xref: /openbmc/linux/arch/arm64/kvm/psci.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/arm-smccc.h>
8 #include <linux/preempt.h>
9 #include <linux/kvm_host.h>
10 #include <linux/uaccess.h>
11 #include <linux/wait.h>
12 
13 #include <asm/cputype.h>
14 #include <asm/kvm_emulate.h>
15 
16 #include <kvm/arm_psci.h>
17 #include <kvm/arm_hypercalls.h>
18 
19 /*
20  * This is an implementation of the Power State Coordination Interface
21  * as described in ARM document number ARM DEN 0022A.
22  */
23 
24 #define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
25 
26 static unsigned long psci_affinity_mask(unsigned long affinity_level)
27 {
28 	if (affinity_level <= 3)
29 		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
30 
31 	return 0;
32 }
33 
34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
35 {
36 	/*
37 	 * NOTE: For simplicity, we make VCPU suspend emulation to be
38 	 * same-as WFI (Wait-for-interrupt) emulation.
39 	 *
40 	 * This means for KVM the wakeup events are interrupts and
41 	 * this is consistent with intended use of StateID as described
42 	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
43 	 *
44 	 * Further, we also treat power-down request to be same as
45 	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
46 	 * specification (ARM DEN 0022A). This means all suspend states
47 	 * for KVM will preserve the register state.
48 	 */
49 	kvm_vcpu_block(vcpu);
50 	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
51 
52 	return PSCI_RET_SUCCESS;
53 }
54 
55 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
56 {
57 	vcpu->arch.power_off = true;
58 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
59 	kvm_vcpu_kick(vcpu);
60 }
61 
62 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
63 {
64 	struct vcpu_reset_state *reset_state;
65 	struct kvm *kvm = source_vcpu->kvm;
66 	struct kvm_vcpu *vcpu = NULL;
67 	unsigned long cpu_id;
68 
69 	cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK;
70 	if (vcpu_mode_is_32bit(source_vcpu))
71 		cpu_id &= ~((u32) 0);
72 
73 	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
74 
75 	/*
76 	 * Make sure the caller requested a valid CPU and that the CPU is
77 	 * turned off.
78 	 */
79 	if (!vcpu)
80 		return PSCI_RET_INVALID_PARAMS;
81 	if (!vcpu->arch.power_off) {
82 		if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1)
83 			return PSCI_RET_ALREADY_ON;
84 		else
85 			return PSCI_RET_INVALID_PARAMS;
86 	}
87 
88 	reset_state = &vcpu->arch.reset_state;
89 
90 	reset_state->pc = smccc_get_arg2(source_vcpu);
91 
92 	/* Propagate caller endianness */
93 	reset_state->be = kvm_vcpu_is_be(source_vcpu);
94 
95 	/*
96 	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
97 	 * the general purpose registers are undefined upon CPU_ON.
98 	 */
99 	reset_state->r0 = smccc_get_arg3(source_vcpu);
100 
101 	WRITE_ONCE(reset_state->reset, true);
102 	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
103 
104 	/*
105 	 * Make sure the reset request is observed if the change to
106 	 * power_state is observed.
107 	 */
108 	smp_wmb();
109 
110 	vcpu->arch.power_off = false;
111 	kvm_vcpu_wake_up(vcpu);
112 
113 	return PSCI_RET_SUCCESS;
114 }
115 
116 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
117 {
118 	int i, matching_cpus = 0;
119 	unsigned long mpidr;
120 	unsigned long target_affinity;
121 	unsigned long target_affinity_mask;
122 	unsigned long lowest_affinity_level;
123 	struct kvm *kvm = vcpu->kvm;
124 	struct kvm_vcpu *tmp;
125 
126 	target_affinity = smccc_get_arg1(vcpu);
127 	lowest_affinity_level = smccc_get_arg2(vcpu);
128 
129 	/* Determine target affinity mask */
130 	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
131 	if (!target_affinity_mask)
132 		return PSCI_RET_INVALID_PARAMS;
133 
134 	/* Ignore other bits of target affinity */
135 	target_affinity &= target_affinity_mask;
136 
137 	/*
138 	 * If one or more VCPU matching target affinity are running
139 	 * then ON else OFF
140 	 */
141 	kvm_for_each_vcpu(i, tmp, kvm) {
142 		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
143 		if ((mpidr & target_affinity_mask) == target_affinity) {
144 			matching_cpus++;
145 			if (!tmp->arch.power_off)
146 				return PSCI_0_2_AFFINITY_LEVEL_ON;
147 		}
148 	}
149 
150 	if (!matching_cpus)
151 		return PSCI_RET_INVALID_PARAMS;
152 
153 	return PSCI_0_2_AFFINITY_LEVEL_OFF;
154 }
155 
156 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
157 {
158 	int i;
159 	struct kvm_vcpu *tmp;
160 
161 	/*
162 	 * The KVM ABI specifies that a system event exit may call KVM_RUN
163 	 * again and may perform shutdown/reboot at a later time that when the
164 	 * actual request is made.  Since we are implementing PSCI and a
165 	 * caller of PSCI reboot and shutdown expects that the system shuts
166 	 * down or reboots immediately, let's make sure that VCPUs are not run
167 	 * after this call is handled and before the VCPUs have been
168 	 * re-initialized.
