1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 35 { 36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 /* 43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 46 * long will also starve other vCPUs. We have to also make sure that the page 47 * tables are not freed while we released the lock. 48 */ 49 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 50 phys_addr_t end, 51 int (*fn)(struct kvm_pgtable *, u64, u64), 52 bool resched) 53 { 54 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 55 int ret; 56 u64 next; 57 58 do { 59 struct kvm_pgtable *pgt = mmu->pgt; 60 if (!pgt) 61 return -EINVAL; 62 63 next = stage2_range_addr_end(addr, end); 64 ret = fn(pgt, addr, next - addr); 65 if (ret) 66 break; 67 68 if (resched && next != end) 69 cond_resched_rwlock_write(&kvm->mmu_lock); 70 } while (addr = next, addr != end); 71 72 return ret; 73 } 74 75 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 76 stage2_apply_range(mmu, addr, end, fn, true) 77 78 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 79 { 80 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 81 } 82 83 /** 84 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 85 * @kvm: pointer to kvm structure. 86 * 87 * Interface to HYP function to flush all VM TLB entries 88 */ 89 void kvm_flush_remote_tlbs(struct kvm *kvm) 90 { 91 ++kvm->stat.generic.remote_tlb_flush_requests; 92 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 93 } 94 95 static bool kvm_is_device_pfn(unsigned long pfn) 96 { 97 return !pfn_is_map_memory(pfn); 98 } 99 100 static void *stage2_memcache_zalloc_page(void *arg) 101 { 102 struct kvm_mmu_memory_cache *mc = arg; 103 void *virt; 104 105 /* Allocated with __GFP_ZERO, so no need to zero */ 106 virt = kvm_mmu_memory_cache_alloc(mc); 107 if (virt) 108 kvm_account_pgtable_pages(virt, 1); 109 return virt; 110 } 111 112 static void *kvm_host_zalloc_pages_exact(size_t size) 113 { 114 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 115 } 116 117 static void *kvm_s2_zalloc_pages_exact(size_t size) 118 { 119 void *virt = kvm_host_zalloc_pages_exact(size); 120 121 if (virt) 122 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 123 return virt; 124 } 125 126 static void kvm_s2_free_pages_exact(void *virt, size_t size) 127 { 128 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 129 free_pages_exact(virt, size); 130 } 131 132 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 133 134 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head) 135 { 136 struct page *page = container_of(head, struct page, rcu_head); 137 void *pgtable = page_to_virt(page); 138 u32 level = page_private(page); 139 140 kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level); 141 } 142 143 static void stage2_free_removed_table(void *addr, u32 level) 144 { 145 struct page *page = virt_to_page(addr); 146 147 set_page_private(page, (unsigned long)level); 148 call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb); 149 } 150 151 static void kvm_host_get_page(void *addr) 152 { 153 get_page(virt_to_page(addr)); 154 } 155 156 static void kvm_host_put_page(void *addr) 157 { 158 put_page(virt_to_page(addr)); 159 } 160 161 static void kvm_s2_put_page(void *addr) 162 { 163 struct page *p = virt_to_page(addr); 164 /* Dropping last refcount, the page will be freed */ 165 if (page_count(p) == 1) 166 kvm_account_pgtable_pages(addr, -1); 167 put_page(p); 168 } 169 170 static int kvm_host_page_count(void *addr) 171 { 172 return page_count(virt_to_page(addr)); 173 } 174 175 static phys_addr_t kvm_host_pa(void *addr) 176 { 177 return __pa(addr); 178 } 179 180 static void *kvm_host_va(phys_addr_t phys) 181 { 182 return __va(phys); 183 } 184 185 static void clean_dcache_guest_page(void *va, size_t size) 186 { 187 __clean_dcache_guest_page(va, size); 188 } 189 190 static void invalidate_icache_guest_page(void *va, size_t size) 191 { 192 __invalidate_icache_guest_page(va, size); 193 } 194 195 /* 196 * Unmapping vs dcache management: 197 * 198 * If a guest maps certain memory pages as uncached, all writes will 199 * bypass the data cache and go directly to RAM. However, the CPUs 200 * can still speculate reads (not writes) and fill cache lines with 201 * data. 202 * 203 * Those cache lines will be *clean* cache lines though, so a 204 * clean+invalidate operation is equivalent to an invalidate 205 * operation, because no cache lines are marked dirty. 206 * 207 * Those clean cache lines could be filled prior to an uncached write 208 * by the guest, and the cache coherent IO subsystem would therefore 209 * end up writing old data to disk. 210 * 211 * This is why right after unmapping a page/section and invalidating 212 * the corresponding TLBs, we flush to make sure the IO subsystem will 213 * never hit in the cache. 214 * 215 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 216 * we then fully enforce cacheability of RAM, no matter what the guest 217 * does. 218 */ 219 /** 220 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 221 * @mmu: The KVM stage-2 MMU pointer 222 * @start: The intermediate physical base address of the range to unmap 223 * @size: The size of the area to unmap 224 * @may_block: Whether or not we are permitted to block 225 * 226 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 227 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 228 * destroying the VM), otherwise another faulting VCPU may come in and mess 229 * with things behind our backs. 230 */ 231 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 232 bool may_block) 233 { 234 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 235 phys_addr_t end = start + size; 236 237 lockdep_assert_held_write(&kvm->mmu_lock); 238 WARN_ON(size & ~PAGE_MASK); 239 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 240 may_block)); 241 } 242 243 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 244 { 245 __unmap_stage2_range(mmu, start, size, true); 246 } 247 248 static void stage2_flush_memslot(struct kvm *kvm, 249 struct kvm_memory_slot *memslot) 250 { 251 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 252 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 253 254 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); 255 } 256 257 /** 258 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 259 * @kvm: The struct kvm pointer 260 * 261 * Go through the stage 2 page tables and invalidate any cache lines 262 * backing memory already mapped to the VM. 263 */ 264 static void stage2_flush_vm(struct kvm *kvm) 265 { 266 struct kvm_memslots *slots; 267 struct kvm_memory_slot *memslot; 268 int idx, bkt; 269 270 idx = srcu_read_lock(&kvm->srcu); 271 write_lock(&kvm->mmu_lock); 272 273 slots = kvm_memslots(kvm); 274 kvm_for_each_memslot(memslot, bkt, slots) 275 stage2_flush_memslot(kvm, memslot); 276 277 write_unlock(&kvm->mmu_lock); 278 srcu_read_unlock(&kvm->srcu, idx); 279 } 280 281 /** 282 * free_hyp_pgds - free Hyp-mode page tables 283 */ 284 void __init free_hyp_pgds(void) 285 { 286 mutex_lock(&kvm_hyp_pgd_mutex); 287 if (hyp_pgtable) { 288 kvm_pgtable_hyp_destroy(hyp_pgtable); 