xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41 
42 #include <trace/events/kvm.h>
43 
44 #include "sys_regs.h"
45 
46 #include "trace.h"
47 
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58 
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 				 struct sys_reg_params *params,
61 				 const struct sys_reg_desc *r)
62 {
63 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64 	print_sys_reg_instr(params);
65 	kvm_inject_undefined(vcpu);
66 	return false;
67 }
68 
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 			       struct sys_reg_params *params,
71 			       const struct sys_reg_desc *r)
72 {
73 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74 	print_sys_reg_instr(params);
75 	kvm_inject_undefined(vcpu);
76 	return false;
77 }
78 
79 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
80 {
81 	if (!vcpu->arch.sysregs_loaded_on_cpu)
82 		goto immediate_read;
83 
84 	/*
85 	 * System registers listed in the switch are not saved on every
86 	 * exit from the guest but are only saved on vcpu_put.
87 	 *
88 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89 	 * should never be listed below, because the guest cannot modify its
90 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91 	 * thread when emulating cross-VCPU communication.
92 	 */
93 	switch (reg) {
94 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
95 	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
96 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
97 	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
98 	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
99 	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
100 	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
101 	case ESR_EL1:		return read_sysreg_s(esr_EL12);
102 	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
103 	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
104 	case FAR_EL1:		return read_sysreg_s(far_EL12);
105 	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
106 	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
107 	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
108 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
109 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
110 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
111 	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
112 	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
113 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
114 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
115 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
116 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
117 	}
118 
119 immediate_read:
120 	return __vcpu_sys_reg(vcpu, reg);
121 }
122 
123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125 	if (!vcpu->arch.sysregs_loaded_on_cpu)
126 		goto immediate_write;
127 
128 	/*
129 	 * System registers listed in the switch are not restored on every
130 	 * entry to the guest but are only restored on vcpu_load.
131 	 *
132 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133 	 * should never be listed below, because the the MPIDR should only be
134 	 * set once, before running the VCPU, and never changed later.
135 	 */
136 	switch (reg) {
137 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
138 	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
139 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
140 	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
141 	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
142 	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
143 	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
144 	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
145 	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
146 	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
147 	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
148 	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
149 	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
150 	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
151 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
152 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
153 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
154 	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
155 	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
156 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
157 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
158 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
159 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
160 	}
161 
162 immediate_write:
163 	 __vcpu_sys_reg(vcpu, reg) = val;
164 }
165 
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168 
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171 
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175 	u32 ccsidr;
176 
177 	/* Make sure noone else changes CSSELR during this! */
178 	local_irq_disable();
179 	write_sysreg(csselr, csselr_el1);
180 	isb();
181 	ccsidr = read_sysreg(ccsidr_el1);
182 	local_irq_enable();
183 
184 	return ccsidr;
185 }
186 
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191 			struct sys_reg_params *p,
192 			const struct sys_reg_desc *r)
193 {
194 	if (!p->is_write)
195 		return read_from_write_only(vcpu, p, r);
196 
197 	/*
198 	 * Only track S/W ops if we don't have FWB. It still indicates
199 	 * that the guest is a bit broken (S/W operations should only
200 	 * be done by firmware, knowing that there is only a single
201 	 * CPU left in the system, and certainly not from non-secure
202 	 * software).
203 	 */
204 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205 		kvm_set_way_flush(vcpu);
206 
207 	return true;
208 }
209 
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216 			  struct sys_reg_params *p,
217 			  const struct sys_reg_desc *r)
218 {
219 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
220 	u64 val;
221 	int reg = r->reg;
222 
223 	BUG_ON(!p->is_write);
224 
225 	/* See the 32bit mapping in kvm_host.h */
226 	if (p->is_aarch32)
227 		reg = r->reg / 2;
228 
229 	if (!p->is_aarch32 || !p->is_32bit) {
230 		val = p->regval;
231 	} else {
232 		val = vcpu_read_sys_reg(vcpu, reg);
233 		if (r->reg % 2)
234 			val = (p->regval << 32) | (u64)lower_32_bits(val);
235 		else
236 			val = ((u64)upper_32_bits(val) << 32) |
237 				lower_32_bits(p->regval);
238 	}
239 	vcpu_write_sys_reg(vcpu, val, reg);
240 
241 	kvm_toggle_cache(vcpu, was_enabled);
242 	return true;
243 }
244 
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252 			   struct sys_reg_params *p,
253 			   const struct sys_reg_desc *r)
254 {
255 	bool g1;
256 
257 	if (!p->is_write)
258 		return read_from_write_only(vcpu, p, r);
259 
260 	/*
261 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265 	 * group.
266 	 */
267 	if (p->is_aarch32) {
268 		switch (p->Op1) {
269 		default:		/* Keep GCC quiet */
270 		case 0:			/* ICC_SGI1R */
271 			g1 = true;
272 			break;
273 		case 1:			/* ICC_ASGI1R */
274 		case 2:			/* ICC_SGI0R */
275 			g1 = false;
276 			break;
277 		}
278 	} else {
279 		switch (p->Op2) {
280 		default:		/* Keep GCC quiet */
281 		case 5:			/* ICC_SGI1R_EL1 */
282 			g1 = true;
283 			break;
284 		case 6:			/* ICC_ASGI1R_EL1 */
285 		case 7:			/* ICC_SGI0R_EL1 */
286 			g1 = false;
287 			break;
288 		}
289 	}
290 
291 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292 
293 	return true;
294 }
295 
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297 			   struct sys_reg_params *p,
298 			   const struct sys_reg_desc *r)
299 {
300 	if (p->is_write)
301 		return ignore_write(vcpu, p);
302 
303 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304 	return true;
305 }
306 
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308 			struct sys_reg_params *p,
309 			const struct sys_reg_desc *r)
310 {
311 	if (p->is_write)
312 		return ignore_write(vcpu, p);
313 	else
314 		return read_zero(vcpu, p);
315 }
316 
317 /*
318  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
319  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
320  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
321  * treat it separately.
322  */
323 static bool trap_loregion(struct kvm_vcpu *vcpu,
324 			  struct sys_reg_params *p,
325 			  const struct sys_reg_desc *r)
326 {
327 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
328 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
329 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
330 
331 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
332 		kvm_inject_undefined(vcpu);
333 		return false;
334 	}
335 
336 	if (p->is_write && sr == SYS_LORID_EL1)
337 		return write_to_read_only(vcpu, p, r);
338 
339 	return trap_raz_wi(vcpu, p, r);
340 }
341 
342 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343 			   struct sys_reg_params *p,
344 			   const struct sys_reg_desc *r)
345 {
346 	if (p->is_write) {
347 		return ignore_write(vcpu, p);
348 	} else {
349 		p->regval = (1 << 3);
350 		return true;
351 	}
352 }
353 
354 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355 				   struct sys_reg_params *p,
356 				   const struct sys_reg_desc *r)
357 {
358 	if (p->is_write) {
359 		return ignore_write(vcpu, p);
360 	} else {
361 		p->regval = read_sysreg(dbgauthstatus_el1);
362 		return true;
363 	}
364 }
365 
366 /*
367  * We want to avoid world-switching all the DBG registers all the
368  * time:
369  *
370  * - If we've touched any debug register, it is likely that we're
371  *   going to touch more of them. It then makes sense to disable the
372  *   traps and start doing the save/restore dance
373  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
374  *   then mandatory to save/restore the registers, as the guest
375  *   depends on them.
376  *
377  * For this, we use a DIRTY bit, indicating the guest has modified the
378  * debug registers, used as follow:
379  *
380  * On guest entry:
381  * - If the dirty bit is set (because we're coming back from trapping),
382  *   disable the traps, save host registers, restore guest registers.
383  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
384  *   set the dirty bit, disable the traps, save host registers,
385  *   restore guest registers.
386  * - Otherwise, enable the traps
387  *
388  * On guest exit:
389  * - If the dirty bit is set, save guest registers, restore host
390  *   registers and clear the dirty bit. This ensure that the host can
391  *   now use the debug registers.
392  */
393 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394 			    struct sys_reg_params *p,
395 			    const struct sys_reg_desc *r)
396 {
397 	if (p->is_write) {
398 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400 	} else {
401 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402 	}
403 
404 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405 
406 	return true;
407 }
408 
409 /*
410  * reg_to_dbg/dbg_to_reg
411  *
412  * A 32 bit write to a debug register leave top bits alone
413  * A 32 bit read from a debug register only returns the bottom bits
414  *
415  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
416  * hyp.S code switches between host and guest values in future.
