xref: /openbmc/linux/arch/arm64/kvm/psci.c (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/arm-smccc.h>
8 #include <linux/preempt.h>
9 #include <linux/kvm_host.h>
10 #include <linux/uaccess.h>
11 #include <linux/wait.h>
12 
13 #include <asm/cputype.h>
14 #include <asm/kvm_emulate.h>
15 
16 #include <kvm/arm_psci.h>
17 #include <kvm/arm_hypercalls.h>
18 
19 /*
20  * This is an implementation of the Power State Coordination Interface
21  * as described in ARM document number ARM DEN 0022A.
22  */
23 
24 #define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
25 
26 static unsigned long psci_affinity_mask(unsigned long affinity_level)
27 {
28 	if (affinity_level <= 3)
29 		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
30 
31 	return 0;
32 }
33 
34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
35 {
36 	/*
37 	 * NOTE: For simplicity, we make VCPU suspend emulation to be
38 	 * same-as WFI (Wait-for-interrupt) emulation.
39 	 *
40 	 * This means for KVM the wakeup events are interrupts and
41 	 * this is consistent with intended use of StateID as described
42 	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
43 	 *
44 	 * Further, we also treat power-down request to be same as
45 	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
46 	 * specification (ARM DEN 0022A). This means all suspend states
47 	 * for KVM will preserve the register state.
48 	 */
49 	kvm_vcpu_wfi(vcpu);
50 
51 	return PSCI_RET_SUCCESS;
52 }
53 
54 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
55 					   unsigned long affinity)
56 {
57 	return !(affinity & ~MPIDR_HWID_BITMASK);
58 }
59 
60 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
61 {
62 	struct vcpu_reset_state *reset_state;
63 	struct kvm *kvm = source_vcpu->kvm;
64 	struct kvm_vcpu *vcpu = NULL;
65 	int ret = PSCI_RET_SUCCESS;
66 	unsigned long cpu_id;
67 
68 	cpu_id = smccc_get_arg1(source_vcpu);
69 	if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
70 		return PSCI_RET_INVALID_PARAMS;
71 
72 	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
73 
74 	/*
75 	 * Make sure the caller requested a valid CPU and that the CPU is
76 	 * turned off.
77 	 */
78 	if (!vcpu)
79 		return PSCI_RET_INVALID_PARAMS;
80 
81 	spin_lock(&vcpu->arch.mp_state_lock);
82 	if (!kvm_arm_vcpu_stopped(vcpu)) {
83 		if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
84 			ret = PSCI_RET_ALREADY_ON;
85 		else
86 			ret = PSCI_RET_INVALID_PARAMS;
87 
88 		goto out_unlock;
89 	}
90 
91 	reset_state = &vcpu->arch.reset_state;
92 
93 	reset_state->pc = smccc_get_arg2(source_vcpu);
94 
95 	/* Propagate caller endianness */
96 	reset_state->be = kvm_vcpu_is_be(source_vcpu);
97 
98 	/*
99 	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
100 	 * the general purpose registers are undefined upon CPU_ON.
101 	 */
102 	reset_state->r0 = smccc_get_arg3(source_vcpu);
103 
104 	reset_state->reset = true;
105 	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
106 
107 	/*
108 	 * Make sure the reset request is observed if the RUNNABLE mp_state is
109 	 * observed.