289 kfree(hyp_pgtable); 290 hyp_pgtable = NULL; 291 } 292 mutex_unlock(&kvm_hyp_pgd_mutex); 293 } 294 295 static bool kvm_host_owns_hyp_mappings(void) 296 { 297 if (is_kernel_in_hyp_mode()) 298 return false; 299 300 if (static_branch_likely(&kvm_protected_mode_initialized)) 301 return false; 302 303 /* 304 * This can happen at boot time when __create_hyp_mappings() is called 305 * after the hyp protection has been enabled, but the static key has 306 * not been flipped yet. 307 */ 308 if (!hyp_pgtable && is_protected_kvm_enabled()) 309 return false; 310 311 WARN_ON(!hyp_pgtable); 312 313 return true; 314 } 315 316 int __create_hyp_mappings(unsigned long start, unsigned long size, 317 unsigned long phys, enum kvm_pgtable_prot prot) 318 { 319 int err; 320 321 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 322 return -EINVAL; 323 324 mutex_lock(&kvm_hyp_pgd_mutex); 325 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 326 mutex_unlock(&kvm_hyp_pgd_mutex); 327 328 return err; 329 } 330 331 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 332 { 333 if (!is_vmalloc_addr(kaddr)) { 334 BUG_ON(!virt_addr_valid(kaddr)); 335 return __pa(kaddr); 336 } else { 337 return page_to_phys(vmalloc_to_page(kaddr)) + 338 offset_in_page(kaddr); 339 } 340 } 341 342 struct hyp_shared_pfn { 343 u64 pfn; 344 int count; 345 struct rb_node node; 346 }; 347 348 static DEFINE_MUTEX(hyp_shared_pfns_lock); 349 static struct rb_root hyp_shared_pfns = RB_ROOT; 350 351 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 352 struct rb_node **parent) 353 { 354 struct hyp_shared_pfn *this; 355 356 *node = &hyp_shared_pfns.rb_node; 357 *parent = NULL; 358 while (**node) { 359 this = container_of(**node, struct hyp_shared_pfn, node); 360 *parent = **node; 361 if (this->pfn < pfn) 362 *node = &((**node)->rb_left); 363 else if (this->pfn > pfn) 364 *node = &((**node)->rb_right); 365 else 366 return this; 367 } 368 369 return NULL; 370 } 371 372 static int share_pfn_hyp(u64 pfn) 373 { 374 struct rb_node **node, *parent; 375 struct hyp_shared_pfn *this; 376 int ret = 0; 377 378 mutex_lock(&hyp_shared_pfns_lock); 379 this = find_shared_pfn(pfn, &node, &parent); 380 if (this) { 381 this->count++; 382 goto unlock; 383 } 384 385 this = kzalloc(sizeof(*this), GFP_KERNEL); 386 if (!this) { 387 ret = -ENOMEM; 388 goto unlock; 389 } 390 391 this->pfn = pfn; 392 this->count = 1; 393 rb_link_node(&this->node, parent, node); 394 rb_insert_color(&this->node, &hyp_shared_pfns); 395 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 396 unlock: 397 mutex_unlock(&hyp_shared_pfns_lock); 398 399 return ret; 400 } 401 402 static int unshare_pfn_hyp(u64 pfn) 403 { 404 struct rb_node **node, *parent; 405 struct hyp_shared_pfn *this; 406 int ret = 0; 407 408 mutex_lock(&hyp_shared_pfns_lock); 409 this = find_shared_pfn(pfn, &node, &parent); 410 if (WARN_ON(!this)) { 411 ret = -ENOENT; 412 goto unlock; 413 } 414 415 this->count--; 416 if (this->count) 417 goto unlock; 418 419 rb_erase(&this->node, &hyp_shared_pfns); 420 kfree(this); 421 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 422 unlock: 423 mutex_unlock(&hyp_shared_pfns_lock); 424 425 return ret; 426 } 427 428 int kvm_share_hyp(void *from, void *to) 429 { 430 phys_addr_t start, end, cur; 431 u64 pfn; 432 int ret; 433 434 if (is_kernel_in_hyp_mode()) 435 return 0; 436 437 /* 438 * The share hcall maps things in the 'fixed-offset' region of the hyp 439 * VA space, so we can only share physically contiguous data-structures 440 * for now. 441 */ 442 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 443 return -EINVAL; 444 445 if (kvm_host_owns_hyp_mappings()) 446 return create_hyp_mappings(from, to, PAGE_HYP); 447 448 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 449 end = PAGE_ALIGN(__pa(to)); 450 for (cur = start; cur < end; cur += PAGE_SIZE) { 451 pfn = __phys_to_pfn(cur); 452 ret = share_pfn_hyp(pfn); 453 if (ret) 454 return ret; 455 } 456 457 return 0; 458 } 459 460 void kvm_unshare_hyp(void *from, void *to) 461 { 462 phys_addr_t start, end, cur; 463 u64 pfn; 464 465 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 466 return; 467 468 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 469 end = PAGE_ALIGN(__pa(to)); 470 for (cur = start; cur < end; cur += PAGE_SIZE) { 471 pfn = __phys_to_pfn(cur); 472 WARN_ON(unshare_pfn_hyp(pfn)); 473 } 474 } 475 476 /** 477 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 478 * @from: The virtual kernel start address of the range 479 * @to: The virtual kernel end address of the range (exclusive) 480 * @prot: The protection to be applied to this range 481 * 482 * The same virtual address as the kernel virtual address is also used 483 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 484 * physical pages. 485 */ 486 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 487 { 488 phys_addr_t phys_addr; 489 unsigned long virt_addr; 490 unsigned long start = kern_hyp_va((unsigned long)from); 491 unsigned long end = kern_hyp_va((unsigned long)to); 492 493 if (is_kernel_in_hyp_mode()) 494 return 0; 495 496 if (!kvm_host_owns_hyp_mappings()) 497 return -EPERM; 498 499 start = start & PAGE_MASK; 500 end = PAGE_ALIGN(end); 501 502 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 503 int err; 504 505 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 506 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 507 prot); 508 if (err) 509 return err; 510 } 511 512 return 0; 513 } 514 515 516 /** 517 * hyp_alloc_private_va_range - Allocates a private VA range. 518 * @size: The size of the VA range to reserve. 519 * @haddr: The hypervisor virtual start address of the allocation. 520 * 521 * The private virtual address (VA) range is allocated below io_map_base 522 * and aligned based on the order of @size. 523 * 524 * Return: 0 on success or negative error code on failure. 525 */ 526 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 527 { 528 unsigned long base; 529 int ret = 0; 530 531 mutex_lock(&kvm_hyp_pgd_mutex); 532 533 /* 534 * This assumes that we have enough space below the idmap 535 * page to allocate our VAs. If not, the check below will 536 * kick. A potential alternative would be to detect that 537 * overflow and switch to an allocation above the idmap. 538 * 539 * The allocated size is always a multiple of PAGE_SIZE. 540 */ 541 base = io_map_base - PAGE_ALIGN(size); 542 543 /* Align the allocation based on the order of its size */ 544 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 545 546 /* 547 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 548 * allocating the new area, as it would indicate we've 549 * overflowed the idmap/IO address range. 