417  */
418 static void reg_to_dbg(struct kvm_vcpu *vcpu,
419 		       struct sys_reg_params *p,
420 		       u64 *dbg_reg)
421 {
422 	u64 val = p->regval;
423 
424 	if (p->is_32bit) {
425 		val &= 0xffffffffUL;
426 		val |= ((*dbg_reg >> 32) << 32);
427 	}
428 
429 	*dbg_reg = val;
430 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 }
432 
433 static void dbg_to_reg(struct kvm_vcpu *vcpu,
434 		       struct sys_reg_params *p,
435 		       u64 *dbg_reg)
436 {
437 	p->regval = *dbg_reg;
438 	if (p->is_32bit)
439 		p->regval &= 0xffffffffUL;
440 }
441 
442 static bool trap_bvr(struct kvm_vcpu *vcpu,
443 		     struct sys_reg_params *p,
444 		     const struct sys_reg_desc *rd)
445 {
446 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
447 
448 	if (p->is_write)
449 		reg_to_dbg(vcpu, p, dbg_reg);
450 	else
451 		dbg_to_reg(vcpu, p, dbg_reg);
452 
453 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
454 
455 	return true;
456 }
457 
458 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
459 		const struct kvm_one_reg *reg, void __user *uaddr)
460 {
461 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462 
463 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464 		return -EFAULT;
465 	return 0;
466 }
467 
468 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
469 	const struct kvm_one_reg *reg, void __user *uaddr)
470 {
471 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
472 
473 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
474 		return -EFAULT;
475 	return 0;
476 }
477 
478 static void reset_bvr(struct kvm_vcpu *vcpu,
479 		      const struct sys_reg_desc *rd)
480 {
481 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
482 }
483 
484 static bool trap_bcr(struct kvm_vcpu *vcpu,
485 		     struct sys_reg_params *p,
486 		     const struct sys_reg_desc *rd)
487 {
488 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
489 
490 	if (p->is_write)
491 		reg_to_dbg(vcpu, p, dbg_reg);
492 	else
493 		dbg_to_reg(vcpu, p, dbg_reg);
494 
495 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
496 
497 	return true;
498 }
499 
500 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 		const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504 
505 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506 		return -EFAULT;
507 
508 	return 0;
509 }
510 
511 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512 	const struct kvm_one_reg *reg, void __user *uaddr)
513 {
514 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
515 
516 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
517 		return -EFAULT;
518 	return 0;
519 }
520 
521 static void reset_bcr(struct kvm_vcpu *vcpu,
522 		      const struct sys_reg_desc *rd)
523 {
524 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
525 }
526 
527 static bool trap_wvr(struct kvm_vcpu *vcpu,
528 		     struct sys_reg_params *p,
529 		     const struct sys_reg_desc *rd)
530 {
531 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
532 
533 	if (p->is_write)
534 		reg_to_dbg(vcpu, p, dbg_reg);
535 	else
536 		dbg_to_reg(vcpu, p, dbg_reg);
537 
538 	trace_trap_reg(__func__, rd->reg, p->is_write,
539 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
540 
541 	return true;
542 }
543 
544 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545 		const struct kvm_one_reg *reg, void __user *uaddr)
546 {
547 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548 
549 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550 		return -EFAULT;
551 	return 0;
552 }
553 
554 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555 	const struct kvm_one_reg *reg, void __user *uaddr)
556 {
557 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
558 
559 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
560 		return -EFAULT;
561 	return 0;
562 }
563 
564 static void reset_wvr(struct kvm_vcpu *vcpu,
565 		      const struct sys_reg_desc *rd)
566 {
567 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
568 }
569 
570 static bool trap_wcr(struct kvm_vcpu *vcpu,
571 		     struct sys_reg_params *p,
572 		     const struct sys_reg_desc *rd)
573 {
574 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
575 
576 	if (p->is_write)
577 		reg_to_dbg(vcpu, p, dbg_reg);
578 	else
579 		dbg_to_reg(vcpu, p, dbg_reg);
580 
581 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
582 
583 	return true;
584 }
585 
586 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
587 		const struct kvm_one_reg *reg, void __user *uaddr)
588 {
589 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590 
591 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592 		return -EFAULT;
593 	return 0;
594 }
595 
596 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
597 	const struct kvm_one_reg *reg, void __user *uaddr)
598 {
599 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
600 
601 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
602 		return -EFAULT;
603 	return 0;
604 }
605 
606 static void reset_wcr(struct kvm_vcpu *vcpu,
607 		      const struct sys_reg_desc *rd)
608 {
609 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
610 }
611 
612 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
613 {
614 	u64 amair = read_sysreg(amair_el1);
615 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 }
617 
618 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620 	u64 mpidr;
621 
622 	/*
623 	 * Map the vcpu_id into the first three affinity level fields of
624 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
625 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
626 	 * of the GICv3 to be able to address each CPU directly when
627 	 * sending IPIs.
628 	 */
629 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
630 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
631 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 }
634 
635 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
636 {
637 	u64 pmcr, val;
638 
639 	pmcr = read_sysreg(pmcr_el0);
640 	/*
641 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642 	 * except PMCR.E resetting to zero.
643 	 */
644 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
645 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
647 }
648 
649 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
650 {
651 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
652 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
653 
654 	if (!enabled)
655 		kvm_inject_undefined(vcpu);
656 
657 	return !enabled;
658 }
659 
660 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
661 {
662 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
663 }
664 
665 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
666 {
667 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
668 }
669 
670 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
671 {
672 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
673 }
674 
675 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
676 {
677 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
678 }
679 
680 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
681 			const struct sys_reg_desc *r)
682 {
683 	u64 val;
684 
685 	if (!kvm_arm_pmu_v3_ready(vcpu))
686 		return trap_raz_wi(vcpu, p, r);
687 
688 	if (pmu_access_el0_disabled(vcpu))
689 		return false;
690 
691 	if (p->is_write) {
692 		/* Only update writeable bits of PMCR */
693 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
694 		val &= ~ARMV8_PMU_PMCR_MASK;
695 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
696 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
697 		kvm_pmu_handle_pmcr(vcpu, val);
698 	} else {
699 		/* PMCR.P & PMCR.C are RAZ */
700 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
701 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
702 		p->regval = val;
703 	}
704 
705 	return true;
706 }
707 
708 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
709 			  const struct sys_reg_desc *r)
710 {
711 	if (!kvm_arm_pmu_v3_ready(vcpu))
712 		return trap_raz_wi(vcpu, p, r);
713 
714 	if (pmu_access_event_counter_el0_disabled(vcpu))
715 		return false;
716 
717 	if (p->is_write)
718 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
719 	else
720 		/* return PMSELR.SEL field */
721 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722 			    & ARMV8_PMU_COUNTER_MASK;
723 
724 	return true;
725 }
726 
727 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
728 			  const struct sys_reg_desc *r)
729 {
730 	u64 pmceid;
731 
732 	if (!kvm_arm_pmu_v3_ready(vcpu))
733 		return trap_raz_wi(vcpu, p, r);
734 
735 	BUG_ON(p->is_write);
736 
737 	if (pmu_access_el0_disabled(vcpu))
738 		return false;
739 
740 	if (!(p->Op2 & 1))
741 		pmceid = read_sysreg(pmceid0_el0);
742 	else
743 		pmceid = read_sysreg(pmceid1_el0);
744 
745 	p->regval = pmceid;
746 
747 	return true;
748 }
749 
750 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
751 {
752 	u64 pmcr, val;
753 
754 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
755 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
756 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
757 		kvm_inject_undefined(vcpu);
758 		return false;
759 	}
760 
761 	return true;
762 }
763 
764 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
765 			      struct sys_reg_params *p,
766 			      const struct sys_reg_desc *r)
767 {
768 	u64 idx;
769 
770 	if (!kvm_arm_pmu_v3_ready(vcpu))
771 		return trap_raz_wi(vcpu, p, r);
772 
773 	if (r->CRn == 9 && r->CRm == 13) {
774 		if (r->Op2 == 2) {
775 			/* PMXEVCNTR_EL0 */
776 			if (pmu_access_event_counter_el0_disabled(vcpu))
777 				return false;
778 
779 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780 			      & ARMV8_PMU_COUNTER_MASK;
781 		} else if (r->Op2 == 0) {
782 			/* PMCCNTR_EL0 */
783 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
784 				return false;
785 
786 			idx = ARMV8_PMU_CYCLE_IDX;
787 		} else {
788 			return false;
789 		}
790 	} else if (r->CRn == 0 && r->CRm == 9) {
791 		/* PMCCNTR */
792 		if (pmu_access_event_counter_el0_disabled(vcpu))
793 			return false;
794 
795 		idx = ARMV8_PMU_CYCLE_IDX;
796 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
797 		/* PMEVCNTRn_EL0 */
798 		if (pmu_access_event_counter_el0_disabled(vcpu))
799 			return false;
800 
801 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
802 	} else {
803 		return false;
804 	}
805 
806 	if (!pmu_counter_idx_valid(vcpu, idx))
807 		return false;
808 
809 	if (p->is_write) {
810 		if (pmu_access_el0_disabled(vcpu))
811 			return false;
812 
813 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814 	} else {
815 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816 	}
817 
818 	return true;
819 }
820 
821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822 			       const struct sys_reg_desc *r)
823 {
824 	u64 idx, reg;
825 
826 	if (!kvm_arm_pmu_v3_ready(vcpu))
827 		return trap_raz_wi(vcpu, p, r);
828 
829 	if (pmu_access_el0_disabled(vcpu))
830 		return false;
831 
832 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
833 		/* PMXEVTYPER_EL0 */
