xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 
40 #include <trace/events/kvm.h>
41 
42 #include "sys_regs.h"
43 
44 #include "trace.h"
45 
46 /*
47  * All of this file is extremly similar to the ARM coproc.c, but the
48  * types are different. My gut feeling is that it should be pretty
49  * easy to merge, but that would be an ABI breakage -- again. VFP
50  * would also need to be abstracted.
51  *
52  * For AArch32, we only take care of what is being trapped. Anything
53  * that has to do with init and userspace access has to go via the
54  * 64bit interface.
55  */
56 
57 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58 static u32 cache_levels;
59 
60 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
61 #define CSSELR_MAX 12
62 
63 /* Which cache CCSIDR represents depends on CSSELR value. */
64 static u32 get_ccsidr(u32 csselr)
65 {
66 	u32 ccsidr;
67 
68 	/* Make sure noone else changes CSSELR during this! */
69 	local_irq_disable();
70 	/* Put value into CSSELR */
71 	asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
72 	isb();
73 	/* Read result out of CCSIDR */
74 	asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
75 	local_irq_enable();
76 
77 	return ccsidr;
78 }
79 
80 /*
81  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82  */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84 			struct sys_reg_params *p,
85 			const struct sys_reg_desc *r)
86 {
87 	if (!p->is_write)
88 		return read_from_write_only(vcpu, p);
89 
90 	kvm_set_way_flush(vcpu);
91 	return true;
92 }
93 
94 /*
95  * Generic accessor for VM registers. Only called as long as HCR_TVM
96  * is set. If the guest enables the MMU, we stop trapping the VM
97  * sys_regs and leave it in complete control of the caches.
98  */
99 static bool access_vm_reg(struct kvm_vcpu *vcpu,
100 			  struct sys_reg_params *p,
101 			  const struct sys_reg_desc *r)
102 {
103 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
104 
105 	BUG_ON(!p->is_write);
106 
107 	if (!p->is_aarch32) {
108 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
109 	} else {
110 		if (!p->is_32bit)
111 			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112 		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
113 	}
114 
115 	kvm_toggle_cache(vcpu, was_enabled);
116 	return true;
117 }
118 
119 /*
120  * Trap handler for the GICv3 SGI generation system register.
121  * Forward the request to the VGIC emulation.
122  * The cp15_64 code makes sure this automatically works
123  * for both AArch64 and AArch32 accesses.
124  */
125 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
126 			   struct sys_reg_params *p,
127 			   const struct sys_reg_desc *r)
128 {
129 	if (!p->is_write)
130 		return read_from_write_only(vcpu, p);
131 
132 	vgic_v3_dispatch_sgi(vcpu, p->regval);
133 
134 	return true;
135 }
136 
137 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
138 			struct sys_reg_params *p,
139 			const struct sys_reg_desc *r)
140 {
141 	if (p->is_write)
142 		return ignore_write(vcpu, p);
143 	else
144 		return read_zero(vcpu, p);
145 }
146 
147 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
148 			   struct sys_reg_params *p,
149 			   const struct sys_reg_desc *r)
150 {
151 	if (p->is_write) {
152 		return ignore_write(vcpu, p);
153 	} else {
154 		p->regval = (1 << 3);
155 		return true;
156 	}
157 }
158 
159 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
160 				   struct sys_reg_params *p,
161 				   const struct sys_reg_desc *r)
162 {
163 	if (p->is_write) {
164 		return ignore_write(vcpu, p);
165 	} else {
166 		u32 val;
167 		asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
168 		p->regval = val;
169 		return true;
170 	}
171 }
172 
173 /*
174  * We want to avoid world-switching all the DBG registers all the
175  * time:
176  *
177  * - If we've touched any debug register, it is likely that we're
178  *   going to touch more of them. It then makes sense to disable the
179  *   traps and start doing the save/restore dance
180  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181  *   then mandatory to save/restore the registers, as the guest
182  *   depends on them.
183  *
184  * For this, we use a DIRTY bit, indicating the guest has modified the
185  * debug registers, used as follow:
186  *
187  * On guest entry:
188  * - If the dirty bit is set (because we're coming back from trapping),
189  *   disable the traps, save host registers, restore guest registers.
190  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191  *   set the dirty bit, disable the traps, save host registers,
192  *   restore guest registers.
193  * - Otherwise, enable the traps
194  *
195  * On guest exit:
196  * - If the dirty bit is set, save guest registers, restore host
197  *   registers and clear the dirty bit. This ensure that the host can
198  *   now use the debug registers.
199  */
200 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
201 			    struct sys_reg_params *p,
202 			    const struct sys_reg_desc *r)
203 {
204 	if (p->is_write) {
205 		vcpu_sys_reg(vcpu, r->reg) = p->regval;
206 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
207 	} else {
208 		p->regval = vcpu_sys_reg(vcpu, r->reg);
209 	}
210 
211 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
212 
213 	return true;
214 }
215 
216 /*
217  * reg_to_dbg/dbg_to_reg
218  *
219  * A 32 bit write to a debug register leave top bits alone
220  * A 32 bit read from a debug register only returns the bottom bits
221  *
222  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
223  * hyp.S code switches between host and guest values in future.
224  */
225 static void reg_to_dbg(struct kvm_vcpu *vcpu,
226 		       struct sys_reg_params *p,
227 		       u64 *dbg_reg)
228 {
229 	u64 val = p->regval;
230 
231 	if (p->is_32bit) {
232 		val &= 0xffffffffUL;
233 		val |= ((*dbg_reg >> 32) << 32);
234 	}
235 
236 	*dbg_reg = val;
237 	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238 }
239 
240 static void dbg_to_reg(struct kvm_vcpu *vcpu,
241 		       struct sys_reg_params *p,
242 		       u64 *dbg_reg)
243 {
244 	p->regval = *dbg_reg;
245 	if (p->is_32bit)
246 		p->regval &= 0xffffffffUL;
247 }
248 
249 static bool trap_bvr(struct kvm_vcpu *vcpu,
250 		     struct sys_reg_params *p,
251 		     const struct sys_reg_desc *rd)
252 {
253 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
254 
255 	if (p->is_write)
256 		reg_to_dbg(vcpu, p, dbg_reg);
257 	else
258 		dbg_to_reg(vcpu, p, dbg_reg);
259 
260 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
261 
262 	return true;
263 }
264 
265 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
266 		const struct kvm_one_reg *reg, void __user *uaddr)
267 {
268 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
269 
270 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
271 		return -EFAULT;
272 	return 0;
273 }
274 
275 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
276 	const struct kvm_one_reg *reg, void __user *uaddr)
277 {
278 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
279 
280 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
281 		return -EFAULT;
282 	return 0;
283 }
284 
285 static void reset_bvr(struct kvm_vcpu *vcpu,
286 		      const struct sys_reg_desc *rd)
287 {
288 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
289 }
290 
291 static bool trap_bcr(struct kvm_vcpu *vcpu,
292 		     struct sys_reg_params *p,
293 		     const struct sys_reg_desc *rd)
294 {
295 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
296 
297 	if (p->is_write)
298 		reg_to_dbg(vcpu, p, dbg_reg);
299 	else
300 		dbg_to_reg(vcpu, p, dbg_reg);
301 
302 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
303 
304 	return true;
305 }
306 
307 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
308 		const struct kvm_one_reg *reg, void __user *uaddr)
309 {
310 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
311 
312 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
313 		return -EFAULT;
314 
315 	return 0;
316 }
317 
318 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319 	const struct kvm_one_reg *reg, void __user *uaddr)
320 {
321 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
322 
323 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
324 		return -EFAULT;
325 	return 0;
326 }
327 
328 static void reset_bcr(struct kvm_vcpu *vcpu,
329 		      const struct sys_reg_desc *rd)
330 {
331 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
332 }
333 
334 static bool trap_wvr(struct kvm_vcpu *vcpu,
335 		     struct sys_reg_params *p,
336 		     const struct sys_reg_desc *rd)
337 {
338 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
339 
340 	if (p->is_write)
341 		reg_to_dbg(vcpu, p, dbg_reg);
342 	else
343 		dbg_to_reg(vcpu, p, dbg_reg);
344 
345 	trace_trap_reg(__func__, rd->reg, p->is_write,
346 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
347 
348 	return true;
349 }
350 
351 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
352 		const struct kvm_one_reg *reg, void __user *uaddr)
353 {
354 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
355 
356 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
357 		return -EFAULT;
358 	return 0;
359 }
360 
361 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
362 	const struct kvm_one_reg *reg, void __user *uaddr)
363 {
364 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
365 
366 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
367 		return -EFAULT;
368 	return 0;
369 }
370 
371 static void reset_wvr(struct kvm_vcpu *vcpu,
372 		      const struct sys_reg_desc *rd)
373 {
374 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
375 }
376 
377 static bool trap_wcr(struct kvm_vcpu *vcpu,
378 		     struct sys_reg_params *p,
379 		     const struct sys_reg_desc *rd)
380 {
381 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
382 
383 	if (p->is_write)
384 		reg_to_dbg(vcpu, p, dbg_reg);
385 	else
386 		dbg_to_reg(vcpu, p, dbg_reg);
387 
388 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
389 
390 	return true;
391 }
392 
393 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
394 		const struct kvm_one_reg *reg, void __user *uaddr)
395 {
396 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
397 
398 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
399 		return -EFAULT;
400 	return 0;
401 }
402 
403 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
404 	const struct kvm_one_reg *reg, void __user *uaddr)
405 {
406 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
407 
408 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
409 		return -EFAULT;
410 	return 0;
411 }
412 
413 static void reset_wcr(struct kvm_vcpu *vcpu,
414 		      const struct sys_reg_desc *rd)
415 {
416 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
417 }
418 
419 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
420 {
421 	u64 amair;
422 
423 	asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
424 	vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
425 }
426 
427 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429 	u64 mpidr;
430 
431 	/*
432 	 * Map the vcpu_id into the first three affinity level fields of
433 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
434 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
435 	 * of the GICv3 to be able to address each CPU directly when
436 	 * sending IPIs.