550 */ 551 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 552 ret = -ENOMEM; 553 else 554 *haddr = io_map_base = base; 555 556 mutex_unlock(&kvm_hyp_pgd_mutex); 557 558 return ret; 559 } 560 561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 562 unsigned long *haddr, 563 enum kvm_pgtable_prot prot) 564 { 565 unsigned long addr; 566 int ret = 0; 567 568 if (!kvm_host_owns_hyp_mappings()) { 569 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 570 phys_addr, size, prot); 571 if (IS_ERR_VALUE(addr)) 572 return addr; 573 *haddr = addr; 574 575 return 0; 576 } 577 578 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 579 ret = hyp_alloc_private_va_range(size, &addr); 580 if (ret) 581 return ret; 582 583 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 584 if (ret) 585 return ret; 586 587 *haddr = addr + offset_in_page(phys_addr); 588 return ret; 589 } 590 591 /** 592 * create_hyp_io_mappings - Map IO into both kernel and HYP 593 * @phys_addr: The physical start address which gets mapped 594 * @size: Size of the region being mapped 595 * @kaddr: Kernel VA for this mapping 596 * @haddr: HYP VA for this mapping 597 */ 598 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 599 void __iomem **kaddr, 600 void __iomem **haddr) 601 { 602 unsigned long addr; 603 int ret; 604 605 if (is_protected_kvm_enabled()) 606 return -EPERM; 607 608 *kaddr = ioremap(phys_addr, size); 609 if (!*kaddr) 610 return -ENOMEM; 611 612 if (is_kernel_in_hyp_mode()) { 613 *haddr = *kaddr; 614 return 0; 615 } 616 617 ret = __create_hyp_private_mapping(phys_addr, size, 618 &addr, PAGE_HYP_DEVICE); 619 if (ret) { 620 iounmap(*kaddr); 621 *kaddr = NULL; 622 *haddr = NULL; 623 return ret; 624 } 625 626 *haddr = (void __iomem *)addr; 627 return 0; 628 } 629 630 /** 631 * create_hyp_exec_mappings - Map an executable range into HYP 632 * @phys_addr: The physical start address which gets mapped 633 * @size: Size of the region being mapped 634 * @haddr: HYP VA for this mapping 635 */ 636 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 637 void **haddr) 638 { 639 unsigned long addr; 640 int ret; 641 642 BUG_ON(is_kernel_in_hyp_mode()); 643 644 ret = __create_hyp_private_mapping(phys_addr, size, 645 &addr, PAGE_HYP_EXEC); 646 if (ret) { 647 *haddr = NULL; 648 return ret; 649 } 650 651 *haddr = (void *)addr; 652 return 0; 653 } 654 655 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 656 /* We shouldn't need any other callback to walk the PT */ 657 .phys_to_virt = kvm_host_va, 658 }; 659 660 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 661 { 662 struct kvm_pgtable pgt = { 663 .pgd = (kvm_pteref_t)kvm->mm->pgd, 664 .ia_bits = vabits_actual, 665 .start_level = (KVM_PGTABLE_MAX_LEVELS - 666 CONFIG_PGTABLE_LEVELS), 667 .mm_ops = &kvm_user_mm_ops, 668 }; 669 unsigned long flags; 670 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 671 u32 level = ~0; 672 int ret; 673 674 /* 675 * Disable IRQs so that we hazard against a concurrent 676 * teardown of the userspace page tables (which relies on 677 * IPI-ing threads). 678 */ 679 local_irq_save(flags); 680 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 681 local_irq_restore(flags); 682 683 if (ret) 684 return ret; 685 686 /* 687 * Not seeing an error, but not updating level? Something went 688 * deeply wrong... 689 */ 690 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS)) 691 return -EFAULT; 692 693 /* Oops, the userspace PTs are gone... Replay the fault */ 694 if (!kvm_pte_valid(pte)) 695 return -EAGAIN; 696 697 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 698 } 699 700 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 701 .zalloc_page = stage2_memcache_zalloc_page, 702 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 703 .free_pages_exact = kvm_s2_free_pages_exact, 704 .free_removed_table = stage2_free_removed_table, 705 .get_page = kvm_host_get_page, 706 .put_page = kvm_s2_put_page, 707 .page_count = kvm_host_page_count, 708 .phys_to_virt = kvm_host_va, 709 .virt_to_phys = kvm_host_pa, 710 .dcache_clean_inval_poc = clean_dcache_guest_page, 711 .icache_inval_pou = invalidate_icache_guest_page, 712 }; 713 714 /** 715 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 716 * @kvm: The pointer to the KVM structure 717 * @mmu: The pointer to the s2 MMU structure 718 * @type: The machine type of the virtual machine 719 * 720 * Allocates only the stage-2 HW PGD level table(s). 721 * Note we don't need locking here as this is only called when the VM is 722 * created, which can only be done once. 723 */ 724 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 725 { 726 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 727 int cpu, err; 728 struct kvm_pgtable *pgt; 729 u64 mmfr0, mmfr1; 730 u32 phys_shift; 731 732 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 733 return -EINVAL; 734 735 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 736 if (is_protected_kvm_enabled()) { 737 phys_shift = kvm_ipa_limit; 738 } else if (phys_shift) { 739 if (phys_shift > kvm_ipa_limit || 740 phys_shift < ARM64_MIN_PARANGE_BITS) 741 return -EINVAL; 742 } else { 743 phys_shift = KVM_PHYS_SHIFT; 744 if (phys_shift > kvm_ipa_limit) { 745 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 746 current->comm); 747 return -EINVAL; 748 } 749 } 750 751 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 752 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 753 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 754 755 if (mmu->pgt != NULL) { 756 kvm_err("kvm_arch already initialized?\n"); 757 return -EINVAL; 758 } 759 760 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 761 if (!pgt) 762 return -ENOMEM; 763 764 mmu->arch = &kvm->arch; 765 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 766 if (err) 767 goto out_free_pgtable; 768 769 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 770 if (!mmu->last_vcpu_ran) { 771 err = -ENOMEM; 772 goto out_destroy_pgtable; 773 } 774 775 for_each_possible_cpu(cpu) 776 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 777 778 mmu->pgt = pgt; 779 mmu->pgd_phys = __pa(pgt->pgd); 780 return 0; 781 782 out_destroy_pgtable: 783 kvm_pgtable_stage2_destroy(pgt); 784 out_free_pgtable: 785 kfree(pgt); 786 return err; 787 } 788 789 static void stage2_unmap_memslot(struct kvm *kvm, 790 struct kvm_memory_slot *memslot) 791 { 792 hva_t hva = memslot->userspace_addr; 793 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 794 phys_addr_t size = PAGE_SIZE * memslot->npages; 795 hva_t reg_end = hva + size; 796 797 /* 798 * A memory region could potentially cover multiple VMAs, and any holes 799 * between them, so iterate over all of them to find out if we should 800 * unmap any of them. 801 * 802 * +--------------------------------------------+ 803 * +---------------+----------------+ +----------------+ 804 * | : VMA 1 | VMA 2 | | VMA 3 : | 805 * +---------------+----------------+ +----------------+ 806 * | memory region | 807 * +--------------------------------------------+ 808 */ 809 do { 810 struct vm_area_struct *vma; 811 hva_t vm_start, vm_end; 812 813 vma = find_vma_intersection(current->mm, hva, reg_end); 814 if (!vma) 815 break; 816 817 /* 818 * Take the intersection of this VMA with the memory region 819 */ 820 vm_start = max(hva, vma->vm_start); 821 vm_end = min(reg_end, vma->vm_end); 822 823 if (!