834 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
835 		reg = PMEVTYPER0_EL0 + idx;
836 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
837 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
838 		if (idx == ARMV8_PMU_CYCLE_IDX)
839 			reg = PMCCFILTR_EL0;
840 		else
841 			/* PMEVTYPERn_EL0 */
842 			reg = PMEVTYPER0_EL0 + idx;
843 	} else {
844 		BUG();
845 	}
846 
847 	if (!pmu_counter_idx_valid(vcpu, idx))
848 		return false;
849 
850 	if (p->is_write) {
851 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
852 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
853 	} else {
854 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
855 	}
856 
857 	return true;
858 }
859 
860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
861 			   const struct sys_reg_desc *r)
862 {
863 	u64 val, mask;
864 
865 	if (!kvm_arm_pmu_v3_ready(vcpu))
866 		return trap_raz_wi(vcpu, p, r);
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	mask = kvm_pmu_valid_counter_mask(vcpu);
872 	if (p->is_write) {
873 		val = p->regval & mask;
874 		if (r->Op2 & 0x1) {
875 			/* accessing PMCNTENSET_EL0 */
876 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
877 			kvm_pmu_enable_counter(vcpu, val);
878 		} else {
879 			/* accessing PMCNTENCLR_EL0 */
880 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
881 			kvm_pmu_disable_counter(vcpu, val);
882 		}
883 	} else {
884 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
885 	}
886 
887 	return true;
888 }
889 
890 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891 			   const struct sys_reg_desc *r)
892 {
893 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
894 
895 	if (!kvm_arm_pmu_v3_ready(vcpu))
896 		return trap_raz_wi(vcpu, p, r);
897 
898 	if (!vcpu_mode_priv(vcpu)) {
899 		kvm_inject_undefined(vcpu);
900 		return false;
901 	}
902 
903 	if (p->is_write) {
904 		u64 val = p->regval & mask;
905 
906 		if (r->Op2 & 0x1)
907 			/* accessing PMINTENSET_EL1 */
908 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
909 		else
910 			/* accessing PMINTENCLR_EL1 */
911 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
912 	} else {
913 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
914 	}
915 
916 	return true;
917 }
918 
919 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920 			 const struct sys_reg_desc *r)
921 {
922 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
923 
924 	if (!kvm_arm_pmu_v3_ready(vcpu))
925 		return trap_raz_wi(vcpu, p, r);
926 
927 	if (pmu_access_el0_disabled(vcpu))
928 		return false;
929 
930 	if (p->is_write) {
931 		if (r->CRm & 0x2)
932 			/* accessing PMOVSSET_EL0 */
933 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
934 		else
935 			/* accessing PMOVSCLR_EL0 */
936 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
937 	} else {
938 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
939 	}
940 
941 	return true;
942 }
943 
944 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
945 			   const struct sys_reg_desc *r)
946 {
947 	u64 mask;
948 
949 	if (!kvm_arm_pmu_v3_ready(vcpu))
950 		return trap_raz_wi(vcpu, p, r);
951 
952 	if (!p->is_write)
953 		return read_from_write_only(vcpu, p, r);
954 
955 	if (pmu_write_swinc_el0_disabled(vcpu))
956 		return false;
957 
958 	mask = kvm_pmu_valid_counter_mask(vcpu);
959 	kvm_pmu_software_increment(vcpu, p->regval & mask);
960 	return true;
961 }
962 
963 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
964 			     const struct sys_reg_desc *r)
965 {
966 	if (!kvm_arm_pmu_v3_ready(vcpu))
967 		return trap_raz_wi(vcpu, p, r);
968 
969 	if (p->is_write) {
970 		if (!vcpu_mode_priv(vcpu)) {
971 			kvm_inject_undefined(vcpu);
972 			return false;
973 		}
974 
975 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
976 			       p->regval & ARMV8_PMU_USERENR_MASK;
977 	} else {
978 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
979 			    & ARMV8_PMU_USERENR_MASK;
980 	}
981 
982 	return true;
983 }
984 
985 #define reg_to_encoding(x)						\
986 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
987 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
988 
989 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
990 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
991 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
992 	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
993 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
994 	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
995 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
996 	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
997 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
998 	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
999 
1000 /* Macro to expand the PMEVCNTRn_EL0 register */
1001 #define PMU_PMEVCNTR_EL0(n)						\
1002 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
1003 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1004 
1005 /* Macro to expand the PMEVTYPERn_EL0 register */
1006 #define PMU_PMEVTYPER_EL0(n)						\
1007 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1008 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1009 
1010 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1011 			      struct sys_reg_params *p,
1012 			      const struct sys_reg_desc *r)
1013 {
1014 	enum kvm_arch_timers tmr;
1015 	enum kvm_arch_timer_regs treg;
1016 	u64 reg = reg_to_encoding(r);
1017 
1018 	switch (reg) {
1019 	case SYS_CNTP_TVAL_EL0:
1020 	case SYS_AARCH32_CNTP_TVAL:
1021 		tmr = TIMER_PTIMER;
1022 		treg = TIMER_REG_TVAL;
1023 		break;
1024 	case SYS_CNTP_CTL_EL0:
1025 	case SYS_AARCH32_CNTP_CTL:
1026 		tmr = TIMER_PTIMER;
1027 		treg = TIMER_REG_CTL;
1028 		break;
1029 	case SYS_CNTP_CVAL_EL0:
1030 	case SYS_AARCH32_CNTP_CVAL:
1031 		tmr = TIMER_PTIMER;
1032 		treg = TIMER_REG_CVAL;
1033 		break;
1034 	default:
1035 		BUG();
1036 	}
1037 
1038 	if (p->is_write)
1039 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1040 	else
1041 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1042 
1043 	return true;
1044 }
1045 
1046 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1047 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1048 {
1049 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1050 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1051 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1052 
1053 	if (id == SYS_ID_AA64PFR0_EL1) {
1054 		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1055 			kvm_debug("SVE unsupported for guests, suppressing\n");
1056 
1057 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1058 	} else if (id == SYS_ID_AA64ISAR1_EL1) {
1059 		const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1060 					 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1061 					 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1062 					 (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
1063 		if (val & ptrauth_mask)
1064 			kvm_debug("ptrauth unsupported for guests, suppressing\n");
1065 		val &= ~ptrauth_mask;
1066 	}
1067 
1068 	return val;
1069 }
1070 
1071 /* cpufeature ID register access trap handlers */
1072 
1073 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1074 			    struct sys_reg_params *p,
1075 			    const struct sys_reg_desc *r,
1076 			    bool raz)
1077 {
1078 	if (p->is_write)
1079 		return write_to_read_only(vcpu, p, r);
1080 
1081 	p->regval = read_id_reg(r, raz);
1082 	return true;
1083 }
1084 
1085 static bool access_id_reg(struct kvm_vcpu *vcpu,
1086 			  struct sys_reg_params *p,
1087 			  const struct sys_reg_desc *r)
1088 {
1089 	return __access_id_reg(vcpu, p, r, false);
1090 }
1091 
1092 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1093 			      struct sys_reg_params *p,
1094 			      const struct sys_reg_desc *r)
1095 {
1096 	return __access_id_reg(vcpu, p, r, true);
1097 }
1098 
1099 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1100 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1101 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1102 
1103 /*
1104  * cpufeature ID register user accessors
1105  *
1106  * For now, these registers are immutable for userspace, so no values
1107  * are stored, and for set_id_reg() we don't allow the effective value
1108  * to be changed.
1109  */
1110 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1111 			bool raz)
1112 {
1113 	const u64 id = sys_reg_to_index(rd);
1114 	const u64 val = read_id_reg(rd, raz);
1115 
1116 	return reg_to_user(uaddr, &val, id);
1117 }
1118 
1119 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1120 			bool raz)
1121 {
1122 	const u64 id = sys_reg_to_index(rd);
1123 	int err;
1124 	u64 val;
1125 
1126 	err = reg_from_user(&val, uaddr, id);
1127 	if (err)
1128 		return err;
1129 
1130 	/* This is what we mean by invariant: you can't change it. */
1131 	if (val != read_id_reg(rd, raz))
1132 		return -EINVAL;
1133 
1134 	return 0;
1135 }
1136 
1137 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1138 		      const struct kvm_one_reg *reg, void __user *uaddr)
1139 {
1140 	return __get_id_reg(rd, uaddr, false);
1141 }
1142 
1143 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1144 		      const struct kvm_one_reg *reg, void __user *uaddr)
1145 {
1146 	return __set_id_reg(rd, uaddr, false);
1147 }
1148 
1149 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1150 			  const struct kvm_one_reg *reg, void __user *uaddr)
1151 {
1152 	return __get_id_reg(rd, uaddr, true);
1153 }
1154 
1155 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1156 			  const struct kvm_one_reg *reg, void __user *uaddr)
1157 {
1158 	return __set_id_reg(rd, uaddr, true);
1159 }
1160 
1161 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1162 		       const struct sys_reg_desc *r)
1163 {
1164 	if (p->is_write)
1165 		return write_to_read_only(vcpu, p, r);
1166 
1167 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1168 	return true;
1169 }
1170 
1171 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1172 			 const struct sys_reg_desc *r)
1173 {
1174 	if (p->is_write)
1175 		return write_to_read_only(vcpu, p, r);
1176 
1177 	p->regval = read_sysreg(clidr_el1);
1178 	return true;
1179 }
1180 
1181 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 			  const struct sys_reg_desc *r)
1183 {
1184 	if (p->is_write)
1185 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1186 	else
1187 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1188 	return true;
1189 }
1190 
1191 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1192 			  const struct sys_reg_desc *r)
1193 {
1194 	u32 csselr;
1195 
1196 	if (p->is_write)
1197 		return write_to_read_only(vcpu, p, r);
1198 
1199 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1200 	p->regval = get_ccsidr(csselr);
1201 
1202 	/*
1203 	 * Guests should not be doing cache operations by set/way at all, and
1204 	 * for this reason, we trap them and attempt to infer the intent, so
1205 	 * that we can flush the entire guest's address space at the appropriate
1206 	 * time.
