xref: /openbmc/linux/arch/arm64/kvm/pmu-emul.c (revision 2bc7d3e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 
18 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
19 
20 static LIST_HEAD(arm_pmus);
21 static DEFINE_MUTEX(arm_pmus_lock);
22 
23 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
24 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
25 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
26 
27 #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
28 
29 static u32 kvm_pmu_event_mask(struct kvm *kvm)
30 {
31 	unsigned int pmuver;
32 
33 	pmuver = kvm->arch.arm_pmu->pmuver;
34 
35 	switch (pmuver) {
36 	case ID_AA64DFR0_PMUVER_8_0:
37 		return GENMASK(9, 0);
38 	case ID_AA64DFR0_PMUVER_8_1:
39 	case ID_AA64DFR0_PMUVER_8_4:
40 	case ID_AA64DFR0_PMUVER_8_5:
41 	case ID_AA64DFR0_PMUVER_8_7:
42 		return GENMASK(15, 0);
43 	default:		/* Shouldn't be here, just for sanity */
44 		WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
45 		return 0;
46 	}
47 }
48 
49 /**
50  * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
51  * @vcpu: The vcpu pointer
52  * @select_idx: The counter index
53  */
54 static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
55 {
56 	return (select_idx == ARMV8_PMU_CYCLE_IDX &&
57 		__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
58 }
59 
60 static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
61 {
62 	struct kvm_pmu *pmu;
63 	struct kvm_vcpu_arch *vcpu_arch;
64 
65 	pmc -= pmc->idx;
66 	pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
67 	vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
68 	return container_of(vcpu_arch, struct kvm_vcpu, arch);
69 }
70 
71 /**
72  * kvm_pmu_pmc_is_chained - determine if the pmc is chained
73  * @pmc: The PMU counter pointer
74  */
75 static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
76 {
77 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
78 
79 	return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
80 }
81 
82 /**
83  * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
84  * @select_idx: The counter index
85  */
86 static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
87 {
88 	return select_idx & 0x1;
89 }
90 
91 /**
92  * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
93  * @pmc: The PMU counter pointer
94  *
95  * When a pair of PMCs are chained together we use the low counter (canonical)
96  * to hold the underlying perf event.
97  */
98 static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
99 {
100 	if (kvm_pmu_pmc_is_chained(pmc) &&
101 	    kvm_pmu_idx_is_high_counter(pmc->idx))
102 		return pmc - 1;
103 
104 	return pmc;
105 }
106 static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
107 {
108 	if (kvm_pmu_idx_is_high_counter(pmc->idx))
109 		return pmc - 1;
110 	else
111 		return pmc + 1;
112 }
113 
114 /**
115  * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
116  * @vcpu: The vcpu pointer
117  * @select_idx: The counter index
118  */
119 static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
120 {
121 	u64 eventsel, reg;
122 
123 	select_idx |= 0x1;
124 
125 	if (select_idx == ARMV8_PMU_CYCLE_IDX)
126 		return false;
127 
128 	reg = PMEVTYPER0_EL0 + select_idx;
129 	eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
130 
131 	return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
132 }
133 
134 /**
135  * kvm_pmu_get_pair_counter_value - get PMU counter value
136  * @vcpu: The vcpu pointer
137  * @pmc: The PMU counter pointer
138  */
139 static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
140 					  struct kvm_pmc *pmc)
141 {
142 	u64 counter, counter_high, reg, enabled, running;
143 
144 	if (kvm_pmu_pmc_is_chained(pmc)) {
145 		pmc = kvm_pmu_get_canonical_pmc(pmc);
146 		reg = PMEVCNTR0_EL0 + pmc->idx;
147 
148 		counter = __vcpu_sys_reg(vcpu, reg);
149 		counter_high = __vcpu_sys_reg(vcpu, reg + 1);
150 
151 		counter = lower_32_bits(counter) | (counter_high << 32);
152 	} else {
153 		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
154 		      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
155 		counter = __vcpu_sys_reg(vcpu, reg);
156 	}
157 
158 	/*
159 	 * The real counter value is equal to the value of counter register plus
160 	 * the value perf event counts.