(vma->vm_flags & VM_PFNMAP)) { 824 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 825 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 826 } 827 hva = vm_end; 828 } while (hva < reg_end); 829 } 830 831 /** 832 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 833 * @kvm: The struct kvm pointer 834 * 835 * Go through the memregions and unmap any regular RAM 836 * backing memory already mapped to the VM. 837 */ 838 void stage2_unmap_vm(struct kvm *kvm) 839 { 840 struct kvm_memslots *slots; 841 struct kvm_memory_slot *memslot; 842 int idx, bkt; 843 844 idx = srcu_read_lock(&kvm->srcu); 845 mmap_read_lock(current->mm); 846 write_lock(&kvm->mmu_lock); 847 848 slots = kvm_memslots(kvm); 849 kvm_for_each_memslot(memslot, bkt, slots) 850 stage2_unmap_memslot(kvm, memslot); 851 852 write_unlock(&kvm->mmu_lock); 853 mmap_read_unlock(current->mm); 854 srcu_read_unlock(&kvm->srcu, idx); 855 } 856 857 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 858 { 859 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 860 struct kvm_pgtable *pgt = NULL; 861 862 write_lock(&kvm->mmu_lock); 863 pgt = mmu->pgt; 864 if (pgt) { 865 mmu->pgd_phys = 0; 866 mmu->pgt = NULL; 867 free_percpu(mmu->last_vcpu_ran); 868 } 869 write_unlock(&kvm->mmu_lock); 870 871 if (pgt) { 872 kvm_pgtable_stage2_destroy(pgt); 873 kfree(pgt); 874 } 875 } 876 877 static void hyp_mc_free_fn(void *addr, void *unused) 878 { 879 free_page((unsigned long)addr); 880 } 881 882 static void *hyp_mc_alloc_fn(void *unused) 883 { 884 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 885 } 886 887 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 888 { 889 if (is_protected_kvm_enabled()) 890 __free_hyp_memcache(mc, hyp_mc_free_fn, 891 kvm_host_va, NULL); 892 } 893 894 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 895 { 896 if (!is_protected_kvm_enabled()) 897 return 0; 898 899 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 900 kvm_host_pa, NULL); 901 } 902 903 /** 904 * kvm_phys_addr_ioremap - map a device range to guest IPA 905 * 906 * @kvm: The KVM pointer 907 * @guest_ipa: The IPA at which to insert the mapping 908 * @pa: The physical address of the device 909 * @size: The size of the mapping 910 * @writable: Whether or not to create a writable mapping 911 */ 912 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 913 phys_addr_t pa, unsigned long size, bool writable) 914 { 915 phys_addr_t addr; 916 int ret = 0; 917 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 918 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 919 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 920 KVM_PGTABLE_PROT_R | 921 (writable ? KVM_PGTABLE_PROT_W : 0); 922 923 if (is_protected_kvm_enabled()) 924 return -EPERM; 925 926 size += offset_in_page(guest_ipa); 927 guest_ipa &= PAGE_MASK; 928 929 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 930 ret = kvm_mmu_topup_memory_cache(&cache, 931 kvm_mmu_cache_min_pages(kvm)); 932 if (ret) 933 break; 934 935 write_lock(&kvm->mmu_lock); 936 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 937 &cache, 0); 938 write_unlock(&kvm->mmu_lock); 939 if (ret) 940 break; 941 942 pa += PAGE_SIZE; 943 } 944 945 kvm_mmu_free_memory_cache(&cache); 946 return ret; 947 } 948 949 /** 950 * stage2_wp_range() - write protect stage2 memory region range 951 * @mmu: The KVM stage-2 MMU pointer 952 * @addr: Start address of range 953 * @end: End address of range 954 */ 955 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 956 { 957 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 958 } 959 960 /** 961 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 962 * @kvm: The KVM pointer 963 * @slot: The memory slot to write protect 964 * 965 * Called to start logging dirty pages after memory region 966 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 967 * all present PUD, PMD and PTEs are write protected in the memory region. 968 * Afterwards read of dirty page log can be called. 969 * 970 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 971 * serializing operations for VM memory regions. 972 */ 973 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 974 { 975 struct kvm_memslots *slots = kvm_memslots(kvm); 976 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 977 phys_addr_t start, end; 978 979 if (WARN_ON_ONCE(!memslot)) 980 return; 981 982 start = memslot->base_gfn << PAGE_SHIFT; 983 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 984 985 write_lock(&kvm->mmu_lock); 986 stage2_wp_range(&kvm->arch.mmu, start, end); 987 write_unlock(&kvm->mmu_lock); 988 kvm_flush_remote_tlbs(kvm); 989 } 990 991 /** 992 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 993 * @kvm: The KVM pointer 994 * @slot: The memory slot associated with mask 995 * @gfn_offset: The gfn offset in memory slot 996 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 997 * slot to be write protected 998 * 999 * Walks bits set in mask write protects the associated pte's. Caller must 1000 * acquire kvm_mmu_lock. 1001 */ 1002 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1003 struct kvm_memory_slot *slot, 1004 gfn_t gfn_offset, unsigned long mask) 1005 { 1006 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1007 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1008 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1009 1010 stage2_wp_range(&kvm->arch.mmu, start, end); 1011 } 1012 1013 /* 1014 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1015 * dirty pages. 1016 * 1017 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1018 * enable dirty logging for them. 1019 */ 1020 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1021 struct kvm_memory_slot *slot, 1022 gfn_t gfn_offset, unsigned long mask) 1023 { 1024 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1025 } 1026 1027 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1028 { 1029 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1030 } 1031 1032 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1033 unsigned long hva, 1034 unsigned long map_size) 1035 { 1036 gpa_t gpa_start; 1037 hva_t uaddr_start, uaddr_end; 1038 size_t size; 1039 1040 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1041 if (map_size == PAGE_SIZE) 1042 return true; 1043 1044 size = memslot->npages * PAGE_SIZE; 1045 1046 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1047 1048 uaddr_start = memslot->userspace_addr; 1049 uaddr_end = uaddr_start + size; 1050 1051 /* 1052 * Pages belonging to memslots that don't have the same alignment 1053 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1054 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1055 * 1056 * Consider a layout like the following: 1057 * 1058 * memslot->userspace_addr: 1059 * +-----+--------------------+--------------------+---+ 1060 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1061 * +-----+--------------------+--------------------+---+ 1062 * 1063 * memslot->base_gfn << PAGE_SHIFT: 1064 * +---+--------------------+--------------------+-----+ 1065 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1066 * +---+--------------------+--------------------+-----+ 1067 * 1068 * If we create those stage-2 blocks, we'll end up with this incorrect 1069 * mapping: 1070 * d -> f 1071 * e -> g 1072 * f -> h 1073 */ 1074 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1075 return false; 1076 1077 /* 1078 * Next, let's make sure we're not trying to map anything not covered 1079 * by the memslot. This means we have to prohibit block size mappings 1080 * for the beginning and end of a non-block aligned and non-block sized 1081 * memory slot (illustrated by the head and tail parts of the 1082 * userspace view above containing pages 'abcde' and 'xyz', 1083 * respectively). 