437 	 */
438 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
439 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
440 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
441 	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
442 }
443 
444 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
445 {
446 	u64 pmcr, val;
447 
448 	asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
449 	/* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
450 	 * except PMCR.E resetting to zero.
451 	 */
452 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
453 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
454 	vcpu_sys_reg(vcpu, PMCR_EL0) = val;
455 }
456 
457 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
458 {
459 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
460 
461 	return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
462 }
463 
464 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
465 {
466 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
467 
468 	return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
469 		 || vcpu_mode_priv(vcpu));
470 }
471 
472 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
473 {
474 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
475 
476 	return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
477 		 || vcpu_mode_priv(vcpu));
478 }
479 
480 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
481 {
482 	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
483 
484 	return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
485 		 || vcpu_mode_priv(vcpu));
486 }
487 
488 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
489 			const struct sys_reg_desc *r)
490 {
491 	u64 val;
492 
493 	if (!kvm_arm_pmu_v3_ready(vcpu))
494 		return trap_raz_wi(vcpu, p, r);
495 
496 	if (pmu_access_el0_disabled(vcpu))
497 		return false;
498 
499 	if (p->is_write) {
500 		/* Only update writeable bits of PMCR */
501 		val = vcpu_sys_reg(vcpu, PMCR_EL0);
502 		val &= ~ARMV8_PMU_PMCR_MASK;
503 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
504 		vcpu_sys_reg(vcpu, PMCR_EL0) = val;
505 		kvm_pmu_handle_pmcr(vcpu, val);
506 	} else {
507 		/* PMCR.P & PMCR.C are RAZ */
508 		val = vcpu_sys_reg(vcpu, PMCR_EL0)
509 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
510 		p->regval = val;
511 	}
512 
513 	return true;
514 }
515 
516 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
517 			  const struct sys_reg_desc *r)
518 {
519 	if (!kvm_arm_pmu_v3_ready(vcpu))
520 		return trap_raz_wi(vcpu, p, r);
521 
522 	if (pmu_access_event_counter_el0_disabled(vcpu))
523 		return false;
524 
525 	if (p->is_write)
526 		vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
527 	else
528 		/* return PMSELR.SEL field */
529 		p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
530 			    & ARMV8_PMU_COUNTER_MASK;
531 
532 	return true;
533 }
534 
535 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
536 			  const struct sys_reg_desc *r)
537 {
538 	u64 pmceid;
539 
540 	if (!kvm_arm_pmu_v3_ready(vcpu))
541 		return trap_raz_wi(vcpu, p, r);
542 
543 	BUG_ON(p->is_write);
544 
545 	if (pmu_access_el0_disabled(vcpu))
546 		return false;
547 
548 	if (!(p->Op2 & 1))
549 		asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
550 	else
551 		asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
552 
553 	p->regval = pmceid;
554 
555 	return true;
556 }
557 
558 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
559 {
560 	u64 pmcr, val;
561 
562 	pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
563 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
564 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
565 		return false;
566 
567 	return true;
568 }
569 
570 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
571 			      struct sys_reg_params *p,
572 			      const struct sys_reg_desc *r)
573 {
574 	u64 idx;
575 
576 	if (!kvm_arm_pmu_v3_ready(vcpu))
577 		return trap_raz_wi(vcpu, p, r);
578 
579 	if (r->CRn == 9 && r->CRm == 13) {
580 		if (r->Op2 == 2) {
581 			/* PMXEVCNTR_EL0 */
582 			if (pmu_access_event_counter_el0_disabled(vcpu))
583 				return false;
584 
585 			idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
586 			      & ARMV8_PMU_COUNTER_MASK;
587 		} else if (r->Op2 == 0) {
588 			/* PMCCNTR_EL0 */
589 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
590 				return false;
591 
592 			idx = ARMV8_PMU_CYCLE_IDX;
593 		} else {
594 			BUG();
595 		}
596 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
597 		/* PMEVCNTRn_EL0 */
598 		if (pmu_access_event_counter_el0_disabled(vcpu))
599 			return false;
600 
601 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
602 	} else {
603 		BUG();
604 	}
605 
606 	if (!pmu_counter_idx_valid(vcpu, idx))
607 		return false;
608 
609 	if (p->is_write) {
610 		if (pmu_access_el0_disabled(vcpu))
611 			return false;
612 
613 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
614 	} else {
615 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
616 	}
617 
618 	return true;
619 }
620 
621 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
622 			       const struct sys_reg_desc *r)
623 {
624 	u64 idx, reg;
625 
626 	if (!kvm_arm_pmu_v3_ready(vcpu))
627 		return trap_raz_wi(vcpu, p, r);
628 
629 	if (pmu_access_el0_disabled(vcpu))
630 		return false;
631 
632 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
633 		/* PMXEVTYPER_EL0 */
634 		idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
635 		reg = PMEVTYPER0_EL0 + idx;
636 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
637 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
638 		if (idx == ARMV8_PMU_CYCLE_IDX)
639 			reg = PMCCFILTR_EL0;
640 		else
641 			/* PMEVTYPERn_EL0 */
642 			reg = PMEVTYPER0_EL0 + idx;
643 	} else {
644 		BUG();
645 	}
646 
647 	if (!pmu_counter_idx_valid(vcpu, idx))
648 		return false;
649 
650 	if (p->is_write) {
651 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
652 		vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
653 	} else {
654 		p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
655 	}
656 
657 	return true;
658 }
659 
660 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
661 			   const struct sys_reg_desc *r)
662 {
663 	u64 val, mask;
664 
665 	if (!kvm_arm_pmu_v3_ready(vcpu))
666 		return trap_raz_wi(vcpu, p, r);
667 
668 	if (pmu_access_el0_disabled(vcpu))
669 		return false;
670 
671 	mask = kvm_pmu_valid_counter_mask(vcpu);
672 	if (p->is_write) {
673 		val = p->regval & mask;
674 		if (r->Op2 & 0x1) {
675 			/* accessing PMCNTENSET_EL0 */
676 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
677 			kvm_pmu_enable_counter(vcpu, val);
678 		} else {
679 			/* accessing PMCNTENCLR_EL0 */
680 			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
681 			kvm_pmu_disable_counter(vcpu, val);
682 		}
683 	} else {
684 		p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
685 	}
686 
687 	return true;
688 }
689 
690 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
691 			   const struct sys_reg_desc *r)
692 {
693 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
694 
695 	if (!kvm_arm_pmu_v3_ready(vcpu))
696 		return trap_raz_wi(vcpu, p, r);
697 
698 	if (!vcpu_mode_priv(vcpu))
699 		return false;
700 
701 	if (p->is_write) {
702 		u64 val = p->regval & mask;
703 
704 		if (r->Op2 & 0x1)
705 			/* accessing PMINTENSET_EL1 */
706 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
707 		else
708 			/* accessing PMINTENCLR_EL1 */
709 			vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
710 	} else {
711 		p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
