xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision e93e075d340859af772214c267d27f09f9db3e51)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
35 {
36 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
37 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38 
39 	return (boundary - 1 < end - 1) ? boundary : end;
40 }
41 
42 /*
43  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
44  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
45  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
46  * long will also starve other vCPUs. We have to also make sure that the page
47  * tables are not freed while we released the lock.
48  */
49 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
50 			      phys_addr_t end,
51 			      int (*fn)(struct kvm_pgtable *, u64, u64),
52 			      bool resched)
53 {
54 	int ret;
55 	u64 next;
56 
57 	do {
58 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
59 		if (!pgt)
60 			return -EINVAL;
61 
62 		next = stage2_range_addr_end(addr, end);
63 		ret = fn(pgt, addr, next - addr);
64 		if (ret)
65 			break;
66 
67 		if (resched && next != end)
68 			cond_resched_rwlock_write(&kvm->mmu_lock);
69 	} while (addr = next, addr != end);
70 
71 	return ret;
72 }
73 
74 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
75 	stage2_apply_range(kvm, addr, end, fn, true)
76 
77 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
78 {
79 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
80 }
81 
82 /**
83  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
84  * @kvm:	pointer to kvm structure.
85  *
86  * Interface to HYP function to flush all VM TLB entries
87  */
88 void kvm_flush_remote_tlbs(struct kvm *kvm)
89 {
90 	++kvm->stat.generic.remote_tlb_flush_requests;
91 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
92 }
93 
94 static bool kvm_is_device_pfn(unsigned long pfn)
95 {
96 	return !pfn_is_map_memory(pfn);
97 }
98 
99 static void *stage2_memcache_zalloc_page(void *arg)
100 {
101 	struct kvm_mmu_memory_cache *mc = arg;
102 	void *virt;
103 
104 	/* Allocated with __GFP_ZERO, so no need to zero */
105 	virt = kvm_mmu_memory_cache_alloc(mc);
106 	if (virt)
107 		kvm_account_pgtable_pages(virt, 1);
108 	return virt;
109 }
110 
111 static void *kvm_host_zalloc_pages_exact(size_t size)
112 {
113 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
114 }
115 
116 static void *kvm_s2_zalloc_pages_exact(size_t size)
117 {
118 	void *virt = kvm_host_zalloc_pages_exact(size);
119 
120 	if (virt)
121 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
122 	return virt;
123 }
124 
125 static void kvm_s2_free_pages_exact(void *virt, size_t size)
126 {
127 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
128 	free_pages_exact(virt, size);
129 }
130 
131 static void kvm_host_get_page(void *addr)
132 {
133 	get_page(virt_to_page(addr));
134 }
135 
136 static void kvm_host_put_page(void *addr)
137 {
138 	put_page(virt_to_page(addr));
139 }
140 
141 static void kvm_s2_put_page(void *addr)
142 {
143 	struct page *p = virt_to_page(addr);
144 	/* Dropping last refcount, the page will be freed */
145 	if (page_count(p) == 1)
146 		kvm_account_pgtable_pages(addr, -1);
147 	put_page(p);
148 }
149 
150 static int kvm_host_page_count(void *addr)
151 {
152 	return page_count(virt_to_page(addr));
153 }
154 
155 static phys_addr_t kvm_host_pa(void *addr)
156 {
157 	return __pa(addr);
158 }
159 
160 static void *kvm_host_va(phys_addr_t phys)
161 {
162 	return __va(phys);
163 }
164 
165 static void clean_dcache_guest_page(void *va, size_t size)
166 {
167 	__clean_dcache_guest_page(va, size);
168 }
169 
170 static void invalidate_icache_guest_page(void *va, size_t size)
171 {
172 	__invalidate_icache_guest_page(va, size);
173 }
174 
175 /*
176  * Unmapping vs dcache management:
177  *
178  * If a guest maps certain memory pages as uncached, all writes will
179  * bypass the data cache and go directly to RAM.  However, the CPUs
180  * can still speculate reads (not writes) and fill cache lines with
181  * data.
182  *
183  * Those cache lines will be *clean* cache lines though, so a
184  * clean+invalidate operation is equivalent to an invalidate
185  * operation, because no cache lines are marked dirty.
186  *
187  * Those clean cache lines could be filled prior to an uncached write
188  * by the guest, and the cache coherent IO subsystem would therefore
189  * end up writing old data to disk.
190  *
191  * This is why right after unmapping a page/section and invalidating
192  * the corresponding TLBs, we flush to make sure the IO subsystem will
193  * never hit in the cache.
194  *
195  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
196  * we then fully enforce cacheability of RAM, no matter what the guest
197  * does.
198  */
199 /**
200  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
201  * @mmu:   The KVM stage-2 MMU pointer
202  * @start: The intermediate physical base address of the range to unmap
203  * @size:  The size of the area to unmap
204  * @may_block: Whether or not we are permitted to block
205  *
206  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
207  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
208  * destroying the VM), otherwise another faulting VCPU may come in and mess
209  * with things behind our backs.
210  */
211 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
212 				 bool may_block)
213 {
214 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
215 	phys_addr_t end = start + size;
216 
217 	lockdep_assert_held_write(&kvm->mmu_lock);
218 	WARN_ON(size & ~PAGE_MASK);
219 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
220 				   may_block));
221 }
222 
223 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
224 {
225 	__unmap_stage2_range(mmu, start, size, true);
226 }
227 
228 static void stage2_flush_memslot(struct kvm *kvm,
229 				 struct kvm_memory_slot *memslot)
230 {
231 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
232 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
233 
234 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
235 }
236 
237 /**
238  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
239  * @kvm: The struct kvm pointer
240  *
241  * Go through the stage 2 page tables and invalidate any cache lines
242  * backing memory already mapped to the VM.
243  */
244 static void stage2_flush_vm(struct kvm *kvm)
245 {
246 	struct kvm_memslots *slots;
247 	struct kvm_memory_slot *memslot;
248 	int idx, bkt;
249 
250 	idx = srcu_read_lock(&kvm->srcu);
251 	write_lock(&kvm->mmu_lock);
252 
253 	slots = kvm_memslots(kvm);
254 	kvm_for_each_memslot(memslot, bkt, slots)
255 		stage2_flush_memslot(kvm, memslot);
256 
257 	write_unlock(&kvm->mmu_lock);
258 	srcu_read_unlock(&kvm->srcu, idx);
259 }
260 
261 /**
262  * free_hyp_pgds - free Hyp-mode page tables
263  */
264 void free_hyp_pgds(void)
265 {
266 	mutex_lock(&kvm_hyp_pgd_mutex);
267 	if (hyp_pgtable) {
268 		kvm_pgtable_hyp_destroy(hyp_pgtable);
269 		kfree(hyp_pgtable);
270 		hyp_pgtable = NULL;
271 	}
272 	mutex_unlock(&kvm_hyp_pgd_mutex);
273 }
274 
275 static bool kvm_host_owns_hyp_mappings(void)
276 {
277 	if (is_kernel_in_hyp_mode())
278 		return false;
279 
280 	if (static_branch_likely(&kvm_protected_mode_initialized))
281 		return false;
282 
283 	/*
284 	 * This can happen at boot time when __create_hyp_mappings() is called
285 	 * after the hyp protection has been enabled, but the static key has
286 	 * not been flipped yet.
