xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 }
85 
86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 	return !pfn_is_map_memory(pfn);
89 }
90 
91 static void *stage2_memcache_zalloc_page(void *arg)
92 {
93 	struct kvm_mmu_memory_cache *mc = arg;
94 
95 	/* Allocated with __GFP_ZERO, so no need to zero */
96 	return kvm_mmu_memory_cache_alloc(mc);
97 }
98 
99 static void *kvm_host_zalloc_pages_exact(size_t size)
100 {
101 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
102 }
103 
104 static void kvm_host_get_page(void *addr)
105 {
106 	get_page(virt_to_page(addr));
107 }
108 
109 static void kvm_host_put_page(void *addr)
110 {
111 	put_page(virt_to_page(addr));
112 }
113 
114 static int kvm_host_page_count(void *addr)
115 {
116 	return page_count(virt_to_page(addr));
117 }
118 
119 static phys_addr_t kvm_host_pa(void *addr)
120 {
121 	return __pa(addr);
122 }
123 
124 static void *kvm_host_va(phys_addr_t phys)
125 {
126 	return __va(phys);
127 }
128 
129 static void clean_dcache_guest_page(void *va, size_t size)
130 {
131 	__clean_dcache_guest_page(va, size);
132 }
133 
134 static void invalidate_icache_guest_page(void *va, size_t size)
135 {
136 	__invalidate_icache_guest_page(va, size);
137 }
138 
139 /*
140  * Unmapping vs dcache management:
141  *
142  * If a guest maps certain memory pages as uncached, all writes will
143  * bypass the data cache and go directly to RAM.  However, the CPUs
144  * can still speculate reads (not writes) and fill cache lines with
145  * data.
146  *
147  * Those cache lines will be *clean* cache lines though, so a
148  * clean+invalidate operation is equivalent to an invalidate
149  * operation, because no cache lines are marked dirty.
150  *
151  * Those clean cache lines could be filled prior to an uncached write
152  * by the guest, and the cache coherent IO subsystem would therefore
153  * end up writing old data to disk.
154  *
155  * This is why right after unmapping a page/section and invalidating
156  * the corresponding TLBs, we flush to make sure the IO subsystem will
157  * never hit in the cache.
158  *
159  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
160  * we then fully enforce cacheability of RAM, no matter what the guest
161  * does.
162  */
163 /**
164  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
165  * @mmu:   The KVM stage-2 MMU pointer
166  * @start: The intermediate physical base address of the range to unmap
167  * @size:  The size of the area to unmap
168  * @may_block: Whether or not we are permitted to block
169  *
170  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
171  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
172  * destroying the VM), otherwise another faulting VCPU may come in and mess
173  * with things behind our backs.
174  */
175 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
176 				 bool may_block)
177 {
178 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
179 	phys_addr_t end = start + size;
180 
181 	assert_spin_locked(&kvm->mmu_lock);
182 	WARN_ON(size & ~PAGE_MASK);
183 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
184 				   may_block));
185 }
186 
187 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
188 {
189 	__unmap_stage2_range(mmu, start, size, true);
190 }
191 
192 static void stage2_flush_memslot(struct kvm *kvm,
193 				 struct kvm_memory_slot *memslot)
194 {
195 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
196 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
197 
198 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
199 }
200 
201 /**
202  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
203  * @kvm: The struct kvm pointer
204  *
205  * Go through the stage 2 page tables and invalidate any cache lines
206  * backing memory already mapped to the VM.
207  */
208 static void stage2_flush_vm(struct kvm *kvm)
209 {
210 	struct kvm_memslots *slots;
211 	struct kvm_memory_slot *memslot;
212 	int idx;
213 
214 	idx = srcu_read_lock(&kvm->srcu);
215 	spin_lock(&kvm->mmu_lock);
216 
217 	slots = kvm_memslots(kvm);
218 	kvm_for_each_memslot(memslot, slots)
219 		stage2_flush_memslot(kvm, memslot);
220 
221 	spin_unlock(&kvm->mmu_lock);
222 	srcu_read_unlock(&kvm->srcu, idx);
223 }
224 
225 /**
226  * free_hyp_pgds - free Hyp-mode page tables
227  */
228 void free_hyp_pgds(void)
229 {
230 	mutex_lock(&kvm_hyp_pgd_mutex);
231 	if (hyp_pgtable) {
232 		kvm_pgtable_hyp_destroy(hyp_pgtable);
233 		kfree(hyp_pgtable);
234 		hyp_pgtable = NULL;
235 	}
236 	mutex_unlock(&kvm_hyp_pgd_mutex);
237 }
238 
239 static bool kvm_host_owns_hyp_mappings(void)
240 {
241 	if (static_branch_likely(&kvm_protected_mode_initialized))
242 		return false;
243 
244 	/*
245 	 * This can happen at boot time when __create_hyp_mappings() is called
246 	 * after the hyp protection has been enabled, but the static key has
247 	 * not been flipped yet.
248 	 */
249 	if (!hyp_pgtable && is_protected_kvm_enabled())
250 		return false;
251 
252 	WARN_ON(!hyp_pgtable);
253 
254 	return true;
255 }
256 
257 static int __create_hyp_mappings(unsigned long start, unsigned long size,
258 				 unsigned long phys, enum kvm_pgtable_prot prot)
259 {
260 	int err;
261 
262 	if (!kvm_host_owns_hyp_mappings()) {
263 		return kvm_call_hyp_nvhe(__pkvm_create_mappings,
264 					 start, size, phys, prot);
265 	}
266 
267 	mutex_lock(&kvm_hyp_pgd_mutex);
268 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
269 	mutex_unlock(&kvm_hyp_pgd_mutex);
270 
271 	return err;
272 }
273 
274 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
275 {
276 	if (!is_vmalloc_addr(kaddr)) {
277 		BUG_ON(!virt_addr_valid(kaddr));
278 		return __pa(kaddr);
279 	} else {
280 		return page_to_phys(vmalloc_to_page(kaddr)) +
281 		       offset_in_page(kaddr);
282 	}
283 }
284 
285 /**
286  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
287  * @from:	The virtual kernel start address of the range
288  * @to:		The virtual kernel end address of the range (exclusive)
289  * @prot:	The protection to be applied to this range
290  *
291  * The same virtual address as the kernel virtual address is also used
292  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
293  * physical pages.
