xref: /openbmc/linux/arch/arm64/kvm/pmu-emul.c (revision 6f2bde9b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 #define PERF_ATTR_CFG1_COUNTER_64BIT	BIT(0)
19 
20 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
21 
22 static LIST_HEAD(arm_pmus);
23 static DEFINE_MUTEX(arm_pmus_lock);
24 
25 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
26 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
27 
28 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
29 {
30 	return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
31 }
32 
33 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
34 {
35 	return &vcpu->arch.pmu.pmc[cnt_idx];
36 }
37 
38 static u32 kvm_pmu_event_mask(struct kvm *kvm)
39 {
40 	unsigned int pmuver;
41 
42 	pmuver = kvm->arch.arm_pmu->pmuver;
43 
44 	switch (pmuver) {
45 	case ID_AA64DFR0_EL1_PMUVer_IMP:
46 		return GENMASK(9, 0);
47 	case ID_AA64DFR0_EL1_PMUVer_V3P1:
48 	case ID_AA64DFR0_EL1_PMUVer_V3P4:
49 	case ID_AA64DFR0_EL1_PMUVer_V3P5:
50 	case ID_AA64DFR0_EL1_PMUVer_V3P7:
51 		return GENMASK(15, 0);
52 	default:		/* Shouldn't be here, just for sanity */
53 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
54 		return 0;
55 	}
56 }
57 
58 /**
59  * kvm_pmc_is_64bit - determine if counter is 64bit
60  * @pmc: counter context
61  */
62 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
63 {
64 	return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
65 		kvm_pmu_is_3p5(kvm_pmc_to_vcpu(pmc)));
66 }
67 
68 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
69 {
70 	u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0);
71 
72 	return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
73 	       (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
74 }
75 
76 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
77 {
78 	return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
79 		!kvm_pmc_has_64bit_overflow(pmc));
80 }
81 
82 static u32 counter_index_to_reg(u64 idx)
83 {
84 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
85 }
86 
87 static u32 counter_index_to_evtreg(u64 idx)
88 {
89 	return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
90 }
91 
92 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
93 {
94 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
95 	u64 counter, reg, enabled, running;
96 
97 	reg = counter_index_to_reg(pmc->idx);
98 	counter = __vcpu_sys_reg(vcpu, reg);
99 
100 	/*
101 	 * The real counter value is equal to the value of counter register plus
102 	 * the value perf event counts.
103 	 */
104 	if (pmc->perf_event)
105 		counter += perf_event_read_value(pmc->perf_event, &enabled,
106 						 &running);
107 
108 	if (!kvm_pmc_is_64bit(pmc))
109 		counter = lower_32_bits(counter);
110 
111 	return counter;
112 }
113 
114 /**
115  * kvm_pmu_get_counter_value - get PMU counter value
116  * @vcpu: The vcpu pointer
117  * @select_idx: The counter index
118  */
119 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
120 {
121 	if (!kvm_vcpu_has_pmu(vcpu))
122 		return 0;
123 
124 	return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
125 }
126 
127 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
128 {
129 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
130 	u64 reg;
131 
132 	kvm_pmu_release_perf_event(pmc);
133 
134 	reg = counter_index_to_reg(pmc->idx);
135 
136 	if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
137 	    !force) {
138 		/*
139 		 * Even with PMUv3p5, AArch32 cannot write to the top
140 		 * 32bit of the counters. The only possible course of
141 		 * action is to use PMCR.P, which will reset them to
142 		 * 0 (the only use of the 'force' parameter).