1207 	 * To prevent this trapping from causing performance problems, let's
1208 	 * expose the geometry of all data and unified caches (which are
1209 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1210 	 * [If guests should attempt to infer aliasing properties from the
1211 	 * geometry (which is not permitted by the architecture), they would
1212 	 * only do so for virtually indexed caches.]
1213 	 */
1214 	if (!(csselr & 1)) // data or unified cache
1215 		p->regval &= ~GENMASK(27, 3);
1216 	return true;
1217 }
1218 
1219 /* sys_reg_desc initialiser for known cpufeature ID registers */
1220 #define ID_SANITISED(name) {			\
1221 	SYS_DESC(SYS_##name),			\
1222 	.access	= access_id_reg,		\
1223 	.get_user = get_id_reg,			\
1224 	.set_user = set_id_reg,			\
1225 }
1226 
1227 /*
1228  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1229  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1230  * (1 <= crm < 8, 0 <= Op2 < 8).
1231  */
1232 #define ID_UNALLOCATED(crm, op2) {			\
1233 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1234 	.access = access_raz_id_reg,			\
1235 	.get_user = get_raz_id_reg,			\
1236 	.set_user = set_raz_id_reg,			\
1237 }
1238 
1239 /*
1240  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1241  * For now, these are exposed just like unallocated ID regs: they appear
1242  * RAZ for the guest.
1243  */
1244 #define ID_HIDDEN(name) {			\
1245 	SYS_DESC(SYS_##name),			\
1246 	.access = access_raz_id_reg,		\
1247 	.get_user = get_raz_id_reg,		\
1248 	.set_user = set_raz_id_reg,		\
1249 }
1250 
1251 /*
1252  * Architected system registers.
1253  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1254  *
1255  * Debug handling: We do trap most, if not all debug related system
1256  * registers. The implementation is good enough to ensure that a guest
1257  * can use these with minimal performance degradation. The drawback is
1258  * that we don't implement any of the external debug, none of the
1259  * OSlock protocol. This should be revisited if we ever encounter a
1260  * more demanding guest...
1261  */
1262 static const struct sys_reg_desc sys_reg_descs[] = {
1263 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1264 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1265 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1266 
1267 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1268 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1269 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1270 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1271 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1272 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1273 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1274 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1275 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1276 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1277 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1278 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1279 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1280 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1281 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1282 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1283 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1284 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1285 
1286 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1287 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1288 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1289 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1290 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1291 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1292 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1293 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1294 
1295 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1296 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1297 	// DBGDTR[TR]X_EL0 share the same encoding
1298 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1299 
1300 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1301 
1302 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1303 
1304 	/*
1305 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1306 	 * entries in arm64_ftr_regs[].
1307 	 */
1308 
1309 	/* AArch64 mappings of the AArch32 ID registers */
1310 	/* CRm=1 */
1311 	ID_SANITISED(ID_PFR0_EL1),
1312 	ID_SANITISED(ID_PFR1_EL1),
1313 	ID_SANITISED(ID_DFR0_EL1),
1314 	ID_HIDDEN(ID_AFR0_EL1),
1315 	ID_SANITISED(ID_MMFR0_EL1),
1316 	ID_SANITISED(ID_MMFR1_EL1),
1317 	ID_SANITISED(ID_MMFR2_EL1),
1318 	ID_SANITISED(ID_MMFR3_EL1),
1319 
1320 	/* CRm=2 */
1321 	ID_SANITISED(ID_ISAR0_EL1),
1322 	ID_SANITISED(ID_ISAR1_EL1),
1323 	ID_SANITISED(ID_ISAR2_EL1),
1324 	ID_SANITISED(ID_ISAR3_EL1),
1325 	ID_SANITISED(ID_ISAR4_EL1),
1326 	ID_SANITISED(ID_ISAR5_EL1),
1327 	ID_SANITISED(ID_MMFR4_EL1),
1328 	ID_UNALLOCATED(2,7),
1329 
1330 	/* CRm=3 */
1331 	ID_SANITISED(MVFR0_EL1),
1332 	ID_SANITISED(MVFR1_EL1),
1333 	ID_SANITISED(MVFR2_EL1),
1334 	ID_UNALLOCATED(3,3),
1335 	ID_UNALLOCATED(3,4),
1336 	ID_UNALLOCATED(3,5),
1337 	ID_UNALLOCATED(3,6),
1338 	ID_UNALLOCATED(3,7),
1339 
1340 	/* AArch64 ID registers */
1341 	/* CRm=4 */
1342 	ID_SANITISED(ID_AA64PFR0_EL1),
1343 	ID_SANITISED(ID_AA64PFR1_EL1),
1344 	ID_UNALLOCATED(4,2),
1345 	ID_UNALLOCATED(4,3),
1346 	ID_UNALLOCATED(4,4),
1347 	ID_UNALLOCATED(4,5),
1348 	ID_UNALLOCATED(4,6),
1349 	ID_UNALLOCATED(4,7),
1350 
1351 	/* CRm=5 */
1352 	ID_SANITISED(ID_AA64DFR0_EL1),
1353 	ID_SANITISED(ID_AA64DFR1_EL1),
1354 	ID_UNALLOCATED(5,2),
1355 	ID_UNALLOCATED(5,3),
1356 	ID_HIDDEN(ID_AA64AFR0_EL1),
1357 	ID_HIDDEN(ID_AA64AFR1_EL1),
1358 	ID_UNALLOCATED(5,6),
1359 	ID_UNALLOCATED(5,7),
1360 
1361 	/* CRm=6 */
1362 	ID_SANITISED(ID_AA64ISAR0_EL1),
1363 	ID_SANITISED(ID_AA64ISAR1_EL1),
1364 	ID_UNALLOCATED(6,2),
1365 	ID_UNALLOCATED(6,3),
1366 	ID_UNALLOCATED(6,4),
1367 	ID_UNALLOCATED(6,5),
1368 	ID_UNALLOCATED(6,6),
1369 	ID_UNALLOCATED(6,7),
1370 
1371 	/* CRm=7 */
1372 	ID_SANITISED(ID_AA64MMFR0_EL1),
1373 	ID_SANITISED(ID_AA64MMFR1_EL1),
1374 	ID_SANITISED(ID_AA64MMFR2_EL1),
1375 	ID_UNALLOCATED(7,3),
1376 	ID_UNALLOCATED(7,4),
1377 	ID_UNALLOCATED(7,5),
1378 	ID_UNALLOCATED(7,6),
1379 	ID_UNALLOCATED(7,7),
1380 
1381 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1382 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1383 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1384 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1385 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1386 
1387 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1388 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1389 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1390 
1391 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1392 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1393 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1394 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1395 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1396 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1397 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1398 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1399 
1400 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1401 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1402 
1403 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1404 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1405 
1406 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1407 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1408 
1409 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1410 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1411 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1412 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1413 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1414 
1415 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1416 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1417 
1418 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1419 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1420 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1421 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1422 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1423 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1424 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1425 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1426 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1427 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1428 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1429 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1430 
1431 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1432 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1433 
1434 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1435 
1436 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1437 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1438 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1439 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1440 