294  */
295 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
296 {
297 	phys_addr_t phys_addr;
298 	unsigned long virt_addr;
299 	unsigned long start = kern_hyp_va((unsigned long)from);
300 	unsigned long end = kern_hyp_va((unsigned long)to);
301 
302 	if (is_kernel_in_hyp_mode())
303 		return 0;
304 
305 	start = start & PAGE_MASK;
306 	end = PAGE_ALIGN(end);
307 
308 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
309 		int err;
310 
311 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
312 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
313 					    prot);
314 		if (err)
315 			return err;
316 	}
317 
318 	return 0;
319 }
320 
321 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
322 					unsigned long *haddr,
323 					enum kvm_pgtable_prot prot)
324 {
325 	unsigned long base;
326 	int ret = 0;
327 
328 	if (!kvm_host_owns_hyp_mappings()) {
329 		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
330 					 phys_addr, size, prot);
331 		if (IS_ERR_OR_NULL((void *)base))
332 			return PTR_ERR((void *)base);
333 		*haddr = base;
334 
335 		return 0;
336 	}
337 
338 	mutex_lock(&kvm_hyp_pgd_mutex);
339 
340 	/*
341 	 * This assumes that we have enough space below the idmap
342 	 * page to allocate our VAs. If not, the check below will
343 	 * kick. A potential alternative would be to detect that
344 	 * overflow and switch to an allocation above the idmap.
345 	 *
346 	 * The allocated size is always a multiple of PAGE_SIZE.
347 	 */
348 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
349 	base = io_map_base - size;
350 
351 	/*
352 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
353 	 * allocating the new area, as it would indicate we've
354 	 * overflowed the idmap/IO address range.
355 	 */
356 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
357 		ret = -ENOMEM;
358 	else
359 		io_map_base = base;
360 
361 	mutex_unlock(&kvm_hyp_pgd_mutex);
362 
363 	if (ret)
364 		goto out;
365 
366 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
367 	if (ret)
368 		goto out;
369 
370 	*haddr = base + offset_in_page(phys_addr);
371 out:
372 	return ret;
373 }
374 
375 /**
376  * create_hyp_io_mappings - Map IO into both kernel and HYP
377  * @phys_addr:	The physical start address which gets mapped
378  * @size:	Size of the region being mapped
379  * @kaddr:	Kernel VA for this mapping
380  * @haddr:	HYP VA for this mapping
381  */
382 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
383 			   void __iomem **kaddr,
384 			   void __iomem **haddr)
385 {
386 	unsigned long addr;
387 	int ret;
388 
389 	*kaddr = ioremap(phys_addr, size);
390 	if (!*kaddr)
391 		return -ENOMEM;
392 
393 	if (is_kernel_in_hyp_mode()) {
394 		*haddr = *kaddr;
395 		return 0;
396 	}
397 
398 	ret = __create_hyp_private_mapping(phys_addr, size,
399 					   &addr, PAGE_HYP_DEVICE);
400 	if (ret) {
401 		iounmap(*kaddr);
402 		*kaddr = NULL;
403 		*haddr = NULL;
404 		return ret;
405 	}
406 
407 	*haddr = (void __iomem *)addr;
408 	return 0;
409 }
410 
411 /**
412  * create_hyp_exec_mappings - Map an executable range into HYP
413  * @phys_addr:	The physical start address which gets mapped
414  * @size:	Size of the region being mapped
415  * @haddr:	HYP VA for this mapping
416  */
417 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
418 			     void **haddr)
419 {
420 	unsigned long addr;
421 	int ret;
422 
423 	BUG_ON(is_kernel_in_hyp_mode());
424 
425 	ret = __create_hyp_private_mapping(phys_addr, size,
426 					   &addr, PAGE_HYP_EXEC);
427 	if (ret) {
428 		*haddr = NULL;
429 		return ret;
430 	}
431 
432 	*haddr = (void *)addr;
433 	return 0;
434 }
435 
436 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
437 	.zalloc_page		= stage2_memcache_zalloc_page,
438 	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
439 	.free_pages_exact	= free_pages_exact,
440 	.get_page		= kvm_host_get_page,
441 	.put_page		= kvm_host_put_page,
442 	.page_count		= kvm_host_page_count,
443 	.phys_to_virt		= kvm_host_va,
444 	.virt_to_phys		= kvm_host_pa,
445 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
446 	.icache_inval_pou	= invalidate_icache_guest_page,
447 };
448 
449 /**
450  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
451  * @kvm:	The pointer to the KVM structure
452  * @mmu:	The pointer to the s2 MMU structure
453  *
454  * Allocates only the stage-2 HW PGD level table(s).
455  * Note we don't need locking here as this is only called when the VM is
456  * created, which can only be done once.