143 		 */
144 		val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
145 		val |= lower_32_bits(val);
146 	}
147 
148 	__vcpu_sys_reg(vcpu, reg) = val;
149 
150 	/* Recreate the perf event to reflect the updated sample_period */
151 	kvm_pmu_create_perf_event(pmc);
152 }
153 
154 /**
155  * kvm_pmu_set_counter_value - set PMU counter value
156  * @vcpu: The vcpu pointer
157  * @select_idx: The counter index
158  * @val: The counter value
159  */
160 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
161 {
162 	if (!kvm_vcpu_has_pmu(vcpu))
163 		return;
164 
165 	kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
166 }
167 
168 /**
169  * kvm_pmu_release_perf_event - remove the perf event
170  * @pmc: The PMU counter pointer
171  */
172 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
173 {
174 	if (pmc->perf_event) {
175 		perf_event_disable(pmc->perf_event);
176 		perf_event_release_kernel(pmc->perf_event);
177 		pmc->perf_event = NULL;
178 	}
179 }
180 
181 /**
182  * kvm_pmu_stop_counter - stop PMU counter
183  * @pmc: The PMU counter pointer
184  *
185  * If this counter has been configured to monitor some event, release it here.
186  */
187 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
188 {
189 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
190 	u64 reg, val;
191 
192 	if (!pmc->perf_event)
193 		return;
194 
195 	val = kvm_pmu_get_pmc_value(pmc);
196 
197 	reg = counter_index_to_reg(pmc->idx);
198 
199 	__vcpu_sys_reg(vcpu, reg) = val;
200 
201 	kvm_pmu_release_perf_event(pmc);
202 }
203 
204 /**
205  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
206  * @vcpu: The vcpu pointer
207  *
208  */
209 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
210 {
211 	int i;
212 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
213 
214 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
215 		pmu->pmc[i].idx = i;
216 }
217 
218 /**
219  * kvm_pmu_vcpu_reset - reset pmu state for cpu
220  * @vcpu: The vcpu pointer
221  *
222  */
223 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
224 {
225 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
226 	int i;
227 
228 	for_each_set_bit(i, &mask, 32)
229 		kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
230 }
231 
232 /**
233  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
234  * @vcpu: The vcpu pointer
235  *
236  */
237 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
238 {
239 	int i;
240 
241 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
242 		kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
243 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
244 }
245 
246 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
247 {
248 	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
249 
250 	val &= ARMV8_PMU_PMCR_N_MASK;
251 	if (val == 0)
252 		return BIT(ARMV8_PMU_CYCLE_IDX);
253 	else
254 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
255 }
256 
257 /**
258  * kvm_pmu_enable_counter_mask - enable selected PMU counters
259  * @vcpu: The vcpu pointer
260  * @val: the value guest writes to PMCNTENSET register
261  *
262  * Call perf_event_enable to start counting the perf event
263  */
264 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
265 {
266 	int i;
267 	if (!kvm_vcpu_has_pmu(vcpu))
268 		return;
269 
270 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
271 		return;
272 
273 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
274 		struct kvm_pmc *pmc;
275 
276 		if (!(val & BIT(i)))
277 			continue;
278 
279 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
280 
281 		if (!pmc->perf_event) {
282 			kvm_pmu_create_perf_event(pmc);
283 		} else {
284 			perf_event_enable(pmc->perf_event);
285 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
286 				kvm_debug("fail to enable perf event\n");
287 		}
288 	}
289 }
290 
291 /**
292  * kvm_pmu_disable_counter_mask - disable selected PMU counters
293  * @vcpu: The vcpu pointer
294  * @val: the value guest writes to PMCNTENCLR register
295  *
296  * Call perf_event_disable to stop counting the perf event
297  */
298 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
299 {
300 	int i;
301 
302 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
303 		return;
304 
305 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
306 		struct kvm_pmc *pmc;
307 
308 		if (!(val & BIT(i)))
309 			continue;
310 
311 		pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
312 
313 		if (pmc->perf_event)
314 			perf_event_disable(pmc->perf_event);
315 	}
316 }
317 
318 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
319 {
320 	u64 reg = 0;
321 
322 	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
323 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
324 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
325 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
326 	}
327 
328 	return reg;
329 }
330 
331 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
332 {
333 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
334 	bool overflow;
335 
336 	if (!kvm_vcpu_has_pmu(vcpu))
337 		return;
338 
339 	overflow = !!kvm_pmu_overflow_status(vcpu);
340 	if (pmu->irq_level == overflow)
341 		return;
342 
343 	pmu->irq_level = overflow;
344 
345 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
346 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
347 					      pmu->irq_num, overflow, pmu);
348 		WARN_ON(ret);
349 	}
350 }
351 
352 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
353 {
354 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
355 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
356 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
357 
358 	if (likely(irqchip_in_kernel(vcpu->kvm)))
359 		return false;
360 
361 	return pmu->irq_level != run_level;
362 }
363 
364 /*
365  * Reflect the PMU overflow interrupt output level into the kvm_run structure
366  */
367 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
368 {
369 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
370 
371 	/* Populate the timer bitmap for user space */
372 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
373 	if (vcpu->arch.pmu.irq_level)
374 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
375 }
376 
377 /**
378  * kvm_pmu_flush_hwstate - flush pmu state to cpu
379  * @vcpu: The vcpu pointer
380  *
381  * Check if the PMU has overflowed while we were running in the host, and inject
382  * an interrupt if that was the case.