169 	 */
170 	kvm_for_each_vcpu(i, tmp, vcpu->kvm)
171 		tmp->arch.power_off = true;
172 	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
173 
174 	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
175 	vcpu->run->system_event.type = type;
176 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
177 }
178 
179 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
180 {
181 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
182 }
183 
184 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
185 {
186 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
187 }
188 
189 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
190 {
191 	int i;
192 
193 	/*
194 	 * Zero the input registers' upper 32 bits. They will be fully
195 	 * zeroed on exit, so we're fine changing them in place.
196 	 */
197 	for (i = 1; i < 4; i++)
198 		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
199 }
200 
201 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
202 {
203 	switch(fn) {
204 	case PSCI_0_2_FN64_CPU_SUSPEND:
205 	case PSCI_0_2_FN64_CPU_ON:
206 	case PSCI_0_2_FN64_AFFINITY_INFO:
207 		/* Disallow these functions for 32bit guests */
208 		if (vcpu_mode_is_32bit(vcpu))
209 			return PSCI_RET_NOT_SUPPORTED;
210 		break;
211 	}
212 
213 	return 0;
214 }
215 
216 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
217 {
218 	struct kvm *kvm = vcpu->kvm;
219 	u32 psci_fn = smccc_get_function(vcpu);
220 	unsigned long val;
221 	int ret = 1;
222 
223 	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
224 	if (val)
225 		goto out;
226 
227 	switch (psci_fn) {
228 	case PSCI_0_2_FN_PSCI_VERSION:
229 		/*
230 		 * Bits[31:16] = Major Version = 0
231 		 * Bits[15:0] = Minor Version = 2
232 		 */
233 		val = KVM_ARM_PSCI_0_2;
234 		break;
235 	case PSCI_0_2_FN_CPU_SUSPEND:
236 	case PSCI_0_2_FN64_CPU_SUSPEND:
237 		val = kvm_psci_vcpu_suspend(vcpu);
238 		break;
239 	case PSCI_0_2_FN_CPU_OFF:
240 		kvm_psci_vcpu_off(vcpu);
241 		val = PSCI_RET_SUCCESS;
242 		break;
243 	case PSCI_0_2_FN_CPU_ON:
244 		kvm_psci_narrow_to_32bit(vcpu);
245 		fallthrough;
246 	case PSCI_0_2_FN64_CPU_ON:
247 		mutex_lock(&kvm->lock);
248 		val = kvm_psci_vcpu_on(vcpu);
249 		mutex_unlock(&kvm->lock);
250 		break;
251 	case PSCI_0_2_FN_AFFINITY_INFO:
252 		kvm_psci_narrow_to_32bit(vcpu);
253 		fallthrough;
254 	case PSCI_0_2_FN64_AFFINITY_INFO:
255 		val = kvm_psci_vcpu_affinity_info(vcpu);
256 		break;
257 	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
258 		/*
259 		 * Trusted OS is MP hence does not require migration
260 	         * or
261 		 * Trusted OS is not present
262 		 */
263 		val = PSCI_0_2_TOS_MP;
264 		break;
265 	case PSCI_0_2_FN_SYSTEM_OFF:
266 		kvm_psci_system_off(vcpu);
267 		/*
268 		 * We shouldn't be going back to guest VCPU after
269 		 * receiving SYSTEM_OFF request.
