PMU */
680 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
681 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
682 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
683 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
684 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
685 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
686 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
687 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
688 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
689 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
690 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
691 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
692 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
693 
694 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
695 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
696 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
697 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
698 
699 	/* ICC_SRE */
700 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
701 
702 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
703 };
704 
705 static const struct sys_reg_desc cp15_64_regs[] = {
706 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
707 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
708 };
709 
710 /* Target specific emulation tables */
711 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
712 
713 void kvm_register_target_sys_reg_table(unsigned int target,
714 				       struct kvm_sys_reg_target_table *table)
715 {
716 	target_tables[target] = table;
717 }
718 
719 /* Get specific register table for this target. */
720 static const struct sys_reg_desc *get_target_table(unsigned target,
721 						   bool mode_is_64,
722 						   size_t *num)
723 {
724 	struct kvm_sys_reg_target_table *table;
725 
726 	table = target_tables[target];
727 	if (mode_is_64) {
728 		*num = table->table64.num;
729 		return table->table64.table;
730 	} else {
731 		*num = table->table32.num;
732 		return table->table32.table;
733 	}
734 }
735 
736 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
737 					 const struct sys_reg_desc table[],
738 					 unsigned int num)
739 {
740 	unsigned int i;
741 
742 	for (i = 0; i < num; i++) {
743 		const struct sys_reg_desc *r = &table[i];
744 
745 		if (params->Op0 != r->Op0)
746 			continue;
747 		if (params->Op1 != r->Op1)
748 			continue;
749 		if (params->CRn != r->CRn)
750 			continue;
751 		if (params->CRm != r->CRm)
752 			continue;
753 		if (params->Op2 != r->Op2)
754 			continue;
755 
756 		return r;
757 	}
758 	return NULL;
759 }
760 
761 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
762 {
763 	kvm_inject_undefined(vcpu);
764 	return 1;
765 }
766 
767 /*
768  * emulate_cp --  tries to match a sys_reg access in a handling table, and
769  *                call the corresponding trap handler.
770  *
771  * @params: pointer to the descriptor of the access
772  * @table: array of trap descriptors
773  * @num: size of the trap descriptor array
774  *
775  * Return 0 if the access has been handled, and -1 if not.
776  */
777 static int emulate_cp(struct kvm_vcpu *vcpu,
778 		      const struct sys_reg_params *params,
779 		      const struct sys_reg_desc *table,
780 		      size_t num)
781 {
782 	const struct sys_reg_desc *r;
783 
784 	if (!table)
785 		return -1;	/* Not handled */
786 
787 	r = find_reg(params, table, num);
788 
789 	if (r) {
790 		/*
791 		 * Not having an accessor means that we have
792 		 * configured a trap that we don't know how to
793 		 * handle. This certainly qualifies as a gross bug
794 		 * that should be fixed right away.
795 		 */
796 		BUG_ON(!r->access);
797 
798 		if (likely(r->access(vcpu, params, r))) {
799 			/* Skip instruction, since it was emulated */
800 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
801 		}
802 
803 		/* Handled */
804 		return 0;
805 	}
806 
807 	/* Not handled */
808 	return -1;
809 }
810 
811 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
812 				struct sys_reg_params *params)
813 {
814 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
815 	int cp;
816 
817 	switch(hsr_ec) {
818 	case ESR_EL2_EC_CP15_32:
819 	case ESR_EL2_EC_CP15_64:
820 		cp = 15;
821 		break;
822 	case ESR_EL2_EC_CP14_MR:
823 	case ESR_EL2_EC_CP14_64:
824 		cp = 14;
825 		break;
826 	default:
827 		WARN_ON((cp = -1));
828 	}
829 
830 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
831 		cp, *vcpu_pc(vcpu));
832 	print_sys_reg_instr(params);
833 	kvm_inject_undefined(vcpu);
834 }
835 
836 /**
837  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
838  * @vcpu: The VCPU pointer
839  * @run:  The kvm_run struct
840  */
841 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
842 			    const struct sys_reg_desc *global,
843 			    size_t nr_global,
844 			    const struct sys_reg_desc *target_specific,
845 			    size_t nr_specific)
846 {
847 	struct sys_reg_params params;
848 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
849 	int Rt2 = (hsr >> 10) & 0xf;
850 
851 	params.is_aarch32 = true;
852 	params.is_32bit = false;
853 	params.CRm = (hsr >> 1) & 0xf;
854 	params.Rt = (hsr >> 5) & 0xf;
855 	params.is_write = ((hsr & 1) == 0);
856 
857 	params.Op0 = 0;
858 	params.Op1 = (hsr >> 16) & 0xf;
859 	params.Op2 = 0;
860 	params.CRn = 0;
861 
862 	/*
863 	 * Massive hack here. Store Rt2 in the top 32bits so we only
864 	 * have one register to deal with. As we use the same trap
865 	 * backends between AArch32 and AArch64, we get away with it.