383  */
384 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
385 {
386 	kvm_pmu_update_state(vcpu);
387 }
388 
389 /**
390  * kvm_pmu_sync_hwstate - sync pmu state from cpu
391  * @vcpu: The vcpu pointer
392  *
393  * Check if the PMU has overflowed while we were running in the guest, and
394  * inject an interrupt if that was the case.
395  */
396 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
397 {
398 	kvm_pmu_update_state(vcpu);
399 }
400 
401 /**
402  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
403  * to the event.
404  * This is why we need a callback to do it once outside of the NMI context.
405  */
406 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
407 {
408 	struct kvm_vcpu *vcpu;
409 
410 	vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
411 	kvm_vcpu_kick(vcpu);
412 }
413 
414 /*
415  * Perform an increment on any of the counters described in @mask,
416  * generating the overflow if required, and propagate it as a chained
417  * event if possible.
418  */
419 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
420 				      unsigned long mask, u32 event)
421 {
422 	int i;
423 
424 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
425 		return;
426 
427 	/* Weed out disabled counters */
428 	mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
429 
430 	for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
431 		struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
432 		u64 type, reg;
433 
434 		/* Filter on event type */
435 		type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
436 		type &= kvm_pmu_event_mask(vcpu->kvm);
437 		if (type != event)
438 			continue;
439 
440 		/* Increment this counter */
441 		reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
442 		if (!kvm_pmc_is_64bit(pmc))
443 			reg = lower_32_bits(reg);
444 		__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
445 
446 		/* No overflow? move on */
447 		if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
448 			continue;
449 
450 		/* Mark overflow */
451 		__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
452 
453 		if (kvm_pmu_counter_can_chain(pmc))
454 			kvm_pmu_counter_increment(vcpu, BIT(i + 1),
455 						  ARMV8_PMUV3_PERFCTR_CHAIN);
456 	}
457 }
458 
459 /* Compute the sample period for a given counter value */
460 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
461 {
462 	u64 val;
463 
464 	if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
465 		val = (-counter) & GENMASK(63, 0);
466 	else
467 		val = (-counter) & GENMASK(31, 0);
468 
469 	return val;
470 }
471 
472 /**
473  * When the perf event overflows, set the overflow status and inform the vcpu.
474  */
475 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
476 				  struct perf_sample_data *data,
477 				  struct pt_regs *regs)
478 {
479 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
480 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
481 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
482 	int idx = pmc->idx;
483 	u64 period;
484 
485 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
486 
487 	/*
488 	 * Reset the sample period to the architectural limit,
489 	 * i.e. the point where the counter overflows.