161 	 */
162 	if (pmc->perf_event)
163 		counter += perf_event_read_value(pmc->perf_event, &enabled,
164 						 &running);
165 
166 	return counter;
167 }
168 
169 /**
170  * kvm_pmu_get_counter_value - get PMU counter value
171  * @vcpu: The vcpu pointer
172  * @select_idx: The counter index
173  */
174 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
175 {
176 	u64 counter;
177 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
178 	struct kvm_pmc *pmc = &pmu->pmc[select_idx];
179 
180 	if (!kvm_vcpu_has_pmu(vcpu))
181 		return 0;
182 
183 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
184 
185 	if (kvm_pmu_pmc_is_chained(pmc) &&
186 	    kvm_pmu_idx_is_high_counter(select_idx))
187 		counter = upper_32_bits(counter);
188 	else if (select_idx != ARMV8_PMU_CYCLE_IDX)
189 		counter = lower_32_bits(counter);
190 
191 	return counter;
192 }
193 
194 /**
195  * kvm_pmu_set_counter_value - set PMU counter value
196  * @vcpu: The vcpu pointer
197  * @select_idx: The counter index
198  * @val: The counter value
199  */
200 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
201 {
202 	u64 reg;
203 
204 	if (!kvm_vcpu_has_pmu(vcpu))
205 		return;
206 
207 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
208 	      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
209 	__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
210 
211 	/* Recreate the perf event to reflect the updated sample_period */
212 	kvm_pmu_create_perf_event(vcpu, select_idx);
213 }
214 
215 /**
216  * kvm_pmu_release_perf_event - remove the perf event
217  * @pmc: The PMU counter pointer
218  */
219 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
220 {
221 	pmc = kvm_pmu_get_canonical_pmc(pmc);
222 	if (pmc->perf_event) {
223 		perf_event_disable(pmc->perf_event);
224 		perf_event_release_kernel(pmc->perf_event);
225 		pmc->perf_event = NULL;
226 	}
227 }
228 
229 /**
230  * kvm_pmu_stop_counter - stop PMU counter
231  * @pmc: The PMU counter pointer
232  *
233  * If this counter has been configured to monitor some event, release it here.
234  */
235 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
236 {
237 	u64 counter, reg, val;
238 
239 	pmc = kvm_pmu_get_canonical_pmc(pmc);
240 	if (!pmc->perf_event)
241 		return;
242 
243 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
244 
245 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
246 		reg = PMCCNTR_EL0;
247 		val = counter;
248 	} else {
249 		reg = PMEVCNTR0_EL0 + pmc->idx;
250 		val = lower_32_bits(counter);
251 	}
252 
253 	__vcpu_sys_reg(vcpu, reg) = val;
254 
255 	if (kvm_pmu_pmc_is_chained(pmc))
256 		__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
257 
258 	kvm_pmu_release_perf_event(pmc);
259 }
260 
261 /**
262  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
263  * @vcpu: The vcpu pointer
264  *
265  */
266 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
267 {
268 	int i;
269 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
270 
271 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
272 		pmu->pmc[i].idx = i;
273 }
274 
275 /**
276  * kvm_pmu_vcpu_reset - reset pmu state for cpu
277  * @vcpu: The vcpu pointer
278  *
279  */
280 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
281 {
282 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
283 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
284 	int i;
285 
286 	for_each_set_bit(i, &mask, 32)
287 		kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
288 
289 	bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
290 }
291 
292 /**
293  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
294  * @vcpu: The vcpu pointer
295  *
296  */
297 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299 	int i;
300 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
301 
302 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
303 		kvm_pmu_release_perf_event(&pmu->pmc[i]);
304 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
305 }
306 
307 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
308 {
309 	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
310 
311 	val &= ARMV8_PMU_PMCR_N_MASK;
312 	if (val == 0)
313 		return BIT(ARMV8_PMU_CYCLE_IDX);
314 	else
315 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
316 }
317 
318 /**
319  * kvm_pmu_enable_counter_mask - enable selected PMU counters
320  * @vcpu: The vcpu pointer