866 	 */
867 	if (params.is_write) {
868 		u64 val = *vcpu_reg(vcpu, params.Rt);
869 		val &= 0xffffffff;
870 		val |= *vcpu_reg(vcpu, Rt2) << 32;
871 		*vcpu_reg(vcpu, params.Rt) = val;
872 	}
873 
874 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
875 		goto out;
876 	if (!emulate_cp(vcpu, &params, global, nr_global))
877 		goto out;
878 
879 	unhandled_cp_access(vcpu, &params);
880 
881 out:
882 	/* Do the opposite hack for the read side */
883 	if (!params.is_write) {
884 		u64 val = *vcpu_reg(vcpu, params.Rt);
885 		val >>= 32;
886 		*vcpu_reg(vcpu, Rt2) = val;
887 	}
888 
889 	return 1;
890 }
891 
892 /**
893  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
894  * @vcpu: The VCPU pointer
895  * @run:  The kvm_run struct
896  */
897 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
898 			    const struct sys_reg_desc *global,
899 			    size_t nr_global,
900 			    const struct sys_reg_desc *target_specific,
901 			    size_t nr_specific)
902 {
903 	struct sys_reg_params params;
904 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
905 
906 	params.is_aarch32 = true;
907 	params.is_32bit = true;
908 	params.CRm = (hsr >> 1) & 0xf;
909 	params.Rt  = (hsr >> 5) & 0xf;
910 	params.is_write = ((hsr & 1) == 0);
911 	params.CRn = (hsr >> 10) & 0xf;
912 	params.Op0 = 0;
913 	params.Op1 = (hsr >> 14) & 0x7;
914 	params.Op2 = (hsr >> 17) & 0x7;
915 
916 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
917 		return 1;
918 	if (!emulate_cp(vcpu, &params, global, nr_global))
919 		return 1;
920 
921 	unhandled_cp_access(vcpu, &params);
922 	return 1;
923 }
924 
925 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
926 {
927 	const struct sys_reg_desc *target_specific;
928 	size_t num;
929 
930 	target_specific = get_target_table(vcpu->arch.target, false, &num);
931 	return kvm_handle_cp_64(vcpu,
932 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
933 				target_specific, num);
934 }
935 
936 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
937 {
938 	const struct sys_reg_desc *target_specific;
939 	size_t num;
940 
941 	target_specific = get_target_table(vcpu->arch.target, false, &num);
942 	return kvm_handle_cp_32(vcpu,
943 				cp15_regs, ARRAY_SIZE(cp15_regs),
944 				target_specific, num);
945 }
946 
947 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
948 {
949 	return kvm_handle_cp_64(vcpu,
950 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
951 				NULL, 0);
952 }
953 
954 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
955 {
956 	return kvm_handle_cp_32(vcpu,
957 				cp14_regs, ARRAY_SIZE(cp14_regs),
958 				NULL, 0);
959 }
960 
961 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
962 			   const struct sys_reg_params *params)
963 {
964 	size_t num;
965 	const struct sys_reg_desc *table, *r;
966 
967 	table = get_target_table(vcpu->arch.target, true, &num);
968 
969 	/* Search target-specific then generic table. */
970 	r = find_reg(params, table, num);
971 	if (!r)
972 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
973 
974 	if (likely(r)) {
975 		/*
976 		 * Not having an accessor means that we have
977 		 * configured a trap that we don't know how to
978 		 * handle. This certainly qualifies as a gross bug
979 		 * that should be fixed right away.