287 	 */
288 	if (!hyp_pgtable && is_protected_kvm_enabled())
289 		return false;
290 
291 	WARN_ON(!hyp_pgtable);
292 
293 	return true;
294 }
295 
296 int __create_hyp_mappings(unsigned long start, unsigned long size,
297 			  unsigned long phys, enum kvm_pgtable_prot prot)
298 {
299 	int err;
300 
301 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
302 		return -EINVAL;
303 
304 	mutex_lock(&kvm_hyp_pgd_mutex);
305 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
306 	mutex_unlock(&kvm_hyp_pgd_mutex);
307 
308 	return err;
309 }
310 
311 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
312 {
313 	if (!is_vmalloc_addr(kaddr)) {
314 		BUG_ON(!virt_addr_valid(kaddr));
315 		return __pa(kaddr);
316 	} else {
317 		return page_to_phys(vmalloc_to_page(kaddr)) +
318 		       offset_in_page(kaddr);
319 	}
320 }
321 
322 struct hyp_shared_pfn {
323 	u64 pfn;
324 	int count;
325 	struct rb_node node;
326 };
327 
328 static DEFINE_MUTEX(hyp_shared_pfns_lock);
329 static struct rb_root hyp_shared_pfns = RB_ROOT;
330 
331 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
332 					      struct rb_node **parent)
333 {
334 	struct hyp_shared_pfn *this;
335 
336 	*node = &hyp_shared_pfns.rb_node;
337 	*parent = NULL;
338 	while (**node) {
339 		this = container_of(**node, struct hyp_shared_pfn, node);
340 		*parent = **node;
341 		if (this->pfn < pfn)
342 			*node = &((**node)->rb_left);
343 		else if (this->pfn > pfn)
344 			*node = &((**node)->rb_right);
345 		else
346 			return this;
347 	}
348 
349 	return NULL;
350 }
351 
352 static int share_pfn_hyp(u64 pfn)
353 {
354 	struct rb_node **node, *parent;
355 	struct hyp_shared_pfn *this;
356 	int ret = 0;
357 
358 	mutex_lock(&hyp_shared_pfns_lock);
359 	this = find_shared_pfn(pfn, &node, &parent);
360 	if (this) {
361 		this->count++;
362 		goto unlock;
363 	}
364 
365 	this = kzalloc(sizeof(*this), GFP_KERNEL);
366 	if (!this) {
367 		ret = -ENOMEM;
368 		goto unlock;
369 	}
370 
371 	this->pfn = pfn;
372 	this->count = 1;
373 	rb_link_node(&this->node, parent, node);
374 	rb_insert_color(&this->node, &hyp_shared_pfns);
375 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
376 unlock:
377 	mutex_unlock(&hyp_shared_pfns_lock);
378 
379 	return ret;
380 }
381 
382 static int unshare_pfn_hyp(u64 pfn)
383 {
384 	struct rb_node **node, *parent;
385 	struct hyp_shared_pfn *this;
386 	int ret = 0;
387 
388 	mutex_lock(&hyp_shared_pfns_lock);
389 	this = find_shared_pfn(pfn, &node, &parent);
390 	if (WARN_ON(!this)) {
391 		ret = -ENOENT;
392 		goto unlock;
393 	}
394 
395 	this->count--;
396 	if (this->count)
397 		goto unlock;
398 
399 	rb_erase(&this->node, &hyp_shared_pfns);
400 	kfree(this);
401 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
402 unlock:
403 	mutex_unlock(&hyp_shared_pfns_lock);
404 
405 	return ret;
406 }
407 
408 int kvm_share_hyp(void *from, void *to)
409 {
410 	phys_addr_t start, end, cur;
411 	u64 pfn;
412 	int ret;
413 
414 	if (is_kernel_in_hyp_mode())
415 		return 0;
416 
417 	/*
418 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
419 	 * VA space, so we can only share physically contiguous data-structures
420 	 * for now.
421 	 */
422 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
423 		return -EINVAL;
424 
425 	if (kvm_host_owns_hyp_mappings())
426 		return create_hyp_mappings(from, to, PAGE_HYP);
427 
428 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
429 	end = PAGE_ALIGN(__pa(to));
430 	for (cur = start; cur < end; cur += PAGE_SIZE) {
431 		pfn = __phys_to_pfn(cur);
432 		ret = share_pfn_hyp(pfn);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	return 0;
438 }
439 
440 void kvm_unshare_hyp(void *from, void *to)
441 {
442 	phys_addr_t start, end, cur;
443 	u64 pfn;
444 
445 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
446 		return;
447 
448 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
449 	end = PAGE_ALIGN(__pa(to));
450 	for (cur = start; cur < end; cur += PAGE_SIZE) {
451 		pfn = __phys_to_pfn(cur);
452 		WARN_ON(unshare_pfn_hyp(pfn));
453 	}
454 }
455 
456 /**
457  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
458  * @from:	The virtual kernel start address of the range
459  * @to:		The virtual kernel end address of the range (exclusive)
460  * @prot:	The protection to be applied to this range
461  *
462  * The same virtual address as the kernel virtual address is also used
463  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
464  * physical pages.
465  */
466 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
467 {
468 	phys_addr_t phys_addr;
469 	unsigned long virt_addr;
470 	unsigned long start = kern_hyp_va((unsigned long)from);
471 	unsigned long end = kern_hyp_va((unsigned long)to);
472 
473 	if (is_kernel_in_hyp_mode())
474 		return 0;
475 
476 	if (!kvm_host_owns_hyp_mappings())
477 		return -EPERM;
478 
479 	start = start & PAGE_MASK;
480 	end = PAGE_ALIGN(end);
481 
482 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
483 		int err;
484 
485 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
486 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
487 					    prot);
488 		if (err)
489 			return err;
490 	}
491 
492 	return 0;
493 }
494 
495 
496 /**
497  * hyp_alloc_private_va_range - Allocates a private VA range.
498  * @size:	The size of the VA range to reserve.
499  * @haddr:	The hypervisor virtual start address of the allocation.
500  *
501  * The private virtual address (VA) range is allocated below io_map_base
502  * and aligned based on the order of @size.
503  *
504  * Return: 0 on success or negative error code on failure.