1441 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1442 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1443 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1444 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1445 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1446 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1447 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1448 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1449 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1450 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1451 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1452 	/*
1453 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1454 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1455 	 */
1456 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1457 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1458 
1459 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1460 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1461 
1462 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1463 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1464 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1465 
1466 	/* PMEVCNTRn_EL0 */
1467 	PMU_PMEVCNTR_EL0(0),
1468 	PMU_PMEVCNTR_EL0(1),
1469 	PMU_PMEVCNTR_EL0(2),
1470 	PMU_PMEVCNTR_EL0(3),
1471 	PMU_PMEVCNTR_EL0(4),
1472 	PMU_PMEVCNTR_EL0(5),
1473 	PMU_PMEVCNTR_EL0(6),
1474 	PMU_PMEVCNTR_EL0(7),
1475 	PMU_PMEVCNTR_EL0(8),
1476 	PMU_PMEVCNTR_EL0(9),
1477 	PMU_PMEVCNTR_EL0(10),
1478 	PMU_PMEVCNTR_EL0(11),
1479 	PMU_PMEVCNTR_EL0(12),
1480 	PMU_PMEVCNTR_EL0(13),
1481 	PMU_PMEVCNTR_EL0(14),
1482 	PMU_PMEVCNTR_EL0(15),
1483 	PMU_PMEVCNTR_EL0(16),
1484 	PMU_PMEVCNTR_EL0(17),
1485 	PMU_PMEVCNTR_EL0(18),
1486 	PMU_PMEVCNTR_EL0(19),
1487 	PMU_PMEVCNTR_EL0(20),
1488 	PMU_PMEVCNTR_EL0(21),
1489 	PMU_PMEVCNTR_EL0(22),
1490 	PMU_PMEVCNTR_EL0(23),
1491 	PMU_PMEVCNTR_EL0(24),
1492 	PMU_PMEVCNTR_EL0(25),
1493 	PMU_PMEVCNTR_EL0(26),
1494 	PMU_PMEVCNTR_EL0(27),
1495 	PMU_PMEVCNTR_EL0(28),
1496 	PMU_PMEVCNTR_EL0(29),
1497 	PMU_PMEVCNTR_EL0(30),
1498 	/* PMEVTYPERn_EL0 */
1499 	PMU_PMEVTYPER_EL0(0),
1500 	PMU_PMEVTYPER_EL0(1),
1501 	PMU_PMEVTYPER_EL0(2),
1502 	PMU_PMEVTYPER_EL0(3),
1503 	PMU_PMEVTYPER_EL0(4),
1504 	PMU_PMEVTYPER_EL0(5),
1505 	PMU_PMEVTYPER_EL0(6),
1506 	PMU_PMEVTYPER_EL0(7),
1507 	PMU_PMEVTYPER_EL0(8),
1508 	PMU_PMEVTYPER_EL0(9),
1509 	PMU_PMEVTYPER_EL0(10),
1510 	PMU_PMEVTYPER_EL0(11),
1511 	PMU_PMEVTYPER_EL0(12),
1512 	PMU_PMEVTYPER_EL0(13),
1513 	PMU_PMEVTYPER_EL0(14),
1514 	PMU_PMEVTYPER_EL0(15),
1515 	PMU_PMEVTYPER_EL0(16),
1516 	PMU_PMEVTYPER_EL0(17),
1517 	PMU_PMEVTYPER_EL0(18),
1518 	PMU_PMEVTYPER_EL0(19),
1519 	PMU_PMEVTYPER_EL0(20),
1520 	PMU_PMEVTYPER_EL0(21),
1521 	PMU_PMEVTYPER_EL0(22),
1522 	PMU_PMEVTYPER_EL0(23),
1523 	PMU_PMEVTYPER_EL0(24),
1524 	PMU_PMEVTYPER_EL0(25),
1525 	PMU_PMEVTYPER_EL0(26),
1526 	PMU_PMEVTYPER_EL0(27),
1527 	PMU_PMEVTYPER_EL0(28),
1528 	PMU_PMEVTYPER_EL0(29),
1529 	PMU_PMEVTYPER_EL0(30),
1530 	/*
1531 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1532 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1533 	 */
1534 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1535 
1536 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1537 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1538 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1539 };
1540 
1541 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1542 			struct sys_reg_params *p,
1543 			const struct sys_reg_desc *r)
1544 {
1545 	if (p->is_write) {
1546 		return ignore_write(vcpu, p);
1547 	} else {
1548 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1549 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1550 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1551 
1552 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1553 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1554 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1555 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1556 		return true;
1557 	}
1558 }
1559 
1560 static bool trap_debug32(struct kvm_vcpu *vcpu,
1561 			 struct sys_reg_params *p,
1562 			 const struct sys_reg_desc *r)
1563 {
1564 	if (p->is_write) {
1565 		vcpu_cp14(vcpu, r->reg) = p->regval;
1566 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1567 	} else {
1568 		p->regval = vcpu_cp14(vcpu, r->reg);
1569 	}
1570 
1571 	return true;
1572 }
1573 
1574 /* AArch32 debug register mappings
1575  *
1576  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1577  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1578  *
1579  * All control registers and watchpoint value registers are mapped to
1580  * the lower 32 bits of their AArch64 equivalents. We share the trap
1581  * handlers with the above AArch64 code which checks what mode the
1582  * system is in.
1583  */
1584 
1585 static bool trap_xvr(struct kvm_vcpu *vcpu,
1586 		     struct sys_reg_params *p,
1587 		     const struct sys_reg_desc *rd)
1588 {
1589 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1590 
1591 	if (p->is_write) {
1592 		u64 val = *dbg_reg;
1593 
1594 		val &= 0xffffffffUL;
1595 		val |= p->regval << 32;
1596 		*dbg_reg = val;
1597 
1598 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1599 	} else {
1600 		p->regval = *dbg_reg >> 32;
1601 	}
1602 
1603 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1604 
1605 	return true;
1606 }
1607 
1608 #define DBG_BCR_BVR_WCR_WVR(n)						\
1609 	/* DBGBVRn */							\
1610 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1611 	/* DBGBCRn */							\
1612 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1613 	/* DBGWVRn */							\
1614 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1615 	/* DBGWCRn */							\
1616 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1617 
1618 #define DBGBXVR(n)							\
1619 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1620 
1621 /*
1622  * Trapped cp14 registers. We generally ignore most of the external
1623  * debug, on the principle that they don't really make sense to a
1624  * guest. Revisit this one day, would this principle change.
1625  */
1626 static const struct sys_reg_desc cp14_regs[] = {
1627 	/* DBGIDR */
1628 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1629 	/* DBGDTRRXext */
1630 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1631 
1632 	DBG_BCR_BVR_WCR_WVR(0),
1633 	/* DBGDSCRint */
1634 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1635 	DBG_BCR_BVR_WCR_WVR(1),
1636 	/* DBGDCCINT */
1637 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1638 	/* DBGDSCRext */
1639 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1640 	DBG_BCR_BVR_WCR_WVR(2),
1641 	/* DBGDTR[RT]Xint */
1642 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1643 	/* DBGDTR[RT]Xext */
1644 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1645 	DBG_BCR_BVR_WCR_WVR(3),
1646 	DBG_BCR_BVR_WCR_WVR(4),
1647 	DBG_BCR_BVR_WCR_WVR(5),
1648 	/* DBGWFAR */
1649 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1650 	/* DBGOSECCR */
1651 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1652 	DBG_BCR_BVR_WCR_WVR(6),
1653 	/* DBGVCR */
1654 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1655 	DBG_BCR_BVR_WCR_WVR(7),
1656 	DBG_BCR_BVR_WCR_WVR(8),
1657 	DBG_BCR_BVR_WCR_WVR(9),
1658 	DBG_BCR_BVR_WCR_WVR(10),
1659 	DBG_BCR_BVR_WCR_WVR(11),
1660 	DBG_BCR_BVR_WCR_WVR(12),
1661 	DBG_BCR_BVR_WCR_WVR(13),
1662 	DBG_BCR_BVR_WCR_WVR(14),
1663 	DBG_BCR_BVR_WCR_WVR(15),
1664 
1665 	/* DBGDRAR (32bit) */
1666 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1667 
1668 	DBGBXVR(0),
1669 	/* DBGOSLAR */
1670 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1671 	DBGBXVR(1),
1672 	/* DBGOSLSR */
1673 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1674 	DBGBXVR(2),
1675 	DBGBXVR(3),
1676 	/* DBGOSDLR */
1677 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1678 	DBGBXVR(4),
1679 	/* DBGPRCR */
1680 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1681 	DBGBXVR(5),
1682 	DBGBXVR(6),
1683 	DBGBXVR(7),
1684 	DBGBXVR(8),
1685 	DBGBXVR(9),
1686 	DBGBXVR(10),
1687 	DBGBXVR(11),
1688 	DBGBXVR(12),
1689 	DBGBXVR(13),
1690 	DBGBXVR(14),
1691 	DBGBXVR(15),
1692 
1693 	/* DBGDSAR (32bit) */
1694 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1695 
1696 	/* DBGDEVID2 */
1697 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1698 	/* DBGDEVID1 */
1699 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1700 	/* DBGDEVID */
1701 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1702 	/* DBGCLAIMSET */
1703 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1704 	/* DBGCLAIMCLR */
1705 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1706 	/* DBGAUTHSTATUS */
1707 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1708 };
1709 
1710 /* Trapped cp14 64bit registers */
1711 static const struct sys_reg_desc cp14_64_regs[] = {
1712 	/* DBGDRAR (64bit) */
1713 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1714 
1715 	/* DBGDSAR (64bit) */
1716 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1717 };
1718 
1719 /* Macro to expand the PMEVCNTRn register */
1720 #define PMU_PMEVCNTR(n)							\
1721 	/* PMEVCNTRn */							\
1722 	{ Op1(0), CRn(0b1110),						\
1723 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1724 	  access_pmu_evcntr }
1725 
1726 /* Macro to expand the PMEVTYPERn register */
1727 #define PMU_PMEVTYPER(n)						\
1728 	/* PMEVTYPERn */						\
1729 	{ Op1(0), CRn(0b1110),						\
1730 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1731 	  access_pmu_evtyper }
1732 
1733 /*
1734  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1735  * depending on the way they are accessed (as a 32bit or a 64bit
1736  * register).