490 	 */
491 	period = compute_period(pmc, local64_read(&perf_event->count));
492 
493 	local64_set(&perf_event->hw.period_left, 0);
494 	perf_event->attr.sample_period = period;
495 	perf_event->hw.sample_period = period;
496 
497 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
498 
499 	if (kvm_pmu_counter_can_chain(pmc))
500 		kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
501 					  ARMV8_PMUV3_PERFCTR_CHAIN);
502 
503 	if (kvm_pmu_overflow_status(vcpu)) {
504 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
505 
506 		if (!in_nmi())
507 			kvm_vcpu_kick(vcpu);
508 		else
509 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
510 	}
511 
512 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
513 }
514 
515 /**
516  * kvm_pmu_software_increment - do software increment
517  * @vcpu: The vcpu pointer
518  * @val: the value guest writes to PMSWINC register
519  */
520 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
521 {
522 	kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
523 }
524 
525 /**
526  * kvm_pmu_handle_pmcr - handle PMCR register
527  * @vcpu: The vcpu pointer
528  * @val: the value guest writes to PMCR register
529  */
530 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
531 {
532 	int i;
533 
534 	if (!kvm_vcpu_has_pmu(vcpu))
535 		return;
536 
537 	/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
538 	if (!kvm_pmu_is_3p5(vcpu))
539 		val &= ~ARMV8_PMU_PMCR_LP;
540 
541 	/* The reset bits don't indicate any state, and shouldn't be saved. */
542 	__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
543 
544 	if (val & ARMV8_PMU_PMCR_E) {
545 		kvm_pmu_enable_counter_mask(vcpu,
546 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
547 	} else {
548 		kvm_pmu_disable_counter_mask(vcpu,
549 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
550 	}
551 
552 	if (val & ARMV8_PMU_PMCR_C)
553 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
554 
555 	if (val & ARMV8_PMU_PMCR_P) {
556 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
557 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
558 		for_each_set_bit(i, &mask, 32)
559 			kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
560 	}
561 	kvm_vcpu_pmu_restore_guest(vcpu);
562 }
563 
564 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
565 {
566 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
567 	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
568 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
569 }
570 
571 /**
572  * kvm_pmu_create_perf_event - create a perf event for a counter
573  * @pmc: Counter context
574  */
575 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
576 {
577 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
578 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
579 	struct perf_event *event;
580 	struct perf_event_attr attr;
581 	u64 eventsel, reg, data;
582 
583 	reg = counter_index_to_evtreg(pmc->idx);
584 	data = __vcpu_sys_reg(vcpu, reg);
585 
586 	kvm_pmu_stop_counter(pmc);
587 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
588 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
589 	else
590 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
591 
592 	/*
593 	 * Neither SW increment nor chained events need to be backed
594 	 * by a perf event.
595 	 */
596 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
597 	    eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
598 		return;
599 
600 	/*
601 	 * If we have a filter in place and that the event isn't allowed, do
602 	 * not install a perf event either.
603 	 */
604 	if (vcpu->kvm->arch.pmu_filter &&
605 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
606 		return;
607 
608 	memset(&attr, 0, sizeof(struct perf_event_attr));
609 	attr.type = arm_pmu->pmu.type;
610 	attr.size = sizeof(attr);
611 	attr.pinned = 1;
612 	attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
613 	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
614 	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
615 	attr.exclude_hv = 1; /* Don't count EL2 events */
616 	attr.exclude_host = 1; /* Don't count host events */
617 	attr.config = eventsel;
618 
619 	/*
620 	 * If counting with a 64bit counter, advertise it to the perf
621 	 * code, carefully dealing with the initial sample period
622 	 * which also depends on the overflow.
623 	 */
624 	if (kvm_pmc_is_64bit(pmc))
625 		attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
626 
627 	attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
628 
629 	event = perf_event_create_kernel_counter(&attr, -1, current,
630 						 kvm_pmu_perf_overflow, pmc);
631 
632 	if (IS_ERR(event)) {
633 		pr_err_once("kvm: pmu event creation failed %ld\n",
634 			    PTR_ERR(event));
635 		return;
636 	}
637 
638 	pmc->perf_event = event;
639 }
640 
641 /**
642  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
643  * @vcpu: The vcpu pointer
644  * @data: The data guest writes to PMXEVTYPER_EL0
645  * @select_idx: The number of selected counter
646  *
647  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
648  * event with given hardware event number. Here we call perf_event API to
649  * emulate this action and create a kernel perf event for it.