505  */
506 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
507 {
508 	unsigned long base;
509 	int ret = 0;
510 
511 	mutex_lock(&kvm_hyp_pgd_mutex);
512 
513 	/*
514 	 * This assumes that we have enough space below the idmap
515 	 * page to allocate our VAs. If not, the check below will
516 	 * kick. A potential alternative would be to detect that
517 	 * overflow and switch to an allocation above the idmap.
518 	 *
519 	 * The allocated size is always a multiple of PAGE_SIZE.
520 	 */
521 	base = io_map_base - PAGE_ALIGN(size);
522 
523 	/* Align the allocation based on the order of its size */
524 	base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
525 
526 	/*
527 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
528 	 * allocating the new area, as it would indicate we've
529 	 * overflowed the idmap/IO address range.
530 	 */
531 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
532 		ret = -ENOMEM;
533 	else
534 		*haddr = io_map_base = base;
535 
536 	mutex_unlock(&kvm_hyp_pgd_mutex);
537 
538 	return ret;
539 }
540 
541 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
542 					unsigned long *haddr,
543 					enum kvm_pgtable_prot prot)
544 {
545 	unsigned long addr;
546 	int ret = 0;
547 
548 	if (!kvm_host_owns_hyp_mappings()) {
549 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
550 					 phys_addr, size, prot);
551 		if (IS_ERR_VALUE(addr))
552 			return addr;
553 		*haddr = addr;
554 
555 		return 0;
556 	}
557 
558 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
559 	ret = hyp_alloc_private_va_range(size, &addr);
560 	if (ret)
561 		return ret;
562 
563 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
564 	if (ret)
565 		return ret;
566 
567 	*haddr = addr + offset_in_page(phys_addr);
568 	return ret;
569 }
570 
571 /**
572  * create_hyp_io_mappings - Map IO into both kernel and HYP
573  * @phys_addr:	The physical start address which gets mapped
574  * @size:	Size of the region being mapped
575  * @kaddr:	Kernel VA for this mapping
576  * @haddr:	HYP VA for this mapping
577  */
578 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
579 			   void __iomem **kaddr,
580 			   void __iomem **haddr)
581 {
582 	unsigned long addr;
583 	int ret;
584 
585 	if (is_protected_kvm_enabled())
586 		return -EPERM;
587 
588 	*kaddr = ioremap(phys_addr, size);
589 	if (!*kaddr)
590 		return -ENOMEM;
591 
592 	if (is_kernel_in_hyp_mode()) {
593 		*haddr = *kaddr;
594 		return 0;
595 	}
596 
597 	ret = __create_hyp_private_mapping(phys_addr, size,
598 					   &addr, PAGE_HYP_DEVICE);
599 	if (ret) {
600 		iounmap(*kaddr);
601 		*kaddr = NULL;
602 		*haddr = NULL;
603 		return ret;
604 	}
605 
606 	*haddr = (void __iomem *)addr;
607 	return 0;
608 }
609 
610 /**
611  * create_hyp_exec_mappings - Map an executable range into HYP
612  * @phys_addr:	The physical start address which gets mapped
613  * @size:	Size of the region being mapped
614  * @haddr:	HYP VA for this mapping
615  */
616 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
617 			     void **haddr)
618 {
619 	unsigned long addr;
620 	int ret;
621 
622 	BUG_ON(is_kernel_in_hyp_mode());
623 
624 	ret = __create_hyp_private_mapping(phys_addr, size,
625 					   &addr, PAGE_HYP_EXEC);
626 	if (ret) {
627 		*haddr = NULL;
628 		return ret;
629 	}
630 
631 	*haddr = (void *)addr;
632 	return 0;
633 }
634 
635 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
636 	/* We shouldn't need any other callback to walk the PT */
637 	.phys_to_virt		= kvm_host_va,
638 };
639 
640 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
641 {
642 	struct kvm_pgtable pgt = {
643 		.pgd		= (kvm_pte_t *)kvm->mm->pgd,
644 		.ia_bits	= VA_BITS,
645 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
646 				   CONFIG_PGTABLE_LEVELS),
647 		.mm_ops		= &kvm_user_mm_ops,
648 	};
649 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
650 	u32 level = ~0;
651 	int ret;
652 
653 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
654 	VM_BUG_ON(ret);
655 	VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
656 	VM_BUG_ON(!(pte & PTE_VALID));
657 
658 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
659 }
660 
661 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
662 	.zalloc_page		= stage2_memcache_zalloc_page,
663 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
664 	.free_pages_exact	= kvm_s2_free_pages_exact,
665 	.get_page		= kvm_host_get_page,
666 	.put_page		= kvm_s2_put_page,
667 	.page_count		= kvm_host_page_count,
668 	.phys_to_virt		= kvm_host_va,
669 	.virt_to_phys		= kvm_host_pa,
670 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
671 	.icache_inval_pou	= invalidate_icache_guest_page,
672 };
673 
674 /**
675  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
676  * @kvm:	The pointer to the KVM structure
677  * @mmu:	The pointer to the s2 MMU structure
678  *
679  * Allocates only the stage-2 HW PGD level table(s).
680  * Note we don't need locking here as this is only called when the VM is
681  * created, which can only be done once.
682  */
683 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
684 {
685 	int cpu, err;
686 	struct kvm_pgtable *pgt;
687 
688 	if (mmu->pgt != NULL) {
689 		kvm_err("kvm_arch already initialized?\n");
690 		return -EINVAL;
691 	}
692 
693 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
694 	if (!pgt)
695 		return -ENOMEM;
696 
697 	mmu->arch = &kvm->arch;
698 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
699 	if (err)
700 		goto out_free_pgtable;
701 
702 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
703 	if (!mmu->last_vcpu_ran) {
704 		err = -ENOMEM;
705 		goto out_destroy_pgtable;
706 	}
707 
708 	for_each_possible_cpu(cpu)
709 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
710 
711 	mmu->pgt = pgt;
712 	mmu->pgd_phys = __pa(pgt->pgd);
713 	return 0;
714 
715 out_destroy_pgtable:
716 	kvm_pgtable_stage2_destroy(pgt);
717 out_free_pgtable:
718 	kfree(pgt);
719 	return err;
720 }
721 
722 static void stage2_unmap_memslot(struct kvm *kvm,
723 				 struct kvm_memory_slot *memslot)
724 {
725 	hva_t hva = memslot->userspace_addr;
726 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
727 	phys_addr_t size = PAGE_SIZE * memslot->npages;
728 	hva_t reg_end = hva + size;
729 
730 	/*
731 	 * A memory region could potentially cover multiple VMAs, and any holes
732 	 * between them, so iterate over all of them to find out if we should
733 	 * unmap any of them.
