xref: /openbmc/linux/arch/arm64/kvm/pmu-emul.c (revision fe4d0d5d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
19 
20 static LIST_HEAD(arm_pmus);
21 static DEFINE_MUTEX(arm_pmus_lock);
22 
23 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
24 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
25 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
26 
27 #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
28 
29 static u32 kvm_pmu_event_mask(struct kvm *kvm)
30 {
31 	unsigned int pmuver;
32 
33 	pmuver = kvm->arch.arm_pmu->pmuver;
34 
35 	switch (pmuver) {
36 	case ID_AA64DFR0_PMUVER_8_0:
37 		return GENMASK(9, 0);
38 	case ID_AA64DFR0_PMUVER_8_1:
39 	case ID_AA64DFR0_PMUVER_8_4:
40 	case ID_AA64DFR0_PMUVER_8_5:
41 	case ID_AA64DFR0_PMUVER_8_7:
42 		return GENMASK(15, 0);
43 	default:		/* Shouldn't be here, just for sanity */
44 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
45 		return 0;
46 	}
47 }
48 
49 /**
50  * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
51  * @vcpu: The vcpu pointer
52  * @select_idx: The counter index
53  */
54 static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
55 {
56 	return (select_idx == ARMV8_PMU_CYCLE_IDX &&
57 		__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
58 }
59 
60 static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
61 {
62 	struct kvm_pmu *pmu;
63 	struct kvm_vcpu_arch *vcpu_arch;
64 
65 	pmc -= pmc->idx;
66 	pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
67 	vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
68 	return container_of(vcpu_arch, struct kvm_vcpu, arch);
69 }
70 
71 /**
72  * kvm_pmu_pmc_is_chained - determine if the pmc is chained
73  * @pmc: The PMU counter pointer
74  */
75 static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
76 {
77 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
78 
79 	return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
80 }
81 
82 /**
83  * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
84  * @select_idx: The counter index
85  */
86 static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
87 {
88 	return select_idx & 0x1;
89 }
90 
91 /**
92  * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
93  * @pmc: The PMU counter pointer
94  *
95  * When a pair of PMCs are chained together we use the low counter (canonical)
96  * to hold the underlying perf event.
97  */
98 static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
99 {
100 	if (kvm_pmu_pmc_is_chained(pmc) &&
101 	    kvm_pmu_idx_is_high_counter(pmc->idx))
102 		return pmc - 1;
103 
104 	return pmc;
105 }
106 static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
107 {
108 	if (kvm_pmu_idx_is_high_counter(pmc->idx))
109 		return pmc - 1;
110 	else
111 		return pmc + 1;
112 }
113 
114 /**
115  * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
116  * @vcpu: The vcpu pointer
117  * @select_idx: The counter index
118  */
119 static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
120 {
121 	u64 eventsel, reg;
122 
123 	select_idx |= 0x1;
124 
125 	if (select_idx == ARMV8_PMU_CYCLE_IDX)
126 		return false;
127 
128 	reg = PMEVTYPER0_EL0 + select_idx;
129 	eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
130 
131 	return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
132 }
133 
134 /**
135  * kvm_pmu_get_pair_counter_value - get PMU counter value
136  * @vcpu: The vcpu pointer
137  * @pmc: The PMU counter pointer
138  */
139 static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
140 					  struct kvm_pmc *pmc)
141 {
142 	u64 counter, counter_high, reg, enabled, running;
143 
144 	if (kvm_pmu_pmc_is_chained(pmc)) {
145 		pmc = kvm_pmu_get_canonical_pmc(pmc);
146 		reg = PMEVCNTR0_EL0 + pmc->idx;
147 
148 		counter = __vcpu_sys_reg(vcpu, reg);
149 		counter_high = __vcpu_sys_reg(vcpu, reg + 1);
150 
151 		counter = lower_32_bits(counter) | (counter_high << 32);
152 	} else {
153 		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
154 		      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
155 		counter = __vcpu_sys_reg(vcpu, reg);
156 	}
157 
158 	/*
159 	 * The real counter value is equal to the value of counter register plus
160 	 * the value perf event counts.