1084 * 1085 * Note that it doesn't matter if we do the check using the 1086 * userspace_addr or the base_gfn, as both are equally aligned (per 1087 * the check above) and equally sized. 1088 */ 1089 return (hva & ~(map_size - 1)) >= uaddr_start && 1090 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1091 } 1092 1093 /* 1094 * Check if the given hva is backed by a transparent huge page (THP) and 1095 * whether it can be mapped using block mapping in stage2. If so, adjust 1096 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1097 * supported. This will need to be updated to support other THP sizes. 1098 * 1099 * Returns the size of the mapping. 1100 */ 1101 static long 1102 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1103 unsigned long hva, kvm_pfn_t *pfnp, 1104 phys_addr_t *ipap) 1105 { 1106 kvm_pfn_t pfn = *pfnp; 1107 1108 /* 1109 * Make sure the adjustment is done only for THP pages. Also make 1110 * sure that the HVA and IPA are sufficiently aligned and that the 1111 * block map is contained within the memslot. 1112 */ 1113 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1114 int sz = get_user_mapping_size(kvm, hva); 1115 1116 if (sz < 0) 1117 return sz; 1118 1119 if (sz < PMD_SIZE) 1120 return PAGE_SIZE; 1121 1122 /* 1123 * The address we faulted on is backed by a transparent huge 1124 * page. However, because we map the compound huge page and 1125 * not the individual tail page, we need to transfer the 1126 * refcount to the head page. We have to be careful that the 1127 * THP doesn't start to split while we are adjusting the 1128 * refcounts. 1129 * 1130 * We are sure this doesn't happen, because mmu_invalidate_retry 1131 * was successful and we are holding the mmu_lock, so if this 1132 * THP is trying to split, it will be blocked in the mmu 1133 * notifier before touching any of the pages, specifically 1134 * before being able to call __split_huge_page_refcount(). 1135 * 1136 * We can therefore safely transfer the refcount from PG_tail 1137 * to PG_head and switch the pfn from a tail page to the head 1138 * page accordingly. 1139 */ 1140 *ipap &= PMD_MASK; 1141 kvm_release_pfn_clean(pfn); 1142 pfn &= ~(PTRS_PER_PMD - 1); 1143 get_page(pfn_to_page(pfn)); 1144 *pfnp = pfn; 1145 1146 return PMD_SIZE; 1147 } 1148 1149 /* Use page mapping if we cannot use block mapping. */ 1150 return PAGE_SIZE; 1151 } 1152 1153 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1154 { 1155 unsigned long pa; 1156 1157 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1158 return huge_page_shift(hstate_vma(vma)); 1159 1160 if (!(vma->vm_flags & VM_PFNMAP)) 1161 return PAGE_SHIFT; 1162 1163 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1164 1165 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1166 1167 #ifndef __PAGETABLE_PMD_FOLDED 1168 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1169 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1170 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1171 return PUD_SHIFT; 1172 #endif 1173 1174 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1175 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1176 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1177 return PMD_SHIFT; 1178 1179 return PAGE_SHIFT; 1180 } 1181 1182 /* 1183 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1184 * able to see the page's tags and therefore they must be initialised first. If 1185 * PG_mte_tagged is set, tags have already been initialised. 1186 * 1187 * The race in the test/set of the PG_mte_tagged flag is handled by: 1188 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1189 * racing to santise the same page 1190 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1191 * an mprotect() to add VM_MTE 1192 */ 1193 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1194 unsigned long size) 1195 { 1196 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1197 struct page *page = pfn_to_page(pfn); 1198 1199 if (!kvm_has_mte(kvm)) 1200 return; 1201 1202 for (i = 0; i < nr_pages; i++, page++) { 1203 if (try_page_mte_tagging(page)) { 1204 mte_clear_page_tags(page_address(page)); 1205 set_page_mte_tagged(page); 1206 } 1207 } 1208 } 1209 1210 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1211 { 1212 return vma->vm_flags & VM_MTE_ALLOWED; 1213 } 1214 1215 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1216 struct kvm_memory_slot *memslot, unsigned long hva, 1217 unsigned long fault_status) 1218 { 1219 int ret = 0; 1220 bool write_fault, writable, force_pte = false; 1221 bool exec_fault, mte_allowed; 1222 bool device = false; 1223 unsigned long mmu_seq; 1224 struct kvm *kvm = vcpu->kvm; 1225 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1226 struct vm_area_struct *vma; 1227 short vma_shift; 1228 gfn_t gfn; 1229 kvm_pfn_t pfn; 1230 bool logging_active = memslot_is_logging(memslot); 1231 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1232 long vma_pagesize, fault_granule; 1233 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1234 struct kvm_pgtable *pgt; 1235 1236 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1237 write_fault = kvm_is_write_fault(vcpu); 1238 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1239 VM_BUG_ON(write_fault && exec_fault); 1240 1241 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) { 1242 kvm_err("Unexpected L2 read permission error\n"); 1243 return -EFAULT; 1244 } 1245 1246 /* 1247 * Permission faults just need to update the existing leaf entry, 1248 * and so normally don't require allocations from the memcache. The 1249 * only exception to this is when dirty logging is enabled at runtime 1250 * and a write fault needs to collapse a block entry into a table. 1251 */ 1252 if (fault_status != ESR_ELx_FSC_PERM || 1253 (logging_active && write_fault)) { 1254 ret = kvm_mmu_topup_memory_cache(memcache, 1255 kvm_mmu_cache_min_pages(kvm)); 1256 if (ret) 1257 return ret; 1258 } 1259 1260 /* 1261 * Let's check if we will get back a huge page backed by hugetlbfs, or 1262 * get block mapping for device MMIO region. 1263 */ 1264 mmap_read_lock(current->mm); 1265 vma = vma_lookup(current->mm, hva); 1266 if (unlikely(!vma)) { 1267 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1268 mmap_read_unlock(current->mm); 1269 return -EFAULT; 1270 } 1271 1272 /* 1273 * logging_active is guaranteed to never be true for VM_PFNMAP 1274 * memslots. 