734 	 *
735 	 *     +--------------------------------------------+
736 	 * +---------------+----------------+   +----------------+
737 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
738 	 * +---------------+----------------+   +----------------+
739 	 *     |               memory region                |
740 	 *     +--------------------------------------------+
741 	 */
742 	do {
743 		struct vm_area_struct *vma;
744 		hva_t vm_start, vm_end;
745 
746 		vma = find_vma_intersection(current->mm, hva, reg_end);
747 		if (!vma)
748 			break;
749 
750 		/*
751 		 * Take the intersection of this VMA with the memory region
752 		 */
753 		vm_start = max(hva, vma->vm_start);
754 		vm_end = min(reg_end, vma->vm_end);
755 
756 		if (!(vma->vm_flags & VM_PFNMAP)) {
757 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
758 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
759 		}
760 		hva = vm_end;
761 	} while (hva < reg_end);
762 }
763 
764 /**
765  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
766  * @kvm: The struct kvm pointer
767  *
768  * Go through the memregions and unmap any regular RAM
769  * backing memory already mapped to the VM.
770  */
771 void stage2_unmap_vm(struct kvm *kvm)
772 {
773 	struct kvm_memslots *slots;
774 	struct kvm_memory_slot *memslot;
775 	int idx, bkt;
776 
777 	idx = srcu_read_lock(&kvm->srcu);
778 	mmap_read_lock(current->mm);
779 	write_lock(&kvm->mmu_lock);
780 
781 	slots = kvm_memslots(kvm);
782 	kvm_for_each_memslot(memslot, bkt, slots)
783 		stage2_unmap_memslot(kvm, memslot);
784 
785 	write_unlock(&kvm->mmu_lock);
786 	mmap_read_unlock(current->mm);
787 	srcu_read_unlock(&kvm->srcu, idx);
788 }
789 
790 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
791 {
792 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
793 	struct kvm_pgtable *pgt = NULL;
794 
795 	write_lock(&kvm->mmu_lock);
796 	pgt = mmu->pgt;
797 	if (pgt) {
798 		mmu->pgd_phys = 0;
799 		mmu->pgt = NULL;
800 		free_percpu(mmu->last_vcpu_ran);
801 	}
802 	write_unlock(&kvm->mmu_lock);
803 
804 	if (pgt) {
805 		kvm_pgtable_stage2_destroy(pgt);
806 		kfree(pgt);
807 	}
808 }
809 
810 /**
811  * kvm_phys_addr_ioremap - map a device range to guest IPA
812  *
813  * @kvm:	The KVM pointer
814  * @guest_ipa:	The IPA at which to insert the mapping
815  * @pa:		The physical address of the device
816  * @size:	The size of the mapping
817  * @writable:   Whether or not to create a writable mapping
818  */
819 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
820 			  phys_addr_t pa, unsigned long size, bool writable)
821 {
822 	phys_addr_t addr;
823 	int ret = 0;
824 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
825 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
826 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
827 				     KVM_PGTABLE_PROT_R |
828 				     (writable ? KVM_PGTABLE_PROT_W : 0);
829 
830 	if (is_protected_kvm_enabled())
831 		return -EPERM;
832 
833 	size += offset_in_page(guest_ipa);
834 	guest_ipa &= PAGE_MASK;
835 
836 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
837 		ret = kvm_mmu_topup_memory_cache(&cache,
838 						 kvm_mmu_cache_min_pages(kvm));
839 		if (ret)
840 			break;
841 
842 		write_lock(&kvm->mmu_lock);
843 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
844 					     &cache);
845 		write_unlock(&kvm->mmu_lock);
846 		if (ret)
847 			break;
848 
849 		pa += PAGE_SIZE;
850 	}
851 
852 	kvm_mmu_free_memory_cache(&cache);
853 	return ret;
854 }
855 
856 /**
857  * stage2_wp_range() - write protect stage2 memory region range
858  * @mmu:        The KVM stage-2 MMU pointer
859  * @addr:	Start address of range
860  * @end:	End address of range
861  */
862 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
863 {
864 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
865 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
866 }
867 
868 /**
869  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
870  * @kvm:	The KVM pointer
871  * @slot:	The memory slot to write protect
872  *
873  * Called to start logging dirty pages after memory region
874  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
875  * all present PUD, PMD and PTEs are write protected in the memory region.
876  * Afterwards read of dirty page log can be called.
877  *
878  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
879  * serializing operations for VM memory regions.
880  */
881 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
882 {
883 	struct kvm_memslots *slots = kvm_memslots(kvm);
884 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
885 	phys_addr_t start, end;
886 
887 	if (WARN_ON_ONCE(!memslot))
888 		return;
889 
890 	start = memslot->base_gfn << PAGE_SHIFT;
891 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
892 
893 	write_lock(&kvm->mmu_lock);
894 	stage2_wp_range(&kvm->arch.mmu, start, end);
895 	write_unlock(&kvm->mmu_lock);
896 	kvm_flush_remote_tlbs(kvm);
897 }
898 
899 /**
900  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
901  * @kvm:	The KVM pointer
902  * @slot:	The memory slot associated with mask
903  * @gfn_offset:	The gfn offset in memory slot
904  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
905  *		slot to be write protected
906  *
907  * Walks bits set in mask write protects the associated pte's. Caller must
908  * acquire kvm_mmu_lock.
909  */
910 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
911 		struct kvm_memory_slot *slot,
912 		gfn_t gfn_offset, unsigned long mask)
913 {
914 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
915 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
916 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
917 
918 	stage2_wp_range(&kvm->arch.mmu, start, end);
919 }
920 
921 /*
922  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
923  * dirty pages.
924  *
925  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
926  * enable dirty logging for them.
927  */
928 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
929 		struct kvm_memory_slot *slot,
930 		gfn_t gfn_offset, unsigned long mask)
931 {
932 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
933 }
934 
935 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
936 {
937 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
938 }
939 
940 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
941 					       unsigned long hva,
942 					       unsigned long map_size)
943 {
944 	gpa_t gpa_start;
945 	hva_t uaddr_start, uaddr_end;
946 	size_t size;
947 
948 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
949 	if (map_size == PAGE_SIZE)
950 		return true;
951 
952 	size = memslot->npages * PAGE_SIZE;
953 
954 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
955 
956 	uaddr_start = memslot->userspace_addr;
957 	uaddr_end = uaddr_start + size;
958 
959 	/*
960 	 * Pages belonging to memslots that don't have the same alignment
961 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
962 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
963 	 *
964 	 * Consider a layout like the following:
965 	 *
966 	 *    memslot->userspace_addr:
967 	 *    +-----+--------------------+--------------------+---+
968 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
969 	 *    +-----+--------------------+--------------------+---+
970 	 *
971 	 *    memslot->base_gfn << PAGE_SHIFT:
972 	 *      +---+--------------------+--------------------+-----+
973 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
974 	 *      +---+--------------------+--------------------+-----+
975 	 *
976 	 * If we create those stage-2 blocks, we'll end up with this incorrect
977 	 * mapping:
978 	 *   d -> f
979 	 *   e -> g
980 	 *   f -> h
981 	 */
982 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
983 		return false;
984 
985 	/*
986 	 * Next, let's make sure we're not trying to map anything not covered
987 	 * by the memslot. This means we have to prohibit block size mappings
988 	 * for the beginning and end of a non-block aligned and non-block sized
989 	 * memory slot (illustrated by the head and tail parts of the
990 	 * userspace view above containing pages 'abcde' and 'xyz',
991 	 * respectively).