457  */
458 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
459 {
460 	int cpu, err;
461 	struct kvm_pgtable *pgt;
462 
463 	if (mmu->pgt != NULL) {
464 		kvm_err("kvm_arch already initialized?\n");
465 		return -EINVAL;
466 	}
467 
468 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
469 	if (!pgt)
470 		return -ENOMEM;
471 
472 	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
473 	if (err)
474 		goto out_free_pgtable;
475 
476 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
477 	if (!mmu->last_vcpu_ran) {
478 		err = -ENOMEM;
479 		goto out_destroy_pgtable;
480 	}
481 
482 	for_each_possible_cpu(cpu)
483 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
484 
485 	mmu->arch = &kvm->arch;
486 	mmu->pgt = pgt;
487 	mmu->pgd_phys = __pa(pgt->pgd);
488 	mmu->vmid.vmid_gen = 0;
489 	return 0;
490 
491 out_destroy_pgtable:
492 	kvm_pgtable_stage2_destroy(pgt);
493 out_free_pgtable:
494 	kfree(pgt);
495 	return err;
496 }
497 
498 static void stage2_unmap_memslot(struct kvm *kvm,
499 				 struct kvm_memory_slot *memslot)
500 {
501 	hva_t hva = memslot->userspace_addr;
502 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
503 	phys_addr_t size = PAGE_SIZE * memslot->npages;
504 	hva_t reg_end = hva + size;
505 
506 	/*
507 	 * A memory region could potentially cover multiple VMAs, and any holes
508 	 * between them, so iterate over all of them to find out if we should
509 	 * unmap any of them.
510 	 *
511 	 *     +--------------------------------------------+
512 	 * +---------------+----------------+   +----------------+
513 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
514 	 * +---------------+----------------+   +----------------+
515 	 *     |               memory region                |
516 	 *     +--------------------------------------------+
517 	 */
518 	do {
519 		struct vm_area_struct *vma;
520 		hva_t vm_start, vm_end;
521 
522 		vma = find_vma_intersection(current->mm, hva, reg_end);
523 		if (!vma)
524 			break;
525 
526 		/*
527 		 * Take the intersection of this VMA with the memory region
528 		 */
529 		vm_start = max(hva, vma->vm_start);
530 		vm_end = min(reg_end, vma->vm_end);
531 
532 		if (!(vma->vm_flags & VM_PFNMAP)) {
533 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
534 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
535 		}
536 		hva = vm_end;
537 	} while (hva < reg_end);
538 }
539 
540 /**
541  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
542  * @kvm: The struct kvm pointer
543  *
544  * Go through the memregions and unmap any regular RAM
545  * backing memory already mapped to the VM.
546  */
547 void stage2_unmap_vm(struct kvm *kvm)
548 {
549 	struct kvm_memslots *slots;
550 	struct kvm_memory_slot *memslot;
551 	int idx;
552 
553 	idx = srcu_read_lock(&kvm->srcu);
554 	mmap_read_lock(current->mm);
555 	spin_lock(&kvm->mmu_lock);
556 
557 	slots = kvm_memslots(kvm);
558 	kvm_for_each_memslot(memslot, slots)
559 		stage2_unmap_memslot(kvm, memslot);
560 
561 	spin_unlock(&kvm->mmu_lock);
562 	mmap_read_unlock(current->mm);
563 	srcu_read_unlock(&kvm->srcu, idx);
564 }
565 
566 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
567 {
568 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
569 	struct kvm_pgtable *pgt = NULL;
570 
571 	spin_lock(&kvm->mmu_lock);
572 	pgt = mmu->pgt;
573 	if (pgt) {
574 		mmu->pgd_phys = 0;
575 		mmu->pgt = NULL;
576 		free_percpu(mmu->last_vcpu_ran);
577 	}
578 	spin_unlock(&kvm->mmu_lock);
579 
580 	if (pgt) {
581 		kvm_pgtable_stage2_destroy(pgt);
582 		kfree(pgt);
583 	}
584 }
585 
586 /**
587  * kvm_phys_addr_ioremap - map a device range to guest IPA
588  *
589  * @kvm:	The KVM pointer
590  * @guest_ipa:	The IPA at which to insert the mapping
591  * @pa:		The physical address of the device
592  * @size:	The size of the mapping
593  * @writable:   Whether or not to create a writable mapping
594  */
595 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
596 			  phys_addr_t pa, unsigned long size, bool writable)
597 {
598 	phys_addr_t addr;
599 	int ret = 0;
600 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
601 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
602 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
603 				     KVM_PGTABLE_PROT_R |
604 				     (writable ? KVM_PGTABLE_PROT_W : 0);
605 
606 	size += offset_in_page(guest_ipa);
607 	guest_ipa &= PAGE_MASK;
608 
609 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
610 		ret = kvm_mmu_topup_memory_cache(&cache,
611 						 kvm_mmu_cache_min_pages(kvm));
612 		if (ret)
613 			break;
614 
615 		spin_lock(&kvm->mmu_lock);
616 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
617 					     &cache);
618 		spin_unlock(&kvm->mmu_lock);
619 		if (ret)
620 			break;
621 
622 		pa += PAGE_SIZE;
623 	}
624 
625 	kvm_mmu_free_memory_cache(&cache);
626 	return ret;
627 }
628 
629 /**
630  * stage2_wp_range() - write protect stage2 memory region range
631  * @mmu:        The KVM stage-2 MMU pointer
632  * @addr:	Start address of range
633  * @end:	End address of range
634  */
635 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
636 {
637 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
638 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
639 }
640 
641 /**
642  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
643  * @kvm:	The KVM pointer
644  * @slot:	The memory slot to write protect
645  *
646  * Called to start logging dirty pages after memory region
647  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
648  * all present PUD, PMD and PTEs are write protected in the memory region.
649  * Afterwards read of dirty page log can be called.