110 	 */
111 	smp_wmb();
112 
113 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
114 	kvm_vcpu_wake_up(vcpu);
115 
116 out_unlock:
117 	spin_unlock(&vcpu->arch.mp_state_lock);
118 	return ret;
119 }
120 
121 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
122 {
123 	int matching_cpus = 0;
124 	unsigned long i, mpidr;
125 	unsigned long target_affinity;
126 	unsigned long target_affinity_mask;
127 	unsigned long lowest_affinity_level;
128 	struct kvm *kvm = vcpu->kvm;
129 	struct kvm_vcpu *tmp;
130 
131 	target_affinity = smccc_get_arg1(vcpu);
132 	lowest_affinity_level = smccc_get_arg2(vcpu);
133 
134 	if (!kvm_psci_valid_affinity(vcpu, target_affinity))
135 		return PSCI_RET_INVALID_PARAMS;
136 
137 	/* Determine target affinity mask */
138 	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
139 	if (!target_affinity_mask)
140 		return PSCI_RET_INVALID_PARAMS;
141 
142 	/* Ignore other bits of target affinity */
143 	target_affinity &= target_affinity_mask;
144 
145 	/*
146 	 * If one or more VCPU matching target affinity are running
147 	 * then ON else OFF
148 	 */
149 	kvm_for_each_vcpu(i, tmp, kvm) {
150 		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
151 		if ((mpidr & target_affinity_mask) == target_affinity) {
152 			matching_cpus++;
153 			if (!kvm_arm_vcpu_stopped(tmp))
154 				return PSCI_0_2_AFFINITY_LEVEL_ON;
155 		}
156 	}
157 
158 	if (!matching_cpus)
159 		return PSCI_RET_INVALID_PARAMS;
160 
161 	return PSCI_0_2_AFFINITY_LEVEL_OFF;
162 }
163 
164 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
165 {
166 	unsigned long i;
167 	struct kvm_vcpu *tmp;
168 
169 	/*
170 	 * The KVM ABI specifies that a system event exit may call KVM_RUN
171 	 * again and may perform shutdown/reboot at a later time that when the
172 	 * actual request is made.  Since we are implementing PSCI and a
173 	 * caller of PSCI reboot and shutdown expects that the system shuts
174 	 * down or reboots immediately, let's make sure that VCPUs are not run
175 	 * after this call is handled and before the VCPUs have been
176 	 * re-initialized.
177 	 */
178 	kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
179 		spin_lock(&tmp->arch.mp_state_lock);
180 		WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
181 		spin_unlock(&tmp->arch.mp_state_lock);
182 	}
183 	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
184 
185 	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
186 	vcpu->run->system_event.type = type;
187 	vcpu->run->system_event.ndata = 1;
188 	vcpu->run->system_event.data[0] = flags;
189 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
190 }
191 
192 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
193 {
194 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
195 }
196 
197 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
198 {
199 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
200 }
201 
202 static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
203 {
204 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
205 				 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
206 }
207 
208 static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu)
209 {
210 	struct kvm_run *run = vcpu->run;
211 
212 	memset(&run->system_event, 0, sizeof(vcpu->run->system_event));
213 	run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND;
214 	run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
215 }
216 
217 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
218 {
219 	int i;
220 
221 	/*
222 	 * Zero the input registers' upper 32 bits. They will be fully
223 	 * zeroed on exit, so we're fine changing them in place.
224 	 */
225 	for (i = 1; i < 4; i++)
226 		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
227 }
228 
229 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
230 {
231 	/*
232 	 * Prevent 32 bit guests from calling 64 bit PSCI functions.