980 		 */
981 		BUG_ON(!r->access);
982 
983 		if (likely(r->access(vcpu, params, r))) {
984 			/* Skip instruction, since it was emulated */
985 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
986 			return 1;
987 		}
988 		/* If access function fails, it should complain. */
989 	} else {
990 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
991 			*vcpu_pc(vcpu));
992 		print_sys_reg_instr(params);
993 	}
994 	kvm_inject_undefined(vcpu);
995 	return 1;
996 }
997 
998 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
999 			      const struct sys_reg_desc *table, size_t num)
1000 {
1001 	unsigned long i;
1002 
1003 	for (i = 0; i < num; i++)
1004 		if (table[i].reset)
1005 			table[i].reset(vcpu, &table[i]);
1006 }
1007 
1008 /**
1009  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1010  * @vcpu: The VCPU pointer
1011  * @run:  The kvm_run struct
1012  */
1013 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1014 {
1015 	struct sys_reg_params params;
1016 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1017 
1018 	params.is_aarch32 = false;
1019 	params.is_32bit = false;
1020 	params.Op0 = (esr >> 20) & 3;
1021 	params.Op1 = (esr >> 14) & 0x7;
1022 	params.CRn = (esr >> 10) & 0xf;
1023 	params.CRm = (esr >> 1) & 0xf;
1024 	params.Op2 = (esr >> 17) & 0x7;
1025 	params.Rt = (esr >> 5) & 0x1f;
1026 	params.is_write = !(esr & 1);
1027 
1028 	return emulate_sys_reg(vcpu, &params);
1029 }
1030 
1031 /******************************************************************************
1032  * Userspace API
1033  *****************************************************************************/
1034 
1035 static bool index_to_params(u64 id, struct sys_reg_params *params)
1036 {
1037 	switch (id & KVM_REG_SIZE_MASK) {
1038 	case KVM_REG_SIZE_U64:
1039 		/* Any unused index bits means it's not valid. */
1040 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1041 			      | KVM_REG_ARM_COPROC_MASK
1042 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
1043 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
1044 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
1045 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
1046 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
1047 			return false;
1048 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1049 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1050 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1051 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1052 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1053 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1054 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1055 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1056 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1057 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1058 		return true;
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
1064 /* Decode an index value, and find the sys_reg_desc entry. */
1065 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1066 						    u64 id)
1067 {
1068 	size_t num;
1069 	const struct sys_reg_desc *table, *r;
1070 	struct sys_reg_params params;
1071 
1072 	/* We only do sys_reg for now. */
1073 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1074 		return NULL;
1075 
1076 	if (!index_to_params(id, &params))
1077 		return NULL;
1078 
1079 	table = get_target_table(vcpu->arch.target, true, &num);
1080 	r = find_reg(&params, table, num);
1081 	if (!r)
1082 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1083 
1084 	/* Not saved in the sys_reg array? */
1085 	if (r && !r->reg)
1086 		r = NULL;
1087 
1088 	return r;
1089 }
1090 
1091 /*
1092  * These are the invariant sys_reg registers: we let the guest see the
1093  * host versions of these, so they're part of the guest state.
1094  *
1095  * A future CPU may provide a mechanism to present different values to
1096  * the guest, or a future kvm may trap them.
