xref: /openbmc/linux/arch/arm64/kvm/pmu-emul.c (revision e9dde5a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 #include <asm/arm_pmuv3.h>
18 
19 #define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
20 
21 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
22 
23 static LIST_HEAD(arm_pmus);
24 static DEFINE_MUTEX(arm_pmus_lock);
25 
26 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
27 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
28 
29 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
30 {
31 	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
32 }
33 
34 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
35 {
36 	return &vcpu->arch.pmu.pmc[cnt_idx];
37 }
38 
39 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
40 {
41 	switch (pmuver) {
42 	case ID_AA64DFR0_EL1_PMUVer_IMP:
43 		return GENMASK(9, 0);
44 	case ID_AA64DFR0_EL1_PMUVer_V3P1:
45 	case ID_AA64DFR0_EL1_PMUVer_V3P4:
46 	case ID_AA64DFR0_EL1_PMUVer_V3P5:
47 	case ID_AA64DFR0_EL1_PMUVer_V3P7:
48 		return GENMASK(15, 0);
49 	default:		/* Shouldn't be here, just for sanity */
50 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
51 		return 0;
52 	}
53 }
54 
55 static u32 kvm_pmu_event_mask(struct kvm *kvm)
56 {
57 	u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
58 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
59 
60 	return __kvm_pmu_event_mask(pmuver);
61 }
62 
63 /**
64  * kvm_pmc_is_64bit - determine if counter is 64bit
65  * @pmc: counter context
66  */
67 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
68 {
69 	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
70 		kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
71 }
72 
73 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
74 {
75 	u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
76 
77 	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
78 	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
79 }
80 
81 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
82 {
83 	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
84 		!kvm_pmc_has_64bit_overflow(pmc));
85 }
86 
87 static u32 counter_index_to_reg(u64 idx)
88 {
89 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
90 }
91 
92 static u32 counter_index_to_evtreg(u64 idx)
93 {
94 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
95 }
96 
97 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
98 {
99 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
100 	u64 counter, reg, enabled, running;
101 
102 	reg = counter_index_to_reg(pmc->idx);
103 	counter = __vcpu_sys_reg(vcpu, reg);
104 
105 	/*
106 	 * The real counter value is equal to the value of counter register plus
107 	 * the value perf event counts.
108 	 */
109 	if (pmc->perf_event)
110 		counter += perf_event_read_value(pmc->perf_event, &enabled,
111 						 &running);
112 
113 	if (!kvm_pmc_is_64bit(pmc))
114 		counter = lower_32_bits(counter);
115 
116 	return counter;
117 }
118 
119 /**
120  * kvm_pmu_get_counter_value - get PMU counter value
121  * @vcpu: The vcpu pointer
122  * @select_idx: The counter index
123  */
124 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
125 {
126 	if (!kvm_vcpu_has_pmu(vcpu))
127 		return 0;
128 
129 	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
130 }
131 
132 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
133 {
134 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
135 	u64 reg;
136 
137 	kvm_pmu_release_perf_event(pmc);
138 
139 	reg = counter_index_to_reg(pmc->idx);
140 
141 	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
142 	    !force) {
143 		/*
144 		 * Even with PMUv3p5, AArch32 cannot write to the top
145 		 * 32bit of the counters. The only possible course of
146 		 * action is to use PMCR.P, which will reset them to
147 		 * 0 (the only use of the 'force' parameter).
148 		 */
149 		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
150 		val |= lower_32_bits(val);
151 	}
152 
153 	__vcpu_sys_reg(vcpu, reg) = val;
154 
155 	/* Recreate the perf event to reflect the updated sample_period */
156 	kvm_pmu_create_perf_event(pmc);
157 }
158 
159 /**
160  * kvm_pmu_set_counter_value - set PMU counter value
161  * @vcpu: The vcpu pointer
162  * @select_idx: The counter index
163  * @val: The counter value
164  */
165 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
166 {
167 	if (!kvm_vcpu_has_pmu(vcpu))
168 		return;
169 
170 	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
171 }
172 
173 /**
174  * kvm_pmu_release_perf_event - remove the perf event
175  * @pmc: The PMU counter pointer
176  */
177 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
178 {
179 	if (pmc->perf_event) {
180 		perf_event_disable(pmc->perf_event);
181 		perf_event_release_kernel(pmc->perf_event);
182 		pmc->perf_event = NULL;
183 	}
184 }
185 
186 /**
187  * kvm_pmu_stop_counter - stop PMU counter
188  * @pmc: The PMU counter pointer
189  *
190  * If this counter has been configured to monitor some event, release it here.