650  *
651  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
652  * serializing operations for VM memory regions.
653  */
654 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
655 {
656 	struct kvm_memslots *slots = kvm_memslots(kvm);
657 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
658 	phys_addr_t start, end;
659 
660 	if (WARN_ON_ONCE(!memslot))
661 		return;
662 
663 	start = memslot->base_gfn << PAGE_SHIFT;
664 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
665 
666 	spin_lock(&kvm->mmu_lock);
667 	stage2_wp_range(&kvm->arch.mmu, start, end);
668 	spin_unlock(&kvm->mmu_lock);
669 	kvm_flush_remote_tlbs(kvm);
670 }
671 
672 /**
673  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
674  * @kvm:	The KVM pointer
675  * @slot:	The memory slot associated with mask
676  * @gfn_offset:	The gfn offset in memory slot
677  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
678  *		slot to be write protected
679  *
680  * Walks bits set in mask write protects the associated pte's. Caller must
681  * acquire kvm_mmu_lock.
682  */
683 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
684 		struct kvm_memory_slot *slot,
685 		gfn_t gfn_offset, unsigned long mask)
686 {
687 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
688 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
689 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
690 
691 	stage2_wp_range(&kvm->arch.mmu, start, end);
692 }
693 
694 /*
695  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
696  * dirty pages.
697  *
698  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
699  * enable dirty logging for them.
700  */
701 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
702 		struct kvm_memory_slot *slot,
703 		gfn_t gfn_offset, unsigned long mask)
704 {
705 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
706 }
707 
708 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
709 {
710 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
711 }
712 
713 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
714 					       unsigned long hva,
715 					       unsigned long map_size)
716 {
717 	gpa_t gpa_start;
718 	hva_t uaddr_start, uaddr_end;
719 	size_t size;
720 
721 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
722 	if (map_size == PAGE_SIZE)
723 		return true;
724 
725 	size = memslot->npages * PAGE_SIZE;
726 
727 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
728 
729 	uaddr_start = memslot->userspace_addr;
730 	uaddr_end = uaddr_start + size;
731 
732 	/*
733 	 * Pages belonging to memslots that don't have the same alignment
734 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
735 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
736 	 *
737 	 * Consider a layout like the following:
738 	 *
739 	 *    memslot->userspace_addr:
740 	 *    +-----+--------------------+--------------------+---+
741 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
742 	 *    +-----+--------------------+--------------------+---+
743 	 *
744 	 *    memslot->base_gfn << PAGE_SHIFT:
745 	 *      +---+--------------------+--------------------+-----+
746 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
747 	 *      +---+--------------------+--------------------+-----+
748 	 *
749 	 * If we create those stage-2 blocks, we'll end up with this incorrect
750 	 * mapping:
751 	 *   d -> f
752 	 *   e -> g
753 	 *   f -> h
754 	 */
755 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
756 		return false;
757 
758 	/*
759 	 * Next, let's make sure we're not trying to map anything not covered
760 	 * by the memslot. This means we have to prohibit block size mappings
761 	 * for the beginning and end of a non-block aligned and non-block sized
762 	 * memory slot (illustrated by the head and tail parts of the
763 	 * userspace view above containing pages 'abcde' and 'xyz',
764 	 * respectively).
765 	 *
766 	 * Note that it doesn't matter if we do the check using the
767 	 * userspace_addr or the base_gfn, as both are equally aligned (per
768 	 * the check above) and equally sized.
769 	 */
770 	return (hva & ~(map_size - 1)) >= uaddr_start &&
771 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
772 }
773 
774 /*
775  * Check if the given hva is backed by a transparent huge page (THP) and
776  * whether it can be mapped using block mapping in stage2. If so, adjust
777  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
778  * supported. This will need to be updated to support other THP sizes.
779  *
780  * Returns the size of the mapping.
781  */
782 static unsigned long
783 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
784 			    unsigned long hva, kvm_pfn_t *pfnp,
785 			    phys_addr_t *ipap)
786 {
787 	kvm_pfn_t pfn = *pfnp;
788 
789 	/*
790 	 * Make sure the adjustment is done only for THP pages. Also make
791 	 * sure that the HVA and IPA are sufficiently aligned and that the
792 	 * block map is contained within the memslot.
793 	 */
794 	if (kvm_is_transparent_hugepage(pfn) &&
795 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
796 		/*
797 		 * The address we faulted on is backed by a transparent huge
798 		 * page.  However, because we map the compound huge page and
799 		 * not the individual tail page, we need to transfer the
800 		 * refcount to the head page.  We have to be careful that the
801 		 * THP doesn't start to split while we are adjusting the
802 		 * refcounts.
803 		 *
804 		 * We are sure this doesn't happen, because mmu_notifier_retry
805 		 * was successful and we are holding the mmu_lock, so if this
806 		 * THP is trying to split, it will be blocked in the mmu
807 		 * notifier before touching any of the pages, specifically
808 		 * before being able to call __split_huge_page_refcount().
809 		 *
810 		 * We can therefore safely transfer the refcount from PG_tail
811 		 * to PG_head and switch the pfn from a tail page to the head
812 		 * page accordingly.