712 	}
713 
714 	return true;
715 }
716 
717 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718 			 const struct sys_reg_desc *r)
719 {
720 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
721 
722 	if (!kvm_arm_pmu_v3_ready(vcpu))
723 		return trap_raz_wi(vcpu, p, r);
724 
725 	if (pmu_access_el0_disabled(vcpu))
726 		return false;
727 
728 	if (p->is_write) {
729 		if (r->CRm & 0x2)
730 			/* accessing PMOVSSET_EL0 */
731 			kvm_pmu_overflow_set(vcpu, p->regval & mask);
732 		else
733 			/* accessing PMOVSCLR_EL0 */
734 			vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
735 	} else {
736 		p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
737 	}
738 
739 	return true;
740 }
741 
742 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
743 			   const struct sys_reg_desc *r)
744 {
745 	u64 mask;
746 
747 	if (!kvm_arm_pmu_v3_ready(vcpu))
748 		return trap_raz_wi(vcpu, p, r);
749 
750 	if (pmu_write_swinc_el0_disabled(vcpu))
751 		return false;
752 
753 	if (p->is_write) {
754 		mask = kvm_pmu_valid_counter_mask(vcpu);
755 		kvm_pmu_software_increment(vcpu, p->regval & mask);
756 		return true;
757 	}
758 
759 	return false;
760 }
761 
762 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
763 			     const struct sys_reg_desc *r)
764 {
765 	if (!kvm_arm_pmu_v3_ready(vcpu))
766 		return trap_raz_wi(vcpu, p, r);
767 
768 	if (p->is_write) {
769 		if (!vcpu_mode_priv(vcpu))
770 			return false;
771 
772 		vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
773 						    & ARMV8_PMU_USERENR_MASK;
774 	} else {
775 		p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
776 			    & ARMV8_PMU_USERENR_MASK;
777 	}
778 
779 	return true;
780 }
781 
782 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
783 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
784 	/* DBGBVRn_EL1 */						\
785 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),	\
786 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
787 	/* DBGBCRn_EL1 */						\
788 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),	\
789 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
790 	/* DBGWVRn_EL1 */						\
791 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),	\
792 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
793 	/* DBGWCRn_EL1 */						\
794 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),	\
795 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
796 
797 /* Macro to expand the PMEVCNTRn_EL0 register */
798 #define PMU_PMEVCNTR_EL0(n)						\
799 	/* PMEVCNTRn_EL0 */						\
800 	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
801 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
802 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
803 
804 /* Macro to expand the PMEVTYPERn_EL0 register */
805 #define PMU_PMEVTYPER_EL0(n)						\
806 	/* PMEVTYPERn_EL0 */						\
807 	{ Op0(0b11), Op1(0b011), CRn(0b1110),				\
808 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
809 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
810 
811 /*
812  * Architected system registers.
813  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
814  *
815  * We could trap ID_DFR0 and tell the guest we don't support performance
816  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
817  * NAKed, so it will read the PMCR anyway.
818  *
819  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
820  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
821  * all PM registers, which doesn't crash the guest kernel at least.
822  *
823  * Debug handling: We do trap most, if not all debug related system
824  * registers. The implementation is good enough to ensure that a guest
825  * can use these with minimal performance degradation. The drawback is
826  * that we don't implement any of the external debug, none of the
827  * OSlock protocol. This should be revisited if we ever encounter a
828  * more demanding guest...
829  */
830 static const struct sys_reg_desc sys_reg_descs[] = {
831 	/* DC ISW */
832 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
833 	  access_dcsw },
834 	/* DC CSW */
835 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
836 	  access_dcsw },
837 	/* DC CISW */
838 	{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
839 	  access_dcsw },
840 
841 	DBG_BCR_BVR_WCR_WVR_EL1(0),
842 	DBG_BCR_BVR_WCR_WVR_EL1(1),
843 	/* MDCCINT_EL1 */
844 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
845 	  trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
846 	/* MDSCR_EL1 */
847 	{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
848 	  trap_debug_regs, reset_val, MDSCR_EL1, 0 },
849 	DBG_BCR_BVR_WCR_WVR_EL1(2),
850 	DBG_BCR_BVR_WCR_WVR_EL1(3),
851 	DBG_BCR_BVR_WCR_WVR_EL1(4),
852 	DBG_BCR_BVR_WCR_WVR_EL1(5),
853 	DBG_BCR_BVR_WCR_WVR_EL1(6),
854 	DBG_BCR_BVR_WCR_WVR_EL1(7),
855 	DBG_BCR_BVR_WCR_WVR_EL1(8),
856 	DBG_BCR_BVR_WCR_WVR_EL1(9),
857 	DBG_BCR_BVR_WCR_WVR_EL1(10),
858 	DBG_BCR_BVR_WCR_WVR_EL1(11),
859 	DBG_BCR_BVR_WCR_WVR_EL1(12),
860 	DBG_BCR_BVR_WCR_WVR_EL1(13),
861 	DBG_BCR_BVR_WCR_WVR_EL1(14),
862 	DBG_BCR_BVR_WCR_WVR_EL1(15),
863 
864 	/* MDRAR_EL1 */
865 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
866 	  trap_raz_wi },
867 	/* OSLAR_EL1 */
868 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
869 	  trap_raz_wi },
870 	/* OSLSR_EL1 */
871 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
872 	  trap_oslsr_el1 },
873 	/* OSDLR_EL1 */
874 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
875 	  trap_raz_wi },
876 	/* DBGPRCR_EL1 */
877 	{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
878 	  trap_raz_wi },
879 	/* DBGCLAIMSET_EL1 */
880 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
881 	  trap_raz_wi },
882 	/* DBGCLAIMCLR_EL1 */
883 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
884 	  trap_raz_wi },
885 	/* DBGAUTHSTATUS_EL1 */
886 	{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
887 	  trap_dbgauthstatus_el1 },
888 
889 	/* MDCCSR_EL1 */
890 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
891 	  trap_raz_wi },
892 	/* DBGDTR_EL0 */
893 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
894 	  trap_raz_wi },
895 	/* DBGDTR[TR]X_EL0 */
896 	{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
897 	  trap_raz_wi },
898 
899 	/* DBGVCR32_EL2 */
900 	{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
901 	  NULL, reset_val, DBGVCR32_EL2, 0 },
902 
903 	/* MPIDR_EL1 */
904 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
905 	  NULL, reset_mpidr, MPIDR_EL1 },
906 	/* SCTLR_EL1 */
907 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
908 	  access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
909 	/* CPACR_EL1 */
910 	{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
911 	  NULL, reset_val, CPACR_EL1, 0 },
912 	/* TTBR0_EL1 */
913 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
914 	  access_vm_reg, reset_unknown, TTBR0_EL1 },
915 	/* TTBR1_EL1 */
916 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
917 	  access_vm_reg, reset_unknown, TTBR1_EL1 },
918 	/* TCR_EL1 */
919 	{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
920 	  access_vm_reg, reset_val, TCR_EL1, 0 },
921 
922 	/* AFSR0_EL1 */
923 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
924 	  access_vm_reg, reset_unknown, AFSR0_EL1 },
925 	/* AFSR1_EL1 */
926 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
927 	  access_vm_reg, reset_unknown, AFSR1_EL1 },
928 	/* ESR_EL1 */
929 	{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
930 	  access_vm_reg, reset_unknown, ESR_EL1 },
931 	/* FAR_EL1 */
932 	{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