161 	 */
162 	if (pmc->perf_event)
163 		counter += perf_event_read_value(pmc->perf_event, &enabled,
164 						 &running);
165 
166 	return counter;
167 }
168 
169 /**
170  * kvm_pmu_get_counter_value - get PMU counter value
171  * @vcpu: The vcpu pointer
172  * @select_idx: The counter index
173  */
174 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
175 {
176 	u64 counter;
177 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
178 	struct kvm_pmc *pmc = &pmu->pmc[select_idx];
179 
180 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
181 
182 	if (kvm_pmu_pmc_is_chained(pmc) &&
183 	    kvm_pmu_idx_is_high_counter(select_idx))
184 		counter = upper_32_bits(counter);
185 	else if (select_idx != ARMV8_PMU_CYCLE_IDX)
186 		counter = lower_32_bits(counter);
187 
188 	return counter;
189 }
190 
191 /**
192  * kvm_pmu_set_counter_value - set PMU counter value
193  * @vcpu: The vcpu pointer
194  * @select_idx: The counter index
195  * @val: The counter value
196  */
197 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
198 {
199 	u64 reg;
200 
201 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
202 	      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
203 	__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
204 
205 	/* Recreate the perf event to reflect the updated sample_period */
206 	kvm_pmu_create_perf_event(vcpu, select_idx);
207 }
208 
209 /**
210  * kvm_pmu_release_perf_event - remove the perf event
211  * @pmc: The PMU counter pointer
212  */
213 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
214 {
215 	pmc = kvm_pmu_get_canonical_pmc(pmc);
216 	if (pmc->perf_event) {
217 		perf_event_disable(pmc->perf_event);
218 		perf_event_release_kernel(pmc->perf_event);
219 		pmc->perf_event = NULL;
220 	}
221 }
222 
223 /**
224  * kvm_pmu_stop_counter - stop PMU counter
225  * @pmc: The PMU counter pointer
226  *
227  * If this counter has been configured to monitor some event, release it here.
228  */
229 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
230 {
231 	u64 counter, reg, val;
232 
233 	pmc = kvm_pmu_get_canonical_pmc(pmc);
234 	if (!pmc->perf_event)
235 		return;
236 
237 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
238 
239 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
240 		reg = PMCCNTR_EL0;
241 		val = counter;
242 	} else {
243 		reg = PMEVCNTR0_EL0 + pmc->idx;
244 		val = lower_32_bits(counter);
245 	}
246 
247 	__vcpu_sys_reg(vcpu, reg) = val;
248 
249 	if (kvm_pmu_pmc_is_chained(pmc))
250 		__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
251 
252 	kvm_pmu_release_perf_event(pmc);
253 }
254 
255 /**
256  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
257  * @vcpu: The vcpu pointer
258  *
259  */
260 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
261 {
262 	int i;
263 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
264 
265 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
266 		pmu->pmc[i].idx = i;
267 }
268 
269 /**
270  * kvm_pmu_vcpu_reset - reset pmu state for cpu
271  * @vcpu: The vcpu pointer
272  *
273  */
274 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
275 {
276 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
277 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
278 	int i;
279 
280 	for_each_set_bit(i, &mask, 32)
281 		kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
282 
283 	bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
284 }
285 
286 /**
287  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
288  * @vcpu: The vcpu pointer
289  *
290  */
291 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293 	int i;
294 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
295 
296 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
297 		kvm_pmu_release_perf_event(&pmu->pmc[i]);
298 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
299 }
300 
301 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
302 {
303 	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
304 
305 	val &= ARMV8_PMU_PMCR_N_MASK;
306 	if (val == 0)
307 		return BIT(ARMV8_PMU_CYCLE_IDX);
308 	else
309 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
310 }
311 
312 /**
313  * kvm_pmu_enable_counter_mask - enable selected PMU counters
314  * @vcpu: The vcpu pointer
315  * @val: the value guest writes to PMCNTENSET register
316  *
317  * Call perf_event_enable to start counting the perf event
318  */
319 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
320 {
321 	int i;
322 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
323 	struct kvm_pmc *pmc;
324 
325 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
326 		return;
327 
328 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
329 		if (!(val & BIT(i)))
330 			continue;
331 
332 		pmc = &pmu->pmc[i];