650  */
651 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
652 				    u64 select_idx)
653 {
654 	struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
655 	u64 reg, mask;
656 
657 	if (!kvm_vcpu_has_pmu(vcpu))
658 		return;
659 
660 	mask  =  ARMV8_PMU_EVTYPE_MASK;
661 	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
662 	mask |= kvm_pmu_event_mask(vcpu->kvm);
663 
664 	reg = counter_index_to_evtreg(pmc->idx);
665 
666 	__vcpu_sys_reg(vcpu, reg) = data & mask;
667 
668 	kvm_pmu_create_perf_event(pmc);
669 }
670 
671 void kvm_host_pmu_init(struct arm_pmu *pmu)
672 {
673 	struct arm_pmu_entry *entry;
674 
675 	if (pmu->pmuver == ID_AA64DFR0_EL1_PMUVer_NI ||
676 	    pmu->pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
677 		return;
678 
679 	mutex_lock(&arm_pmus_lock);
680 
681 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
682 	if (!entry)
683 		goto out_unlock;
684 
685 	entry->arm_pmu = pmu;
686 	list_add_tail(&entry->entry, &arm_pmus);
687 
688 	if (list_is_singular(&arm_pmus))
689 		static_branch_enable(&kvm_arm_pmu_available);
690 
691 out_unlock:
692 	mutex_unlock(&arm_pmus_lock);
693 }
694 
695 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
696 {
697 	struct arm_pmu *tmp, *pmu = NULL;
698 	struct arm_pmu_entry *entry;
699 	int cpu;
700 
701 	mutex_lock(&arm_pmus_lock);
702 
703 	cpu = smp_processor_id();
704 	list_for_each_entry(entry, &arm_pmus, entry) {
705 		tmp = entry->arm_pmu;
706 
707 		if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
708 			pmu = tmp;
709 			break;
710 		}
711 	}
712 
713 	mutex_unlock(&arm_pmus_lock);
714 
715 	return pmu;
716 }
717 
718 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
719 {
720 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
721 	u64 val, mask = 0;
722 	int base, i, nr_events;
723 
724 	if (!kvm_vcpu_has_pmu(vcpu))
725 		return 0;
726 
727 	if (!pmceid1) {
728 		val = read_sysreg(pmceid0_el0);
729 		/* always support CHAIN */
730 		val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
731 		base = 0;
732 	} else {
733 		val = read_sysreg(pmceid1_el0);
734 		/*
735 		 * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled
736 		 * as RAZ
737 		 */
738 		if (vcpu->kvm->arch.arm_pmu->pmuver >= ID_AA64DFR0_EL1_PMUVer_V3P4)
739 			val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32);
740 		base = 32;
741 	}
742 
743 	if (!bmap)
744 		return val;
745 
746 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
747 
748 	for (i = 0; i < 32; i += 8) {
749 		u64 byte;
750 
751 		byte = bitmap_get_value8(bmap, base + i);
752 		mask |= byte << i;
753 		if (nr_events >= (0x4000 + base + 32)) {
754 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
755 			mask |= byte << (32 + i);
756 		}
757 	}
758 
759 	return val & mask;
760 }
761 
762 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
763 {
764 	if (!kvm_vcpu_has_pmu(vcpu))
765 		return 0;
766 
767 	if (!vcpu->arch.pmu.created)
768 		return -EINVAL;
769 
770 	/*
771 	 * A valid interrupt configuration for the PMU is either to have a
772 	 * properly configured interrupt number and using an in-kernel
773 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
774 	 */
775 	if (irqchip_in_kernel(vcpu->kvm)) {
776 		int irq = vcpu->arch.pmu.irq_num;
777 		/*
778 		 * If we are using an in-kernel vgic, at this point we know
779 		 * the vgic will be initialized, so we can check the PMU irq
780 		 * number against the dimensions of the vgic and make sure
781 		 * it's valid.