321  * @val: the value guest writes to PMCNTENSET register
322  *
323  * Call perf_event_enable to start counting the perf event
324  */
325 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
326 {
327 	int i;
328 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
329 	struct kvm_pmc *pmc;
330 
331 	if (!kvm_vcpu_has_pmu(vcpu))
332 		return;
333 
334 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
335 		return;
336 
337 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
338 		if (!(val & BIT(i)))
339 			continue;
340 
341 		pmc = &pmu->pmc[i];
342 
343 		/* A change in the enable state may affect the chain state */
344 		kvm_pmu_update_pmc_chained(vcpu, i);
345 		kvm_pmu_create_perf_event(vcpu, i);
346 
347 		/* At this point, pmc must be the canonical */
348 		if (pmc->perf_event) {
349 			perf_event_enable(pmc->perf_event);
350 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
351 				kvm_debug("fail to enable perf event\n");
352 		}
353 	}
354 }
355 
356 /**
357  * kvm_pmu_disable_counter_mask - disable selected PMU counters
358  * @vcpu: The vcpu pointer
359  * @val: the value guest writes to PMCNTENCLR register
360  *
361  * Call perf_event_disable to stop counting the perf event
362  */
363 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
364 {
365 	int i;
366 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
367 	struct kvm_pmc *pmc;
368 
369 	if (!kvm_vcpu_has_pmu(vcpu) || !val)
370 		return;
371 
372 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
373 		if (!(val & BIT(i)))
374 			continue;
375 
376 		pmc = &pmu->pmc[i];
377 
378 		/* A change in the enable state may affect the chain state */
379 		kvm_pmu_update_pmc_chained(vcpu, i);
380 		kvm_pmu_create_perf_event(vcpu, i);
381 
382 		/* At this point, pmc must be the canonical */
383 		if (pmc->perf_event)
384 			perf_event_disable(pmc->perf_event);
385 	}
386 }
387 
388 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
389 {
390 	u64 reg = 0;
391 
392 	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
393 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
394 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
395 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
396 	}
397 
398 	return reg;
399 }
400 
401 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
402 {
403 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
404 	bool overflow;
405 
406 	if (!kvm_vcpu_has_pmu(vcpu))
407 		return;
408 
409 	overflow = !!kvm_pmu_overflow_status(vcpu);
410 	if (pmu->irq_level == overflow)
411 		return;
412 
413 	pmu->irq_level = overflow;
414 
415 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
416 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
417 					      pmu->irq_num, overflow, pmu);
418 		WARN_ON(ret);
419 	}
420 }
421 
422 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
423 {
424 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
425 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
426 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
427 
428 	if (likely(irqchip_in_kernel(vcpu->kvm)))
429 		return false;
430 
431 	return pmu->irq_level != run_level;
432 }
433 
434 /*
435  * Reflect the PMU overflow interrupt output level into the kvm_run structure
436  */
437 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
438 {
439 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
440 
441 	/* Populate the timer bitmap for user space */
442 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
443 	if (vcpu->arch.pmu.irq_level)
444 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
445 }
446 
447 /**
448  * kvm_pmu_flush_hwstate - flush pmu state to cpu
449  * @vcpu: The vcpu pointer
450  *
451  * Check if the PMU has overflowed while we were running in the host, and inject
452  * an interrupt if that was the case.
453  */
454 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
455 {
456 	kvm_pmu_update_state(vcpu);
457 }
458 
459 /**
460  * kvm_pmu_sync_hwstate - sync pmu state from cpu
461  * @vcpu: The vcpu pointer
462  *
463  * Check if the PMU has overflowed while we were running in the guest, and
464  * inject an interrupt if that was the case.
465  */
466 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
467 {
468 	kvm_pmu_update_state(vcpu);
469 }
470 
471 /**
472  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
473  * to the event.