813 		 */
814 		*ipap &= PMD_MASK;
815 		kvm_release_pfn_clean(pfn);
816 		pfn &= ~(PTRS_PER_PMD - 1);
817 		kvm_get_pfn(pfn);
818 		*pfnp = pfn;
819 
820 		return PMD_SIZE;
821 	}
822 
823 	/* Use page mapping if we cannot use block mapping. */
824 	return PAGE_SIZE;
825 }
826 
827 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
828 {
829 	unsigned long pa;
830 
831 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
832 		return huge_page_shift(hstate_vma(vma));
833 
834 	if (!(vma->vm_flags & VM_PFNMAP))
835 		return PAGE_SHIFT;
836 
837 	VM_BUG_ON(is_vm_hugetlb_page(vma));
838 
839 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
840 
841 #ifndef __PAGETABLE_PMD_FOLDED
842 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
843 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
844 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
845 		return PUD_SHIFT;
846 #endif
847 
848 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
849 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
850 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
851 		return PMD_SHIFT;
852 
853 	return PAGE_SHIFT;
854 }
855 
856 /*
857  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
858  * able to see the page's tags and therefore they must be initialised first. If
859  * PG_mte_tagged is set, tags have already been initialised.
860  *
861  * The race in the test/set of the PG_mte_tagged flag is handled by:
862  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
863  *   racing to santise the same page
864  * - mmap_lock protects between a VM faulting a page in and the VMM performing
865  *   an mprotect() to add VM_MTE
866  */
867 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
868 			     unsigned long size)
869 {
870 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
871 	struct page *page;
872 
873 	if (!kvm_has_mte(kvm))
874 		return 0;
875 
876 	/*
877 	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
878 	 * that may not support tags.
879 	 */
880 	page = pfn_to_online_page(pfn);
881 
882 	if (!page)
883 		return -EFAULT;
884 
885 	for (i = 0; i < nr_pages; i++, page++) {
886 		if (!test_bit(PG_mte_tagged, &page->flags)) {
887 			mte_clear_page_tags(page_address(page));
888 			set_bit(PG_mte_tagged, &page->flags);
889 		}
890 	}
891 
892 	return 0;
893 }
894 
895 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
896 			  struct kvm_memory_slot *memslot, unsigned long hva,
897 			  unsigned long fault_status)
898 {
899 	int ret = 0;
900 	bool write_fault, writable, force_pte = false;
901 	bool exec_fault;
902 	bool device = false;
903 	bool shared;
904 	unsigned long mmu_seq;
905 	struct kvm *kvm = vcpu->kvm;
906 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
907 	struct vm_area_struct *vma;
908 	short vma_shift;
909 	gfn_t gfn;
910 	kvm_pfn_t pfn;
911 	bool logging_active = memslot_is_logging(memslot);
912 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
913 	unsigned long vma_pagesize, fault_granule;
914 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
915 	struct kvm_pgtable *pgt;
916 
917 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
918 	write_fault = kvm_is_write_fault(vcpu);
919 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
920 	VM_BUG_ON(write_fault && exec_fault);
921 
922 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
923 		kvm_err("Unexpected L2 read permission error\n");
924 		return -EFAULT;
925 	}
926 
927 	/*
928 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
929 	 * get block mapping for device MMIO region.
930 	 */
931 	mmap_read_lock(current->mm);
932 	vma = vma_lookup(current->mm, hva);
933 	if (unlikely(!vma)) {
934 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
935 		mmap_read_unlock(current->mm);
936 		return -EFAULT;
937 	}
938 
939 	/*
940 	 * logging_active is guaranteed to never be true for VM_PFNMAP
941 	 * memslots.
942 	 */
943 	if (logging_active) {
944 		force_pte = true;
945 		vma_shift = PAGE_SHIFT;
946 	} else {
947 		vma_shift = get_vma_page_shift(vma, hva);
948 	}
949 
950 	shared = (vma->vm_flags & VM_SHARED);
951 
952 	switch (vma_shift) {
953 #ifndef __PAGETABLE_PMD_FOLDED
954 	case PUD_SHIFT:
955 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
956 			break;
957 		fallthrough;
958 #endif
959 	case CONT_PMD_SHIFT:
960 		vma_shift = PMD_SHIFT;
961 		fallthrough;
962 	case PMD_SHIFT:
963 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
964 			break;
965 		fallthrough;
966 	case CONT_PTE_SHIFT:
967 		vma_shift = PAGE_SHIFT;
968 		force_pte = true;
969 		fallthrough;
970 	case PAGE_SHIFT:
971 		break;
972 	default:
973 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
974 	}
975 
976 	vma_pagesize = 1UL << vma_shift;
977 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
978 		fault_ipa &= ~(vma_pagesize - 1);
979 
980 	gfn = fault_ipa >> PAGE_SHIFT;
981 	mmap_read_unlock(current->mm);
982 
983 	/*
984 	 * Permission faults just need to update the existing leaf entry,
985 	 * and so normally don't require allocations from the memcache. The
986 	 * only exception to this is when dirty logging is enabled at runtime
987 	 * and a write fault needs to collapse a block entry into a table.
988 	 */
989 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
990 		ret = kvm_mmu_topup_memory_cache(memcache,
991 						 kvm_mmu_cache_min_pages(kvm));
992 		if (ret)
993 			return ret;
994 	}
995 
996 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
997 	/*
998 	 * Ensure the read of mmu_notifier_seq happens before we call
999 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1000 	 * the page we just got a reference to gets unmapped before we have a
1001 	 * chance to grab the mmu_lock, which ensure that if the page gets
1002 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1003 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1004 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1005 	 *
1006 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1007 	 * used to avoid unnecessary overhead introduced to locate the memory
1008 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1009 	 */
1010 	smp_rmb();
1011 
1012 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1013 				   write_fault, &writable, NULL);
1014 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1015 		kvm_send_hwpoison_signal(hva, vma_shift);
1016 		return 0;
1017 	}
1018 	if (is_error_noslot_pfn(pfn))
1019 		return -EFAULT;
1020 
1021 	if (kvm_is_device_pfn(pfn)) {
1022 		/*
1023 		 * If the page was identified as device early by looking at
1024 		 * the VMA flags, vma_pagesize is already representing the
1025 		 * largest quantity we can map.  If instead it was mapped
1026 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1027 		 * and must not be upgraded.