782 		 */
783 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
784 			return -EINVAL;
785 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
786 		   return -EINVAL;
787 	}
788 
789 	/* One-off reload of the PMU on first run */
790 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
791 
792 	return 0;
793 }
794 
795 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
796 {
797 	if (irqchip_in_kernel(vcpu->kvm)) {
798 		int ret;
799 
800 		/*
801 		 * If using the PMU with an in-kernel virtual GIC
802 		 * implementation, we require the GIC to be already
803 		 * initialized when initializing the PMU.
804 		 */
805 		if (!vgic_initialized(vcpu->kvm))
806 			return -ENODEV;
807 
808 		if (!kvm_arm_pmu_irq_initialized(vcpu))
809 			return -ENXIO;
810 
811 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
812 					 &vcpu->arch.pmu);
813 		if (ret)
814 			return ret;
815 	}
816 
817 	init_irq_work(&vcpu->arch.pmu.overflow_work,
818 		      kvm_pmu_perf_overflow_notify_vcpu);
819 
820 	vcpu->arch.pmu.created = true;
821 	return 0;
822 }
823 
824 /*
825  * For one VM the interrupt type must be same for each vcpu.
826  * As a PPI, the interrupt number is the same for all vcpus,
827  * while as an SPI it must be a separate number per vcpu.
828  */
829 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
830 {
831 	unsigned long i;
832 	struct kvm_vcpu *vcpu;
833 
834 	kvm_for_each_vcpu(i, vcpu, kvm) {
835 		if (!kvm_arm_pmu_irq_initialized(vcpu))
836 			continue;
837 
838 		if (irq_is_ppi(irq)) {
839 			if (vcpu->arch.pmu.irq_num != irq)
840 				return false;
841 		} else {
842 			if (vcpu->arch.pmu.irq_num == irq)
843 				return false;
844 		}
845 	}
846 
847 	return true;
848 }
849 
850 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
851 {
852 	struct kvm *kvm = vcpu->kvm;
853 	struct arm_pmu_entry *entry;
854 	struct arm_pmu *arm_pmu;
855 	int ret = -ENXIO;
856 
857 	lockdep_assert_held(&kvm->arch.config_lock);
858 	mutex_lock(&arm_pmus_lock);
859 
860 	list_for_each_entry(entry, &arm_pmus, entry) {
861 		arm_pmu = entry->arm_pmu;
862 		if (arm_pmu->pmu.type == pmu_id) {
863 			if (kvm_vm_has_ran_once(kvm) ||
864 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
865 				ret = -EBUSY;
866 				break;
867 			}
868 
869 			kvm->arch.arm_pmu = arm_pmu;
870 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
871 			ret = 0;
872 			break;
873 		}
874 	}
875 
876 	mutex_unlock(&arm_pmus_lock);
877 	return ret;
878 }
879 
880 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
881 {
882 	struct kvm *kvm = vcpu->kvm;
883 
884 	lockdep_assert_held(&kvm->arch.config_lock);
885 
886 	if (!kvm_vcpu_has_pmu(vcpu))
887 		return -ENODEV;
888 
889 	if (vcpu->arch.pmu.created)
890 		return -EBUSY;
891 
892 	if (!kvm->arch.arm_pmu) {
893 		/*
894 		 * No PMU set, get the default one.
895 		 *
896 		 * The observant among you will notice that the supported_cpus
897 		 * mask does not get updated for the default PMU even though it
898 		 * is quite possible the selected instance supports only a
899 		 * subset of cores in the system. This is intentional, and
900 		 * upholds the preexisting behavior on heterogeneous systems
901 		 * where vCPUs can be scheduled on any core but the guest
902 		 * counters could stop working.