933 	  access_vm_reg, reset_unknown, FAR_EL1 },
934 	/* PAR_EL1 */
935 	{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
936 	  NULL, reset_unknown, PAR_EL1 },
937 
938 	/* PMINTENSET_EL1 */
939 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
940 	  access_pminten, reset_unknown, PMINTENSET_EL1 },
941 	/* PMINTENCLR_EL1 */
942 	{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
943 	  access_pminten, NULL, PMINTENSET_EL1 },
944 
945 	/* MAIR_EL1 */
946 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
947 	  access_vm_reg, reset_unknown, MAIR_EL1 },
948 	/* AMAIR_EL1 */
949 	{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
950 	  access_vm_reg, reset_amair_el1, AMAIR_EL1 },
951 
952 	/* VBAR_EL1 */
953 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
954 	  NULL, reset_val, VBAR_EL1, 0 },
955 
956 	/* ICC_SGI1R_EL1 */
957 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
958 	  access_gic_sgi },
959 	/* ICC_SRE_EL1 */
960 	{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
961 	  trap_raz_wi },
962 
963 	/* CONTEXTIDR_EL1 */
964 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
965 	  access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
966 	/* TPIDR_EL1 */
967 	{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
968 	  NULL, reset_unknown, TPIDR_EL1 },
969 
970 	/* CNTKCTL_EL1 */
971 	{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
972 	  NULL, reset_val, CNTKCTL_EL1, 0},
973 
974 	/* CSSELR_EL1 */
975 	{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
976 	  NULL, reset_unknown, CSSELR_EL1 },
977 
978 	/* PMCR_EL0 */
979 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
980 	  access_pmcr, reset_pmcr, },
981 	/* PMCNTENSET_EL0 */
982 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
983 	  access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
984 	/* PMCNTENCLR_EL0 */
985 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
986 	  access_pmcnten, NULL, PMCNTENSET_EL0 },
987 	/* PMOVSCLR_EL0 */
988 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
989 	  access_pmovs, NULL, PMOVSSET_EL0 },
990 	/* PMSWINC_EL0 */
991 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
992 	  access_pmswinc, reset_unknown, PMSWINC_EL0 },
993 	/* PMSELR_EL0 */
994 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
995 	  access_pmselr, reset_unknown, PMSELR_EL0 },
996 	/* PMCEID0_EL0 */
997 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
998 	  access_pmceid },
999 	/* PMCEID1_EL0 */
1000 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1001 	  access_pmceid },
1002 	/* PMCCNTR_EL0 */
1003 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1004 	  access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1005 	/* PMXEVTYPER_EL0 */
1006 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1007 	  access_pmu_evtyper },
1008 	/* PMXEVCNTR_EL0 */
1009 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1010 	  access_pmu_evcntr },
1011 	/* PMUSERENR_EL0
1012 	 * This register resets as unknown in 64bit mode while it resets as zero
1013 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1014 	 */
1015 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1016 	  access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1017 	/* PMOVSSET_EL0 */
1018 	{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1019 	  access_pmovs, reset_unknown, PMOVSSET_EL0 },
1020 
1021 	/* TPIDR_EL0 */
1022 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1023 	  NULL, reset_unknown, TPIDR_EL0 },
1024 	/* TPIDRRO_EL0 */
1025 	{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1026 	  NULL, reset_unknown, TPIDRRO_EL0 },
1027 
1028 	/* PMEVCNTRn_EL0 */
1029 	PMU_PMEVCNTR_EL0(0),
1030 	PMU_PMEVCNTR_EL0(1),
1031 	PMU_PMEVCNTR_EL0(2),
1032 	PMU_PMEVCNTR_EL0(3),
1033 	PMU_PMEVCNTR_EL0(4),
1034 	PMU_PMEVCNTR_EL0(5),
1035 	PMU_PMEVCNTR_EL0(6),
1036 	PMU_PMEVCNTR_EL0(7),
1037 	PMU_PMEVCNTR_EL0(8),
1038 	PMU_PMEVCNTR_EL0(9),
1039 	PMU_PMEVCNTR_EL0(10),
1040 	PMU_PMEVCNTR_EL0(11),
1041 	PMU_PMEVCNTR_EL0(12),
1042 	PMU_PMEVCNTR_EL0(13),
1043 	PMU_PMEVCNTR_EL0(14),
1044 	PMU_PMEVCNTR_EL0(15),
1045 	PMU_PMEVCNTR_EL0(16),
1046 	PMU_PMEVCNTR_EL0(17),
1047 	PMU_PMEVCNTR_EL0(18),
1048 	PMU_PMEVCNTR_EL0(19),
1049 	PMU_PMEVCNTR_EL0(20),
1050 	PMU_PMEVCNTR_EL0(21),
1051 	PMU_PMEVCNTR_EL0(22),
1052 	PMU_PMEVCNTR_EL0(23),
1053 	PMU_PMEVCNTR_EL0(24),
1054 	PMU_PMEVCNTR_EL0(25),
1055 	PMU_PMEVCNTR_EL0(26),
1056 	PMU_PMEVCNTR_EL0(27),
1057 	PMU_PMEVCNTR_EL0(28),
1058 	PMU_PMEVCNTR_EL0(29),
1059 	PMU_PMEVCNTR_EL0(30),
1060 	/* PMEVTYPERn_EL0 */
1061 	PMU_PMEVTYPER_EL0(0),
1062 	PMU_PMEVTYPER_EL0(1),
1063 	PMU_PMEVTYPER_EL0(2),
1064 	PMU_PMEVTYPER_EL0(3),
1065 	PMU_PMEVTYPER_EL0(4),
1066 	PMU_PMEVTYPER_EL0(5),
1067 	PMU_PMEVTYPER_EL0(6),
1068 	PMU_PMEVTYPER_EL0(7),
1069 	PMU_PMEVTYPER_EL0(8),
1070 	PMU_PMEVTYPER_EL0(9),
1071 	PMU_PMEVTYPER_EL0(10),
1072 	PMU_PMEVTYPER_EL0(11),
1073 	PMU_PMEVTYPER_EL0(12),
1074 	PMU_PMEVTYPER_EL0(13),
1075 	PMU_PMEVTYPER_EL0(14),
1076 	PMU_PMEVTYPER_EL0(15),
1077 	PMU_PMEVTYPER_EL0(16),
1078 	PMU_PMEVTYPER_EL0(17),
1079 	PMU_PMEVTYPER_EL0(18),
1080 	PMU_PMEVTYPER_EL0(19),
1081 	PMU_PMEVTYPER_EL0(20),
1082 	PMU_PMEVTYPER_EL0(21),
1083 	PMU_PMEVTYPER_EL0(22),
1084 	PMU_PMEVTYPER_EL0(23),
1085 	PMU_PMEVTYPER_EL0(24),
1086 	PMU_PMEVTYPER_EL0(25),
1087 	PMU_PMEVTYPER_EL0(26),
1088 	PMU_PMEVTYPER_EL0(27),
1089 	PMU_PMEVTYPER_EL0(28),
1090 	PMU_PMEVTYPER_EL0(29),
1091 	PMU_PMEVTYPER_EL0(30),
1092 	/* PMCCFILTR_EL0
1093 	 * This register resets as unknown in 64bit mode while it resets as zero
1094 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1095 	 */
1096 	{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1097 	  access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1098 
1099 	/* DACR32_EL2 */
1100 	{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1101 	  NULL, reset_unknown, DACR32_EL2 },
1102 	/* IFSR32_EL2 */
1103 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1104 	  NULL, reset_unknown, IFSR32_EL2 },
1105 	/* FPEXC32_EL2 */
1106 	{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1107 	  NULL, reset_val, FPEXC32_EL2, 0x70 },
1108 };
1109 
1110 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1111 			struct sys_reg_params *p,
1112 			const struct sys_reg_desc *r)
1113 {
1114 	if (p->is_write) {
1115 		return ignore_write(vcpu, p);
1116 	} else {
1117 		u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1118 		u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1119 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1120 
1121 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1122 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1123 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1124 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1125 		return true;
1126 	}
1127 }
1128 
1129 static bool trap_debug32(struct kvm_vcpu *vcpu,
1130 			 struct sys_reg_params *p,
1131 			 const struct sys_reg_desc *r)
1132 {
1133 	if (p->is_write) {
1134 		vcpu_cp14(vcpu, r->reg) = p->regval;
1135 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1136 	} else {
1137 		p->regval = vcpu_cp14(vcpu, r->reg);
1138 	}
1139 
1140 	return true;
1141 }
1142 
1143 /* AArch32 debug register mappings
1144  *
1145  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1146  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1147  *
1148  * All control registers and watchpoint value registers are mapped to
1149  * the lower 32 bits of their AArch64 equivalents. We share the trap
1150  * handlers with the above AArch64 code which checks what mode the
1151  * system is in.