474  * This is why we need a callback to do it once outside of the NMI context.
475  */
476 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
477 {
478 	struct kvm_vcpu *vcpu;
479 	struct kvm_pmu *pmu;
480 
481 	pmu = container_of(work, struct kvm_pmu, overflow_work);
482 	vcpu = kvm_pmc_to_vcpu(pmu->pmc);
483 
484 	kvm_vcpu_kick(vcpu);
485 }
486 
487 /**
488  * When the perf event overflows, set the overflow status and inform the vcpu.
489  */
490 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
491 				  struct perf_sample_data *data,
492 				  struct pt_regs *regs)
493 {
494 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
495 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
496 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
497 	int idx = pmc->idx;
498 	u64 period;
499 
500 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
501 
502 	/*
503 	 * Reset the sample period to the architectural limit,
504 	 * i.e. the point where the counter overflows.
505 	 */
506 	period = -(local64_read(&perf_event->count));
507 
508 	if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
509 		period &= GENMASK(31, 0);
510 
511 	local64_set(&perf_event->hw.period_left, 0);
512 	perf_event->attr.sample_period = period;
513 	perf_event->hw.sample_period = period;
514 
515 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
516 
517 	if (kvm_pmu_overflow_status(vcpu)) {
518 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
519 
520 		if (!in_nmi())
521 			kvm_vcpu_kick(vcpu);
522 		else
523 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
524 	}
525 
526 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
527 }
528 
529 /**
530  * kvm_pmu_software_increment - do software increment
531  * @vcpu: The vcpu pointer
532  * @val: the value guest writes to PMSWINC register
533  */
534 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
535 {
536 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
537 	int i;
538 
539 	if (!kvm_vcpu_has_pmu(vcpu))
540 		return;
541 
542 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
543 		return;
544 
545 	/* Weed out disabled counters */
546 	val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
547 
548 	for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
549 		u64 type, reg;
550 
551 		if (!(val & BIT(i)))
552 			continue;
553 
554 		/* PMSWINC only applies to ... SW_INC! */
555 		type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
556 		type &= kvm_pmu_event_mask(vcpu->kvm);
557 		if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
558 			continue;
559 
560 		/* increment this even SW_INC counter */
561 		reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
562 		reg = lower_32_bits(reg);
563 		__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
564 
565 		if (reg) /* no overflow on the low part */
566 			continue;
567 
568 		if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
569 			/* increment the high counter */
570 			reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
571 			reg = lower_32_bits(reg);
572 			__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
573 			if (!reg) /* mark overflow on the high counter */
574 				__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
575 		} else {
576 			/* mark overflow on low counter */
577 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
578 		}
579 	}
580 }
581 
582 /**
583  * kvm_pmu_handle_pmcr - handle PMCR register
584  * @vcpu: The vcpu pointer
585  * @val: the value guest writes to PMCR register
586  */
587 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
588 {
589 	int i;
590 
591 	if (!kvm_vcpu_has_pmu(vcpu))
592 		return;
593 
594 	if (val & ARMV8_PMU_PMCR_E) {
595 		kvm_pmu_enable_counter_mask(vcpu,
596 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
597 	} else {
598 		kvm_pmu_disable_counter_mask(vcpu,
599 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
600 	}
601 
602 	if (val & ARMV8_PMU_PMCR_C)
603 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
604 
605 	if (val & ARMV8_PMU_PMCR_P) {
606 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
607 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
608 		for_each_set_bit(i, &mask, 32)
609 			kvm_pmu_set_counter_value(vcpu, i, 0);
610 	}
611 }
612 
613 static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
614 {
615 	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
616 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
617 }
618 
619 /**
620  * kvm_pmu_create_perf_event - create a perf event for a counter
621  * @vcpu: The vcpu pointer
622  * @select_idx: The number of selected counter
623  */
624 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
625 {
626 	struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
627 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
628 	struct kvm_pmc *pmc;
629 	struct perf_event *event;
630 	struct perf_event_attr attr;
631 	u64 eventsel, counter, reg, data;
632 
633 	/*
634 	 * For chained counters the event type and filtering attributes are
635 	 * obtained from the low/even counter. We also use this counter to
636 	 * determine if the event is enabled/disabled.