1737  */
1738 static const struct sys_reg_desc cp15_regs[] = {
1739 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1740 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1741 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1742 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1743 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1744 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1745 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1746 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1747 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1748 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1749 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1750 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1751 
1752 	/*
1753 	 * DC{C,I,CI}SW operations:
1754 	 */
1755 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1756 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1757 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1758 
1759 	/* PMU */
1760 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1761 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1762 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1763 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1764 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1765 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1766 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1767 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1768 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1769 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1770 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1771 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1772 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1773 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1774 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1775 
1776 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1777 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1778 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1779 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1780 
1781 	/* ICC_SRE */
1782 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1783 
1784 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1785 
1786 	/* Arch Tmers */
1787 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1788 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1789 
1790 	/* PMEVCNTRn */
1791 	PMU_PMEVCNTR(0),
1792 	PMU_PMEVCNTR(1),
1793 	PMU_PMEVCNTR(2),
1794 	PMU_PMEVCNTR(3),
1795 	PMU_PMEVCNTR(4),
1796 	PMU_PMEVCNTR(5),
1797 	PMU_PMEVCNTR(6),
1798 	PMU_PMEVCNTR(7),
1799 	PMU_PMEVCNTR(8),
1800 	PMU_PMEVCNTR(9),
1801 	PMU_PMEVCNTR(10),
1802 	PMU_PMEVCNTR(11),
1803 	PMU_PMEVCNTR(12),
1804 	PMU_PMEVCNTR(13),
1805 	PMU_PMEVCNTR(14),
1806 	PMU_PMEVCNTR(15),
1807 	PMU_PMEVCNTR(16),
1808 	PMU_PMEVCNTR(17),
1809 	PMU_PMEVCNTR(18),
1810 	PMU_PMEVCNTR(19),
1811 	PMU_PMEVCNTR(20),
1812 	PMU_PMEVCNTR(21),
1813 	PMU_PMEVCNTR(22),
1814 	PMU_PMEVCNTR(23),
1815 	PMU_PMEVCNTR(24),
1816 	PMU_PMEVCNTR(25),
1817 	PMU_PMEVCNTR(26),
1818 	PMU_PMEVCNTR(27),
1819 	PMU_PMEVCNTR(28),
1820 	PMU_PMEVCNTR(29),
1821 	PMU_PMEVCNTR(30),
1822 	/* PMEVTYPERn */
1823 	PMU_PMEVTYPER(0),
1824 	PMU_PMEVTYPER(1),
1825 	PMU_PMEVTYPER(2),
1826 	PMU_PMEVTYPER(3),
1827 	PMU_PMEVTYPER(4),
1828 	PMU_PMEVTYPER(5),
1829 	PMU_PMEVTYPER(6),
1830 	PMU_PMEVTYPER(7),
1831 	PMU_PMEVTYPER(8),
1832 	PMU_PMEVTYPER(9),
1833 	PMU_PMEVTYPER(10),
1834 	PMU_PMEVTYPER(11),
1835 	PMU_PMEVTYPER(12),
1836 	PMU_PMEVTYPER(13),
1837 	PMU_PMEVTYPER(14),
1838 	PMU_PMEVTYPER(15),
1839 	PMU_PMEVTYPER(16),
1840 	PMU_PMEVTYPER(17),
1841 	PMU_PMEVTYPER(18),
1842 	PMU_PMEVTYPER(19),
1843 	PMU_PMEVTYPER(20),
1844 	PMU_PMEVTYPER(21),
1845 	PMU_PMEVTYPER(22),
1846 	PMU_PMEVTYPER(23),
1847 	PMU_PMEVTYPER(24),
1848 	PMU_PMEVTYPER(25),
1849 	PMU_PMEVTYPER(26),
1850 	PMU_PMEVTYPER(27),
1851 	PMU_PMEVTYPER(28),
1852 	PMU_PMEVTYPER(29),
1853 	PMU_PMEVTYPER(30),
1854 	/* PMCCFILTR */
1855 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1856 
1857 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1858 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1859 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1860 };
1861 
1862 static const struct sys_reg_desc cp15_64_regs[] = {
1863 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1864 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1865 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1866 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1867 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1868 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1869 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1870 };
1871 
1872 /* Target specific emulation tables */
1873 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1874 
1875 void kvm_register_target_sys_reg_table(unsigned int target,
1876 				       struct kvm_sys_reg_target_table *table)
1877 {
1878 	target_tables[target] = table;
1879 }
1880 
1881 /* Get specific register table for this target. */
1882 static const struct sys_reg_desc *get_target_table(unsigned target,
1883 						   bool mode_is_64,
1884 						   size_t *num)
1885 {
1886 	struct kvm_sys_reg_target_table *table;
1887 
1888 	table = target_tables[target];
1889 	if (mode_is_64) {
1890 		*num = table->table64.num;
1891 		return table->table64.table;
1892 	} else {
1893 		*num = table->table32.num;
1894 		return table->table32.table;
1895 	}
1896 }
1897 
1898 static int match_sys_reg(const void *key, const void *elt)
1899 {
1900 	const unsigned long pval = (unsigned long)key;
1901 	const struct sys_reg_desc *r = elt;
1902 
1903 	return pval - reg_to_encoding(r);
1904 }
1905 
1906 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1907 					 const struct sys_reg_desc table[],
1908 					 unsigned int num)
1909 {
1910 	unsigned long pval = reg_to_encoding(params);
1911 
1912 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1913 }
1914 
1915 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1916 {
1917 	kvm_inject_undefined(vcpu);
1918 	return 1;
1919 }
1920 
1921 static void perform_access(struct kvm_vcpu *vcpu,
1922 			   struct sys_reg_params *params,
1923 			   const struct sys_reg_desc *r)
1924 {
1925 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
1926 
1927 	/*
1928 	 * Not having an accessor means that we have configured a trap
1929 	 * that we don't know how to handle. This certainly qualifies
1930 	 * as a gross bug that should be fixed right away.
1931 	 */
1932 	BUG_ON(!r->access);
1933 
1934 	/* Skip instruction if instructed so */
1935 	if (likely(r->access(vcpu, params, r)))
1936 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1937 }
1938 
1939 /*
1940  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1941  *                call the corresponding trap handler.
1942  *
1943  * @params: pointer to the descriptor of the access
1944  * @table: array of trap descriptors
1945  * @num: size of the trap descriptor array
1946  *
1947  * Return 0 if the access has been handled, and -1 if not.
1948  */
1949 static int emulate_cp(struct kvm_vcpu *vcpu,
1950 		      struct sys_reg_params *params,
1951 		      const struct sys_reg_desc *table,
1952 		      size_t num)
1953 {
1954 	const struct sys_reg_desc *r;
1955 
1956 	if (!table)
1957 		return -1;	/* Not handled */
1958 
1959 	r = find_reg(params, table, num);
1960 
1961 	if (r) {
1962 		perform_access(vcpu, params, r);
1963 		return 0;
1964 	}
1965 
1966 	/* Not handled */
1967 	return -1;
1968 }
1969 
1970 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1971 				struct sys_reg_params *params)
1972 {
1973 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1974 	int cp = -1;
1975 
1976 	switch(hsr_ec) {
1977 	case ESR_ELx_EC_CP15_32:
1978 	case ESR_ELx_EC_CP15_64:
1979 		cp = 15;
1980 		break;
1981 	case ESR_ELx_EC_CP14_MR:
1982 	case ESR_ELx_EC_CP14_64:
1983 		cp = 14;
1984 		break;
1985 	default:
1986 		WARN_ON(1);
1987 	}
1988 
1989 	kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
1990 		cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
1991 	print_sys_reg_instr(params);
1992 	kvm_inject_undefined(vcpu);
1993 }
1994 
1995 /**
1996  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1997  * @vcpu: The VCPU pointer
1998  * @run:  The kvm_run struct
1999  */
2000 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2001 			    const struct sys_reg_desc *global,
2002 			    size_t nr_global,
2003 			    const struct sys_reg_desc *target_specific,
2004 			    size_t nr_specific)
2005 {
2006 	struct sys_reg_params params;
2007 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2008 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2009 	int Rt2 = (hsr >> 10) & 0x1f;
2010 
2011 	params.is_aarch32 = true;
2012 	params.is_32bit = false;
2013 	params.CRm = (hsr >> 1) & 0xf;
2014 	params.is_write = ((hsr & 1) == 0);
2015 
2016 	params.Op0 = 0;
2017 	params.Op1 = (hsr >> 16) & 0xf;
2018 	params.Op2 = 0;
2019 	params.CRn = 0;
2020 
2021 	/*
2022 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2023 	 * backends between AArch32 and AArch64, we get away with it.