1152  */
1153 
1154 static bool trap_xvr(struct kvm_vcpu *vcpu,
1155 		     struct sys_reg_params *p,
1156 		     const struct sys_reg_desc *rd)
1157 {
1158 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1159 
1160 	if (p->is_write) {
1161 		u64 val = *dbg_reg;
1162 
1163 		val &= 0xffffffffUL;
1164 		val |= p->regval << 32;
1165 		*dbg_reg = val;
1166 
1167 		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1168 	} else {
1169 		p->regval = *dbg_reg >> 32;
1170 	}
1171 
1172 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1173 
1174 	return true;
1175 }
1176 
1177 #define DBG_BCR_BVR_WCR_WVR(n)						\
1178 	/* DBGBVRn */							\
1179 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1180 	/* DBGBCRn */							\
1181 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1182 	/* DBGWVRn */							\
1183 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1184 	/* DBGWCRn */							\
1185 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1186 
1187 #define DBGBXVR(n)							\
1188 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1189 
1190 /*
1191  * Trapped cp14 registers. We generally ignore most of the external
1192  * debug, on the principle that they don't really make sense to a
1193  * guest. Revisit this one day, would this principle change.
1194  */
1195 static const struct sys_reg_desc cp14_regs[] = {
1196 	/* DBGIDR */
1197 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1198 	/* DBGDTRRXext */
1199 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1200 
1201 	DBG_BCR_BVR_WCR_WVR(0),
1202 	/* DBGDSCRint */
1203 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1204 	DBG_BCR_BVR_WCR_WVR(1),
1205 	/* DBGDCCINT */
1206 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1207 	/* DBGDSCRext */
1208 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1209 	DBG_BCR_BVR_WCR_WVR(2),
1210 	/* DBGDTR[RT]Xint */
1211 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1212 	/* DBGDTR[RT]Xext */
1213 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1214 	DBG_BCR_BVR_WCR_WVR(3),
1215 	DBG_BCR_BVR_WCR_WVR(4),
1216 	DBG_BCR_BVR_WCR_WVR(5),
1217 	/* DBGWFAR */
1218 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1219 	/* DBGOSECCR */
1220 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1221 	DBG_BCR_BVR_WCR_WVR(6),
1222 	/* DBGVCR */
1223 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1224 	DBG_BCR_BVR_WCR_WVR(7),
1225 	DBG_BCR_BVR_WCR_WVR(8),
1226 	DBG_BCR_BVR_WCR_WVR(9),
1227 	DBG_BCR_BVR_WCR_WVR(10),
1228 	DBG_BCR_BVR_WCR_WVR(11),
1229 	DBG_BCR_BVR_WCR_WVR(12),
1230 	DBG_BCR_BVR_WCR_WVR(13),
1231 	DBG_BCR_BVR_WCR_WVR(14),
1232 	DBG_BCR_BVR_WCR_WVR(15),
1233 
1234 	/* DBGDRAR (32bit) */
1235 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1236 
1237 	DBGBXVR(0),
1238 	/* DBGOSLAR */
1239 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1240 	DBGBXVR(1),
1241 	/* DBGOSLSR */
1242 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1243 	DBGBXVR(2),
1244 	DBGBXVR(3),
1245 	/* DBGOSDLR */
1246 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1247 	DBGBXVR(4),
1248 	/* DBGPRCR */
1249 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1250 	DBGBXVR(5),
1251 	DBGBXVR(6),
1252 	DBGBXVR(7),
1253 	DBGBXVR(8),
1254 	DBGBXVR(9),
1255 	DBGBXVR(10),
1256 	DBGBXVR(11),
1257 	DBGBXVR(12),
1258 	DBGBXVR(13),
1259 	DBGBXVR(14),
1260 	DBGBXVR(15),
1261 
1262 	/* DBGDSAR (32bit) */
1263 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1264 
1265 	/* DBGDEVID2 */
1266 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1267 	/* DBGDEVID1 */
1268 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1269 	/* DBGDEVID */
1270 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1271 	/* DBGCLAIMSET */
1272 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1273 	/* DBGCLAIMCLR */
1274 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1275 	/* DBGAUTHSTATUS */
1276 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1277 };
1278 
1279 /* Trapped cp14 64bit registers */
1280 static const struct sys_reg_desc cp14_64_regs[] = {
1281 	/* DBGDRAR (64bit) */
1282 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1283 
1284 	/* DBGDSAR (64bit) */
1285 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1286 };
1287 
1288 /* Macro to expand the PMEVCNTRn register */
1289 #define PMU_PMEVCNTR(n)							\
1290 	/* PMEVCNTRn */							\
1291 	{ Op1(0), CRn(0b1110),						\
1292 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1293 	  access_pmu_evcntr }
1294 
1295 /* Macro to expand the PMEVTYPERn register */
1296 #define PMU_PMEVTYPER(n)						\
1297 	/* PMEVTYPERn */						\
1298 	{ Op1(0), CRn(0b1110),						\
1299 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1300 	  access_pmu_evtyper }
1301 
1302 /*
1303  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1304  * depending on the way they are accessed (as a 32bit or a 64bit
1305  * register).
1306  */
1307 static const struct sys_reg_desc cp15_regs[] = {
1308 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1309 
1310 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1311 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1312 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1313 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1314 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1315 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1316 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1317 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1318 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1319 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1320 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1321 
1322 	/*
1323 	 * DC{C,I,CI}SW operations:
1324 	 */
1325 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1326 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1327 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1328 
1329 	/* PMU */
1330 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1331 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1332 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1333 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1334 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1335 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1336 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1337 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1338 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1339 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1340 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1341 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1342 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1343 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1344 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1345 
1346 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1347 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1348 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1349 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1350 
1351 	/* ICC_SRE */
1352 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
1353 
1354 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1355 
1356 	/* PMEVCNTRn */
1357 	PMU_PMEVCNTR(0),
1358 	PMU_PMEVCNTR(1),
1359 	PMU_PMEVCNTR(2),
1360 	PMU_PMEVCNTR(3),
1361 	PMU_PMEVCNTR(4),
1362 	PMU_PMEVCNTR(5),
1363 	PMU_PMEVCNTR(6),
1364 	PMU_PMEVCNTR(7),
1365 	PMU_PMEVCNTR(8),
1366 	PMU_PMEVCNTR(9),
1367 	PMU_PMEVCNTR(10),
1368 	PMU_PMEVCNTR(11),
1369 	PMU_PMEVCNTR(12),
1370 	PMU_PMEVCNTR(13),
1371 	PMU_PMEVCNTR(14),
1372 	PMU_PMEVCNTR(15),
1373 	PMU_PMEVCNTR(16),
1374 	PMU_PMEVCNTR(17),
1375 	PMU_PMEVCNTR(18),
1376 	PMU_PMEVCNTR(19),
1377 	PMU_PMEVCNTR(20),
1378 	PMU_PMEVCNTR(21),
1379 	PMU_PMEVCNTR(22),
1380 	PMU_PMEVCNTR(23),
1381 	PMU_PMEVCNTR(24),
1382 	PMU_PMEVCNTR(25),
1383 	PMU_PMEVCNTR(26),
1384 	PMU_PMEVCNTR(27),
1385 	PMU_PMEVCNTR(28),
1386 	PMU_PMEVCNTR(29),
1387 	PMU_PMEVCNTR(30),
1388 	/* PMEVTYPERn */
1389 	PMU_PMEVTYPER(0),
1390 	PMU_PMEVTYPER(1),
1391 	PMU_PMEVTYPER(2),
1392 	PMU_PMEVTYPER(3),
1393 	PMU_PMEVTYPER(4),
1394 	PMU_PMEVTYPER(5),
1395 	PMU_PMEVTYPER(6),
1396 	PMU_PMEVTYPER(7),
1397 	PMU_PMEVTYPER(8),
1398 	PMU_PMEVTYPER(9),
1399 	PMU_PMEVTYPER(10),
1400 	PMU_PMEVTYPER(11),
1401 	PMU_PMEVTYPER(12),
1402 	PMU_PMEVTYPER(13),
1403 	PMU_PMEVTYPER(14),
1404 	PMU_PMEVTYPER(15),
1405 	PMU_PMEVTYPER(16),
1406 	PMU_PMEVTYPER(17),
1407 	PMU_PMEVTYPER(18),
1408 	PMU_PMEVTYPER(19),
1409 	PMU_PMEVTYPER(20),
1410 	PMU_PMEVTYPER(21),
1411 	PMU_PMEVTYPER(22),
1412 	PMU_PMEVTYPER(23),
1413 	PMU_PMEVTYPER(24),
1414 	PMU_PMEVTYPER(25),
1415 	PMU_PMEVTYPER(26),
1416 	PMU_PMEVTYPER(27),
1417 	PMU_PMEVTYPER(28),
1418 	PMU_PMEVTYPER(29),
1419 	PMU_PMEVTYPER(30),
1420 	/* PMCCFILTR */
1421 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1422 };
1423 
1424 static const struct sys_reg_desc cp15_64_regs[] = {
1425 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1426 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1427 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1428 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1429 };
1430 
1431 /* Target specific emulation tables */
1432 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1433 
1434 void kvm_register_target_sys_reg_table(unsigned int target,
1435 				       struct kvm_sys_reg_target_table *table)
1436 {
1437 	target_tables[target] = table;
1438 }
1439 
1440 /* Get specific register table for this target. */
1441 static const struct sys_reg_desc *get_target_table(unsigned target,
1442 						   bool mode_is_64,
1443 						   size_t *num)
1444 {
1445 	struct kvm_sys_reg_target_table *table;
1446 
1447 	table = target_tables[target];
1448 	if (mode_is_64) {
1449 		*num = table->table64.num;
1450 		return table->table64.table;
1451 	} else {
1452 		*num = table->table32.num;
1453 		return table->table32.table;
1454 	}
1455 }
1456 
1457 #define reg_to_match_value(x)						\
1458 	({								\
1459 		unsigned long val;					\
1460 		val  = (x)->Op0 << 14;					\
1461 		val |= (x)->Op1 << 11;					\
1462 		val |= (x)->CRn << 7;					\
1463 		val |= (x)->CRm << 3;					\
1464 		val |= (x)->Op2;					\
1465 		val;							\
1466 	 })
1467 
1468 static int match_sys_reg(const void *key, const void *elt)
1469 {
1470 	const unsigned long pval = (unsigned long)key;
1471 	const struct sys_reg_desc *r = elt;
1472 
1473 	return pval - reg_to_match_value(r);
1474 }
1475 
1476 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1477 					 const struct sys_reg_desc table[],
1478 					 unsigned int num)
1479 {
1480 	unsigned long pval = reg_to_match_value(params);
1481 
1482 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1483 }
1484 
1485 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1486 {
1487 	kvm_inject_undefined(vcpu);
1488 	return 1;
1489 }
1490 
1491 /*
1492  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1493  *                call the corresponding trap handler.