637 	 */
638 	pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
639 
640 	reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
641 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
642 	data = __vcpu_sys_reg(vcpu, reg);
643 
644 	kvm_pmu_stop_counter(vcpu, pmc);
645 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
646 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
647 	else
648 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
649 
650 	/* Software increment event doesn't need to be backed by a perf event */
651 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
652 		return;
653 
654 	/*
655 	 * If we have a filter in place and that the event isn't allowed, do
656 	 * not install a perf event either.
657 	 */
658 	if (vcpu->kvm->arch.pmu_filter &&
659 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
660 		return;
661 
662 	memset(&attr, 0, sizeof(struct perf_event_attr));
663 	attr.type = arm_pmu->pmu.type;
664 	attr.size = sizeof(attr);
665 	attr.pinned = 1;
666 	attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
667 	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
668 	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
669 	attr.exclude_hv = 1; /* Don't count EL2 events */
670 	attr.exclude_host = 1; /* Don't count host events */
671 	attr.config = eventsel;
672 
673 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
674 
675 	if (kvm_pmu_pmc_is_chained(pmc)) {
676 		/**
677 		 * The initial sample period (overflow count) of an event. For
678 		 * chained counters we only support overflow interrupts on the
679 		 * high counter.
680 		 */
681 		attr.sample_period = (-counter) & GENMASK(63, 0);
682 		attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
683 
684 		event = perf_event_create_kernel_counter(&attr, -1, current,
685 							 kvm_pmu_perf_overflow,
686 							 pmc + 1);
687 	} else {
688 		/* The initial sample period (overflow count) of an event. */
689 		if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
690 			attr.sample_period = (-counter) & GENMASK(63, 0);
691 		else
692 			attr.sample_period = (-counter) & GENMASK(31, 0);
693 
694 		event = perf_event_create_kernel_counter(&attr, -1, current,
695 						 kvm_pmu_perf_overflow, pmc);
696 	}
697 
698 	if (IS_ERR(event)) {
699 		pr_err_once("kvm: pmu event creation failed %ld\n",
700 			    PTR_ERR(event));
701 		return;
702 	}
703 
704 	pmc->perf_event = event;
705 }
706 
707 /**
708  * kvm_pmu_update_pmc_chained - update chained bitmap
709  * @vcpu: The vcpu pointer
710  * @select_idx: The number of selected counter
711  *
712  * Update the chained bitmap based on the event type written in the
713  * typer register and the enable state of the odd register.
714  */
715 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
716 {
717 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
718 	struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
719 	bool new_state, old_state;
720 
721 	old_state = kvm_pmu_pmc_is_chained(pmc);
722 	new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
723 		    kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
724 
725 	if (old_state == new_state)
726 		return;
727 
728 	canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
729 	kvm_pmu_stop_counter(vcpu, canonical_pmc);
730 	if (new_state) {
731 		/*
732 		 * During promotion from !chained to chained we must ensure
733 		 * the adjacent counter is stopped and its event destroyed
734 		 */
735 		kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
736 		set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
737 		return;
738 	}
739 	clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
740 }
741 
742 /**
743  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
744  * @vcpu: The vcpu pointer
745  * @data: The data guest writes to PMXEVTYPER_EL0
746  * @select_idx: The number of selected counter
747  *
748  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
749  * event with given hardware event number. Here we call perf_event API to
750  * emulate this action and create a kernel perf event for it.