1028 		 *
1029 		 * In both cases, we don't let transparent_hugepage_adjust()
1030 		 * change things at the last minute.
1031 		 */
1032 		device = true;
1033 	} else if (logging_active && !write_fault) {
1034 		/*
1035 		 * Only actually map the page as writable if this was a write
1036 		 * fault.
1037 		 */
1038 		writable = false;
1039 	}
1040 
1041 	if (exec_fault && device)
1042 		return -ENOEXEC;
1043 
1044 	spin_lock(&kvm->mmu_lock);
1045 	pgt = vcpu->arch.hw_mmu->pgt;
1046 	if (mmu_notifier_retry(kvm, mmu_seq))
1047 		goto out_unlock;
1048 
1049 	/*
1050 	 * If we are not forced to use page mapping, check if we are
1051 	 * backed by a THP and thus use block mapping if possible.
1052 	 */
1053 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device))
1054 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1055 							   &pfn, &fault_ipa);
1056 
1057 	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1058 		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1059 		if (!shared)
1060 			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1061 		else
1062 			ret = -EFAULT;
1063 		if (ret)
1064 			goto out_unlock;
1065 	}
1066 
1067 	if (writable)
1068 		prot |= KVM_PGTABLE_PROT_W;
1069 
1070 	if (exec_fault)
1071 		prot |= KVM_PGTABLE_PROT_X;
1072 
1073 	if (device)
1074 		prot |= KVM_PGTABLE_PROT_DEVICE;
1075 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1076 		prot |= KVM_PGTABLE_PROT_X;
1077 
1078 	/*
1079 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1080 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1081 	 * kvm_pgtable_stage2_map() should be called to change block size.
1082 	 */
1083 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1084 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1085 	} else {
1086 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1087 					     __pfn_to_phys(pfn), prot,
1088 					     memcache);
1089 	}
1090 
1091 	/* Mark the page dirty only if the fault is handled successfully */
1092 	if (writable && !ret) {
1093 		kvm_set_pfn_dirty(pfn);
1094 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1095 	}
1096 
1097 out_unlock:
1098 	spin_unlock(&kvm->mmu_lock);
1099 	kvm_set_pfn_accessed(pfn);
1100 	kvm_release_pfn_clean(pfn);
1101 	return ret != -EAGAIN ? ret : 0;
1102 }
1103 
1104 /* Resolve the access fault by making the page young again. */
1105 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1106 {
1107 	pte_t pte;
1108 	kvm_pte_t kpte;
1109 	struct kvm_s2_mmu *mmu;
1110 
1111 	trace_kvm_access_fault(fault_ipa);
1112 
1113 	spin_lock(&vcpu->kvm->mmu_lock);
1114 	mmu = vcpu->arch.hw_mmu;
1115 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1116 	spin_unlock(&vcpu->kvm->mmu_lock);
1117 
1118 	pte = __pte(kpte);
1119 	if (pte_valid(pte))
1120 		kvm_set_pfn_accessed(pte_pfn(pte));
1121 }
1122 
1123 /**
1124  * kvm_handle_guest_abort - handles all 2nd stage aborts
1125  * @vcpu:	the VCPU pointer
1126  *
1127  * Any abort that gets to the host is almost guaranteed to be caused by a
1128  * missing second stage translation table entry, which can mean that either the
1129  * guest simply needs more memory and we must allocate an appropriate page or it
1130  * can mean that the guest tried to access I/O memory, which is emulated by user
1131  * space. The distinction is based on the IPA causing the fault and whether this
1132  * memory region has been registered as standard RAM by user space.
1133  */
1134 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1135 {
1136 	unsigned long fault_status;
1137 	phys_addr_t fault_ipa;
1138 	struct kvm_memory_slot *memslot;
1139 	unsigned long hva;
1140 	bool is_iabt, write_fault, writable;
1141 	gfn_t gfn;
1142 	int ret, idx;
1143 
1144 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1145 
1146 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1147 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1148 
1149 	/* Synchronous External Abort? */
1150 	if (kvm_vcpu_abt_issea(vcpu)) {
1151 		/*
1152 		 * For RAS the host kernel may handle this abort.
1153 		 * There is no need to pass the error into the guest.
1154 		 */
1155 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1156 			kvm_inject_vabt(vcpu);
1157 
1158 		return 1;
1159 	}
1160 
1161 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1162 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1163 
1164 	/* Check the stage-2 fault is trans. fault or write fault */
1165 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1166 	    fault_status != FSC_ACCESS) {
1167 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1168 			kvm_vcpu_trap_get_class(vcpu),
1169 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1170 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1171 		return -EFAULT;
1172 	}
1173 
1174 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1175 
1176 	gfn = fault_ipa >> PAGE_SHIFT;
1177 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1178 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1179 	write_fault = kvm_is_write_fault(vcpu);
1180 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1181 		/*
1182 		 * The guest has put either its instructions or its page-tables
1183 		 * somewhere it shouldn't have. Userspace won't be able to do
1184 		 * anything about this (there's no syndrome for a start), so
1185 		 * re-inject the abort back into the guest.
1186 		 */
1187 		if (is_iabt) {
1188 			ret = -ENOEXEC;
1189 			goto out;
1190 		}
1191 
1192 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1193 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1194 			ret = 1;
1195 			goto out_unlock;
1196 		}
1197 
1198 		/*
1199 		 * Check for a cache maintenance operation. Since we
1200 		 * ended-up here, we know it is outside of any memory
1201 		 * slot. But we can't find out if that is for a device,
1202 		 * or if the guest is just being stupid. The only thing
1203 		 * we know for sure is that this range cannot be cached.