1097  */
1098 
1099 #define FUNCTION_INVARIANT(reg)						\
1100 	static void get_##reg(struct kvm_vcpu *v,			\
1101 			      const struct sys_reg_desc *r)		\
1102 	{								\
1103 		u64 val;						\
1104 									\
1105 		asm volatile("mrs %0, " __stringify(reg) "\n"		\
1106 			     : "=r" (val));				\
1107 		((struct sys_reg_desc *)r)->val = val;			\
1108 	}
1109 
1110 FUNCTION_INVARIANT(midr_el1)
1111 FUNCTION_INVARIANT(ctr_el0)
1112 FUNCTION_INVARIANT(revidr_el1)
1113 FUNCTION_INVARIANT(id_pfr0_el1)
1114 FUNCTION_INVARIANT(id_pfr1_el1)
1115 FUNCTION_INVARIANT(id_dfr0_el1)
1116 FUNCTION_INVARIANT(id_afr0_el1)
1117 FUNCTION_INVARIANT(id_mmfr0_el1)
1118 FUNCTION_INVARIANT(id_mmfr1_el1)
1119 FUNCTION_INVARIANT(id_mmfr2_el1)
1120 FUNCTION_INVARIANT(id_mmfr3_el1)
1121 FUNCTION_INVARIANT(id_isar0_el1)
1122 FUNCTION_INVARIANT(id_isar1_el1)
1123 FUNCTION_INVARIANT(id_isar2_el1)
1124 FUNCTION_INVARIANT(id_isar3_el1)
1125 FUNCTION_INVARIANT(id_isar4_el1)
1126 FUNCTION_INVARIANT(id_isar5_el1)
1127 FUNCTION_INVARIANT(clidr_el1)
1128 FUNCTION_INVARIANT(aidr_el1)
1129 
1130 /* ->val is filled in by kvm_sys_reg_table_init() */
1131 static struct sys_reg_desc invariant_sys_regs[] = {
1132 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1133 	  NULL, get_midr_el1 },
1134 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1135 	  NULL, get_revidr_el1 },
1136 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1137 	  NULL, get_id_pfr0_el1 },
1138 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1139 	  NULL, get_id_pfr1_el1 },
1140 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1141 	  NULL, get_id_dfr0_el1 },
1142 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1143 	  NULL, get_id_afr0_el1 },
1144 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1145 	  NULL, get_id_mmfr0_el1 },
1146 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1147 	  NULL, get_id_mmfr1_el1 },
1148 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1149 	  NULL, get_id_mmfr2_el1 },
1150 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1151 	  NULL, get_id_mmfr3_el1 },
1152 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1153 	  NULL, get_id_isar0_el1 },
1154 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1155 	  NULL, get_id_isar1_el1 },
1156 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1157 	  NULL, get_id_isar2_el1 },
1158 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1159 	  NULL, get_id_isar3_el1 },
1160 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1161 	  NULL, get_id_isar4_el1 },
1162 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1163 	  NULL, get_id_isar5_el1 },
1164 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1165 	  NULL, get_clidr_el1 },
1166 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1167 	  NULL, get_aidr_el1 },
1168 	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1169 	  NULL, get_ctr_el0 },
1170 };
1171 
1172 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1173 {
1174 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1175 		return -EFAULT;
1176 	return 0;
1177 }
1178 
1179 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1180 {
1181 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1182 		return -EFAULT;
1183 	return 0;
1184 }
1185 
1186 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1187 {
1188 	struct sys_reg_params params;
1189 	const struct sys_reg_desc *r;
1190 
1191 	if (!index_to_params(id, &params))
1192 		return -ENOENT;
1193 
1194 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1195 	if (!r)
1196 		return -ENOENT;
1197 
1198 	return reg_to_user(uaddr, &r->val, id);
1199 }
1200 
1201 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1202 {
1203 	struct sys_reg_params params;
1204 	const struct sys_reg_desc *r;
1205 	int err;
1206 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1207 
1208 	if (!index_to_params(id, &params))
1209 		return -ENOENT;
1210 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1211 	if (!r)
1212 		return -ENOENT;
1213 
1214 	err = reg_from_user(&val, uaddr, id);
1215 	if (err)
1216 		return err;
1217 
1218 	/* This is what we mean by invariant: you can't change it. */
1219 	if (r->val != val)
1220 		return -EINVAL;
1221 
1222 	return 0;
1223 }
1224 
1225 static bool is_valid_cache(u32 val)
1226 {
1227 	u32 level, ctype;
1228 
1229 	if (val >= CSSELR_MAX)
1230 		return false;
1231 
1232 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1233 	level = (val >> 1);
1234 	ctype = (cache_levels >> (level * 3)) & 7;
1235 
1236 	switch (ctype) {
1237 	case 0: /* No cache */