751  */
752 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
753 				    u64 select_idx)
754 {
755 	u64 reg, mask;
756 
757 	if (!kvm_vcpu_has_pmu(vcpu))
758 		return;
759 
760 	mask  =  ARMV8_PMU_EVTYPE_MASK;
761 	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
762 	mask |= kvm_pmu_event_mask(vcpu->kvm);
763 
764 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
765 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
766 
767 	__vcpu_sys_reg(vcpu, reg) = data & mask;
768 
769 	kvm_pmu_update_pmc_chained(vcpu, select_idx);
770 	kvm_pmu_create_perf_event(vcpu, select_idx);
771 }
772 
773 void kvm_host_pmu_init(struct arm_pmu *pmu)
774 {
775 	struct arm_pmu_entry *entry;
776 
777 	if (pmu->pmuver == 0 || pmu->pmuver == ID_AA64DFR0_PMUVER_IMP_DEF)
778 		return;
779 
780 	mutex_lock(&arm_pmus_lock);
781 
782 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
783 	if (!entry)
784 		goto out_unlock;
785 
786 	entry->arm_pmu = pmu;
787 	list_add_tail(&entry->entry, &arm_pmus);
788 
789 	if (list_is_singular(&arm_pmus))
790 		static_branch_enable(&kvm_arm_pmu_available);
791 
792 out_unlock:
793 	mutex_unlock(&arm_pmus_lock);
794 }
795 
796 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
797 {
798 	struct perf_event_attr attr = { };
799 	struct perf_event *event;
800 	struct arm_pmu *pmu = NULL;
801 
802 	/*
803 	 * Create a dummy event that only counts user cycles. As we'll never
804 	 * leave this function with the event being live, it will never
805 	 * count anything. But it allows us to probe some of the PMU
806 	 * details. Yes, this is terrible.
807 	 */
808 	attr.type = PERF_TYPE_RAW;
809 	attr.size = sizeof(attr);
810 	attr.pinned = 1;
811 	attr.disabled = 0;
812 	attr.exclude_user = 0;
813 	attr.exclude_kernel = 1;
814 	attr.exclude_hv = 1;
815 	attr.exclude_host = 1;
816 	attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
817 	attr.sample_period = GENMASK(63, 0);
818 
819 	event = perf_event_create_kernel_counter(&attr, -1, current,
820 						 kvm_pmu_perf_overflow, &attr);
821 
822 	if (IS_ERR(event)) {
823 		pr_err_once("kvm: pmu event creation failed %ld\n",
824 			    PTR_ERR(event));
825 		return NULL;
826 	}
827 
828 	if (event->pmu) {
829 		pmu = to_arm_pmu(event->pmu);
830 		if (pmu->pmuver == 0 ||
831 		    pmu->pmuver == ID_AA64DFR0_PMUVER_IMP_DEF)
832 			pmu = NULL;
833 	}
834 
835 	perf_event_disable(event);
836 	perf_event_release_kernel(event);
837 
838 	return pmu;
839 }
840 
841 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
842 {
843 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
844 	u64 val, mask = 0;
845 	int base, i, nr_events;
846 
847 	if (!kvm_vcpu_has_pmu(vcpu))
848 		return 0;
849 
850 	if (!pmceid1) {
851 		val = read_sysreg(pmceid0_el0);
852 		base = 0;
853 	} else {
854 		val = read_sysreg(pmceid1_el0);
855 		/*
856 		 * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled
857 		 * as RAZ
858 		 */
859 		if (vcpu->kvm->arch.arm_pmu->pmuver >= ID_AA64DFR0_PMUVER_8_4)
860 			val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32);
861 		base = 32;
862 	}
863 
864 	if (!bmap)
865 		return val;
866 
867 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
868 
869 	for (i = 0; i < 32; i += 8) {
870 		u64 byte;
871 
872 		byte = bitmap_get_value8(bmap, base + i);
873 		mask |= byte << i;
874 		if (nr_events >= (0x4000 + base + 32)) {
875 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
876 			mask |= byte << (32 + i);
877 		}
878 	}
879 
880 	return val & mask;
881 }
882 
883 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
884 {
885 	if (!kvm_vcpu_has_pmu(vcpu))
886 		return 0;
887 
888 	if (!vcpu->arch.pmu.created)
889 		return -EINVAL;
890 
891 	/*
892 	 * A valid interrupt configuration for the PMU is either to have a
893 	 * properly configured interrupt number and using an in-kernel
894 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
895 	 */
896 	if (irqchip_in_kernel(vcpu->kvm)) {
897 		int irq = vcpu->arch.pmu.irq_num;
898 		/*
899 		 * If we are using an in-kernel vgic, at this point we know
900 		 * the vgic will be initialized, so we can check the PMU irq
901 		 * number against the dimensions of the vgic and make sure
902 		 * it's valid.