333 
334 		/* A change in the enable state may affect the chain state */
335 		kvm_pmu_update_pmc_chained(vcpu, i);
336 		kvm_pmu_create_perf_event(vcpu, i);
337 
338 		/* At this point, pmc must be the canonical */
339 		if (pmc->perf_event) {
340 			perf_event_enable(pmc->perf_event);
341 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
342 				kvm_debug("fail to enable perf event\n");
343 		}
344 	}
345 }
346 
347 /**
348  * kvm_pmu_disable_counter_mask - disable selected PMU counters
349  * @vcpu: The vcpu pointer
350  * @val: the value guest writes to PMCNTENCLR register
351  *
352  * Call perf_event_disable to stop counting the perf event
353  */
354 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
355 {
356 	int i;
357 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
358 	struct kvm_pmc *pmc;
359 
360 	if (!val)
361 		return;
362 
363 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
364 		if (!(val & BIT(i)))
365 			continue;
366 
367 		pmc = &pmu->pmc[i];
368 
369 		/* A change in the enable state may affect the chain state */
370 		kvm_pmu_update_pmc_chained(vcpu, i);
371 		kvm_pmu_create_perf_event(vcpu, i);
372 
373 		/* At this point, pmc must be the canonical */
374 		if (pmc->perf_event)
375 			perf_event_disable(pmc->perf_event);
376 	}
377 }
378 
379 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
380 {
381 	u64 reg = 0;
382 
383 	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
384 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
385 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
386 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
387 	}
388 
389 	return reg;
390 }
391 
392 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
393 {
394 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
395 	bool overflow;
396 
397 	if (!kvm_vcpu_has_pmu(vcpu))
398 		return;
399 
400 	overflow = !!kvm_pmu_overflow_status(vcpu);
401 	if (pmu->irq_level == overflow)
402 		return;
403 
404 	pmu->irq_level = overflow;
405 
406 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
407 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
408 					      pmu->irq_num, overflow, pmu);
409 		WARN_ON(ret);
410 	}
411 }
412 
413 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
414 {
415 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
416 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
417 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
418 
419 	if (likely(irqchip_in_kernel(vcpu->kvm)))
420 		return false;
421 
422 	return pmu->irq_level != run_level;
423 }
424 
425 /*
426  * Reflect the PMU overflow interrupt output level into the kvm_run structure
427  */
428 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
429 {
430 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
431 
432 	/* Populate the timer bitmap for user space */
433 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
434 	if (vcpu->arch.pmu.irq_level)
435 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
436 }
437 
438 /**
439  * kvm_pmu_flush_hwstate - flush pmu state to cpu
440  * @vcpu: The vcpu pointer
441  *
442  * Check if the PMU has overflowed while we were running in the host, and inject
443  * an interrupt if that was the case.
444  */
445 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
446 {
447 	kvm_pmu_update_state(vcpu);
448 }
449 
450 /**
451  * kvm_pmu_sync_hwstate - sync pmu state from cpu
452  * @vcpu: The vcpu pointer
453  *
454  * Check if the PMU has overflowed while we were running in the guest, and
455  * inject an interrupt if that was the case.
456  */
457 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
458 {
459 	kvm_pmu_update_state(vcpu);
460 }
461 
462 /**
463  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
464  * to the event.
465  * This is why we need a callback to do it once outside of the NMI context.
466  */
467 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
468 {
469 	struct kvm_vcpu *vcpu;
470 	struct kvm_pmu *pmu;
471 
472 	pmu = container_of(work, struct kvm_pmu, overflow_work);
473 	vcpu = kvm_pmc_to_vcpu(pmu->pmc);
474 
475 	kvm_vcpu_kick(vcpu);
476 }
477 
478 /**
479  * When the perf event overflows, set the overflow status and inform the vcpu.
480  */
481 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
482 				  struct perf_sample_data *data,
483 				  struct pt_regs *regs)
484 {
485 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
486 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
487 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
488 	int idx = pmc->idx;
489 	u64 period;
490 
491 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
492 
493 	/*
494 	 * Reset the sample period to the architectural limit,
495 	 * i.e. the point where the counter overflows.