992 	 *
993 	 * Note that it doesn't matter if we do the check using the
994 	 * userspace_addr or the base_gfn, as both are equally aligned (per
995 	 * the check above) and equally sized.
996 	 */
997 	return (hva & ~(map_size - 1)) >= uaddr_start &&
998 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
999 }
1000 
1001 /*
1002  * Check if the given hva is backed by a transparent huge page (THP) and
1003  * whether it can be mapped using block mapping in stage2. If so, adjust
1004  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1005  * supported. This will need to be updated to support other THP sizes.
1006  *
1007  * Returns the size of the mapping.
1008  */
1009 static unsigned long
1010 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1011 			    unsigned long hva, kvm_pfn_t *pfnp,
1012 			    phys_addr_t *ipap)
1013 {
1014 	kvm_pfn_t pfn = *pfnp;
1015 
1016 	/*
1017 	 * Make sure the adjustment is done only for THP pages. Also make
1018 	 * sure that the HVA and IPA are sufficiently aligned and that the
1019 	 * block map is contained within the memslot.
1020 	 */
1021 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1022 	    get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1023 		/*
1024 		 * The address we faulted on is backed by a transparent huge
1025 		 * page.  However, because we map the compound huge page and
1026 		 * not the individual tail page, we need to transfer the
1027 		 * refcount to the head page.  We have to be careful that the
1028 		 * THP doesn't start to split while we are adjusting the
1029 		 * refcounts.
1030 		 *
1031 		 * We are sure this doesn't happen, because mmu_invalidate_retry
1032 		 * was successful and we are holding the mmu_lock, so if this
1033 		 * THP is trying to split, it will be blocked in the mmu
1034 		 * notifier before touching any of the pages, specifically
1035 		 * before being able to call __split_huge_page_refcount().
1036 		 *
1037 		 * We can therefore safely transfer the refcount from PG_tail
1038 		 * to PG_head and switch the pfn from a tail page to the head
1039 		 * page accordingly.
1040 		 */
1041 		*ipap &= PMD_MASK;
1042 		kvm_release_pfn_clean(pfn);
1043 		pfn &= ~(PTRS_PER_PMD - 1);
1044 		get_page(pfn_to_page(pfn));
1045 		*pfnp = pfn;
1046 
1047 		return PMD_SIZE;
1048 	}
1049 
1050 	/* Use page mapping if we cannot use block mapping. */
1051 	return PAGE_SIZE;
1052 }
1053 
1054 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1055 {
1056 	unsigned long pa;
1057 
1058 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1059 		return huge_page_shift(hstate_vma(vma));
1060 
1061 	if (!(vma->vm_flags & VM_PFNMAP))
1062 		return PAGE_SHIFT;
1063 
1064 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1065 
1066 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1067 
1068 #ifndef __PAGETABLE_PMD_FOLDED
1069 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1070 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1071 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1072 		return PUD_SHIFT;
1073 #endif
1074 
1075 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1076 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1077 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1078 		return PMD_SHIFT;
1079 
1080 	return PAGE_SHIFT;
1081 }
1082 
1083 /*
1084  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1085  * able to see the page's tags and therefore they must be initialised first. If
1086  * PG_mte_tagged is set, tags have already been initialised.
1087  *
1088  * The race in the test/set of the PG_mte_tagged flag is handled by:
1089  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1090  *   racing to santise the same page
1091  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1092  *   an mprotect() to add VM_MTE
1093  */
1094 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1095 			     unsigned long size)
1096 {
1097 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1098 	struct page *page;
1099 
1100 	if (!kvm_has_mte(kvm))
1101 		return 0;
1102 
1103 	/*
1104 	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1105 	 * that may not support tags.
1106 	 */
1107 	page = pfn_to_online_page(pfn);
1108 
1109 	if (!page)
1110 		return -EFAULT;
1111 
1112 	for (i = 0; i < nr_pages; i++, page++) {
1113 		if (!test_bit(PG_mte_tagged, &page->flags)) {
1114 			mte_clear_page_tags(page_address(page));
1115 			set_bit(PG_mte_tagged, &page->flags);
1116 		}
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1123 			  struct kvm_memory_slot *memslot, unsigned long hva,
1124 			  unsigned long fault_status)
1125 {
1126 	int ret = 0;
1127 	bool write_fault, writable, force_pte = false;
1128 	bool exec_fault;
1129 	bool device = false;
1130 	bool shared;
1131 	unsigned long mmu_seq;
1132 	struct kvm *kvm = vcpu->kvm;
1133 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1134 	struct vm_area_struct *vma;
1135 	short vma_shift;
1136 	gfn_t gfn;
1137 	kvm_pfn_t pfn;
1138 	bool logging_active = memslot_is_logging(memslot);
1139 	bool use_read_lock = false;
1140 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1141 	unsigned long vma_pagesize, fault_granule;
1142 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1143 	struct kvm_pgtable *pgt;
1144 
1145 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1146 	write_fault = kvm_is_write_fault(vcpu);
1147 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1148 	VM_BUG_ON(write_fault && exec_fault);
1149 
1150 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1151 		kvm_err("Unexpected L2 read permission error\n");
1152 		return -EFAULT;
1153 	}
1154 
1155 	/*
1156 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1157 	 * get block mapping for device MMIO region.
1158 	 */
1159 	mmap_read_lock(current->mm);
1160 	vma = vma_lookup(current->mm, hva);
1161 	if (unlikely(!vma)) {
1162 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1163 		mmap_read_unlock(current->mm);
1164 		return -EFAULT;
1165 	}
1166 
1167 	/*
1168 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1169 	 * memslots.