270 		 *
271 		 * If user space accidentally/deliberately resumes
272 		 * guest VCPU after SYSTEM_OFF request then guest
273 		 * VCPU should see internal failure from PSCI return
274 		 * value. To achieve this, we preload r0 (or x0) with
275 		 * PSCI return value INTERNAL_FAILURE.
276 		 */
277 		val = PSCI_RET_INTERNAL_FAILURE;
278 		ret = 0;
279 		break;
280 	case PSCI_0_2_FN_SYSTEM_RESET:
281 		kvm_psci_system_reset(vcpu);
282 		/*
283 		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
284 		 * with PSCI return value INTERNAL_FAILURE.
285 		 */
286 		val = PSCI_RET_INTERNAL_FAILURE;
287 		ret = 0;
288 		break;
289 	default:
290 		val = PSCI_RET_NOT_SUPPORTED;
291 		break;
292 	}
293 
294 out:
295 	smccc_set_retval(vcpu, val, 0, 0, 0);
296 	return ret;
297 }
298 
299 static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu)
300 {
301 	u32 psci_fn = smccc_get_function(vcpu);
302 	u32 feature;
303 	unsigned long val;
304 	int ret = 1;
305 
306 	switch(psci_fn) {
307 	case PSCI_0_2_FN_PSCI_VERSION:
308 		val = KVM_ARM_PSCI_1_0;
309 		break;
310 	case PSCI_1_0_FN_PSCI_FEATURES:
311 		feature = smccc_get_arg1(vcpu);
312 		val = kvm_psci_check_allowed_function(vcpu, feature);
313 		if (val)
314 			break;
315 
316 		switch(feature) {
317 		case PSCI_0_2_FN_PSCI_VERSION:
318 		case PSCI_0_2_FN_CPU_SUSPEND:
319 		case PSCI_0_2_FN64_CPU_SUSPEND:
320 		case PSCI_0_2_FN_CPU_OFF:
321 		case PSCI_0_2_FN_CPU_ON:
322 		case PSCI_0_2_FN64_CPU_ON:
323 		case PSCI_0_2_FN_AFFINITY_INFO:
324 		case PSCI_0_2_FN64_AFFINITY_INFO:
325 		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
326 		case PSCI_0_2_FN_SYSTEM_OFF:
327 		case PSCI_0_2_FN_SYSTEM_RESET:
328 		case PSCI_1_0_FN_PSCI_FEATURES:
329 		case ARM_SMCCC_VERSION_FUNC_ID:
330 			val = 0;
331 			break;
332 		default:
333 			val = PSCI_RET_NOT_SUPPORTED;
334 			break;
335 		}
336 		break;
337 	default:
338 		return kvm_psci_0_2_call(vcpu);
339 	}
340 
341 	smccc_set_retval(vcpu, val, 0, 0, 0);
342 	return ret;
343 }
344 
345 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
346 {
347 	struct kvm *kvm = vcpu->kvm;
348 	u32 psci_fn = smccc_get_function(vcpu);
349 	unsigned long val;
350 
351 	switch (psci_fn) {
352 	case KVM_PSCI_FN_CPU_OFF:
353 		kvm_psci_vcpu_off(vcpu);
354 		val = PSCI_RET_SUCCESS;
355 		break;
356 	case KVM_PSCI_FN_CPU_ON:
357 		mutex_lock(&kvm->lock);
358 		val = kvm_psci_vcpu_on(vcpu);
359 		mutex_unlock(&kvm->lock);
360 		break;
361 	default:
362 		val = PSCI_RET_NOT_SUPPORTED;
363 		break;
364 	}
365 
366 	smccc_set_retval(vcpu, val, 0, 0, 0);
367 	return 1;
368 }
369 
370 /**
371  * kvm_psci_call - handle PSCI call if r0 value is in range
372  * @vcpu: Pointer to the VCPU struct
373  *
374  * Handle PSCI calls from guests through traps from HVC instructions.
375  * The calling convention is similar to SMC calls to the secure world
376  * where the function number is placed in r0.