191  */
192 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
193 {
194 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
195 	u64 reg, val;
196 
197 	if (!pmc->perf_event)
198 		return;
199 
200 	val = kvm_pmu_get_pmc_value(pmc);
201 
202 	reg = counter_index_to_reg(pmc->idx);
203 
204 	__vcpu_sys_reg(vcpu, reg) = val;
205 
206 	kvm_pmu_release_perf_event(pmc);
207 }
208 
209 /**
210  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
211  * @vcpu: The vcpu pointer
212  *
213  */
214 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
215 {
216 	int i;
217 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
218 
219 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
220 		pmu->pmc[i].idx = i;
221 }
222 
223 /**
224  * kvm_pmu_vcpu_reset - reset pmu state for cpu
225  * @vcpu: The vcpu pointer
226  *
227  */
228 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
229 {
230 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
231 	int i;
232 
233 	for_each_set_bit(i, &mask, 32)
234 		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
235 }
236 
237 /**
238  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
239  * @vcpu: The vcpu pointer
240  *
241  */
242 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
243 {
244 	int i;
245 
246 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
247 		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
248 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
249 }
250 
251 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
252 {
253 	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
254 
255 	val &= ARMV8_PMU_PMCR_N_MASK;
256 	if (val == 0)
257 		return BIT(ARMV8_PMU_CYCLE_IDX);
258 	else
259 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
260 }
261 
262 /**
263  * kvm_pmu_enable_counter_mask - enable selected PMU counters
264  * @vcpu: The vcpu pointer
265  * @val: the value guest writes to PMCNTENSET register
266  *
267  * Call perf_event_enable to start counting the perf event
268  */
269 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
270 {
271 	int i;
272 	if (!kvm_vcpu_has_pmu(vcpu))
273 		return;
274 
275 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
276 		return;
277 
278 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
279 		struct kvm_pmc *pmc;
280 
281 		if (!(val & BIT(i)))
282 			continue;
283 
284 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
285 
286 		if (!pmc->perf_event) {
287 			kvm_pmu_create_perf_event(pmc);
288 		} else {
289 			perf_event_enable(pmc->perf_event);
290 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
291 				kvm_debug("fail to enable perf event\n");
292 		}
293 	}
294 }
295 
296 /**
297  * kvm_pmu_disable_counter_mask - disable selected PMU counters
298  * @vcpu: The vcpu pointer
299  * @val: the value guest writes to PMCNTENCLR register
300  *
301  * Call perf_event_disable to stop counting the perf event
302  */
303 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
304 {
305 	int i;
306 
307 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
308 		return;
309 
310 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
311 		struct kvm_pmc *pmc;
312 
313 		if (!(val & BIT(i)))
314 			continue;
315 
316 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
317 
318 		if (pmc->perf_event)
319 			perf_event_disable(pmc->perf_event);
320 	}
321 }
322 
323 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
324 {
325 	u64 reg = 0;
326 
327 	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
328 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
329 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
330 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
331 	}
332 
333 	return reg;
334 }
335 
336 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
337 {
338 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
339 	bool overflow;
340 
341 	if (!kvm_vcpu_has_pmu(vcpu))
342 		return;
343 
344 	overflow = !!kvm_pmu_overflow_status(vcpu);
345 	if (pmu->irq_level == overflow)
346 		return;
347 
348 	pmu->irq_level = overflow;
349 
350 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
351 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
352 					      pmu->irq_num, overflow, pmu);
353 		WARN_ON(ret);
354 	}
355 }
356 
357 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
358 {
359 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
360 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
361 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
362 
363 	if (likely(irqchip_in_kernel(vcpu->kvm)))
364 		return false;
365 
366 	return pmu->irq_level != run_level;
367 }
368 
369 /*
370  * Reflect the PMU overflow interrupt output level into the kvm_run structure
371  */
372 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
373 {
374 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
375 
376 	/* Populate the timer bitmap for user space */
377 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
378 	if (vcpu->arch.pmu.irq_level)
379 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
380 }
381 
382 /**
383  * kvm_pmu_flush_hwstate - flush pmu state to cpu
384  * @vcpu: The vcpu pointer
385  *
386  * Check if the PMU has overflowed while we were running in the host, and inject
387  * an interrupt if that was the case.