903 		 */
904 		kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
905 		if (!kvm->arch.arm_pmu)
906 			return -ENODEV;
907 	}
908 
909 	switch (attr->attr) {
910 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
911 		int __user *uaddr = (int __user *)(long)attr->addr;
912 		int irq;
913 
914 		if (!irqchip_in_kernel(kvm))
915 			return -EINVAL;
916 
917 		if (get_user(irq, uaddr))
918 			return -EFAULT;
919 
920 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
921 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
922 			return -EINVAL;
923 
924 		if (!pmu_irq_is_valid(kvm, irq))
925 			return -EINVAL;
926 
927 		if (kvm_arm_pmu_irq_initialized(vcpu))
928 			return -EBUSY;
929 
930 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
931 		vcpu->arch.pmu.irq_num = irq;
932 		return 0;
933 	}
934 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
935 		struct kvm_pmu_event_filter __user *uaddr;
936 		struct kvm_pmu_event_filter filter;
937 		int nr_events;
938 
939 		nr_events = kvm_pmu_event_mask(kvm) + 1;
940 
941 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
942 
943 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
944 			return -EFAULT;
945 
946 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
947 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
948 		     filter.action != KVM_PMU_EVENT_DENY))
949 			return -EINVAL;
950 
951 		if (kvm_vm_has_ran_once(kvm))
952 			return -EBUSY;
953 
954 		if (!kvm->arch.pmu_filter) {
955 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
956 			if (!kvm->arch.pmu_filter)
957 				return -ENOMEM;
958 
959 			/*
960 			 * The default depends on the first applied filter.
961 			 * If it allows events, the default is to deny.
962 			 * Conversely, if the first filter denies a set of
963 			 * events, the default is to allow.
964 			 */
965 			if (filter.action == KVM_PMU_EVENT_ALLOW)
966 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
967 			else
968 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
969 		}
970 
971 		if (filter.action == KVM_PMU_EVENT_ALLOW)
972 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
973 		else
974 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
975 
976 		return 0;
977 	}
978 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
979 		int __user *uaddr = (int __user *)(long)attr->addr;
980 		int pmu_id;
981 
982 		if (get_user(pmu_id, uaddr))
983 			return -EFAULT;
984 
985 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
986 	}
987 	case KVM_ARM_VCPU_PMU_V3_INIT:
988 		return kvm_arm_pmu_v3_init(vcpu);
989 	}
990 
991 	return -ENXIO;
992 }
993 
994 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
995 {
996 	switch (attr->attr) {
997 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
998 		int __user *uaddr = (int __user *)(long)attr->addr;
999 		int irq;
1000 
1001 		if (!irqchip_in_kernel(vcpu->kvm))
1002 			return -EINVAL;
1003 
1004 		if (!kvm_vcpu_has_pmu(vcpu))
1005 			return -ENODEV;
1006 
1007 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1008 			return -ENXIO;
1009 
1010 		irq = vcpu->arch.pmu.irq_num;
1011 		return put_user(irq, uaddr);
1012 	}
1013 	}
1014 
1015 	return -ENXIO;
1016 }
1017 
1018 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1019 {
1020 	switch (attr->attr) {
1021 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1022 	case KVM_ARM_VCPU_PMU_V3_INIT:
1023 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1024 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1025 		if (kvm_vcpu_has_pmu(vcpu))
1026 			return 0;
1027 	}
1028 
1029 	return -ENXIO;
1030 }
1031 
1032 u8 kvm_arm_pmu_get_pmuver_limit(void)
1033 {
1034 	u64 tmp;
1035 
1036 	tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1037 	tmp = cpuid_feature_cap_perfmon_field(tmp,
1038 					      ID_AA64DFR0_EL1_PMUVer_SHIFT,
1039 					      ID_AA64DFR0_EL1_PMUVer_V3P5);
1040 	return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1041 }
1042