496 	 */
497 	period = -(local64_read(&perf_event->count));
498 
499 	if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
500 		period &= GENMASK(31, 0);
501 
502 	local64_set(&perf_event->hw.period_left, 0);
503 	perf_event->attr.sample_period = period;
504 	perf_event->hw.sample_period = period;
505 
506 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
507 
508 	if (kvm_pmu_overflow_status(vcpu)) {
509 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
510 
511 		if (!in_nmi())
512 			kvm_vcpu_kick(vcpu);
513 		else
514 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
515 	}
516 
517 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
518 }
519 
520 /**
521  * kvm_pmu_software_increment - do software increment
522  * @vcpu: The vcpu pointer
523  * @val: the value guest writes to PMSWINC register
524  */
525 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
526 {
527 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
528 	int i;
529 
530 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
531 		return;
532 
533 	/* Weed out disabled counters */
534 	val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
535 
536 	for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
537 		u64 type, reg;
538 
539 		if (!(val & BIT(i)))
540 			continue;
541 
542 		/* PMSWINC only applies to ... SW_INC! */
543 		type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
544 		type &= kvm_pmu_event_mask(vcpu->kvm);
545 		if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
546 			continue;
547 
548 		/* increment this even SW_INC counter */
549 		reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
550 		reg = lower_32_bits(reg);
551 		__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
552 
553 		if (reg) /* no overflow on the low part */
554 			continue;
555 
556 		if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
557 			/* increment the high counter */
558 			reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
559 			reg = lower_32_bits(reg);
560 			__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
561 			if (!reg) /* mark overflow on the high counter */
562 				__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
563 		} else {
564 			/* mark overflow on low counter */
565 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
566 		}
567 	}
568 }
569 
570 /**
571  * kvm_pmu_handle_pmcr - handle PMCR register
572  * @vcpu: The vcpu pointer
573  * @val: the value guest writes to PMCR register
574  */
575 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
576 {
577 	int i;
578 
579 	if (val & ARMV8_PMU_PMCR_E) {
580 		kvm_pmu_enable_counter_mask(vcpu,
581 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
582 	} else {
583 		kvm_pmu_disable_counter_mask(vcpu,
584 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
585 	}
586 
587 	if (val & ARMV8_PMU_PMCR_C)
588 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
589 
590 	if (val & ARMV8_PMU_PMCR_P) {
591 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
592 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
593 		for_each_set_bit(i, &mask, 32)
594 			kvm_pmu_set_counter_value(vcpu, i, 0);
595 	}
596 }
597 
598 static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
599 {
600 	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
601 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
602 }
603 
604 /**
605  * kvm_pmu_create_perf_event - create a perf event for a counter
606  * @vcpu: The vcpu pointer
607  * @select_idx: The number of selected counter
608  */
609 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
610 {
611 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
612 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
613 	struct kvm_pmc *pmc;
614 	struct perf_event *event;
615 	struct perf_event_attr attr;
616 	u64 eventsel, counter, reg, data;
617 
618 	/*
619 	 * For chained counters the event type and filtering attributes are
620 	 * obtained from the low/even counter. We also use this counter to
621 	 * determine if the event is enabled/disabled.
622 	 */
623 	pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
624 
625 	reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
626 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
627 	data = __vcpu_sys_reg(vcpu, reg);
628 
629 	kvm_pmu_stop_counter(vcpu, pmc);
630 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
631 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
632 	else
633 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
634 
635 	/* Software increment event doesn't need to be backed by a perf event */
636 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
637 		return;
638 
639 	/*
640 	 * If we have a filter in place and that the event isn't allowed, do
641 	 * not install a perf event either.
642 	 */
643 	if (vcpu->kvm->arch.pmu_filter &&
644 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
645 		return;
646 
647 	memset(&attr, 0, sizeof(struct perf_event_attr));
648 	attr.type = arm_pmu->pmu.type;
649 	attr.size = sizeof(attr);
650 	attr.pinned = 1;
651 	attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
652 	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
653 	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
654 	attr.exclude_hv = 1; /* Don't count EL2 events */
655 	attr.exclude_host = 1; /* Don't count host events */
656 	attr.config = eventsel;
657 
658 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
659 
660 	if (kvm_pmu_pmc_is_chained(pmc)) {
661 		/**
662 		 * The initial sample period (overflow count) of an event. For
663 		 * chained counters we only support overflow interrupts on the
664 		 * high counter.
665 		 */
666 		attr.sample_period = (-counter) & GENMASK(63, 0);
667 		attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
668 
669 		event = perf_event_create_kernel_counter(&attr, -1, current,
670 							 kvm_pmu_perf_overflow,
671 							 pmc + 1);
672 	} else {
673 		/* The initial sample period (overflow count) of an event. */
674 		if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
675 			attr.sample_period = (-counter) & GENMASK(63, 0);
676 		else
677 			attr.sample_period = (-counter) & GENMASK(31, 0);
678 
679 		event = perf_event_create_kernel_counter(&attr, -1, current,
680 						 kvm_pmu_perf_overflow, pmc);
681 	}
682 
683 	if (IS_ERR(event)) {
684 		pr_err_once("kvm: pmu event creation failed %ld\n",
685 			    PTR_ERR(event));
686 		return;
687 	}
688 
689 	pmc->perf_event = event;
690 }
691 
692 /**
693  * kvm_pmu_update_pmc_chained - update chained bitmap
694  * @vcpu: The vcpu pointer
695  * @select_idx: The number of selected counter
696  *
697  * Update the chained bitmap based on the event type written in the
698  * typer register and the enable state of the odd register.