2024 	 */
2025 	if (params.is_write) {
2026 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2027 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2028 	}
2029 
2030 	/*
2031 	 * Try to emulate the coprocessor access using the target
2032 	 * specific table first, and using the global table afterwards.
2033 	 * If either of the tables contains a handler, handle the
2034 	 * potential register operation in the case of a read and return
2035 	 * with success.
2036 	 */
2037 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2038 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2039 		/* Split up the value between registers for the read side */
2040 		if (!params.is_write) {
2041 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2042 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2043 		}
2044 
2045 		return 1;
2046 	}
2047 
2048 	unhandled_cp_access(vcpu, &params);
2049 	return 1;
2050 }
2051 
2052 /**
2053  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2054  * @vcpu: The VCPU pointer
2055  * @run:  The kvm_run struct
2056  */
2057 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2058 			    const struct sys_reg_desc *global,
2059 			    size_t nr_global,
2060 			    const struct sys_reg_desc *target_specific,
2061 			    size_t nr_specific)
2062 {
2063 	struct sys_reg_params params;
2064 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2065 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2066 
2067 	params.is_aarch32 = true;
2068 	params.is_32bit = true;
2069 	params.CRm = (hsr >> 1) & 0xf;
2070 	params.regval = vcpu_get_reg(vcpu, Rt);
2071 	params.is_write = ((hsr & 1) == 0);
2072 	params.CRn = (hsr >> 10) & 0xf;
2073 	params.Op0 = 0;
2074 	params.Op1 = (hsr >> 14) & 0x7;
2075 	params.Op2 = (hsr >> 17) & 0x7;
2076 
2077 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2078 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2079 		if (!params.is_write)
2080 			vcpu_set_reg(vcpu, Rt, params.regval);
2081 		return 1;
2082 	}
2083 
2084 	unhandled_cp_access(vcpu, &params);
2085 	return 1;
2086 }
2087 
2088 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2089 {
2090 	const struct sys_reg_desc *target_specific;
2091 	size_t num;
2092 
2093 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2094 	return kvm_handle_cp_64(vcpu,
2095 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2096 				target_specific, num);
2097 }
2098 
2099 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2100 {
2101 	const struct sys_reg_desc *target_specific;
2102 	size_t num;
2103 
2104 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2105 	return kvm_handle_cp_32(vcpu,
2106 				cp15_regs, ARRAY_SIZE(cp15_regs),
2107 				target_specific, num);
2108 }
2109 
2110 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2111 {
2112 	return kvm_handle_cp_64(vcpu,
2113 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2114 				NULL, 0);
2115 }
2116 
2117 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2118 {
2119 	return kvm_handle_cp_32(vcpu,
2120 				cp14_regs, ARRAY_SIZE(cp14_regs),
2121 				NULL, 0);
2122 }
2123 
2124 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2125 			   struct sys_reg_params *params)
2126 {
2127 	size_t num;
2128 	const struct sys_reg_desc *table, *r;
2129 
2130 	table = get_target_table(vcpu->arch.target, true, &num);
2131 
2132 	/* Search target-specific then generic table. */
2133 	r = find_reg(params, table, num);
2134 	if (!r)
2135 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2136 
2137 	if (likely(r)) {
2138 		perform_access(vcpu, params, r);
2139 	} else {
2140 		kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2141 			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2142 		print_sys_reg_instr(params);
2143 		kvm_inject_undefined(vcpu);
2144 	}
2145 	return 1;
2146 }
2147 
2148 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2149 			      const struct sys_reg_desc *table, size_t num)
2150 {
2151 	unsigned long i;
2152 
2153 	for (i = 0; i < num; i++)
2154 		if (table[i].reset)
2155 			table[i].reset(vcpu, &table[i]);
2156 }
2157 
2158 /**
2159  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2160  * @vcpu: The VCPU pointer
2161  * @run:  The kvm_run struct
2162  */
2163 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2164 {
2165 	struct sys_reg_params params;
2166 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2167 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2168 	int ret;
2169 
2170 	trace_kvm_handle_sys_reg(esr);
2171 
2172 	params.is_aarch32 = false;
2173 	params.is_32bit = false;
2174 	params.Op0 = (esr >> 20) & 3;
2175 	params.Op1 = (esr >> 14) & 0x7;
2176 	params.CRn = (esr >> 10) & 0xf;
2177 	params.CRm = (esr >> 1) & 0xf;
2178 	params.Op2 = (esr >> 17) & 0x7;
2179 	params.regval = vcpu_get_reg(vcpu, Rt);
2180 	params.is_write = !(esr & 1);
2181 
2182 	ret = emulate_sys_reg(vcpu, &params);
2183 
2184 	if (!params.is_write)
2185 		vcpu_set_reg(vcpu, Rt, params.regval);
2186 	return ret;
2187 }
2188 
2189 /******************************************************************************
2190  * Userspace API
2191  *****************************************************************************/
2192 
2193 static bool index_to_params(u64 id, struct sys_reg_params *params)
2194 {
2195 	switch (id & KVM_REG_SIZE_MASK) {
2196 	case KVM_REG_SIZE_U64:
2197 		/* Any unused index bits means it's not valid. */
2198 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2199 			      | KVM_REG_ARM_COPROC_MASK
2200 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2201 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2202 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2203 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2204 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2205 			return false;
2206 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2207 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2208 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2209 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2210 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2211 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2212 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2213 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2214 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2215 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2216 		return true;
2217 	default:
2218 		return false;
2219 	}
2220 }
2221 
2222 const struct sys_reg_desc *find_reg_by_id(u64 id,
2223 					  struct sys_reg_params *params,
2224 					  const struct sys_reg_desc table[],
2225 					  unsigned int num)
2226 {
2227 	if (!index_to_params(id, params))
2228 		return NULL;
2229 
2230 	return find_reg(params, table, num);
2231 }
2232 
2233 /* Decode an index value, and find the sys_reg_desc entry. */
2234 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2235 						    u64 id)
2236 {
2237 	size_t num;
2238 	const struct sys_reg_desc *table, *r;
2239 	struct sys_reg_params params;
2240 
2241 	/* We only do sys_reg for now. */
2242 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2243 		return NULL;
2244 
2245 	table = get_target_table(vcpu->arch.target, true, &num);
2246 	r = find_reg_by_id(id, &params, table, num);
2247 	if (!r)
2248 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2249 
2250 	/* Not saved in the sys_reg array and not otherwise accessible? */
2251 	if (r && !(r->reg || r->get_user))
2252 		r = NULL;
2253 
2254 	return r;
2255 }
2256 
2257 /*
2258  * These are the invariant sys_reg registers: we let the guest see the
2259  * host versions of these, so they're part of the guest state.
2260  *
2261  * A future CPU may provide a mechanism to present different values to
2262  * the guest, or a future kvm may trap them.