1204 		 *
1205 		 * So let's assume that the guest is just being
1206 		 * cautious, and skip the instruction.
1207 		 */
1208 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1209 			kvm_incr_pc(vcpu);
1210 			ret = 1;
1211 			goto out_unlock;
1212 		}
1213 
1214 		/*
1215 		 * The IPA is reported as [MAX:12], so we need to
1216 		 * complement it with the bottom 12 bits from the
1217 		 * faulting VA. This is always 12 bits, irrespective
1218 		 * of the page size.
1219 		 */
1220 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1221 		ret = io_mem_abort(vcpu, fault_ipa);
1222 		goto out_unlock;
1223 	}
1224 
1225 	/* Userspace should not be able to register out-of-bounds IPAs */
1226 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1227 
1228 	if (fault_status == FSC_ACCESS) {
1229 		handle_access_fault(vcpu, fault_ipa);
1230 		ret = 1;
1231 		goto out_unlock;
1232 	}
1233 
1234 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1235 	if (ret == 0)
1236 		ret = 1;
1237 out:
1238 	if (ret == -ENOEXEC) {
1239 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1240 		ret = 1;
1241 	}
1242 out_unlock:
1243 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1244 	return ret;
1245 }
1246 
1247 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1248 {
1249 	if (!kvm->arch.mmu.pgt)
1250 		return false;
1251 
1252 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1253 			     (range->end - range->start) << PAGE_SHIFT,
1254 			     range->may_block);
1255 
1256 	return false;
1257 }
1258 
1259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1260 {
1261 	kvm_pfn_t pfn = pte_pfn(range->pte);
1262 	int ret;
1263 
1264 	if (!kvm->arch.mmu.pgt)
1265 		return false;
1266 
1267 	WARN_ON(range->end - range->start != 1);
1268 
1269 	ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1270 	if (ret)
1271 		return false;
1272 
1273 	/*
1274 	 * We've moved a page around, probably through CoW, so let's treat
1275 	 * it just like a translation fault and the map handler will clean
1276 	 * the cache to the PoC.
1277 	 *
1278 	 * The MMU notifiers will have unmapped a huge PMD before calling
1279 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1280 	 * therefore we never need to clear out a huge PMD through this
1281 	 * calling path and a memcache is not required.
1282 	 */
1283 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1284 			       PAGE_SIZE, __pfn_to_phys(pfn),
1285 			       KVM_PGTABLE_PROT_R, NULL);
1286 
1287 	return false;
1288 }
1289 
1290 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1291 {
1292 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1293 	kvm_pte_t kpte;
1294 	pte_t pte;
1295 
1296 	if (!kvm->arch.mmu.pgt)
1297 		return false;
1298 
1299 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1300 
1301 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1302 					range->start << PAGE_SHIFT);
1303 	pte = __pte(kpte);
1304 	return pte_valid(pte) && pte_young(pte);
1305 }
1306 
1307 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1308 {
1309 	if (!kvm->arch.mmu.pgt)
1310 		return false;
1311 
1312 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1313 					   range->start << PAGE_SHIFT);
1314 }
1315 
1316 phys_addr_t kvm_mmu_get_httbr(void)
1317 {
1318 	return __pa(hyp_pgtable->pgd);
1319 }
1320 
1321 phys_addr_t kvm_get_idmap_vector(void)
1322 {
1323 	return hyp_idmap_vector;
1324 }
1325 
1326 static int kvm_map_idmap_text(void)
1327 {
1328 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1329 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1330 					PAGE_HYP_EXEC);
1331 	if (err)
1332 		kvm_err("Failed to idmap %lx-%lx\n",
1333 			hyp_idmap_start, hyp_idmap_end);
1334 
1335 	return err;
1336 }
1337 
1338 static void *kvm_hyp_zalloc_page(void *arg)
1339 {
1340 	return (void *)get_zeroed_page(GFP_KERNEL);
1341 }
1342 
1343 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1344 	.zalloc_page		= kvm_hyp_zalloc_page,
1345 	.get_page		= kvm_host_get_page,
1346 	.put_page		= kvm_host_put_page,
1347 	.phys_to_virt		= kvm_host_va,
1348 	.virt_to_phys		= kvm_host_pa,
1349 };
1350 
1351 int kvm_mmu_init(u32 *hyp_va_bits)
1352 {
1353 	int err;
1354 
1355 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1356 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1357 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1358 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1359 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1360 
1361 	/*
1362 	 * We rely on the linker script to ensure at build time that the HYP
1363 	 * init code does not cross a page boundary.
1364 	 */
1365 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1366 
1367 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1368 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1369 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1370 	kvm_debug("HYP VA range: %lx:%lx\n",
1371 		  kern_hyp_va(PAGE_OFFSET),
1372 		  kern_hyp_va((unsigned long)high_memory - 1));
1373 
1374 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1375 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1376 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1377 		/*
1378 		 * The idmap page is intersecting with the VA space,
1379 		 * it is not safe to continue further.