1494  *
1495  * @params: pointer to the descriptor of the access
1496  * @table: array of trap descriptors
1497  * @num: size of the trap descriptor array
1498  *
1499  * Return 0 if the access has been handled, and -1 if not.
1500  */
1501 static int emulate_cp(struct kvm_vcpu *vcpu,
1502 		      struct sys_reg_params *params,
1503 		      const struct sys_reg_desc *table,
1504 		      size_t num)
1505 {
1506 	const struct sys_reg_desc *r;
1507 
1508 	if (!table)
1509 		return -1;	/* Not handled */
1510 
1511 	r = find_reg(params, table, num);
1512 
1513 	if (r) {
1514 		/*
1515 		 * Not having an accessor means that we have
1516 		 * configured a trap that we don't know how to
1517 		 * handle. This certainly qualifies as a gross bug
1518 		 * that should be fixed right away.
1519 		 */
1520 		BUG_ON(!r->access);
1521 
1522 		if (likely(r->access(vcpu, params, r))) {
1523 			/* Skip instruction, since it was emulated */
1524 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1525 			/* Handled */
1526 			return 0;
1527 		}
1528 	}
1529 
1530 	/* Not handled */
1531 	return -1;
1532 }
1533 
1534 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1535 				struct sys_reg_params *params)
1536 {
1537 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1538 	int cp;
1539 
1540 	switch(hsr_ec) {
1541 	case ESR_ELx_EC_CP15_32:
1542 	case ESR_ELx_EC_CP15_64:
1543 		cp = 15;
1544 		break;
1545 	case ESR_ELx_EC_CP14_MR:
1546 	case ESR_ELx_EC_CP14_64:
1547 		cp = 14;
1548 		break;
1549 	default:
1550 		WARN_ON((cp = -1));
1551 	}
1552 
1553 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
1554 		cp, *vcpu_pc(vcpu));
1555 	print_sys_reg_instr(params);
1556 	kvm_inject_undefined(vcpu);
1557 }
1558 
1559 /**
1560  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1561  * @vcpu: The VCPU pointer
1562  * @run:  The kvm_run struct
1563  */
1564 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1565 			    const struct sys_reg_desc *global,
1566 			    size_t nr_global,
1567 			    const struct sys_reg_desc *target_specific,
1568 			    size_t nr_specific)
1569 {
1570 	struct sys_reg_params params;
1571 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1572 	int Rt = (hsr >> 5) & 0xf;
1573 	int Rt2 = (hsr >> 10) & 0xf;
1574 
1575 	params.is_aarch32 = true;
1576 	params.is_32bit = false;
1577 	params.CRm = (hsr >> 1) & 0xf;
1578 	params.is_write = ((hsr & 1) == 0);
1579 
1580 	params.Op0 = 0;
1581 	params.Op1 = (hsr >> 16) & 0xf;
1582 	params.Op2 = 0;
1583 	params.CRn = 0;
1584 
1585 	/*
1586 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1587 	 * backends between AArch32 and AArch64, we get away with it.
1588 	 */
1589 	if (params.is_write) {
1590 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1591 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1592 	}
1593 
1594 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1595 		goto out;
1596 	if (!emulate_cp(vcpu, &params, global, nr_global))
1597 		goto out;
1598 
1599 	unhandled_cp_access(vcpu, &params);
1600 
1601 out:
1602 	/* Split up the value between registers for the read side */
1603 	if (!params.is_write) {
1604 		vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1605 		vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1606 	}
1607 
1608 	return 1;
1609 }
1610 
1611 /**
1612  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1613  * @vcpu: The VCPU pointer
1614  * @run:  The kvm_run struct
1615  */
1616 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1617 			    const struct sys_reg_desc *global,
1618 			    size_t nr_global,
1619 			    const struct sys_reg_desc *target_specific,
1620 			    size_t nr_specific)
1621 {
1622 	struct sys_reg_params params;
1623 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1624 	int Rt  = (hsr >> 5) & 0xf;
1625 
1626 	params.is_aarch32 = true;
1627 	params.is_32bit = true;
1628 	params.CRm = (hsr >> 1) & 0xf;
1629 	params.regval = vcpu_get_reg(vcpu, Rt);
1630 	params.is_write = ((hsr & 1) == 0);
1631 	params.CRn = (hsr >> 10) & 0xf;
1632 	params.Op0 = 0;
1633 	params.Op1 = (hsr >> 14) & 0x7;
1634 	params.Op2 = (hsr >> 17) & 0x7;
1635 
1636 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1637 	    !emulate_cp(vcpu, &params, global, nr_global)) {
1638 		if (!params.is_write)
1639 			vcpu_set_reg(vcpu, Rt, params.regval);
1640 		return 1;
1641 	}
1642 
1643 	unhandled_cp_access(vcpu, &params);
1644 	return 1;
1645 }
1646 
1647 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1648 {
1649 	const struct sys_reg_desc *target_specific;
1650 	size_t num;
1651 
1652 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1653 	return kvm_handle_cp_64(vcpu,
1654 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1655 				target_specific, num);
1656 }
1657 
1658 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1659 {
1660 	const struct sys_reg_desc *target_specific;
1661 	size_t num;
1662 
1663 	target_specific = get_target_table(vcpu->arch.target, false, &num);
1664 	return kvm_handle_cp_32(vcpu,
1665 				cp15_regs, ARRAY_SIZE(cp15_regs),
1666 				target_specific, num);
1667 }
1668 
1669 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1670 {
1671 	return kvm_handle_cp_64(vcpu,
1672 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1673 				NULL, 0);
1674 }
1675 
1676 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1677 {
1678 	return kvm_handle_cp_32(vcpu,
1679 				cp14_regs, ARRAY_SIZE(cp14_regs),
1680 				NULL, 0);
1681 }
1682 
1683 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1684 			   struct sys_reg_params *params)
1685 {
1686 	size_t num;
1687 	const struct sys_reg_desc *table, *r;
1688 
1689 	table = get_target_table(vcpu->arch.target, true, &num);
1690 
1691 	/* Search target-specific then generic table. */
1692 	r = find_reg(params, table, num);
1693 	if (!r)
1694 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1695 
1696 	if (likely(r)) {
1697 		/*
1698 		 * Not having an accessor means that we have
1699 		 * configured a trap that we don't know how to
1700 		 * handle. This certainly qualifies as a gross bug
1701 		 * that should be fixed right away.