903 		 */
904 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
905 			return -EINVAL;
906 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
907 		   return -EINVAL;
908 	}
909 
910 	/* One-off reload of the PMU on first run */
911 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
912 
913 	return 0;
914 }
915 
916 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
917 {
918 	if (irqchip_in_kernel(vcpu->kvm)) {
919 		int ret;
920 
921 		/*
922 		 * If using the PMU with an in-kernel virtual GIC
923 		 * implementation, we require the GIC to be already
924 		 * initialized when initializing the PMU.
925 		 */
926 		if (!vgic_initialized(vcpu->kvm))
927 			return -ENODEV;
928 
929 		if (!kvm_arm_pmu_irq_initialized(vcpu))
930 			return -ENXIO;
931 
932 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
933 					 &vcpu->arch.pmu);
934 		if (ret)
935 			return ret;
936 	}
937 
938 	init_irq_work(&vcpu->arch.pmu.overflow_work,
939 		      kvm_pmu_perf_overflow_notify_vcpu);
940 
941 	vcpu->arch.pmu.created = true;
942 	return 0;
943 }
944 
945 /*
946  * For one VM the interrupt type must be same for each vcpu.
947  * As a PPI, the interrupt number is the same for all vcpus,
948  * while as an SPI it must be a separate number per vcpu.
949  */
950 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
951 {
952 	unsigned long i;
953 	struct kvm_vcpu *vcpu;
954 
955 	kvm_for_each_vcpu(i, vcpu, kvm) {
956 		if (!kvm_arm_pmu_irq_initialized(vcpu))
957 			continue;
958 
959 		if (irq_is_ppi(irq)) {
960 			if (vcpu->arch.pmu.irq_num != irq)
961 				return false;
962 		} else {
963 			if (vcpu->arch.pmu.irq_num == irq)
964 				return false;
965 		}
966 	}
967 
968 	return true;
969 }
970 
971 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
972 {
973 	struct kvm *kvm = vcpu->kvm;
974 	struct arm_pmu_entry *entry;
975 	struct arm_pmu *arm_pmu;
976 	int ret = -ENXIO;
977 
978 	mutex_lock(&kvm->lock);
979 	mutex_lock(&arm_pmus_lock);
980 
981 	list_for_each_entry(entry, &arm_pmus, entry) {
982 		arm_pmu = entry->arm_pmu;
983 		if (arm_pmu->pmu.type == pmu_id) {
984 			if (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags) ||
985 			    (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
986 				ret = -EBUSY;
987 				break;
988 			}
989 
990 			kvm->arch.arm_pmu = arm_pmu;
991 			cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
992 			ret = 0;
993 			break;
994 		}
995 	}
996 
997 	mutex_unlock(&arm_pmus_lock);
998 	mutex_unlock(&kvm->lock);
999 	return ret;
1000 }
1001 
1002 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1003 {
1004 	struct kvm *kvm = vcpu->kvm;
1005 
1006 	if (!kvm_vcpu_has_pmu(vcpu))
1007 		return -ENODEV;
1008 
1009 	if (vcpu->arch.pmu.created)
1010 		return -EBUSY;
1011 
1012 	mutex_lock(&kvm->lock);
1013 	if (!kvm->arch.arm_pmu) {
1014 		/* No PMU set, get the default one */
1015 		kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
1016 		if (!kvm->arch.arm_pmu) {
1017 			mutex_unlock(&kvm->lock);
1018 			return -ENODEV;
1019 		}
1020 	}
1021 	mutex_unlock(&kvm->lock);
1022 
1023 	switch (attr->attr) {
1024 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1025 		int __user *uaddr = (int __user *)(long)attr->addr;
1026 		int irq;
1027 
1028 		if (!irqchip_in_kernel(kvm))
1029 			return -EINVAL;
1030 
1031 		if (get_user(irq, uaddr))
1032 			return -EFAULT;
1033 
1034 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