699  */
700 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
701 {
702 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
703 	struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
704 	bool new_state, old_state;
705 
706 	old_state = kvm_pmu_pmc_is_chained(pmc);
707 	new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
708 		    kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
709 
710 	if (old_state == new_state)
711 		return;
712 
713 	canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
714 	kvm_pmu_stop_counter(vcpu, canonical_pmc);
715 	if (new_state) {
716 		/*
717 		 * During promotion from !chained to chained we must ensure
718 		 * the adjacent counter is stopped and its event destroyed
719 		 */
720 		kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
721 		set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
722 		return;
723 	}
724 	clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
725 }
726 
727 /**
728  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
729  * @vcpu: The vcpu pointer
730  * @data: The data guest writes to PMXEVTYPER_EL0
731  * @select_idx: The number of selected counter
732  *
733  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
734  * event with given hardware event number. Here we call perf_event API to
735  * emulate this action and create a kernel perf event for it.
736  */
737 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
738 				    u64 select_idx)
739 {
740 	u64 reg, mask;
741 
742 	mask  =  ARMV8_PMU_EVTYPE_MASK;
743 	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
744 	mask |= kvm_pmu_event_mask(vcpu->kvm);
745 
746 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
747 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
748 
749 	__vcpu_sys_reg(vcpu, reg) = data & mask;
750 
751 	kvm_pmu_update_pmc_chained(vcpu, select_idx);
752 	kvm_pmu_create_perf_event(vcpu, select_idx);
753 }
754 
755 void kvm_host_pmu_init(struct arm_pmu *pmu)
756 {
757 	struct arm_pmu_entry *entry;
758 
759 	if (pmu->pmuver == 0 || pmu->pmuver == ID_AA64DFR0_PMUVER_IMP_DEF ||
760 	    is_protected_kvm_enabled())
761 		return;
762 
763 	mutex_lock(&arm_pmus_lock);
764 
765 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
766 	if (!entry)
767 		goto out_unlock;
768 
769 	entry->arm_pmu = pmu;
770 	list_add_tail(&entry->entry, &arm_pmus);
771 
772 	if (list_is_singular(&arm_pmus))
773 		static_branch_enable(&kvm_arm_pmu_available);
774 
775 out_unlock:
776 	mutex_unlock(&arm_pmus_lock);
777 }
778 
779 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
780 {
781 	struct perf_event_attr attr = { };
782 	struct perf_event *event;
783 	struct arm_pmu *pmu = NULL;
784 
785 	/*
786 	 * Create a dummy event that only counts user cycles. As we'll never
787 	 * leave this function with the event being live, it will never
788 	 * count anything. But it allows us to probe some of the PMU
789 	 * details. Yes, this is terrible.