1238 		return false;
1239 	case 1: /* Instruction cache only */
1240 		return (val & 1);
1241 	case 2: /* Data cache only */
1242 	case 4: /* Unified cache */
1243 		return !(val & 1);
1244 	case 3: /* Separate instruction and data caches */
1245 		return true;
1246 	default: /* Reserved: we can't know instruction or data. */
1247 		return false;
1248 	}
1249 }
1250 
1251 static int demux_c15_get(u64 id, void __user *uaddr)
1252 {
1253 	u32 val;
1254 	u32 __user *uval = uaddr;
1255 
1256 	/* Fail if we have unknown bits set. */
1257 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1258 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1259 		return -ENOENT;
1260 
1261 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1262 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1263 		if (KVM_REG_SIZE(id) != 4)
1264 			return -ENOENT;
1265 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1266 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1267 		if (!is_valid_cache(val))
1268 			return -ENOENT;
1269 
1270 		return put_user(get_ccsidr(val), uval);
1271 	default:
1272 		return -ENOENT;
1273 	}
1274 }
1275 
1276 static int demux_c15_set(u64 id, void __user *uaddr)
1277 {
1278 	u32 val, newval;
1279 	u32 __user *uval = uaddr;
1280 
1281 	/* Fail if we have unknown bits set. */
1282 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1283 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1284 		return -ENOENT;
1285 
1286 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1287 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1288 		if (KVM_REG_SIZE(id) != 4)
1289 			return -ENOENT;
1290 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1291 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1292 		if (!is_valid_cache(val))
1293 			return -ENOENT;
1294 
1295 		if (get_user(newval, uval))
1296 			return -EFAULT;
1297 
1298 		/* This is also invariant: you can't change it. */
1299 		if (newval != get_ccsidr(val))
1300 			return -EINVAL;
1301 		return 0;
1302 	default:
1303 		return -ENOENT;
1304 	}
1305 }
1306 
1307 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1308 {
1309 	const struct sys_reg_desc *r;
1310 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1311 
1312 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1313 		return demux_c15_get(reg->id, uaddr);
1314 
1315 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1316 		return -ENOENT;
1317 
1318 	r = index_to_sys_reg_desc(vcpu, reg->id);
1319 	if (!r)
1320 		return get_invariant_sys_reg(reg->id, uaddr);
1321 
1322 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1323 }
1324 
1325 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1326 {
1327 	const struct sys_reg_desc *r;
1328 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1329 
1330 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1331 		return demux_c15_set(reg->id, uaddr);
1332 
1333 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1334 		return -ENOENT;
1335 
1336 	r = index_to_sys_reg_desc(vcpu, reg->id);
1337 	if (!r)
1338 		return set_invariant_sys_reg(reg->id, uaddr);
1339 
1340 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1341 }
1342 
1343 static unsigned int num_demux_regs(void)
1344 {
1345 	unsigned int i, count = 0;
1346 
1347 	for (i = 0; i < CSSELR_MAX; i++)
1348 		if (is_valid_cache(i))
1349 			count++;
1350 
1351 	return count;
1352 }
1353 
1354 static int write_demux_regids(u64 __user *uindices)
1355 {
1356 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1357 	unsigned int i;
1358 
1359 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1360 	for (i = 0; i < CSSELR_MAX; i++) {
1361 		if (!is_valid_cache(i))
1362 			continue;
1363 		if (put_user(val | i, uindices))
1364 			return -EFAULT;
1365 		uindices++;
1366 	}
1367 	return 0;
1368 }
1369 
1370 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1371 {
1372 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1373 		KVM_REG_ARM64_SYSREG |
1374 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1375 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1376 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1377 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1378 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1379 }
1380 
1381 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1382 {
1383 	if (!*uind)
1384 		return true;
1385 
1386 	if (put_user(sys_reg_to_index(reg), *uind))
1387 		return false;
1388 
1389 	(*uind)++;
1390 	return true;
1391 }
1392 
1393 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1394 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1395 {