1170 	 */
1171 	if (logging_active) {
1172 		force_pte = true;
1173 		vma_shift = PAGE_SHIFT;
1174 		use_read_lock = (fault_status == FSC_PERM && write_fault &&
1175 				 fault_granule == PAGE_SIZE);
1176 	} else {
1177 		vma_shift = get_vma_page_shift(vma, hva);
1178 	}
1179 
1180 	shared = (vma->vm_flags & VM_SHARED);
1181 
1182 	switch (vma_shift) {
1183 #ifndef __PAGETABLE_PMD_FOLDED
1184 	case PUD_SHIFT:
1185 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1186 			break;
1187 		fallthrough;
1188 #endif
1189 	case CONT_PMD_SHIFT:
1190 		vma_shift = PMD_SHIFT;
1191 		fallthrough;
1192 	case PMD_SHIFT:
1193 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1194 			break;
1195 		fallthrough;
1196 	case CONT_PTE_SHIFT:
1197 		vma_shift = PAGE_SHIFT;
1198 		force_pte = true;
1199 		fallthrough;
1200 	case PAGE_SHIFT:
1201 		break;
1202 	default:
1203 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1204 	}
1205 
1206 	vma_pagesize = 1UL << vma_shift;
1207 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1208 		fault_ipa &= ~(vma_pagesize - 1);
1209 
1210 	gfn = fault_ipa >> PAGE_SHIFT;
1211 	mmap_read_unlock(current->mm);
1212 
1213 	/*
1214 	 * Permission faults just need to update the existing leaf entry,
1215 	 * and so normally don't require allocations from the memcache. The
1216 	 * only exception to this is when dirty logging is enabled at runtime
1217 	 * and a write fault needs to collapse a block entry into a table.
1218 	 */
1219 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1220 		ret = kvm_mmu_topup_memory_cache(memcache,
1221 						 kvm_mmu_cache_min_pages(kvm));
1222 		if (ret)
1223 			return ret;
1224 	}
1225 
1226 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1227 	/*
1228 	 * Ensure the read of mmu_invalidate_seq happens before we call
1229 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1230 	 * the page we just got a reference to gets unmapped before we have a
1231 	 * chance to grab the mmu_lock, which ensure that if the page gets
1232 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1233 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1234 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1235 	 *
1236 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1237 	 * used to avoid unnecessary overhead introduced to locate the memory
1238 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1239 	 */
1240 	smp_rmb();
1241 
1242 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1243 				   write_fault, &writable, NULL);
1244 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1245 		kvm_send_hwpoison_signal(hva, vma_shift);
1246 		return 0;
1247 	}
1248 	if (is_error_noslot_pfn(pfn))
1249 		return -EFAULT;
1250 
1251 	if (kvm_is_device_pfn(pfn)) {
1252 		/*
1253 		 * If the page was identified as device early by looking at
1254 		 * the VMA flags, vma_pagesize is already representing the
1255 		 * largest quantity we can map.  If instead it was mapped
1256 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1257 		 * and must not be upgraded.
1258 		 *
1259 		 * In both cases, we don't let transparent_hugepage_adjust()
1260 		 * change things at the last minute.
1261 		 */
1262 		device = true;
1263 	} else if (logging_active && !write_fault) {
1264 		/*
1265 		 * Only actually map the page as writable if this was a write
1266 		 * fault.
1267 		 */
1268 		writable = false;
1269 	}
1270 
1271 	if (exec_fault && device)
1272 		return -ENOEXEC;
1273 
1274 	/*
1275 	 * To reduce MMU contentions and enhance concurrency during dirty
1276 	 * logging dirty logging, only acquire read lock for permission
1277 	 * relaxation.
1278 	 */
1279 	if (use_read_lock)
1280 		read_lock(&kvm->mmu_lock);
1281 	else
1282 		write_lock(&kvm->mmu_lock);
1283 	pgt = vcpu->arch.hw_mmu->pgt;
1284 	if (mmu_invalidate_retry(kvm, mmu_seq))
1285 		goto out_unlock;
1286 
1287 	/*
1288 	 * If we are not forced to use page mapping, check if we are
1289 	 * backed by a THP and thus use block mapping if possible.
1290 	 */
1291 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1292 		if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1293 			vma_pagesize = fault_granule;
1294 		else
1295 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1296 								   hva, &pfn,
1297 								   &fault_ipa);
1298 	}
1299 
1300 	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1301 		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1302 		if (!shared)
1303 			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1304 		else
1305 			ret = -EFAULT;
1306 		if (ret)
1307 			goto out_unlock;
1308 	}
1309 
1310 	if (writable)
1311 		prot |= KVM_PGTABLE_PROT_W;
1312 
1313 	if (exec_fault)
1314 		prot |= KVM_PGTABLE_PROT_X;
1315 
1316 	if (device)
1317 		prot |= KVM_PGTABLE_PROT_DEVICE;
1318 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1319 		prot |= KVM_PGTABLE_PROT_X;
1320 
1321 	/*
1322 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1323 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1324 	 * kvm_pgtable_stage2_map() should be called to change block size.
1325 	 */
1326 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1327 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1328 	} else {
1329 		WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n");
1330 
1331 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1332 					     __pfn_to_phys(pfn), prot,
1333 					     memcache);
1334 	}
1335 
1336 	/* Mark the page dirty only if the fault is handled successfully */
1337 	if (writable && !ret) {
1338 		kvm_set_pfn_dirty(pfn);
1339 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1340 	}
1341 
1342 out_unlock:
1343 	if (use_read_lock)
1344 		read_unlock(&kvm->mmu_lock);
1345 	else
1346 		write_unlock(&kvm->mmu_lock);
1347 	kvm_set_pfn_accessed(pfn);
1348 	kvm_release_pfn_clean(pfn);
1349 	return ret != -EAGAIN ? ret : 0;
1350 }
1351 
1352 /* Resolve the access fault by making the page young again. */
1353 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1354 {
1355 	pte_t pte;
1356 	kvm_pte_t kpte;
1357 	struct kvm_s2_mmu *mmu;
1358 
1359 	trace_kvm_access_fault(fault_ipa);
1360 
1361 	write_lock(&vcpu->kvm->mmu_lock);
1362 	mmu = vcpu->arch.hw_mmu;
1363 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1364 	write_unlock(&vcpu->kvm->mmu_lock);
1365 
1366 	pte = __pte(kpte);
1367 	if (pte_valid(pte))
1368 		kvm_set_pfn_accessed(pte_pfn(pte));
1369 }
1370 
1371 /**
1372  * kvm_handle_guest_abort - handles all 2nd stage aborts
1373  * @vcpu:	the VCPU pointer
1374  *
1375  * Any abort that gets to the host is almost guaranteed to be caused by a
1376  * missing second stage translation table entry, which can mean that either the
1377  * guest simply needs more memory and we must allocate an appropriate page or it
1378  * can mean that the guest tried to access I/O memory, which is emulated by user
1379  * space. The distinction is based on the IPA causing the fault and whether this
1380  * memory region has been registered as standard RAM by user space.