1380 		 */
1381 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1382 		err = -EINVAL;
1383 		goto out;
1384 	}
1385 
1386 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1387 	if (!hyp_pgtable) {
1388 		kvm_err("Hyp mode page-table not allocated\n");
1389 		err = -ENOMEM;
1390 		goto out;
1391 	}
1392 
1393 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1394 	if (err)
1395 		goto out_free_pgtable;
1396 
1397 	err = kvm_map_idmap_text();
1398 	if (err)
1399 		goto out_destroy_pgtable;
1400 
1401 	io_map_base = hyp_idmap_start;
1402 	return 0;
1403 
1404 out_destroy_pgtable:
1405 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1406 out_free_pgtable:
1407 	kfree(hyp_pgtable);
1408 	hyp_pgtable = NULL;
1409 out:
1410 	return err;
1411 }
1412 
1413 void kvm_arch_commit_memory_region(struct kvm *kvm,
1414 				   const struct kvm_userspace_memory_region *mem,
1415 				   struct kvm_memory_slot *old,
1416 				   const struct kvm_memory_slot *new,
1417 				   enum kvm_mr_change change)
1418 {
1419 	/*
1420 	 * At this point memslot has been committed and there is an
1421 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1422 	 * memory slot is write protected.
1423 	 */
1424 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1425 		/*
1426 		 * If we're with initial-all-set, we don't need to write
1427 		 * protect any pages because they're all reported as dirty.
1428 		 * Huge pages and normal pages will be write protect gradually.
1429 		 */
1430 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1431 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1432 		}
1433 	}
1434 }
1435 
1436 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1437 				   struct kvm_memory_slot *memslot,
1438 				   const struct kvm_userspace_memory_region *mem,
1439 				   enum kvm_mr_change change)
1440 {
1441 	hva_t hva = mem->userspace_addr;
1442 	hva_t reg_end = hva + mem->memory_size;
1443 	int ret = 0;
1444 
1445 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1446 			change != KVM_MR_FLAGS_ONLY)
1447 		return 0;
1448 
1449 	/*
1450 	 * Prevent userspace from creating a memory region outside of the IPA
1451 	 * space addressable by the KVM guest IPA space.
1452 	 */
1453 	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1454 		return -EFAULT;
1455 
1456 	mmap_read_lock(current->mm);
1457 	/*
1458 	 * A memory region could potentially cover multiple VMAs, and any holes
1459 	 * between them, so iterate over all of them.
1460 	 *
1461 	 *     +--------------------------------------------+
1462 	 * +---------------+----------------+   +----------------+
1463 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1464 	 * +---------------+----------------+   +----------------+
1465 	 *     |               memory region                |
1466 	 *     +--------------------------------------------+
1467 	 */
1468 	do {
1469 		struct vm_area_struct *vma;
1470 
1471 		vma = find_vma_intersection(current->mm, hva, reg_end);
1472 		if (!vma)
1473 			break;
1474 
1475 		/*
1476 		 * VM_SHARED mappings are not allowed with MTE to avoid races
1477 		 * when updating the PG_mte_tagged page flag, see
1478 		 * sanitise_mte_tags for more details.
1479 		 */
1480 		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED)
1481 			return -EINVAL;
1482 
1483 		if (vma->vm_flags & VM_PFNMAP) {
1484 			/* IO region dirty page logging not allowed */
1485 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1486 				ret = -EINVAL;
1487 				break;
1488 			}
1489 		}
1490 		hva = min(reg_end, vma->vm_end);
1491 	} while (hva < reg_end);
1492 
1493 	mmap_read_unlock(current->mm);
1494 	return ret;
1495 }
1496 
1497 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1498 {
1499 }
1500 
1501 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1502 {
1503 }
1504 
1505 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1506 {
1507 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1508 }
1509 
1510 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1511 				   struct kvm_memory_slot *slot)
1512 {
1513 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1514 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1515 
1516 	spin_lock(&kvm->mmu_lock);
1517 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1518 	spin_unlock(&kvm->mmu_lock);
1519 }
1520 
1521 /*
1522  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1523  *
1524  * Main problems:
1525  * - S/W ops are local to a CPU (not broadcast)
1526  * - We have line migration behind our back (speculation)
1527  * - System caches don't support S/W at all (damn!)
1528  *
1529  * In the face of the above, the best we can do is to try and convert
1530  * S/W ops to VA ops. Because the guest is not allowed to infer the
1531  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1532  * which is a rather good thing for us.
1533  *
1534  * Also, it is only used when turning caches on/off ("The expected
1535  * usage of the cache maintenance instructions that operate by set/way
1536  * is associated with the cache maintenance instructions associated
1537  * with the powerdown and powerup of caches, if this is required by
1538  * the implementation.").
1539  *
1540  * We use the following policy:
1541  *
1542  * - If we trap a S/W operation, we enable VM trapping to detect
1543  *   caches being turned on/off, and do a full clean.
1544  *
1545  * - We flush the caches on both caches being turned on and off.
1546  *
1547  * - Once the caches are enabled, we stop trapping VM ops.
1548  */
1549 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1550 {
1551 	unsigned long hcr = *vcpu_hcr(vcpu);
1552 
1553 	/*
1554 	 * If this is the first time we do a S/W operation
1555 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1556 	 * VM trapping.
1557 	 *
1558 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1559 	 * Caches to be turned off. At that point, we'll be able to
1560 	 * clean the caches again.
1561 	 */
1562 	if (!(hcr & HCR_TVM)) {
1563 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1564 					vcpu_has_cache_enabled(vcpu));
1565 		stage2_flush_vm(vcpu->kvm);
1566 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1567 	}
1568 }
1569 
1570 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1571 {
1572 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1573 
1574 	/*
1575 	 * If switching the MMU+caches on, need to invalidate the caches.
1576 	 * If switching it off, need to clean the caches.
1577 	 * Clean + invalidate does the trick always.
1578 	 */
1579 	if (now_enabled != was_enabled)
1580 		stage2_flush_vm(vcpu->kvm);
1581 
1582 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1583 	if (now_enabled)
1584 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1585 
1586 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1587 }
1588