1396 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
1397 	unsigned int total = 0;
1398 	size_t num;
1399 
1400 	/* We check for duplicates here, to allow arch-specific overrides. */
1401 	i1 = get_target_table(vcpu->arch.target, true, &num);
1402 	end1 = i1 + num;
1403 	i2 = sys_reg_descs;
1404 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1405 
1406 	BUG_ON(i1 == end1 || i2 == end2);
1407 
1408 	/* Walk carefully, as both tables may refer to the same register. */
1409 	while (i1 || i2) {
1410 		int cmp = cmp_sys_reg(i1, i2);
1411 		/* target-specific overrides generic entry. */
1412 		if (cmp <= 0) {
1413 			/* Ignore registers we trap but don't save. */
1414 			if (i1->reg) {
1415 				if (!copy_reg_to_user(i1, &uind))
1416 					return -EFAULT;
1417 				total++;
1418 			}
1419 		} else {
1420 			/* Ignore registers we trap but don't save. */
1421 			if (i2->reg) {
1422 				if (!copy_reg_to_user(i2, &uind))
1423 					return -EFAULT;
1424 				total++;
1425 			}
1426 		}
1427 
1428 		if (cmp <= 0 && ++i1 == end1)
1429 			i1 = NULL;
1430 		if (cmp >= 0 && ++i2 == end2)
1431 			i2 = NULL;
1432 	}
1433 	return total;
1434 }
1435 
1436 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1437 {
1438 	return ARRAY_SIZE(invariant_sys_regs)
1439 		+ num_demux_regs()
1440 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
1441 }
1442 
1443 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1444 {
1445 	unsigned int i;
1446 	int err;
1447 
1448 	/* Then give them all the invariant registers' indices. */
1449 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1450 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1451 			return -EFAULT;
1452 		uindices++;
1453 	}
1454 
1455 	err = walk_sys_regs(vcpu, uindices);
1456 	if (err < 0)
1457 		return err;
1458 	uindices += err;
1459 
1460 	return write_demux_regids(uindices);
1461 }
1462 
1463 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1464 {
1465 	unsigned int i;
1466 
1467 	for (i = 1; i < n; i++) {
1468 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1469 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1470 			return 1;
1471 		}
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 void kvm_sys_reg_table_init(void)
1478 {
1479 	unsigned int i;
1480 	struct sys_reg_desc clidr;
1481 
1482 	/* Make sure tables are unique and in order. */
1483 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1484 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1485 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1486 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1487 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1488 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1489 
1490 	/* We abuse the reset function to overwrite the table itself. */
1491 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1492 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1493 
1494 	/*
1495 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1496 	 *
1497 	 *   If software reads the Cache Type fields from Ctype1
1498 	 *   upwards, once it has seen a value of 0b000, no caches
1499 	 *   exist at further-out levels of the hierarchy. So, for
1500 	 *   example, if Ctype3 is the first Cache Type field with a
1501 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1502 	 *   ignored.
1503 	 */
1504 	get_clidr_el1(NULL, &clidr); /* Ugly... */
1505 	cache_levels = clidr.val;
1506 	for (i = 0; i < 7; i++)
1507 		if (((cache_levels >> (i*3)) & 7) == 0)
1508 			break;
1509 	/* Clear all higher bits. */
1510 	cache_levels &= (1 << (i*3))-1;
1511 }
1512 
1513 /**
1514  * kvm_reset_sys_regs - sets system registers to reset value
1515  * @vcpu: The VCPU pointer
1516  *
1517  * This function finds the right table above and sets the registers on the
1518  * virtual CPU struct to their architecturally defined reset values.
1519  */
1520 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1521 {
1522 	size_t num;
1523 	const struct sys_reg_desc *table;
1524 
1525 	/* Catch someone adding a register without putting in reset entry. */
1526 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1527 
1528 	/* Generic chip reset first (so target could override). */
1529 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1530 
1531 	table = get_target_table(vcpu->arch.target, true, &num);
1532 	reset_sys_reg_descs(vcpu, table, num);
1533 
1534 	for (num = 1; num < NR_SYS_REGS; num++)
1535 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1536 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
1537 }
1538