2263  */
2264 
2265 #define FUNCTION_INVARIANT(reg)						\
2266 	static void get_##reg(struct kvm_vcpu *v,			\
2267 			      const struct sys_reg_desc *r)		\
2268 	{								\
2269 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2270 	}
2271 
2272 FUNCTION_INVARIANT(midr_el1)
2273 FUNCTION_INVARIANT(revidr_el1)
2274 FUNCTION_INVARIANT(clidr_el1)
2275 FUNCTION_INVARIANT(aidr_el1)
2276 
2277 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2278 {
2279 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2280 }
2281 
2282 /* ->val is filled in by kvm_sys_reg_table_init() */
2283 static struct sys_reg_desc invariant_sys_regs[] = {
2284 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2285 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2286 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2287 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2288 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2289 };
2290 
2291 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2292 {
2293 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2294 		return -EFAULT;
2295 	return 0;
2296 }
2297 
2298 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2299 {
2300 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2301 		return -EFAULT;
2302 	return 0;
2303 }
2304 
2305 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2306 {
2307 	struct sys_reg_params params;
2308 	const struct sys_reg_desc *r;
2309 
2310 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2311 			   ARRAY_SIZE(invariant_sys_regs));
2312 	if (!r)
2313 		return -ENOENT;
2314 
2315 	return reg_to_user(uaddr, &r->val, id);
2316 }
2317 
2318 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2319 {
2320 	struct sys_reg_params params;
2321 	const struct sys_reg_desc *r;
2322 	int err;
2323 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2324 
2325 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2326 			   ARRAY_SIZE(invariant_sys_regs));
2327 	if (!r)
2328 		return -ENOENT;
2329 
2330 	err = reg_from_user(&val, uaddr, id);
2331 	if (err)
2332 		return err;
2333 
2334 	/* This is what we mean by invariant: you can't change it. */
2335 	if (r->val != val)
2336 		return -EINVAL;
2337 
2338 	return 0;
2339 }
2340 
2341 static bool is_valid_cache(u32 val)
2342 {
2343 	u32 level, ctype;
2344 
2345 	if (val >= CSSELR_MAX)
2346 		return false;
2347 
2348 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2349 	level = (val >> 1);
2350 	ctype = (cache_levels >> (level * 3)) & 7;
2351 
2352 	switch (ctype) {
2353 	case 0: /* No cache */
2354 		return false;
2355 	case 1: /* Instruction cache only */
2356 		return (val & 1);
2357 	case 2: /* Data cache only */
2358 	case 4: /* Unified cache */
2359 		return !(val & 1);
2360 	case 3: /* Separate instruction and data caches */
2361 		return true;
2362 	default: /* Reserved: we can't know instruction or data. */
2363 		return false;
2364 	}
2365 }
2366 
2367 static int demux_c15_get(u64 id, void __user *uaddr)
2368 {
2369 	u32 val;
2370 	u32 __user *uval = uaddr;
2371 
2372 	/* Fail if we have unknown bits set. */
2373 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2374 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2375 		return -ENOENT;
2376 
2377 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2378 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2379 		if (KVM_REG_SIZE(id) != 4)
2380 			return -ENOENT;
2381 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2382 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2383 		if (!is_valid_cache(val))
2384 			return -ENOENT;
2385 
2386 		return put_user(get_ccsidr(val), uval);
2387 	default:
2388 		return -ENOENT;
2389 	}
2390 }
2391 
2392 static int demux_c15_set(u64 id, void __user *uaddr)
2393 {
2394 	u32 val, newval;
2395 	u32 __user *uval = uaddr;
2396 
2397 	/* Fail if we have unknown bits set. */
2398 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2399 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2400 		return -ENOENT;
2401 
2402 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2403 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2404 		if (KVM_REG_SIZE(id) != 4)
2405 			return -ENOENT;
2406 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2407 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2408 		if (!is_valid_cache(val))
2409 			return -ENOENT;
2410 
2411 		if (get_user(newval, uval))
2412 			return -EFAULT;
2413 
2414 		/* This is also invariant: you can't change it. */
2415 		if (newval != get_ccsidr(val))
2416 			return -EINVAL;
2417 		return 0;
2418 	default:
2419 		return -ENOENT;
2420 	}
2421 }
2422 
2423 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2424 {
2425 	const struct sys_reg_desc *r;
2426 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2427 
2428 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2429 		return demux_c15_get(reg->id, uaddr);
2430 
2431 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2432 		return -ENOENT;
2433 
2434 	r = index_to_sys_reg_desc(vcpu, reg->id);
2435 	if (!r)
2436 		return get_invariant_sys_reg(reg->id, uaddr);
2437 
2438 	if (r->get_user)
2439 		return (r->get_user)(vcpu, r, reg, uaddr);
2440 
2441 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2442 }
2443 
2444 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2445 {
2446 	const struct sys_reg_desc *r;
2447 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2448 
2449 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2450 		return demux_c15_set(reg->id, uaddr);
2451 
2452 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2453 		return -ENOENT;
2454 
2455 	r = index_to_sys_reg_desc(vcpu, reg->id);
2456 	if (!r)
2457 		return set_invariant_sys_reg(reg->id, uaddr);
2458 
2459 	if (r->set_user)
2460 		return (r->set_user)(vcpu, r, reg, uaddr);
2461 
2462 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2463 }
2464 
2465 static unsigned int num_demux_regs(void)
2466 {
2467 	unsigned int i, count = 0;
2468 
2469 	for (i = 0; i < CSSELR_MAX; i++)
2470 		if (is_valid_cache(i))
2471 			count++;
2472 
2473 	return count;
2474 }
2475 
2476 static int write_demux_regids(u64 __user *uindices)
2477 {
2478 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2479 	unsigned int i;
2480 
2481 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2482 	for (i = 0; i < CSSELR_MAX; i++) {
2483 		if (!is_valid_cache(i))
2484 			continue;
2485 		if (put_user(val | i, uindices))
2486 			return -EFAULT;
2487 		uindices++;
2488 	}
2489 	return 0;
2490 }
2491 
2492 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2493 {
2494 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2495 		KVM_REG_ARM64_SYSREG |
2496 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2497 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2498 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2499 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2500 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2501 }
2502 
2503 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2504 {
2505 	if (!*uind)
2506 		return true;
2507 
2508 	if (put_user(sys_reg_to_index(reg), *uind))
2509 		return false;
2510 
2511 	(*uind)++;
2512 	return true;
2513 }
2514 
2515 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2516 			    u64 __user **uind,
2517 			    unsigned int *total)
2518 {
2519 	/*
2520 	 * Ignore registers we trap but don't save,
2521 	 * and for which no custom user accessor is provided.
2522 	 */
2523 	if (!(rd->reg || rd->get_user))
2524 		return 0;
2525 
2526 	if (!copy_reg_to_user(rd, uind))
2527 		return -EFAULT;
2528 
2529 	(*total)++;
2530 	return 0;
2531 }
2532 
2533 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2534 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2535 {
2536 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2537 	unsigned int total = 0;
2538 	size_t num;
2539 	int err;
2540 
2541 	/* We check for duplicates here, to allow arch-specific overrides. */
2542 	i1 = get_target_table(vcpu->arch.target, true, &num);
2543 	end1 = i1 + num;
2544 	i2 = sys_reg_descs;
2545 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2546 
2547 	BUG_ON(i1 == end1 || i2 == end2);
2548 
2549 	/* Walk carefully, as both tables may refer to the same register. */
2550 	while (i1 || i2) {
2551 		int cmp = cmp_sys_reg(i1, i2);
2552 		/* target-specific overrides generic entry. */
2553 		if (cmp <= 0)
2554 			err = walk_one_sys_reg(i1, &uind, &total);
2555 		else
2556 			err = walk_one_sys_reg(i2, &uind, &total);
2557 
2558 		if (err)
2559 			return err;
2560 
2561 		if (cmp <= 0 && ++i1 == end1)
2562 			i1 = NULL;
2563 		if (cmp >= 0 && ++i2 == end2)
2564 			i2 = NULL;
2565 	}
2566 	return total;
2567 }
2568 
2569 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2570 {
2571 	return ARRAY_SIZE(invariant_sys_regs)
2572 		+ num_demux_regs()
2573 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2574 }
2575 
2576 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2577 {
2578 	unsigned int i;
2579 	int err;
2580 
2581 	/* Then give them all the invariant registers' indices. */
2582 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2583 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2584 			return -EFAULT;
2585 		uindices++;
2586 	}
2587 
2588 	err = walk_sys_regs(vcpu, uindices);
2589 	if (err < 0)
2590 		return err;
2591 	uindices += err;
2592 
2593 	return write_demux_regids(uindices);
2594 }
2595 
2596 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2597 {
2598 	unsigned int i;
2599 
2600 	for (i = 1; i < n; i++) {
2601 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2602 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2603 			return 1;
2604 		}
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 void kvm_sys_reg_table_init(void)
2611 {
2612 	unsigned int i;
2613 	struct sys_reg_desc clidr;
2614 
2615 	/* Make sure tables are unique and in order. */
2616 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2617 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2618 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2619 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2620 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2621 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2622 
2623 	/* We abuse the reset function to overwrite the table itself. */
2624 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2625 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2626 
2627 	/*
2628 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2629 	 *
2630 	 *   If software reads the Cache Type fields from Ctype1
2631 	 *   upwards, once it has seen a value of 0b000, no caches
2632 	 *   exist at further-out levels of the hierarchy. So, for
2633 	 *   example, if Ctype3 is the first Cache Type field with a
2634 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2635 	 *   ignored.
2636 	 */
2637 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2638 	cache_levels = clidr.val;
2639 	for (i = 0; i < 7; i++)
2640 		if (((cache_levels >> (i*3)) & 7) == 0)
2641 			break;
2642 	/* Clear all higher bits. */
2643 	cache_levels &= (1 << (i*3))-1;
2644 }
2645 
2646 /**
2647  * kvm_reset_sys_regs - sets system registers to reset value
2648  * @vcpu: The VCPU pointer
2649  *
2650  * This function finds the right table above and sets the registers on the
2651  * virtual CPU struct to their architecturally defined reset values.
2652  */
2653 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2654 {
2655 	size_t num;
2656 	const struct sys_reg_desc *table;
2657 
2658 	/* Catch someone adding a register without putting in reset entry. */
2659 	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2660 
2661 	/* Generic chip reset first (so target could override). */
2662 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2663 
2664 	table = get_target_table(vcpu->arch.target, true, &num);
2665 	reset_sys_reg_descs(vcpu, table, num);
2666 
2667 	for (num = 1; num < NR_SYS_REGS; num++) {
2668 		if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
2669 			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2670 			break;
2671 	}
2672 }
2673