1381  */
1382 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1383 {
1384 	unsigned long fault_status;
1385 	phys_addr_t fault_ipa;
1386 	struct kvm_memory_slot *memslot;
1387 	unsigned long hva;
1388 	bool is_iabt, write_fault, writable;
1389 	gfn_t gfn;
1390 	int ret, idx;
1391 
1392 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1393 
1394 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1395 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1396 
1397 	if (fault_status == FSC_FAULT) {
1398 		/* Beyond sanitised PARange (which is the IPA limit) */
1399 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1400 			kvm_inject_size_fault(vcpu);
1401 			return 1;
1402 		}
1403 
1404 		/* Falls between the IPA range and the PARange? */
1405 		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1406 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1407 
1408 			if (is_iabt)
1409 				kvm_inject_pabt(vcpu, fault_ipa);
1410 			else
1411 				kvm_inject_dabt(vcpu, fault_ipa);
1412 			return 1;
1413 		}
1414 	}
1415 
1416 	/* Synchronous External Abort? */
1417 	if (kvm_vcpu_abt_issea(vcpu)) {
1418 		/*
1419 		 * For RAS the host kernel may handle this abort.
1420 		 * There is no need to pass the error into the guest.
1421 		 */
1422 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1423 			kvm_inject_vabt(vcpu);
1424 
1425 		return 1;
1426 	}
1427 
1428 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1429 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1430 
1431 	/* Check the stage-2 fault is trans. fault or write fault */
1432 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1433 	    fault_status != FSC_ACCESS) {
1434 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1435 			kvm_vcpu_trap_get_class(vcpu),
1436 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1437 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1438 		return -EFAULT;
1439 	}
1440 
1441 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1442 
1443 	gfn = fault_ipa >> PAGE_SHIFT;
1444 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1445 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1446 	write_fault = kvm_is_write_fault(vcpu);
1447 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1448 		/*
1449 		 * The guest has put either its instructions or its page-tables
1450 		 * somewhere it shouldn't have. Userspace won't be able to do
1451 		 * anything about this (there's no syndrome for a start), so
1452 		 * re-inject the abort back into the guest.
1453 		 */
1454 		if (is_iabt) {
1455 			ret = -ENOEXEC;
1456 			goto out;
1457 		}
1458 
1459 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1460 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1461 			ret = 1;
1462 			goto out_unlock;
1463 		}
1464 
1465 		/*
1466 		 * Check for a cache maintenance operation. Since we
1467 		 * ended-up here, we know it is outside of any memory
1468 		 * slot. But we can't find out if that is for a device,
1469 		 * or if the guest is just being stupid. The only thing
1470 		 * we know for sure is that this range cannot be cached.
1471 		 *
1472 		 * So let's assume that the guest is just being
1473 		 * cautious, and skip the instruction.
1474 		 */
1475 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1476 			kvm_incr_pc(vcpu);
1477 			ret = 1;
1478 			goto out_unlock;
1479 		}
1480 
1481 		/*
1482 		 * The IPA is reported as [MAX:12], so we need to
1483 		 * complement it with the bottom 12 bits from the
1484 		 * faulting VA. This is always 12 bits, irrespective
1485 		 * of the page size.
1486 		 */
1487 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1488 		ret = io_mem_abort(vcpu, fault_ipa);
1489 		goto out_unlock;
1490 	}
1491 
1492 	/* Userspace should not be able to register out-of-bounds IPAs */
1493 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1494 
1495 	if (fault_status == FSC_ACCESS) {
1496 		handle_access_fault(vcpu, fault_ipa);
1497 		ret = 1;
1498 		goto out_unlock;
1499 	}
1500 
1501 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1502 	if (ret == 0)
1503 		ret = 1;
1504 out:
1505 	if (ret == -ENOEXEC) {
1506 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1507 		ret = 1;
1508 	}
1509 out_unlock:
1510 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1511 	return ret;
1512 }
1513 
1514 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1515 {
1516 	if (!kvm->arch.mmu.pgt)
1517 		return false;
1518 
1519 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1520 			     (range->end - range->start) << PAGE_SHIFT,
1521 			     range->may_block);
1522 
1523 	return false;
1524 }
1525 
1526 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1527 {
1528 	kvm_pfn_t pfn = pte_pfn(range->pte);
1529 	int ret;
1530 
1531 	if (!kvm->arch.mmu.pgt)
1532 		return false;
1533 
1534 	WARN_ON(range->end - range->start != 1);
1535 
1536 	ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1537 	if (ret)
1538 		return false;
1539 
1540 	/*
1541 	 * We've moved a page around, probably through CoW, so let's treat
1542 	 * it just like a translation fault and the map handler will clean
1543 	 * the cache to the PoC.
1544 	 *
1545 	 * The MMU notifiers will have unmapped a huge PMD before calling
1546 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1547 	 * therefore we never need to clear out a huge PMD through this
1548 	 * calling path and a memcache is not required.
1549 	 */
1550 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1551 			       PAGE_SIZE, __pfn_to_phys(pfn),
1552 			       KVM_PGTABLE_PROT_R, NULL);
1553 
1554 	return false;
1555 }
1556 
1557 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1558 {
1559 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1560 	kvm_pte_t kpte;
1561 	pte_t pte;
1562 
1563 	if (!kvm->arch.mmu.pgt)
1564 		return false;
1565 
1566 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1567 
1568 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1569 					range->start << PAGE_SHIFT);
1570 	pte = __pte(kpte);
1571 	return pte_valid(pte) && pte_young(pte);
1572 }
1573 
1574 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1575 {
1576 	if (!kvm->arch.mmu.pgt)
1577 		return false;
1578 
1579 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1580 					   range->start << PAGE_SHIFT);
1581 }
1582 
1583 phys_addr_t kvm_mmu_get_httbr(void)
1584 {
1585 	return __pa(hyp_pgtable->pgd);
1586 }
1587 
1588 phys_addr_t kvm_get_idmap_vector(void)
1589 {
1590 	return hyp_idmap_vector;
1591 }
1592 
1593 static int kvm_map_idmap_text(void)
1594 {
1595 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1596 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1597 					PAGE_HYP_EXEC);
1598 	if (err)
1599 		kvm_err("Failed to idmap %lx-%lx\n",
1600 			hyp_idmap_start, hyp_idmap_end);
1601 
1602 	return err;
1603 }
1604 
1605 static void *kvm_hyp_zalloc_page(void *arg)
1606 {
1607 	return (void *)get_zeroed_page(GFP_KERNEL);
1608 }
1609 
1610 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1611 	.zalloc_page		= kvm_hyp_zalloc_page,
1612 	.get_page		= kvm_host_get_page,
1613 	.put_page		= kvm_host_put_page,
1614 	.phys_to_virt		= kvm_host_va,
1615 	.virt_to_phys		= kvm_host_pa,
1616 };
1617 
1618 int kvm_mmu_init(u32 *hyp_va_bits)
1619 {
1620 	int err;
1621 
1622 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1623 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1624 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1625 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1626 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1627 
1628 	/*
1629 	 * We rely on the linker script to ensure at build time that the HYP
1630 	 * init code does not cross a page boundary.