790 	 */
791 	attr.type = PERF_TYPE_RAW;
792 	attr.size = sizeof(attr);
793 	attr.pinned = 1;
794 	attr.disabled = 0;
795 	attr.exclude_user = 0;
796 	attr.exclude_kernel = 1;
797 	attr.exclude_hv = 1;
798 	attr.exclude_host = 1;
799 	attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
800 	attr.sample_period = GENMASK(63, 0);
801 
802 	event = perf_event_create_kernel_counter(&attr, -1, current,
803 						 kvm_pmu_perf_overflow, &attr);
804 
805 	if (IS_ERR(event)) {
806 		pr_err_once("kvm: pmu event creation failed %ld\n",
807 			    PTR_ERR(event));
808 		return NULL;
809 	}
810 
811 	if (event->pmu) {
812 		pmu = to_arm_pmu(event->pmu);
813 		if (pmu->pmuver == 0 ||
814 		    pmu->pmuver == ID_AA64DFR0_PMUVER_IMP_DEF)
815 			pmu = NULL;
816 	}
817 
818 	perf_event_disable(event);
819 	perf_event_release_kernel(event);
820 
821 	return pmu;
822 }
823 
824 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
825 {
826 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
827 	u64 val, mask = 0;
828 	int base, i, nr_events;
829 
830 	if (!pmceid1) {
831 		val = read_sysreg(pmceid0_el0);
832 		base = 0;
833 	} else {
834 		val = read_sysreg(pmceid1_el0);
835 		/*
836 		 * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled
837 		 * as RAZ
838 		 */
839 		if (vcpu->kvm->arch.arm_pmu->pmuver >= ID_AA64DFR0_PMUVER_8_4)
840 			val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32);
841 		base = 32;
842 	}
843 
844 	if (!bmap)
845 		return val;
846 
847 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
848 
849 	for (i = 0; i < 32; i += 8) {
850 		u64 byte;
851 
852 		byte = bitmap_get_value8(bmap, base + i);
853 		mask |= byte << i;
854 		if (nr_events >= (0x4000 + base + 32)) {
855 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
856 			mask |= byte << (32 + i);
857 		}
858 	}
859 
860 	return val & mask;
861 }
862 
863 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
864 {
865 	if (!kvm_vcpu_has_pmu(vcpu))
866 		return 0;
867 
868 	if (!vcpu->arch.pmu.created)
869 		return -EINVAL;
870 
871 	/*
872 	 * A valid interrupt configuration for the PMU is either to have a
873 	 * properly configured interrupt number and using an in-kernel
874 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
875 	 */
876 	if (irqchip_in_kernel(vcpu->kvm)) {
877 		int irq = vcpu->arch.pmu.irq_num;
878 		/*
879 		 * If we are using an in-kernel vgic, at this point we know
880 		 * the vgic will be initialized, so we can check the PMU irq
881 		 * number against the dimensions of the vgic and make sure
882 		 * it's valid.
883 		 */
884 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
885 			return -EINVAL;
886 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
887 		   return -EINVAL;
888 	}
889 
890 	/* One-off reload of the PMU on first run */
891 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
892 
893 	return 0;
894 }
895 
896 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
897 {
898 	if (irqchip_in_kernel(vcpu->kvm)) {
899 		int ret;
900 
901 		/*
902 		 * If using the PMU with an in-kernel virtual GIC
903 		 * implementation, we require the GIC to be already
904 		 * initialized when initializing the PMU.
905 		 */
906 		if (!vgic_initialized(vcpu->kvm))
907 			return -ENODEV;
908 
909 		if (!kvm_arm_pmu_irq_initialized(vcpu))
910 			return -ENXIO;
911 
912 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
913 					 &vcpu->arch.pmu);
914 		if (ret)
915 			return ret;
916 	}
917 
918 	init_irq_work(&vcpu->arch.pmu.overflow_work,
919 		      kvm_pmu_perf_overflow_notify_vcpu);
920 
921 	vcpu->arch.pmu.created = true;
922 	return 0;
923 }
924 
925 /*
926  * For one VM the interrupt type must be same for each vcpu.
927  * As a PPI, the interrupt number is the same for all vcpus,
928  * while as an SPI it must be a separate number per vcpu.
929  */
930 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
931 {
932 	unsigned long i;
933 	struct kvm_vcpu *vcpu;
934 
935 	kvm_for_each_vcpu(i, vcpu, kvm) {
936 		if (!kvm_arm_pmu_irq_initialized(vcpu))
937 			continue;
938 
939 		if (irq_is_ppi(irq)) {
940 			if (vcpu->arch.pmu.irq_num != irq)
941 				return false;
942 		} else {
943 			if (vcpu->arch.pmu.irq_num == irq)
944 				return false;
945 		}
946 	}
947 
948 	return true;
949 }
950 
951 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
952 {
953 	struct kvm *kvm = vcpu->kvm;
954 	struct arm_pmu_entry *entry;
955 	struct arm_pmu *arm_pmu;
956 	int ret = -ENXIO;
957 
958 	mutex_lock(&kvm->lock);
959 	mutex_lock(&arm_pmus_lock);
960 
961 	list_for_each_entry(entry, &arm_pmus, entry) {
962 		arm_pmu = entry->arm_pmu;
963 		if (arm_pmu->pmu.type == pmu_id) {