388  */
389 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
390 {
391 	kvm_pmu_update_state(vcpu);
392 }
393 
394 /**
395  * kvm_pmu_sync_hwstate - sync pmu state from cpu
396  * @vcpu: The vcpu pointer
397  *
398  * Check if the PMU has overflowed while we were running in the guest, and
399  * inject an interrupt if that was the case.
400  */
401 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
402 {
403 	kvm_pmu_update_state(vcpu);
404 }
405 
406 /**
407  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
408  * to the event.
409  * This is why we need a callback to do it once outside of the NMI context.
410  */
411 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
412 {
413 	struct kvm_vcpu *vcpu;
414 
415 	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
416 	kvm_vcpu_kick(vcpu);
417 }
418 
419 /*
420  * Perform an increment on any of the counters described in @mask,
421  * generating the overflow if required, and propagate it as a chained
422  * event if possible.
423  */
424 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
425 				      unsigned long mask, u32 event)
426 {
427 	int i;
428 
429 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
430 		return;
431 
432 	/* Weed out disabled counters */
433 	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
434 
435 	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
436 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
437 		u64 type, reg;
438 
439 		/* Filter on event type */
440 		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
441 		type &= kvm_pmu_event_mask(vcpu->kvm);
442 		if (type != event)
443 			continue;
444 
445 		/* Increment this counter */
446 		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
447 		if (!kvm_pmc_is_64bit(pmc))
448 			reg = lower_32_bits(reg);
449 		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
450 
451 		/* No overflow? move on */
452 		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
453 			continue;
454 
455 		/* Mark overflow */
456 		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
457 
458 		if (kvm_pmu_counter_can_chain(pmc))
459 			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
460 						  ARMV8_PMUV3_PERFCTR_CHAIN);
461 	}
462 }
463 
464 /* Compute the sample period for a given counter value */
465 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
466 {
467 	u64 val;
468 
469 	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
470 		val = (-counter) & GENMASK(63, 0);
471 	else
472 		val = (-counter) & GENMASK(31, 0);
473 
474 	return val;
475 }
476 
477 /**
478  * When the perf event overflows, set the overflow status and inform the vcpu.
479  */
480 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
481 				  struct perf_sample_data *data,
482 				  struct pt_regs *regs)
483 {
484 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
485 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
486 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
487 	int idx = pmc->idx;
488 	u64 period;
489 
490 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
491 
492 	/*
493 	 * Reset the sample period to the architectural limit,
494 	 * i.e. the point where the counter overflows.