1275 */ 1276 if (logging_active) { 1277 force_pte = true; 1278 vma_shift = PAGE_SHIFT; 1279 } else { 1280 vma_shift = get_vma_page_shift(vma, hva); 1281 } 1282 1283 switch (vma_shift) { 1284 #ifndef __PAGETABLE_PMD_FOLDED 1285 case PUD_SHIFT: 1286 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1287 break; 1288 fallthrough; 1289 #endif 1290 case CONT_PMD_SHIFT: 1291 vma_shift = PMD_SHIFT; 1292 fallthrough; 1293 case PMD_SHIFT: 1294 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1295 break; 1296 fallthrough; 1297 case CONT_PTE_SHIFT: 1298 vma_shift = PAGE_SHIFT; 1299 force_pte = true; 1300 fallthrough; 1301 case PAGE_SHIFT: 1302 break; 1303 default: 1304 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1305 } 1306 1307 vma_pagesize = 1UL << vma_shift; 1308 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1309 fault_ipa &= ~(vma_pagesize - 1); 1310 1311 gfn = fault_ipa >> PAGE_SHIFT; 1312 mte_allowed = kvm_vma_mte_allowed(vma); 1313 1314 /* Don't use the VMA after the unlock -- it may have vanished */ 1315 vma = NULL; 1316 1317 /* 1318 * Read mmu_invalidate_seq so that KVM can detect if the results of 1319 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to 1320 * acquiring kvm->mmu_lock. 1321 * 1322 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs 1323 * with the smp_wmb() in kvm_mmu_invalidate_end(). 1324 */ 1325 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1326 mmap_read_unlock(current->mm); 1327 1328 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1329 write_fault, &writable, NULL); 1330 if (pfn == KVM_PFN_ERR_HWPOISON) { 1331 kvm_send_hwpoison_signal(hva, vma_shift); 1332 return 0; 1333 } 1334 if (is_error_noslot_pfn(pfn)) 1335 return -EFAULT; 1336 1337 if (kvm_is_device_pfn(pfn)) { 1338 /* 1339 * If the page was identified as device early by looking at 1340 * the VMA flags, vma_pagesize is already representing the 1341 * largest quantity we can map. If instead it was mapped 1342 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1343 * and must not be upgraded. 1344 * 1345 * In both cases, we don't let transparent_hugepage_adjust() 1346 * change things at the last minute. 1347 */ 1348 device = true; 1349 } else if (logging_active && !write_fault) { 1350 /* 1351 * Only actually map the page as writable if this was a write 1352 * fault. 1353 */ 1354 writable = false; 1355 } 1356 1357 if (exec_fault && device) 1358 return -ENOEXEC; 1359 1360 read_lock(&kvm->mmu_lock); 1361 pgt = vcpu->arch.hw_mmu->pgt; 1362 if (mmu_invalidate_retry(kvm, mmu_seq)) 1363 goto out_unlock; 1364 1365 /* 1366 * If we are not forced to use page mapping, check if we are 1367 * backed by a THP and thus use block mapping if possible. 1368 */ 1369 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1370 if (fault_status == ESR_ELx_FSC_PERM && 1371 fault_granule > PAGE_SIZE) 1372 vma_pagesize = fault_granule; 1373 else 1374 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1375 hva, &pfn, 1376 &fault_ipa); 1377 1378 if (vma_pagesize < 0) { 1379 ret = vma_pagesize; 1380 goto out_unlock; 1381 } 1382 } 1383 1384 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) { 1385 /* Check the VMM hasn't introduced a new disallowed VMA */ 1386 if (mte_allowed) { 1387 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1388 } else { 1389 ret = -EFAULT; 1390 goto out_unlock; 1391 } 1392 } 1393 1394 if (writable) 1395 prot |= KVM_PGTABLE_PROT_W; 1396 1397 if (exec_fault) 1398 prot |= KVM_PGTABLE_PROT_X; 1399 1400 if (device) 1401 prot |= KVM_PGTABLE_PROT_DEVICE; 1402 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1403 prot |= KVM_PGTABLE_PROT_X; 1404 1405 /* 1406 * Under the premise of getting a FSC_PERM fault, we just need to relax 1407 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1408 * kvm_pgtable_stage2_map() should be called to change block size. 1409 */ 1410 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule) 1411 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1412 else 1413 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1414 __pfn_to_phys(pfn), prot, 1415 memcache, 1416 KVM_PGTABLE_WALK_HANDLE_FAULT | 1417 KVM_PGTABLE_WALK_SHARED); 1418 1419 /* Mark the page dirty only if the fault is handled successfully */ 1420 if (writable && !ret) { 1421 kvm_set_pfn_dirty(pfn); 1422 mark_page_dirty_in_slot(kvm, memslot, gfn); 1423 } 1424 1425 out_unlock: 1426 read_unlock(&kvm->mmu_lock); 1427 kvm_set_pfn_accessed(pfn); 1428 kvm_release_pfn_clean(pfn); 1429 return ret != -EAGAIN ? ret : 0; 1430 } 1431 1432 /* Resolve the access fault by making the page young again. */ 1433 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1434 { 1435 kvm_pte_t pte; 1436 struct kvm_s2_mmu *mmu; 1437 1438 trace_kvm_access_fault(fault_ipa); 1439 1440 read_lock(&vcpu->kvm->mmu_lock); 1441 mmu = vcpu->arch.hw_mmu; 1442 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1443 read_unlock(&vcpu->kvm->mmu_lock); 1444 1445 if (kvm_pte_valid(pte)) 1446 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); 1447 } 1448 1449 /** 1450 * kvm_handle_guest_abort - handles all 2nd stage aborts 1451 * @vcpu: the VCPU pointer 1452 * 1453 * Any abort that gets to the host is almost guaranteed to be caused by a 1454 * missing second stage translation table entry, which can mean that either the 1455 * guest simply needs more memory and we must allocate an appropriate page or it 1456 * can mean that the guest tried to access I/O memory, which is emulated by user 1457 * space. The distinction is based on the IPA causing the fault and whether this 1458 * memory region has been registered as standard RAM by user space. 1459 */ 1460 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1461 { 1462 unsigned long fault_status; 1463 phys_addr_t fault_ipa; 1464 struct kvm_memory_slot *memslot; 1465 unsigned long hva; 1466 bool is_iabt, write_fault, writable; 1467 gfn_t gfn; 1468 int ret, idx; 1469 1470 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1471 1472 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1473 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1474 1475 if (fault_status == ESR_ELx_FSC_FAULT) { 1476 /* Beyond sanitised PARange (which is the IPA limit) */ 1477 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1478 kvm_inject_size_fault(vcpu); 1479 return 1; 1480 } 1481 1482 /* Falls between the IPA range and the PARange? */ 1483 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1484 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1485 1486 if (is_iabt) 1487 kvm_inject_pabt(vcpu, fault_ipa); 1488 else 1489 kvm_inject_dabt(vcpu, fault_ipa); 1490 return 1; 1491 } 1492 } 1493 1494 /* Synchronous External Abort? */ 1495 if (kvm_vcpu_abt_issea(vcpu)) { 1496 /* 1497 * For RAS the host kernel may handle this abort. 1498 * There is no need to pass the error into the guest. 