964 			if (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags) ||
965 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
966 				ret = -EBUSY;
967 				break;
968 			}
969 
970 			kvm->arch.arm_pmu = arm_pmu;
971 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
972 			ret = 0;
973 			break;
974 		}
975 	}
976 
977 	mutex_unlock(&arm_pmus_lock);
978 	mutex_unlock(&kvm->lock);
979 	return ret;
980 }
981 
982 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
983 {
984 	struct kvm *kvm = vcpu->kvm;
985 
986 	if (!kvm_vcpu_has_pmu(vcpu))
987 		return -ENODEV;
988 
989 	if (vcpu->arch.pmu.created)
990 		return -EBUSY;
991 
992 	mutex_lock(&kvm->lock);
993 	if (!kvm->arch.arm_pmu) {
994 		/* No PMU set, get the default one */
995 		kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
996 		if (!kvm->arch.arm_pmu) {
997 			mutex_unlock(&kvm->lock);
998 			return -ENODEV;
999 		}
1000 	}
1001 	mutex_unlock(&kvm->lock);
1002 
1003 	switch (attr->attr) {
1004 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1005 		int __user *uaddr = (int __user *)(long)attr->addr;
1006 		int irq;
1007 
1008 		if (!irqchip_in_kernel(kvm))
1009 			return -EINVAL;
1010 
1011 		if (get_user(irq, uaddr))
1012 			return -EFAULT;
1013 
1014 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1015 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1016 			return -EINVAL;
1017 
1018 		if (!pmu_irq_is_valid(kvm, irq))
1019 			return -EINVAL;
1020 
1021 		if (kvm_arm_pmu_irq_initialized(vcpu))
1022 			return -EBUSY;
1023 
1024 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1025 		vcpu->arch.pmu.irq_num = irq;
1026 		return 0;
1027 	}
1028 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
1029 		struct kvm_pmu_event_filter __user *uaddr;
1030 		struct kvm_pmu_event_filter filter;
1031 		int nr_events;
1032 
1033 		nr_events = kvm_pmu_event_mask(kvm) + 1;
1034 
1035 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1036 
1037 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
1038 			return -EFAULT;
1039 
1040 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
1041 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
1042 		     filter.action != KVM_PMU_EVENT_DENY))
1043 			return -EINVAL;
1044 
1045 		mutex_lock(&kvm->lock);
1046 
1047 		if (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags)) {
1048 			mutex_unlock(&kvm->lock);
1049 			return -EBUSY;
1050 		}
1051 
1052 		if (!kvm->arch.pmu_filter) {
1053 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1054 			if (!kvm->arch.pmu_filter) {
1055 				mutex_unlock(&kvm->lock);
1056 				return -ENOMEM;
1057 			}
1058 
1059 			/*
1060 			 * The default depends on the first applied filter.
1061 			 * If it allows events, the default is to deny.
1062 			 * Conversely, if the first filter denies a set of
1063 			 * events, the default is to allow.
1064 			 */
1065 			if (filter.action == KVM_PMU_EVENT_ALLOW)
1066 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1067 			else
1068 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1069 		}
1070 
1071 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1072 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1073 		else
1074 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1075 
1076 		mutex_unlock(&kvm->lock);
1077 
1078 		return 0;
1079 	}
1080 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1081 		int __user *uaddr = (int __user *)(long)attr->addr;
1082 		int pmu_id;
1083 
1084 		if (get_user(pmu_id, uaddr))
1085 			return -EFAULT;
1086 
1087 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1088 	}
1089 	case KVM_ARM_VCPU_PMU_V3_INIT:
1090 		return kvm_arm_pmu_v3_init(vcpu);
1091 	}
1092 
1093 	return -ENXIO;
1094 }
1095 
1096 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1097 {
1098 	switch (attr->attr) {
1099 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1100 		int __user *uaddr = (int __user *)(long)attr->addr;
1101 		int irq;
1102 
1103 		if (!irqchip_in_kernel(vcpu->kvm))
1104 			return -EINVAL;
1105 
1106 		if (!kvm_vcpu_has_pmu(vcpu))
1107 			return -ENODEV;
1108 
1109 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1110 			return -ENXIO;
1111 
1112 		irq = vcpu->arch.pmu.irq_num;
1113 		return put_user(irq, uaddr);
1114 	}
1115 	}
1116 
1117 	return -ENXIO;
1118 }
1119 
1120 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1121 {
1122 	switch (attr->attr) {
1123 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1124 	case KVM_ARM_VCPU_PMU_V3_INIT:
1125 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1126 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1127 		if (kvm_vcpu_has_pmu(vcpu))
1128 			return 0;
1129 	}
1130 
1131 	return -ENXIO;
1132 }
1133