377  *
378  * This function returns: > 0 (success), 0 (success but exit to user
379  * space), and < 0 (errors)
380  *
381  * Errors:
382  * -EINVAL: Unrecognized PSCI function
383  */
384 int kvm_psci_call(struct kvm_vcpu *vcpu)
385 {
386 	switch (kvm_psci_version(vcpu, vcpu->kvm)) {
387 	case KVM_ARM_PSCI_1_0:
388 		return kvm_psci_1_0_call(vcpu);
389 	case KVM_ARM_PSCI_0_2:
390 		return kvm_psci_0_2_call(vcpu);
391 	case KVM_ARM_PSCI_0_1:
392 		return kvm_psci_0_1_call(vcpu);
393 	default:
394 		return -EINVAL;
395 	};
396 }
397 
398 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
399 {
400 	return 3;		/* PSCI version and two workaround registers */
401 }
402 
403 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
404 {
405 	if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
406 		return -EFAULT;
407 
408 	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
409 		return -EFAULT;
410 
411 	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
412 		return -EFAULT;
413 
414 	return 0;
415 }
416 
417 #define KVM_REG_FEATURE_LEVEL_WIDTH	4
418 #define KVM_REG_FEATURE_LEVEL_MASK	(BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)
419 
420 /*
421  * Convert the workaround level into an easy-to-compare number, where higher
422  * values mean better protection.
423  */
424 static int get_kernel_wa_level(u64 regid)
425 {
426 	switch (regid) {
427 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
428 		switch (arm64_get_spectre_v2_state()) {
429 		case SPECTRE_VULNERABLE:
430 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
431 		case SPECTRE_MITIGATED:
432 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
433 		case SPECTRE_UNAFFECTED:
434 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
435 		}
436 		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
437 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
438 		switch (arm64_get_spectre_v4_state()) {
439 		case SPECTRE_MITIGATED:
440 			/*
441 			 * As for the hypercall discovery, we pretend we
442 			 * don't have any FW mitigation if SSBS is there at
443 			 * all times.
444 			 */
445 			if (cpus_have_final_cap(ARM64_SSBS))
446 				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
447 			fallthrough;
448 		case SPECTRE_UNAFFECTED:
449 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
450 		case SPECTRE_VULNERABLE:
451 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
452 		}
453 	}
454 
455 	return -EINVAL;
456 }
457 
458 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
459 {
460 	void __user *uaddr = (void __user *)(long)reg->addr;
461 	u64 val;
462 
463 	switch (reg->id) {
464 	case KVM_REG_ARM_PSCI_VERSION:
465 		val = kvm_psci_version(vcpu, vcpu->kvm);
466 		break;
467 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
468 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
469 		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
470 		break;
471 	default:
472 		return -ENOENT;
473 	}
474 
475 	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
476 		return -EFAULT;
477 
478 	return 0;
479 }
480 
481 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
482 {
483 	void __user *uaddr = (void __user *)(long)reg->addr;
484 	u64 val;
485 	int wa_level;
486 
487 	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
488 		return -EFAULT;
489 
490 	switch (reg->id) {
491 	case KVM_REG_ARM_PSCI_VERSION:
492 	{
493 		bool wants_02;
494 
495 		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
496 
497 		switch (val) {
498 		case KVM_ARM_PSCI_0_1:
499 			if (wants_02)
500 				return -EINVAL;
501 			vcpu->kvm->arch.psci_version = val;
502 			return 0;
503 		case KVM_ARM_PSCI_0_2:
504 		case KVM_ARM_PSCI_1_0:
505 			if (!wants_02)
506 				return -EINVAL;
507 			vcpu->kvm->arch.psci_version = val;
508 			return 0;
509 		}
510 		break;
511 	}
512 
513 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
514 		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
515 			return -EINVAL;
516 
517 		if (get_kernel_wa_level(reg->id) < val)
518 			return -EINVAL;
519 
520 		return 0;
521 
522 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
523 		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
524 			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
525 			return -EINVAL;
526 
527 		/* The enabled bit must not be set unless the level is AVAIL. */
528 		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
529 		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
530 			return -EINVAL;
531 
532 		/*
533 		 * Map all the possible incoming states to the only two we
534 		 * really want to deal with.
535 		 */
536 		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
537 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
538 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
539 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
540 			break;
541 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
542 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
543 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
544 			break;
545 		default:
546 			return -EINVAL;
547 		}
548 
549 		/*
550 		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
551 		 * other way around.
552 		 */
553 		if (get_kernel_wa_level(reg->id) < wa_level)
554 			return -EINVAL;
555 
556 		return 0;
557 	default:
558 		return -ENOENT;
559 	}
560 
561 	return -EINVAL;
562 }
563