1035 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1036 			return -EINVAL;
1037 
1038 		if (!pmu_irq_is_valid(kvm, irq))
1039 			return -EINVAL;
1040 
1041 		if (kvm_arm_pmu_irq_initialized(vcpu))
1042 			return -EBUSY;
1043 
1044 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1045 		vcpu->arch.pmu.irq_num = irq;
1046 		return 0;
1047 	}
1048 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
1049 		struct kvm_pmu_event_filter __user *uaddr;
1050 		struct kvm_pmu_event_filter filter;
1051 		int nr_events;
1052 
1053 		nr_events = kvm_pmu_event_mask(kvm) + 1;
1054 
1055 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1056 
1057 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
1058 			return -EFAULT;
1059 
1060 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
1061 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
1062 		     filter.action != KVM_PMU_EVENT_DENY))
1063 			return -EINVAL;
1064 
1065 		mutex_lock(&kvm->lock);
1066 
1067 		if (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags)) {
1068 			mutex_unlock(&kvm->lock);
1069 			return -EBUSY;
1070 		}
1071 
1072 		if (!kvm->arch.pmu_filter) {
1073 			kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1074 			if (!kvm->arch.pmu_filter) {
1075 				mutex_unlock(&kvm->lock);
1076 				return -ENOMEM;
1077 			}
1078 
1079 			/*
1080 			 * The default depends on the first applied filter.
1081 			 * If it allows events, the default is to deny.
1082 			 * Conversely, if the first filter denies a set of
1083 			 * events, the default is to allow.
1084 			 */
1085 			if (filter.action == KVM_PMU_EVENT_ALLOW)
1086 				bitmap_zero(kvm->arch.pmu_filter, nr_events);
1087 			else
1088 				bitmap_fill(kvm->arch.pmu_filter, nr_events);
1089 		}
1090 
1091 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1092 			bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1093 		else
1094 			bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1095 
1096 		mutex_unlock(&kvm->lock);
1097 
1098 		return 0;
1099 	}
1100 	case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1101 		int __user *uaddr = (int __user *)(long)attr->addr;
1102 		int pmu_id;
1103 
1104 		if (get_user(pmu_id, uaddr))
1105 			return -EFAULT;
1106 
1107 		return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1108 	}
1109 	case KVM_ARM_VCPU_PMU_V3_INIT:
1110 		return kvm_arm_pmu_v3_init(vcpu);
1111 	}
1112 
1113 	return -ENXIO;
1114 }
1115 
1116 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1117 {
1118 	switch (attr->attr) {
1119 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1120 		int __user *uaddr = (int __user *)(long)attr->addr;
1121 		int irq;
1122 
1123 		if (!irqchip_in_kernel(vcpu->kvm))
1124 			return -EINVAL;
1125 
1126 		if (!kvm_vcpu_has_pmu(vcpu))
1127 			return -ENODEV;
1128 
1129 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1130 			return -ENXIO;
1131 
1132 		irq = vcpu->arch.pmu.irq_num;
1133 		return put_user(irq, uaddr);
1134 	}
1135 	}
1136 
1137 	return -ENXIO;
1138 }
1139 
1140 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1141 {
1142 	switch (attr->attr) {
1143 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1144 	case KVM_ARM_VCPU_PMU_V3_INIT:
1145 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1146 	case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1147 		if (kvm_vcpu_has_pmu(vcpu))
1148 			return 0;
1149 	}
1150 
1151 	return -ENXIO;
1152 }
1153