1499 */ 1500 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1501 kvm_inject_vabt(vcpu); 1502 1503 return 1; 1504 } 1505 1506 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1507 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1508 1509 /* Check the stage-2 fault is trans. fault or write fault */ 1510 if (fault_status != ESR_ELx_FSC_FAULT && 1511 fault_status != ESR_ELx_FSC_PERM && 1512 fault_status != ESR_ELx_FSC_ACCESS) { 1513 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1514 kvm_vcpu_trap_get_class(vcpu), 1515 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1516 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1517 return -EFAULT; 1518 } 1519 1520 idx = srcu_read_lock(&vcpu->kvm->srcu); 1521 1522 gfn = fault_ipa >> PAGE_SHIFT; 1523 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1524 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1525 write_fault = kvm_is_write_fault(vcpu); 1526 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1527 /* 1528 * The guest has put either its instructions or its page-tables 1529 * somewhere it shouldn't have. Userspace won't be able to do 1530 * anything about this (there's no syndrome for a start), so 1531 * re-inject the abort back into the guest. 1532 */ 1533 if (is_iabt) { 1534 ret = -ENOEXEC; 1535 goto out; 1536 } 1537 1538 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1539 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1540 ret = 1; 1541 goto out_unlock; 1542 } 1543 1544 /* 1545 * Check for a cache maintenance operation. Since we 1546 * ended-up here, we know it is outside of any memory 1547 * slot. But we can't find out if that is for a device, 1548 * or if the guest is just being stupid. The only thing 1549 * we know for sure is that this range cannot be cached. 1550 * 1551 * So let's assume that the guest is just being 1552 * cautious, and skip the instruction. 1553 */ 1554 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1555 kvm_incr_pc(vcpu); 1556 ret = 1; 1557 goto out_unlock; 1558 } 1559 1560 /* 1561 * The IPA is reported as [MAX:12], so we need to 1562 * complement it with the bottom 12 bits from the 1563 * faulting VA. This is always 12 bits, irrespective 1564 * of the page size. 1565 */ 1566 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1567 ret = io_mem_abort(vcpu, fault_ipa); 1568 goto out_unlock; 1569 } 1570 1571 /* Userspace should not be able to register out-of-bounds IPAs */ 1572 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1573 1574 if (fault_status == ESR_ELx_FSC_ACCESS) { 1575 handle_access_fault(vcpu, fault_ipa); 1576 ret = 1; 1577 goto out_unlock; 1578 } 1579 1580 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1581 if (ret == 0) 1582 ret = 1; 1583 out: 1584 if (ret == -ENOEXEC) { 1585 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1586 ret = 1; 1587 } 1588 out_unlock: 1589 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1590 return ret; 1591 } 1592 1593 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1594 { 1595 if (!kvm->arch.mmu.pgt) 1596 return false; 1597 1598 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1599 (range->end - range->start) << PAGE_SHIFT, 1600 range->may_block); 1601 1602 return false; 1603 } 1604 1605 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1606 { 1607 kvm_pfn_t pfn = pte_pfn(range->pte); 1608 1609 if (!kvm->arch.mmu.pgt) 1610 return false; 1611 1612 WARN_ON(range->end - range->start != 1); 1613 1614 /* 1615 * If the page isn't tagged, defer to user_mem_abort() for sanitising 1616 * the MTE tags. The S2 pte should have been unmapped by 1617 * mmu_notifier_invalidate_range_end(). 1618 */ 1619 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) 1620 return false; 1621 1622 /* 1623 * We've moved a page around, probably through CoW, so let's treat 1624 * it just like a translation fault and the map handler will clean 1625 * the cache to the PoC. 1626 * 1627 * The MMU notifiers will have unmapped a huge PMD before calling 1628 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1629 * therefore we never need to clear out a huge PMD through this 1630 * calling path and a memcache is not required. 1631 */ 1632 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1633 PAGE_SIZE, __pfn_to_phys(pfn), 1634 KVM_PGTABLE_PROT_R, NULL, 0); 1635 1636 return false; 1637 } 1638 1639 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1640 { 1641 u64 size = (range->end - range->start) << PAGE_SHIFT; 1642 kvm_pte_t kpte; 1643 pte_t pte; 1644 1645 if (!kvm->arch.mmu.pgt) 1646 return false; 1647 1648 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1649 1650 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1651 range->start << PAGE_SHIFT); 1652 pte = __pte(kpte); 1653 return pte_valid(pte) && pte_young(pte); 1654 } 1655 1656 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1657 { 1658 if (!kvm->arch.mmu.pgt) 1659 return false; 1660 1661 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1662 range->start << PAGE_SHIFT); 1663 } 1664 1665 phys_addr_t kvm_mmu_get_httbr(void) 1666 { 1667 return __pa(hyp_pgtable->pgd); 1668 } 1669 1670 phys_addr_t kvm_get_idmap_vector(void) 1671 { 1672 return hyp_idmap_vector; 1673 } 1674 1675 static int kvm_map_idmap_text(void) 1676 { 1677 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1678 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1679 PAGE_HYP_EXEC); 1680 if (err) 1681 kvm_err("Failed to idmap %lx-%lx\n", 1682 hyp_idmap_start, hyp_idmap_end); 1683 1684 return err; 1685 } 1686 1687 static void *kvm_hyp_zalloc_page(void *arg) 1688 { 1689 return (void *)get_zeroed_page(GFP_KERNEL); 1690 } 1691 1692 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1693 .zalloc_page = kvm_hyp_zalloc_page, 1694 .get_page = kvm_host_get_page, 1695 .put_page = kvm_host_put_page, 1696 .phys_to_virt = kvm_host_va, 1697 .virt_to_phys = kvm_host_pa, 1698 }; 1699 1700 int __init kvm_mmu_init(u32 *hyp_va_bits) 1701 { 1702 int err; 1703 u32 idmap_bits; 1704 u32 kernel_bits; 1705 1706 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1707 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1708 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1709 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1710 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1711 1712 /* 1713 * We rely on the linker script to ensure at build time that the HYP 1714 * init code does not cross a page boundary. 1715 */ 1716 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1717 1718 /* 1719 * The ID map may be configured to use an extended virtual address 1720 * range. This is only the case if system RAM is out of range for the 1721 * currently configured page size and VA_BITS_MIN, in which case we will 1722 * also need the extended virtual range for the HYP ID map, or we won't 1723 * be able to enable the EL2 MMU. 1724 * 1725 * However, in some cases the ID map may be configured for fewer than 1726 * the number of VA bits used by the regular kernel stage 1. This 1727 * happens when VA_BITS=52 and the kernel image is placed in PA space 1728 * below 48 bits. 1729 * 1730 * At EL2, there is only one TTBR register, and we can't switch between 1731 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1732 * line: we need to use the extended range with *both* our translation 1733 * tables. 