495 	 */
496 	period = compute_period(pmc, local64_read(&perf_event->count));
497 
498 	local64_set(&perf_event->hw.period_left, 0);
499 	perf_event->attr.sample_period = period;
500 	perf_event->hw.sample_period = period;
501 
502 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
503 
504 	if (kvm_pmu_counter_can_chain(pmc))
505 		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
506 					  ARMV8_PMUV3_PERFCTR_CHAIN);
507 
508 	if (kvm_pmu_overflow_status(vcpu)) {
509 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
510 
511 		if (!in_nmi())
512 			kvm_vcpu_kick(vcpu);
513 		else
514 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
515 	}
516 
517 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
518 }
519 
520 /**
521  * kvm_pmu_software_increment - do software increment
522  * @vcpu: The vcpu pointer
523  * @val: the value guest writes to PMSWINC register
524  */
525 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
526 {
527 	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
528 }
529 
530 /**
531  * kvm_pmu_handle_pmcr - handle PMCR register
532  * @vcpu: The vcpu pointer
533  * @val: the value guest writes to PMCR register
534  */
535 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
536 {
537 	int i;
538 
539 	if (!kvm_vcpu_has_pmu(vcpu))
540 		return;
541 
542 	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
543 	if (!kvm_pmu_is_3p5(vcpu))
544 		val &= ~ARMV8_PMU_PMCR_LP;
545 
546 	/* The reset bits don't indicate any state, and shouldn't be saved. */
547 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
548 
549 	if (val & ARMV8_PMU_PMCR_E) {
550 		kvm_pmu_enable_counter_mask(vcpu,
551 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
552 	} else {
553 		kvm_pmu_disable_counter_mask(vcpu,
554 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
555 	}
556 
557 	if (val & ARMV8_PMU_PMCR_C)
558 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
559 
560 	if (val & ARMV8_PMU_PMCR_P) {
561 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
562 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
563 		for_each_set_bit(i, &mask, 32)
564 			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
565 	}
566 	kvm_vcpu_pmu_restore_guest(vcpu);
567 }
568 
569 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
570 {
571 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
572 	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
573 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
574 }
575 
576 /**
577  * kvm_pmu_create_perf_event - create a perf event for a counter
578  * @pmc: Counter context
579  */
580 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
581 {
582 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
583 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
584 	struct perf_event *event;
585 	struct perf_event_attr attr;
586 	u64 eventsel, reg, data;
587 
588 	reg = counter_index_to_evtreg(pmc->idx);
589 	data = __vcpu_sys_reg(vcpu, reg);
590 
591 	kvm_pmu_stop_counter(pmc);
592 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
593 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
594 	else
595 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
596 
597 	/*
598 	 * Neither SW increment nor chained events need to be backed
599 	 * by a perf event.
600 	 */
601 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
602 	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
603 		return;
604 
605 	/*
606 	 * If we have a filter in place and that the event isn't allowed, do
607 	 * not install a perf event either.
608 	 */
609 	if (vcpu->kvm->arch.pmu_filter &&
610 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
611 		return;
612 
613 	memset(&attr, 0, sizeof(struct perf_event_attr));
614 	attr.type = arm_pmu->pmu.type;
615 	attr.size = sizeof(attr);
616 	attr.pinned = 1;
617 	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
618 	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
619 	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
620 	attr.exclude_hv = 1; /* Don't count EL2 events */
621 	attr.exclude_host = 1; /* Don't count host events */
622 	attr.config = eventsel;
623 
624 	/*
625 	 * If counting with a 64bit counter, advertise it to the perf
626 	 * code, carefully dealing with the initial sample period
627 	 * which also depends on the overflow.
628 	 */
629 	if (kvm_pmc_is_64bit(pmc))
630 		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
631 
632 	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
633 
634 	event = perf_event_create_kernel_counter(&attr, -1, current,
635 						 kvm_pmu_perf_overflow, pmc);
636 
637 	if (IS_ERR(event)) {
638 		pr_err_once("kvm: pmu event creation failed %ld\n",
639 			    PTR_ERR(event));
640 		return;
641 	}
642 
643 	pmc->perf_event = event;
644 }
645 
646 /**
647  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
648  * @vcpu: The vcpu pointer
649  * @data: The data guest writes to PMXEVTYPER_EL0
650  * @select_idx: The number of selected counter
651  *
652  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
653  * event with given hardware event number. Here we call perf_event API to
654  * emulate this action and create a kernel perf event for it.