1631 	 */
1632 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1633 
1634 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1635 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1636 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1637 	kvm_debug("HYP VA range: %lx:%lx\n",
1638 		  kern_hyp_va(PAGE_OFFSET),
1639 		  kern_hyp_va((unsigned long)high_memory - 1));
1640 
1641 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1642 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1643 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1644 		/*
1645 		 * The idmap page is intersecting with the VA space,
1646 		 * it is not safe to continue further.
1647 		 */
1648 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1649 		err = -EINVAL;
1650 		goto out;
1651 	}
1652 
1653 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1654 	if (!hyp_pgtable) {
1655 		kvm_err("Hyp mode page-table not allocated\n");
1656 		err = -ENOMEM;
1657 		goto out;
1658 	}
1659 
1660 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1661 	if (err)
1662 		goto out_free_pgtable;
1663 
1664 	err = kvm_map_idmap_text();
1665 	if (err)
1666 		goto out_destroy_pgtable;
1667 
1668 	io_map_base = hyp_idmap_start;
1669 	return 0;
1670 
1671 out_destroy_pgtable:
1672 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1673 out_free_pgtable:
1674 	kfree(hyp_pgtable);
1675 	hyp_pgtable = NULL;
1676 out:
1677 	return err;
1678 }
1679 
1680 void kvm_arch_commit_memory_region(struct kvm *kvm,
1681 				   struct kvm_memory_slot *old,
1682 				   const struct kvm_memory_slot *new,
1683 				   enum kvm_mr_change change)
1684 {
1685 	/*
1686 	 * At this point memslot has been committed and there is an
1687 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1688 	 * memory slot is write protected.
1689 	 */
1690 	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1691 		/*
1692 		 * If we're with initial-all-set, we don't need to write
1693 		 * protect any pages because they're all reported as dirty.
1694 		 * Huge pages and normal pages will be write protect gradually.
1695 		 */
1696 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1697 			kvm_mmu_wp_memory_region(kvm, new->id);
1698 		}
1699 	}
1700 }
1701 
1702 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1703 				   const struct kvm_memory_slot *old,
1704 				   struct kvm_memory_slot *new,
1705 				   enum kvm_mr_change change)
1706 {
1707 	hva_t hva, reg_end;
1708 	int ret = 0;
1709 
1710 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1711 			change != KVM_MR_FLAGS_ONLY)
1712 		return 0;
1713 
1714 	/*
1715 	 * Prevent userspace from creating a memory region outside of the IPA
1716 	 * space addressable by the KVM guest IPA space.
1717 	 */
1718 	if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1719 		return -EFAULT;
1720 
1721 	hva = new->userspace_addr;
1722 	reg_end = hva + (new->npages << PAGE_SHIFT);
1723 
1724 	mmap_read_lock(current->mm);
1725 	/*
1726 	 * A memory region could potentially cover multiple VMAs, and any holes
1727 	 * between them, so iterate over all of them.
1728 	 *
1729 	 *     +--------------------------------------------+
1730 	 * +---------------+----------------+   +----------------+
1731 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1732 	 * +---------------+----------------+   +----------------+
1733 	 *     |               memory region                |
1734 	 *     +--------------------------------------------+
1735 	 */
1736 	do {
1737 		struct vm_area_struct *vma;
1738 
1739 		vma = find_vma_intersection(current->mm, hva, reg_end);
1740 		if (!vma)
1741 			break;
1742 
1743 		/*
1744 		 * VM_SHARED mappings are not allowed with MTE to avoid races
1745 		 * when updating the PG_mte_tagged page flag, see
1746 		 * sanitise_mte_tags for more details.
1747 		 */
1748 		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1749 			ret = -EINVAL;
1750 			break;
1751 		}
1752 
1753 		if (vma->vm_flags & VM_PFNMAP) {
1754 			/* IO region dirty page logging not allowed */
1755 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1756 				ret = -EINVAL;
1757 				break;
1758 			}
1759 		}
1760 		hva = min(reg_end, vma->vm_end);
1761 	} while (hva < reg_end);
1762 
1763 	mmap_read_unlock(current->mm);
1764 	return ret;
1765 }
1766 
1767 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1768 {
1769 }
1770 
1771 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1772 {
1773 }
1774 
1775 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1776 {
1777 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1778 }
1779 
1780 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1781 				   struct kvm_memory_slot *slot)
1782 {
1783 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1784 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1785 
1786 	write_lock(&kvm->mmu_lock);
1787 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1788 	write_unlock(&kvm->mmu_lock);
1789 }
1790 
1791 /*
1792  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1793  *
1794  * Main problems:
1795  * - S/W ops are local to a CPU (not broadcast)
1796  * - We have line migration behind our back (speculation)
1797  * - System caches don't support S/W at all (damn!)
1798  *
1799  * In the face of the above, the best we can do is to try and convert
1800  * S/W ops to VA ops. Because the guest is not allowed to infer the
1801  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1802  * which is a rather good thing for us.
1803  *
1804  * Also, it is only used when turning caches on/off ("The expected
1805  * usage of the cache maintenance instructions that operate by set/way
1806  * is associated with the cache maintenance instructions associated
1807  * with the powerdown and powerup of caches, if this is required by
1808  * the implementation.").
1809  *
1810  * We use the following policy:
1811  *
1812  * - If we trap a S/W operation, we enable VM trapping to detect
1813  *   caches being turned on/off, and do a full clean.
1814  *
1815  * - We flush the caches on both caches being turned on and off.
1816  *
1817  * - Once the caches are enabled, we stop trapping VM ops.
1818  */
1819 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1820 {
1821 	unsigned long hcr = *vcpu_hcr(vcpu);
1822 
1823 	/*
1824 	 * If this is the first time we do a S/W operation
1825 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1826 	 * VM trapping.
1827 	 *
1828 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1829 	 * Caches to be turned off. At that point, we'll be able to
1830 	 * clean the caches again.
1831 	 */
1832 	if (!(hcr & HCR_TVM)) {
1833 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1834 					vcpu_has_cache_enabled(vcpu));
1835 		stage2_flush_vm(vcpu->kvm);
1836 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1837 	}
1838 }
1839 
1840 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1841 {
1842 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1843 
1844 	/*
1845 	 * If switching the MMU+caches on, need to invalidate the caches.
1846 	 * If switching it off, need to clean the caches.
1847 	 * Clean + invalidate does the trick always.
1848 	 */
1849 	if (now_enabled != was_enabled)
1850 		stage2_flush_vm(vcpu->kvm);
1851 
1852 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1853 	if (now_enabled)
1854 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1855 
1856 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1857 }
1858