233 	 */
234 	if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu))
235 		return PSCI_RET_NOT_SUPPORTED;
236 
237 	return 0;
238 }
239 
240 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
241 {
242 	u32 psci_fn = smccc_get_function(vcpu);
243 	unsigned long val;
244 	int ret = 1;
245 
246 	switch (psci_fn) {
247 	case PSCI_0_2_FN_PSCI_VERSION:
248 		/*
249 		 * Bits[31:16] = Major Version = 0
250 		 * Bits[15:0] = Minor Version = 2
251 		 */
252 		val = KVM_ARM_PSCI_0_2;
253 		break;
254 	case PSCI_0_2_FN_CPU_SUSPEND:
255 	case PSCI_0_2_FN64_CPU_SUSPEND:
256 		val = kvm_psci_vcpu_suspend(vcpu);
257 		break;
258 	case PSCI_0_2_FN_CPU_OFF:
259 		kvm_arm_vcpu_power_off(vcpu);
260 		val = PSCI_RET_SUCCESS;
261 		break;
262 	case PSCI_0_2_FN_CPU_ON:
263 		kvm_psci_narrow_to_32bit(vcpu);
264 		fallthrough;
265 	case PSCI_0_2_FN64_CPU_ON:
266 		val = kvm_psci_vcpu_on(vcpu);
267 		break;
268 	case PSCI_0_2_FN_AFFINITY_INFO:
269 		kvm_psci_narrow_to_32bit(vcpu);
270 		fallthrough;
271 	case PSCI_0_2_FN64_AFFINITY_INFO:
272 		val = kvm_psci_vcpu_affinity_info(vcpu);
273 		break;
274 	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
275 		/*
276 		 * Trusted OS is MP hence does not require migration
277 	         * or
278 		 * Trusted OS is not present
279 		 */
280 		val = PSCI_0_2_TOS_MP;
281 		break;
282 	case PSCI_0_2_FN_SYSTEM_OFF:
283 		kvm_psci_system_off(vcpu);
284 		/*
285 		 * We shouldn't be going back to guest VCPU after
286 		 * receiving SYSTEM_OFF request.
287 		 *
288 		 * If user space accidentally/deliberately resumes
289 		 * guest VCPU after SYSTEM_OFF request then guest
290 		 * VCPU should see internal failure from PSCI return
291 		 * value. To achieve this, we preload r0 (or x0) with
292 		 * PSCI return value INTERNAL_FAILURE.
293 		 */
294 		val = PSCI_RET_INTERNAL_FAILURE;
295 		ret = 0;
296 		break;
297 	case PSCI_0_2_FN_SYSTEM_RESET:
298 		kvm_psci_system_reset(vcpu);
299 		/*
300 		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
301 		 * with PSCI return value INTERNAL_FAILURE.
302 		 */
303 		val = PSCI_RET_INTERNAL_FAILURE;
304 		ret = 0;
305 		break;
306 	default:
307 		val = PSCI_RET_NOT_SUPPORTED;
308 		break;
309 	}
310 
311 	smccc_set_retval(vcpu, val, 0, 0, 0);
312 	return ret;
313 }
314 
315 static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
316 {
317 	unsigned long val = PSCI_RET_NOT_SUPPORTED;
318 	u32 psci_fn = smccc_get_function(vcpu);
319 	struct kvm *kvm = vcpu->kvm;
320 	u32 arg;
321 	int ret = 1;
322 
323 	switch(psci_fn) {
324 	case PSCI_0_2_FN_PSCI_VERSION:
325 		val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1;
326 		break;
327 	case PSCI_1_0_FN_PSCI_FEATURES:
328 		arg = smccc_get_arg1(vcpu);
329 		val = kvm_psci_check_allowed_function(vcpu, arg);
330 		if (val)
331 			break;
332 
333 		val = PSCI_RET_NOT_SUPPORTED;
334 
335 		switch(arg) {
336 		case PSCI_0_2_FN_PSCI_VERSION:
337 		case PSCI_0_2_FN_CPU_SUSPEND:
338 		case PSCI_0_2_FN64_CPU_SUSPEND:
339 		case PSCI_0_2_FN_CPU_OFF:
340 		case PSCI_0_2_FN_CPU_ON:
341 		case PSCI_0_2_FN64_CPU_ON:
342 		case PSCI_0_2_FN_AFFINITY_INFO:
343 		case PSCI_0_2_FN64_AFFINITY_INFO:
344 		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
345 		case PSCI_0_2_FN_SYSTEM_OFF:
346 		case PSCI_0_2_FN_SYSTEM_RESET:
347 		case PSCI_1_0_FN_PSCI_FEATURES:
348 		case ARM_SMCCC_VERSION_FUNC_ID:
349 			val = 0;
350 			break;
351 		case PSCI_1_0_FN_SYSTEM_SUSPEND:
352 		case PSCI_1_0_FN64_SYSTEM_SUSPEND:
353 			if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags))
354 				val = 0;
355 			break;
356 		case PSCI_1_1_FN_SYSTEM_RESET2:
357 		case PSCI_1_1_FN64_SYSTEM_RESET2:
358 			if (minor >= 1)
359 				val = 0;
360 			break;
361 		}
362 		break;
363 	case PSCI_1_0_FN_SYSTEM_SUSPEND:
364 		kvm_psci_narrow_to_32bit(vcpu);
365 		fallthrough;
366 	case PSCI_1_0_FN64_SYSTEM_SUSPEND:
367 		/*
368 		 * Return directly to userspace without changing the vCPU's
369 		 * registers. Userspace depends on reading the SMCCC parameters
370 		 * to implement SYSTEM_SUSPEND.