655  */
656 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
657 				    u64 select_idx)
658 {
659 	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
660 	u64 reg, mask;
661 
662 	if (!kvm_vcpu_has_pmu(vcpu))
663 		return;
664 
665 	mask  =  ARMV8_PMU_EVTYPE_MASK;
666 	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
667 	mask |= kvm_pmu_event_mask(vcpu->kvm);
668 
669 	reg = counter_index_to_evtreg(pmc->idx);
670 
671 	__vcpu_sys_reg(vcpu, reg) = data & mask;
672 
673 	kvm_pmu_create_perf_event(pmc);
674 }
675 
676 void kvm_host_pmu_init(struct arm_pmu *pmu)
677 {
678 	struct arm_pmu_entry *entry;
679 
680 	/*
681 	 * Check the sanitised PMU version for the system, as KVM does not
682 	 * support implementations where PMUv3 exists on a subset of CPUs.
683 	 */
684 	if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
685 		return;
686 
687 	mutex_lock(&arm_pmus_lock);
688 
689 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
690 	if (!entry)
691 		goto out_unlock;
692 
693 	entry->arm_pmu = pmu;
694 	list_add_tail(&entry->entry, &arm_pmus);
695 
696 	if (list_is_singular(&arm_pmus))
697 		static_branch_enable(&kvm_arm_pmu_available);
698 
699 out_unlock:
700 	mutex_unlock(&arm_pmus_lock);
701 }
702 
703 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
704 {
705 	struct arm_pmu *tmp, *pmu = NULL;
706 	struct arm_pmu_entry *entry;
707 	int cpu;
708 
709 	mutex_lock(&arm_pmus_lock);
710 
711 	/*
712 	 * It is safe to use a stale cpu to iterate the list of PMUs so long as
713 	 * the same value is used for the entirety of the loop. Given this, and
714 	 * the fact that no percpu data is used for the lookup there is no need
715 	 * to disable preemption.
716 	 *
717 	 * It is still necessary to get a valid cpu, though, to probe for the
718 	 * default PMU instance as userspace is not required to specify a PMU
719 	 * type. In order to uphold the preexisting behavior KVM selects the
720 	 * PMU instance for the core where the first call to the
721 	 * KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case
722 	 * would be a user with disdain of all things big.LITTLE that affines
723 	 * the VMM to a particular cluster of cores.
724 	 *
725 	 * In any case, userspace should just do the sane thing and use the UAPI
726 	 * to select a PMU type directly. But, be wary of the baggage being
727 	 * carried here.
728 	 */
729 	cpu = raw_smp_processor_id();
730 	list_for_each_entry(entry, &arm_pmus, entry) {
731 		tmp = entry->arm_pmu;
732 
733 		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
734 			pmu = tmp;
735 			break;
736 		}
737 	}
738 
739 	mutex_unlock(&arm_pmus_lock);
740 
741 	return pmu;
742 }
743 
744 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
745 {
746 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
747 	u64 val, mask = 0;
748 	int base, i, nr_events;
749 
750 	if (!kvm_vcpu_has_pmu(vcpu))
751 		return 0;
752 
753 	if (!pmceid1) {
754 		val = read_sysreg(pmceid0_el0);
755 		/* always support CHAIN */
756 		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
757 		base = 0;
758 	} else {
759 		val = read_sysreg(pmceid1_el0);
760 		/*
761 		 * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
762 		 * as RAZ
763 		 */
764 		val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
765 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
766 			 BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
767 		base = 32;
768 	}
769 
770 	if (!bmap)
771 		return val;
772 
773 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
774 
775 	for (i = 0; i < 32; i += 8) {
776 		u64 byte;
777 
778 		byte = bitmap_get_value8(bmap, base + i);
779 		mask |= byte << i;
780 		if (nr_events >= (0x4000 + base + 32)) {
781 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
782 			mask |= byte << (32 + i);
783 		}
784 	}
785 
786 	return val & mask;
787 }
788 
789 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
790 {
791 	if (!kvm_vcpu_has_pmu(vcpu))
792 		return 0;
793 
794 	if (!vcpu->arch.pmu.created)
795 		return -EINVAL;
796 
797 	/*
798 	 * A valid interrupt configuration for the PMU is either to have a
799 	 * properly configured interrupt number and using an in-kernel
800 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
801 	 */
802 	if (irqchip_in_kernel(vcpu->kvm)) {
803 		int irq = vcpu->arch.pmu.irq_num;
804 		/*
805 		 * If we are using an in-kernel vgic, at this point we know
806 		 * the vgic will be initialized, so we can check the PMU irq
807 		 * number against the dimensions of the vgic and make sure
808 		 * it's valid.