1702 		 */
1703 		BUG_ON(!r->access);
1704 
1705 		if (likely(r->access(vcpu, params, r))) {
1706 			/* Skip instruction, since it was emulated */
1707 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1708 			return 1;
1709 		}
1710 		/* If access function fails, it should complain. */
1711 	} else {
1712 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
1713 			*vcpu_pc(vcpu));
1714 		print_sys_reg_instr(params);
1715 	}
1716 	kvm_inject_undefined(vcpu);
1717 	return 1;
1718 }
1719 
1720 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1721 			      const struct sys_reg_desc *table, size_t num)
1722 {
1723 	unsigned long i;
1724 
1725 	for (i = 0; i < num; i++)
1726 		if (table[i].reset)
1727 			table[i].reset(vcpu, &table[i]);
1728 }
1729 
1730 /**
1731  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1732  * @vcpu: The VCPU pointer
1733  * @run:  The kvm_run struct
1734  */
1735 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1736 {
1737 	struct sys_reg_params params;
1738 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1739 	int Rt = (esr >> 5) & 0x1f;
1740 	int ret;
1741 
1742 	trace_kvm_handle_sys_reg(esr);
1743 
1744 	params.is_aarch32 = false;
1745 	params.is_32bit = false;
1746 	params.Op0 = (esr >> 20) & 3;
1747 	params.Op1 = (esr >> 14) & 0x7;
1748 	params.CRn = (esr >> 10) & 0xf;
1749 	params.CRm = (esr >> 1) & 0xf;
1750 	params.Op2 = (esr >> 17) & 0x7;
1751 	params.regval = vcpu_get_reg(vcpu, Rt);
1752 	params.is_write = !(esr & 1);
1753 
1754 	ret = emulate_sys_reg(vcpu, &params);
1755 
1756 	if (!params.is_write)
1757 		vcpu_set_reg(vcpu, Rt, params.regval);
1758 	return ret;
1759 }
1760 
1761 /******************************************************************************
1762  * Userspace API
1763  *****************************************************************************/
1764 
1765 static bool index_to_params(u64 id, struct sys_reg_params *params)
1766 {
1767 	switch (id & KVM_REG_SIZE_MASK) {
1768 	case KVM_REG_SIZE_U64:
1769 		/* Any unused index bits means it's not valid. */
1770 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1771 			      | KVM_REG_ARM_COPROC_MASK
1772 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
1773 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
1774 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
1775 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
1776 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
1777 			return false;
1778 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1779 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1780 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1781 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1782 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1783 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1784 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1785 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1786 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1787 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1788 		return true;
1789 	default:
1790 		return false;
1791 	}
1792 }
1793 
1794 /* Decode an index value, and find the sys_reg_desc entry. */
1795 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1796 						    u64 id)
1797 {
1798 	size_t num;
1799 	const struct sys_reg_desc *table, *r;
1800 	struct sys_reg_params params;
1801 
1802 	/* We only do sys_reg for now. */
1803 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1804 		return NULL;
1805 
1806 	if (!index_to_params(id, &params))
1807 		return NULL;
1808 
1809 	table = get_target_table(vcpu->arch.target, true, &num);
1810 	r = find_reg(&params, table, num);
1811 	if (!r)
1812 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1813 
1814 	/* Not saved in the sys_reg array? */
1815 	if (r && !r->reg)
1816 		r = NULL;
1817 
1818 	return r;
1819 }
1820 
1821 /*
1822  * These are the invariant sys_reg registers: we let the guest see the
1823  * host versions of these, so they're part of the guest state.
1824  *
1825  * A future CPU may provide a mechanism to present different values to
1826  * the guest, or a future kvm may trap them.
1827  */
1828 
1829 #define FUNCTION_INVARIANT(reg)						\
1830 	static void get_##reg(struct kvm_vcpu *v,			\
1831 			      const struct sys_reg_desc *r)		\
1832 	{								\
1833 		u64 val;						\
1834 									\
1835 		asm volatile("mrs %0, " __stringify(reg) "\n"		\
1836 			     : "=r" (val));				\
1837 		((struct sys_reg_desc *)r)->val = val;			\
1838 	}
1839 
1840 FUNCTION_INVARIANT(midr_el1)
1841 FUNCTION_INVARIANT(ctr_el0)
1842 FUNCTION_INVARIANT(revidr_el1)
1843 FUNCTION_INVARIANT(id_pfr0_el1)
1844 FUNCTION_INVARIANT(id_pfr1_el1)
1845 FUNCTION_INVARIANT(id_dfr0_el1)
1846 FUNCTION_INVARIANT(id_afr0_el1)
1847 FUNCTION_INVARIANT(id_mmfr0_el1)
1848 FUNCTION_INVARIANT(id_mmfr1_el1)
1849 FUNCTION_INVARIANT(id_mmfr2_el1)
1850 FUNCTION_INVARIANT(id_mmfr3_el1)
1851 FUNCTION_INVARIANT(id_isar0_el1)
1852 FUNCTION_INVARIANT(id_isar1_el1)
1853 FUNCTION_INVARIANT(id_isar2_el1)
1854 FUNCTION_INVARIANT(id_isar3_el1)
1855 FUNCTION_INVARIANT(id_isar4_el1)
1856 FUNCTION_INVARIANT(id_isar5_el1)
1857 FUNCTION_INVARIANT(clidr_el1)
1858 FUNCTION_INVARIANT(aidr_el1)
1859 
1860 /* ->val is filled in by kvm_sys_reg_table_init() */
1861 static struct sys_reg_desc invariant_sys_regs[] = {
1862 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1863 	  NULL, get_midr_el1 },
1864 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1865 	  NULL, get_revidr_el1 },
1866 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1867 	  NULL, get_id_pfr0_el1 },
1868 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1869 	  NULL, get_id_pfr1_el1 },
1870 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1871 	  NULL, get_id_dfr0_el1 },
1872 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1873 	  NULL, get_id_afr0_el1 },
1874 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1875 	  NULL, get_id_mmfr0_el1 },
1876 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1877 	  NULL, get_id_mmfr1_el1 },
1878 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1879 	  NULL, get_id_mmfr2_el1 },
1880 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1881 	  NULL, get_id_mmfr3_el1 },
1882 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1883 	  NULL, get_id_isar0_el1 },
1884 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1885 	  NULL, get_id_isar1_el1 },
1886 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1887 	  NULL, get_id_isar2_el1 },
1888 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1889 	  NULL, get_id_isar3_el1 },
1890 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1891 	  NULL, get_id_isar4_el1 },
1892 	{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1893 	  NULL, get_id_isar5_el1 },
1894 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1895 	  NULL, get_clidr_el1 },
1896 	{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1897 	  NULL, get_aidr_el1 },
1898 	{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1899 	  NULL, get_ctr_el0 },
1900 };
1901 
1902 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1903 {
1904 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1905 		return -EFAULT;
1906 	return 0;
1907 }
1908 
1909 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1910 {
1911 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1912 		return -EFAULT;
1913 	return 0;
1914 }
1915 
1916 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1917 {
1918 	struct sys_reg_params params;
1919 	const struct sys_reg_desc *r;
1920 
1921 	if (!index_to_params(id, &params))
1922 		return -ENOENT;
1923 
1924 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1925 	if (!r)
1926 		return -ENOENT;
1927 
1928 	return reg_to_user(uaddr, &r->val, id);
1929 }
1930 
1931 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1932 {
1933 	struct sys_reg_params params;
1934 	const struct sys_reg_desc *r;
1935 	int err;
1936 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1937 
1938 	if (!index_to_params(id, &params))
1939 		return -ENOENT;
1940 	r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1941 	if (!r)
1942 		return -ENOENT;
1943 
1944 	err = reg_from_user(&val, uaddr, id);
1945 	if (err)
1946 		return err;
1947 
1948 	/* This is what we mean by invariant: you can't change it. */
1949 	if (r->val != val)
1950 		return -EINVAL;
1951 
1952 	return 0;
1953 }
1954 
1955 static bool is_valid_cache(u32 val)
1956 {
1957 	u32 level, ctype;
1958 
1959 	if (val >= CSSELR_MAX)
1960 		return false;
1961 
1962 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1963 	level = (val >> 1);
1964 	ctype = (cache_levels >> (level * 3)) & 7;
1965 
1966 	switch (ctype) {
1967 	case 0: /* No cache */
1968 		return false;
1969 	case 1: /* Instruction cache only */
1970 		return (val & 1);
1971 	case 2: /* Data cache only */
1972 	case 4: /* Unified cache */
1973 		return !(val & 1);
1974 	case 3: /* Separate instruction and data caches */
1975 		return true;