371 		 */
372 		if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) {
373 			kvm_psci_system_suspend(vcpu);
374 			return 0;
375 		}
376 		break;
377 	case PSCI_1_1_FN_SYSTEM_RESET2:
378 		kvm_psci_narrow_to_32bit(vcpu);
379 		fallthrough;
380 	case PSCI_1_1_FN64_SYSTEM_RESET2:
381 		if (minor >= 1) {
382 			arg = smccc_get_arg1(vcpu);
383 
384 			if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
385 			    arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
386 				kvm_psci_system_reset2(vcpu);
387 				vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
388 				return 0;
389 			}
390 
391 			val = PSCI_RET_INVALID_PARAMS;
392 			break;
393 		}
394 		break;
395 	default:
396 		return kvm_psci_0_2_call(vcpu);
397 	}
398 
399 	smccc_set_retval(vcpu, val, 0, 0, 0);
400 	return ret;
401 }
402 
403 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
404 {
405 	u32 psci_fn = smccc_get_function(vcpu);
406 	unsigned long val;
407 
408 	switch (psci_fn) {
409 	case KVM_PSCI_FN_CPU_OFF:
410 		kvm_arm_vcpu_power_off(vcpu);
411 		val = PSCI_RET_SUCCESS;
412 		break;
413 	case KVM_PSCI_FN_CPU_ON:
414 		val = kvm_psci_vcpu_on(vcpu);
415 		break;
416 	default:
417 		val = PSCI_RET_NOT_SUPPORTED;
418 		break;
419 	}
420 
421 	smccc_set_retval(vcpu, val, 0, 0, 0);
422 	return 1;
423 }
424 
425 /**
426  * kvm_psci_call - handle PSCI call if r0 value is in range
427  * @vcpu: Pointer to the VCPU struct
428  *
429  * Handle PSCI calls from guests through traps from HVC instructions.
430  * The calling convention is similar to SMC calls to the secure world
431  * where the function number is placed in r0.
432  *
433  * This function returns: > 0 (success), 0 (success but exit to user
434  * space), and < 0 (errors)
435  *
436  * Errors:
437  * -EINVAL: Unrecognized PSCI function
438  */
439 int kvm_psci_call(struct kvm_vcpu *vcpu)
440 {
441 	u32 psci_fn = smccc_get_function(vcpu);
442 	int version = kvm_psci_version(vcpu);
443 	unsigned long val;
444 
445 	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
446 	if (val) {
447 		smccc_set_retval(vcpu, val, 0, 0, 0);
448 		return 1;
449 	}
450 
451 	switch (version) {
452 	case KVM_ARM_PSCI_1_1:
453 		return kvm_psci_1_x_call(vcpu, 1);
454 	case KVM_ARM_PSCI_1_0:
455 		return kvm_psci_1_x_call(vcpu, 0);
456 	case KVM_ARM_PSCI_0_2:
457 		return kvm_psci_0_2_call(vcpu);
458 	case KVM_ARM_PSCI_0_1:
459 		return kvm_psci_0_1_call(vcpu);
460 	default:
461 		WARN_ONCE(1, "Unknown PSCI version %d", version);
462 		smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0);
463 		return 1;
464 	}
465 }
466