809 		 */
810 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
811 			return -EINVAL;
812 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
813 		   return -EINVAL;
814 	}
815 
816 	/* One-off reload of the PMU on first run */
817 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
818 
819 	return 0;
820 }
821 
822 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
823 {
824 	if (irqchip_in_kernel(vcpu->kvm)) {
825 		int ret;
826 
827 		/*
828 		 * If using the PMU with an in-kernel virtual GIC
829 		 * implementation, we require the GIC to be already
830 		 * initialized when initializing the PMU.
831 		 */
832 		if (!vgic_initialized(vcpu->kvm))
833 			return -ENODEV;
834 
835 		if (!kvm_arm_pmu_irq_initialized(vcpu))
836 			return -ENXIO;
837 
838 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
839 					 &vcpu->arch.pmu);
840 		if (ret)
841 			return ret;
842 	}
843 
844 	init_irq_work(&vcpu->arch.pmu.overflow_work,
845 		      kvm_pmu_perf_overflow_notify_vcpu);
846 
847 	vcpu->arch.pmu.created = true;
848 	return 0;
849 }
850 
851 /*
852  * For one VM the interrupt type must be same for each vcpu.
853  * As a PPI, the interrupt number is the same for all vcpus,
854  * while as an SPI it must be a separate number per vcpu.
855  */
856 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
857 {
858 	unsigned long i;
859 	struct kvm_vcpu *vcpu;
860 
861 	kvm_for_each_vcpu(i, vcpu, kvm) {
862 		if (!kvm_arm_pmu_irq_initialized(vcpu))
863 			continue;
864 
865 		if (irq_is_ppi(irq)) {
866 			if (vcpu->arch.pmu.irq_num != irq)
867 				return false;
868 		} else {
869 			if (vcpu->arch.pmu.irq_num == irq)
870 				return false;
871 		}
872 	}
873 
874 	return true;
875 }
876 
877 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
878 {
879 	struct kvm *kvm = vcpu->kvm;
880 	struct arm_pmu_entry *entry;
881 	struct arm_pmu *arm_pmu;
882 	int ret = -ENXIO;
883 
884 	lockdep_assert_held(&kvm->arch.config_lock);
885 	mutex_lock(&arm_pmus_lock);
886 
887 	list_for_each_entry(entry, &arm_pmus, entry) {
888 		arm_pmu = entry->arm_pmu;
889 		if (arm_pmu->pmu.type == pmu_id) {
890 			if (kvm_vm_has_ran_once(kvm) ||
891 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
892 				ret = -EBUSY;
893 				break;
894 			}
895 
896 			kvm->arch.arm_pmu = arm_pmu;
897 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
898 			ret = 0;
899 			break;
900 		}
901 	}
902 
903 	mutex_unlock(&arm_pmus_lock);
904 	return ret;
905 }
906 
907 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
908 {
909 	struct kvm *kvm = vcpu->kvm;
910 
911 	lockdep_assert_held(&kvm->arch.config_lock);
912 
913 	if (!kvm_vcpu_has_pmu(vcpu))
914 		return -ENODEV;
915 
916 	if (vcpu->arch.pmu.created)
917 		return -EBUSY;
918 
919 	if (!kvm->arch.arm_pmu) {
920 		/*
921 		 * No PMU set, get the default one.
922 		 *
923 		 * The observant among you will notice that the supported_cpus
924 		 * mask does not get updated for the default PMU even though it
925 		 * is quite possible the selected instance supports only a
926 		 * subset of cores in the system. This is intentional, and
927 		 * upholds the preexisting behavior on heterogeneous systems
928 		 * where vCPUs can be scheduled on any core but the guest
929 		 * counters could stop working.