1734 * 1735 * So use the maximum of the idmap VA bits and the regular kernel stage 1736 * 1 VA bits to assure that the hypervisor can both ID map its code page 1737 * and map any kernel memory. 1738 */ 1739 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1740 kernel_bits = vabits_actual; 1741 *hyp_va_bits = max(idmap_bits, kernel_bits); 1742 1743 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1744 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1745 kvm_debug("HYP VA range: %lx:%lx\n", 1746 kern_hyp_va(PAGE_OFFSET), 1747 kern_hyp_va((unsigned long)high_memory - 1)); 1748 1749 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1750 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1751 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1752 /* 1753 * The idmap page is intersecting with the VA space, 1754 * it is not safe to continue further. 1755 */ 1756 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1757 err = -EINVAL; 1758 goto out; 1759 } 1760 1761 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1762 if (!hyp_pgtable) { 1763 kvm_err("Hyp mode page-table not allocated\n"); 1764 err = -ENOMEM; 1765 goto out; 1766 } 1767 1768 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1769 if (err) 1770 goto out_free_pgtable; 1771 1772 err = kvm_map_idmap_text(); 1773 if (err) 1774 goto out_destroy_pgtable; 1775 1776 io_map_base = hyp_idmap_start; 1777 return 0; 1778 1779 out_destroy_pgtable: 1780 kvm_pgtable_hyp_destroy(hyp_pgtable); 1781 out_free_pgtable: 1782 kfree(hyp_pgtable); 1783 hyp_pgtable = NULL; 1784 out: 1785 return err; 1786 } 1787 1788 void kvm_arch_commit_memory_region(struct kvm *kvm, 1789 struct kvm_memory_slot *old, 1790 const struct kvm_memory_slot *new, 1791 enum kvm_mr_change change) 1792 { 1793 /* 1794 * At this point memslot has been committed and there is an 1795 * allocated dirty_bitmap[], dirty pages will be tracked while the 1796 * memory slot is write protected. 1797 */ 1798 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1799 /* 1800 * If we're with initial-all-set, we don't need to write 1801 * protect any pages because they're all reported as dirty. 1802 * Huge pages and normal pages will be write protect gradually. 1803 */ 1804 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1805 kvm_mmu_wp_memory_region(kvm, new->id); 1806 } 1807 } 1808 } 1809 1810 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1811 const struct kvm_memory_slot *old, 1812 struct kvm_memory_slot *new, 1813 enum kvm_mr_change change) 1814 { 1815 hva_t hva, reg_end; 1816 int ret = 0; 1817 1818 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1819 change != KVM_MR_FLAGS_ONLY) 1820 return 0; 1821 1822 /* 1823 * Prevent userspace from creating a memory region outside of the IPA 1824 * space addressable by the KVM guest IPA space. 1825 */ 1826 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1827 return -EFAULT; 1828 1829 hva = new->userspace_addr; 1830 reg_end = hva + (new->npages << PAGE_SHIFT); 1831 1832 mmap_read_lock(current->mm); 1833 /* 1834 * A memory region could potentially cover multiple VMAs, and any holes 1835 * between them, so iterate over all of them. 1836 * 1837 * +--------------------------------------------+ 1838 * +---------------+----------------+ +----------------+ 1839 * | : VMA 1 | VMA 2 | | VMA 3 : | 1840 * +---------------+----------------+ +----------------+ 1841 * | memory region | 1842 * +--------------------------------------------+ 1843 */ 1844 do { 1845 struct vm_area_struct *vma; 1846 1847 vma = find_vma_intersection(current->mm, hva, reg_end); 1848 if (!vma) 1849 break; 1850 1851 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 1852 ret = -EINVAL; 1853 break; 1854 } 1855 1856 if (vma->vm_flags & VM_PFNMAP) { 1857 /* IO region dirty page logging not allowed */ 1858 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1859 ret = -EINVAL; 1860 break; 1861 } 1862 } 1863 hva = min(reg_end, vma->vm_end); 1864 } while (hva < reg_end); 1865 1866 mmap_read_unlock(current->mm); 1867 return ret; 1868 } 1869 1870 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1871 { 1872 } 1873 1874 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1875 { 1876 } 1877 1878 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1879 { 1880 kvm_free_stage2_pgd(&kvm->arch.mmu); 1881 } 1882 1883 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1884 struct kvm_memory_slot *slot) 1885 { 1886 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1887 phys_addr_t size = slot->npages << PAGE_SHIFT; 1888 1889 write_lock(&kvm->mmu_lock); 1890 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1891 write_unlock(&kvm->mmu_lock); 1892 } 1893 1894 /* 1895 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1896 * 1897 * Main problems: 1898 * - S/W ops are local to a CPU (not broadcast) 1899 * - We have line migration behind our back (speculation) 1900 * - System caches don't support S/W at all (damn!) 1901 * 1902 * In the face of the above, the best we can do is to try and convert 1903 * S/W ops to VA ops. Because the guest is not allowed to infer the 1904 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1905 * which is a rather good thing for us. 1906 * 1907 * Also, it is only used when turning caches on/off ("The expected 1908 * usage of the cache maintenance instructions that operate by set/way 1909 * is associated with the cache maintenance instructions associated 1910 * with the powerdown and powerup of caches, if this is required by 1911 * the implementation."). 1912 * 1913 * We use the following policy: 1914 * 1915 * - If we trap a S/W operation, we enable VM trapping to detect 1916 * caches being turned on/off, and do a full clean. 1917 * 1918 * - We flush the caches on both caches being turned on and off. 1919 * 1920 * - Once the caches are enabled, we stop trapping VM ops. 1921 */ 1922 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1923 { 1924 unsigned long hcr = *vcpu_hcr(vcpu); 1925 1926 /* 1927 * If this is the first time we do a S/W operation 1928 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1929 * VM trapping. 1930 * 1931 * Otherwise, rely on the VM trapping to wait for the MMU + 1932 * Caches to be turned off. At that point, we'll be able to 1933 * clean the caches again. 1934 */ 1935 if (!(hcr & HCR_TVM)) { 1936 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1937 vcpu_has_cache_enabled(vcpu)); 1938 stage2_flush_vm(vcpu->kvm); 1939 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1940 } 1941 } 1942 1943 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1944 { 1945 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1946 1947 /* 1948 * If switching the MMU+caches on, need to invalidate the caches. 1949 * If switching it off, need to clean the caches. 1950 * Clean + invalidate does the trick always. 1951 */ 1952 if (now_enabled != was_enabled) 1953 stage2_flush_vm(vcpu->kvm); 1954 1955 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1956 if (now_enabled) 1957 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1958 1959 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1960 } 1961