1976 	default: /* Reserved: we can't know instruction or data. */
1977 		return false;
1978 	}
1979 }
1980 
1981 static int demux_c15_get(u64 id, void __user *uaddr)
1982 {
1983 	u32 val;
1984 	u32 __user *uval = uaddr;
1985 
1986 	/* Fail if we have unknown bits set. */
1987 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1988 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1989 		return -ENOENT;
1990 
1991 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1992 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1993 		if (KVM_REG_SIZE(id) != 4)
1994 			return -ENOENT;
1995 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1996 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1997 		if (!is_valid_cache(val))
1998 			return -ENOENT;
1999 
2000 		return put_user(get_ccsidr(val), uval);
2001 	default:
2002 		return -ENOENT;
2003 	}
2004 }
2005 
2006 static int demux_c15_set(u64 id, void __user *uaddr)
2007 {
2008 	u32 val, newval;
2009 	u32 __user *uval = uaddr;
2010 
2011 	/* Fail if we have unknown bits set. */
2012 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2013 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2014 		return -ENOENT;
2015 
2016 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2017 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2018 		if (KVM_REG_SIZE(id) != 4)
2019 			return -ENOENT;
2020 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2021 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2022 		if (!is_valid_cache(val))
2023 			return -ENOENT;
2024 
2025 		if (get_user(newval, uval))
2026 			return -EFAULT;
2027 
2028 		/* This is also invariant: you can't change it. */
2029 		if (newval != get_ccsidr(val))
2030 			return -EINVAL;
2031 		return 0;
2032 	default:
2033 		return -ENOENT;
2034 	}
2035 }
2036 
2037 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2038 {
2039 	const struct sys_reg_desc *r;
2040 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2041 
2042 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2043 		return demux_c15_get(reg->id, uaddr);
2044 
2045 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2046 		return -ENOENT;
2047 
2048 	r = index_to_sys_reg_desc(vcpu, reg->id);
2049 	if (!r)
2050 		return get_invariant_sys_reg(reg->id, uaddr);
2051 
2052 	if (r->get_user)
2053 		return (r->get_user)(vcpu, r, reg, uaddr);
2054 
2055 	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2056 }
2057 
2058 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2059 {
2060 	const struct sys_reg_desc *r;
2061 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2062 
2063 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2064 		return demux_c15_set(reg->id, uaddr);
2065 
2066 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2067 		return -ENOENT;
2068 
2069 	r = index_to_sys_reg_desc(vcpu, reg->id);
2070 	if (!r)
2071 		return set_invariant_sys_reg(reg->id, uaddr);
2072 
2073 	if (r->set_user)
2074 		return (r->set_user)(vcpu, r, reg, uaddr);
2075 
2076 	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2077 }
2078 
2079 static unsigned int num_demux_regs(void)
2080 {
2081 	unsigned int i, count = 0;
2082 
2083 	for (i = 0; i < CSSELR_MAX; i++)
2084 		if (is_valid_cache(i))
2085 			count++;
2086 
2087 	return count;
2088 }
2089 
2090 static int write_demux_regids(u64 __user *uindices)
2091 {
2092 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2093 	unsigned int i;
2094 
2095 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2096 	for (i = 0; i < CSSELR_MAX; i++) {
2097 		if (!is_valid_cache(i))
2098 			continue;
2099 		if (put_user(val | i, uindices))
2100 			return -EFAULT;
2101 		uindices++;
2102 	}
2103 	return 0;
2104 }
2105 
2106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2107 {
2108 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2109 		KVM_REG_ARM64_SYSREG |
2110 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2111 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2112 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2113 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2114 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2115 }
2116 
2117 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2118 {
2119 	if (!*uind)
2120 		return true;
2121 
2122 	if (put_user(sys_reg_to_index(reg), *uind))
2123 		return false;
2124 
2125 	(*uind)++;
2126 	return true;
2127 }
2128 
2129 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2130 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2131 {
2132 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2133 	unsigned int total = 0;
2134 	size_t num;
2135 
2136 	/* We check for duplicates here, to allow arch-specific overrides. */
2137 	i1 = get_target_table(vcpu->arch.target, true, &num);
2138 	end1 = i1 + num;
2139 	i2 = sys_reg_descs;
2140 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2141 
2142 	BUG_ON(i1 == end1 || i2 == end2);
2143 
2144 	/* Walk carefully, as both tables may refer to the same register. */
2145 	while (i1 || i2) {
2146 		int cmp = cmp_sys_reg(i1, i2);
2147 		/* target-specific overrides generic entry. */
2148 		if (cmp <= 0) {
2149 			/* Ignore registers we trap but don't save. */
2150 			if (i1->reg) {
2151 				if (!copy_reg_to_user(i1, &uind))
2152 					return -EFAULT;
2153 				total++;
2154 			}
2155 		} else {
2156 			/* Ignore registers we trap but don't save. */
2157 			if (i2->reg) {
2158 				if (!copy_reg_to_user(i2, &uind))
2159 					return -EFAULT;
2160 				total++;
2161 			}
2162 		}
2163 
2164 		if (cmp <= 0 && ++i1 == end1)
2165 			i1 = NULL;
2166 		if (cmp >= 0 && ++i2 == end2)
2167 			i2 = NULL;
2168 	}
2169 	return total;
2170 }
2171 
2172 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2173 {
2174 	return ARRAY_SIZE(invariant_sys_regs)
2175 		+ num_demux_regs()
2176 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2177 }
2178 
2179 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2180 {
2181 	unsigned int i;
2182 	int err;
2183 
2184 	/* Then give them all the invariant registers' indices. */
2185 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2186 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2187 			return -EFAULT;
2188 		uindices++;
2189 	}
2190 
2191 	err = walk_sys_regs(vcpu, uindices);
2192 	if (err < 0)
2193 		return err;
2194 	uindices += err;
2195 
2196 	return write_demux_regids(uindices);
2197 }
2198 
2199 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2200 {
2201 	unsigned int i;
2202 
2203 	for (i = 1; i < n; i++) {
2204 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2205 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2206 			return 1;
2207 		}
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 void kvm_sys_reg_table_init(void)
2214 {
2215 	unsigned int i;
2216 	struct sys_reg_desc clidr;
2217 
2218 	/* Make sure tables are unique and in order. */
2219 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2220 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2221 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2222 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2223 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2224 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2225 
2226 	/* We abuse the reset function to overwrite the table itself. */
2227 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2228 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2229 
2230 	/*
2231 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2232 	 *
2233 	 *   If software reads the Cache Type fields from Ctype1
2234 	 *   upwards, once it has seen a value of 0b000, no caches
2235 	 *   exist at further-out levels of the hierarchy. So, for
2236 	 *   example, if Ctype3 is the first Cache Type field with a
2237 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2238 	 *   ignored.
2239 	 */
2240 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2241 	cache_levels = clidr.val;
2242 	for (i = 0; i < 7; i++)
2243 		if (((cache_levels >> (i*3)) & 7) == 0)
2244 			break;
2245 	/* Clear all higher bits. */
2246 	cache_levels &= (1 << (i*3))-1;
2247 }
2248 
2249 /**
2250  * kvm_reset_sys_regs - sets system registers to reset value
2251  * @vcpu: The VCPU pointer
2252  *
2253  * This function finds the right table above and sets the registers on the
2254  * virtual CPU struct to their architecturally defined reset values.
2255  */
2256 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2257 {
2258 	size_t num;
2259 	const struct sys_reg_desc *table;
2260 
2261 	/* Catch someone adding a register without putting in reset entry. */
2262 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2263 
2264 	/* Generic chip reset first (so target could override). */
2265 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2266 
2267 	table = get_target_table(vcpu->arch.target, true, &num);
2268 	reset_sys_reg_descs(vcpu, table, num);
2269 
2270 	for (num = 1; num < NR_SYS_REGS; num++)
2271 		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2272 			panic("Didn't reset vcpu_sys_reg(%zi)", num);
2273 }
2274