930 		 */
931 		kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
932 		if (!kvm->arch.arm_pmu)
933 			return -ENODEV;
934 	}
935 
936 	switch (attr->attr) {
937 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
938 		int __user *uaddr = (int __user *)(long)attr->addr;
939 		int irq;
940 
941 		if (!irqchip_in_kernel(kvm))
942 			return -EINVAL;
943 
944 		if (get_user(irq, uaddr))
945 			return -EFAULT;
946 
947 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
948 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
949 			return -EINVAL;
950 
951 		if (!pmu_irq_is_valid(kvm, irq))
952 			return -EINVAL;
953 
954 		if (kvm_arm_pmu_irq_initialized(vcpu))
955 			return -EBUSY;
956 
957 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
958 		vcpu->arch.pmu.irq_num = irq;
959 		return 0;
960 	}
961 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
962 		u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
963 		struct kvm_pmu_event_filter __user *uaddr;
964 		struct kvm_pmu_event_filter filter;
965 		int nr_events;
966 
967 		/*
968 		 * Allow userspace to specify an event filter for the entire
969 		 * event range supported by PMUVer of the hardware, rather
970 		 * than the guest's PMUVer for KVM backward compatibility.
971 		 */
972 		nr_events = __kvm_pmu_event_mask(pmuver) + 1;
973 
974 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
975 
976 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
977 			return -EFAULT;
978 
979 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
980 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
981 		     filter.action != KVM_PMU_EVENT_DENY))
982 			return -EINVAL;
983 
984 		if (kvm_vm_has_ran_once(kvm))
985 			return -EBUSY;
986 
987 		if (!kvm->arch.pmu_filter) {
988 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
989 			if (!kvm->arch.pmu_filter)
990 				return -ENOMEM;
991 
992 			/*
993 			 * The default depends on the first applied filter.
994 			 * If it allows events, the default is to deny.
995 			 * Conversely, if the first filter denies a set of
996 			 * events, the default is to allow.
997 			 */
998 			if (filter.action == KVM_PMU_EVENT_ALLOW)
999 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1000 			else
1001 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1002 		}
1003 
1004 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1005 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1006 		else
1007 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1008 
1009 		return 0;
1010 	}
1011 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1012 		int __user *uaddr = (int __user *)(long)attr->addr;
1013 		int pmu_id;
1014 
1015 		if (get_user(pmu_id, uaddr))
1016 			return -EFAULT;
1017 
1018 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1019 	}
1020 	case KVM_ARM_VCPU_PMU_V3_INIT:
1021 		return kvm_arm_pmu_v3_init(vcpu);
1022 	}
1023 
1024 	return -ENXIO;
1025 }
1026 
1027 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1028 {
1029 	switch (attr->attr) {
1030 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1031 		int __user *uaddr = (int __user *)(long)attr->addr;
1032 		int irq;
1033 
1034 		if (!irqchip_in_kernel(vcpu->kvm))
1035 			return -EINVAL;
1036 
1037 		if (!kvm_vcpu_has_pmu(vcpu))
1038 			return -ENODEV;
1039 
1040 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1041 			return -ENXIO;
1042 
1043 		irq = vcpu->arch.pmu.irq_num;
1044 		return put_user(irq, uaddr);
1045 	}
1046 	}
1047 
1048 	return -ENXIO;
1049 }
1050 
1051 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1052 {
1053 	switch (attr->attr) {
1054 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1055 	case KVM_ARM_VCPU_PMU_V3_INIT:
1056 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1057 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1058 		if (kvm_vcpu_has_pmu(vcpu))
1059 			return 0;
1060 	}
1061 
1062 	return -ENXIO;
1063 }
1064 
1065 u8 kvm_arm_pmu_get_pmuver_limit(void)
1066 {
1067 	u64 tmp;
1068 
1069 	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1070 	tmp = cpuid_feature_cap_perfmon_field(tmp,
1071 					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1072 					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1073 	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1074 }
1075