xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision ce746d43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_ras.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/virt.h>
21 
22 #include "trace.h"
23 
24 static pgd_t *boot_hyp_pgd;
25 static pgd_t *hyp_pgd;
26 static pgd_t *merged_hyp_pgd;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28 
29 static unsigned long hyp_idmap_start;
30 static unsigned long hyp_idmap_end;
31 static phys_addr_t hyp_idmap_vector;
32 
33 static unsigned long io_map_base;
34 
35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36 
37 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
38 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
39 
40 static bool is_iomap(unsigned long flags)
41 {
42 	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43 }
44 
45 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46 {
47 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 }
49 
50 /**
51  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52  * @kvm:	pointer to kvm structure.
53  *
54  * Interface to HYP function to flush all VM TLB entries
55  */
56 void kvm_flush_remote_tlbs(struct kvm *kvm)
57 {
58 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
59 }
60 
61 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
62 {
63 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
64 }
65 
66 /*
67  * D-Cache management functions. They take the page table entries by
68  * value, as they are flushing the cache using the kernel mapping (or
69  * kmap on 32bit).
70  */
71 static void kvm_flush_dcache_pte(pte_t pte)
72 {
73 	__kvm_flush_dcache_pte(pte);
74 }
75 
76 static void kvm_flush_dcache_pmd(pmd_t pmd)
77 {
78 	__kvm_flush_dcache_pmd(pmd);
79 }
80 
81 static void kvm_flush_dcache_pud(pud_t pud)
82 {
83 	__kvm_flush_dcache_pud(pud);
84 }
85 
86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 	return !pfn_valid(pfn);
89 }
90 
91 /**
92  * stage2_dissolve_pmd() - clear and flush huge PMD entry
93  * @kvm:	pointer to kvm structure.
94  * @addr:	IPA
95  * @pmd:	pmd pointer for IPA
96  *
97  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
98  */
99 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
100 {
101 	if (!pmd_thp_or_huge(*pmd))
102 		return;
103 
104 	pmd_clear(pmd);
105 	kvm_tlb_flush_vmid_ipa(kvm, addr);
106 	put_page(virt_to_page(pmd));
107 }
108 
109 /**
110  * stage2_dissolve_pud() - clear and flush huge PUD entry
111  * @kvm:	pointer to kvm structure.
112  * @addr:	IPA
113  * @pud:	pud pointer for IPA
114  *
115  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
116  */
117 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
118 {
119 	if (!stage2_pud_huge(kvm, *pudp))
120 		return;
121 
122 	stage2_pud_clear(kvm, pudp);
123 	kvm_tlb_flush_vmid_ipa(kvm, addr);
124 	put_page(virt_to_page(pudp));
125 }
126 
127 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
128 {
129 	p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
130 	stage2_pgd_clear(kvm, pgd);
131 	kvm_tlb_flush_vmid_ipa(kvm, addr);
132 	stage2_p4d_free(kvm, p4d_table);
133 	put_page(virt_to_page(pgd));
134 }
135 
136 static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
137 {
138 	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
139 	stage2_p4d_clear(kvm, p4d);
140 	kvm_tlb_flush_vmid_ipa(kvm, addr);
141 	stage2_pud_free(kvm, pud_table);
142 	put_page(virt_to_page(p4d));
143 }
144 
145 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
146 {
147 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
148 	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
149 	stage2_pud_clear(kvm, pud);
150 	kvm_tlb_flush_vmid_ipa(kvm, addr);
151 	stage2_pmd_free(kvm, pmd_table);
152 	put_page(virt_to_page(pud));
153 }
154 
155 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
156 {
157 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
158 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
159 	pmd_clear(pmd);
160 	kvm_tlb_flush_vmid_ipa(kvm, addr);
161 	free_page((unsigned long)pte_table);
162 	put_page(virt_to_page(pmd));
163 }
164 
165 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
166 {
167 	WRITE_ONCE(*ptep, new_pte);
168 	dsb(ishst);
169 }
170 
171 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
172 {
173 	WRITE_ONCE(*pmdp, new_pmd);
174 	dsb(ishst);
175 }
176 
177 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
178 {
179 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
180 }
181 
182 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
183 {
184 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
185 	dsb(ishst);
186 }
187 
188 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
189 {
190 	WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
191 	dsb(ishst);
192 }
193 
194 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
195 {
196 #ifndef __PAGETABLE_P4D_FOLDED
197 	WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
198 	dsb(ishst);
199 #endif
200 }
201 
202 /*
203  * Unmapping vs dcache management:
204  *
205  * If a guest maps certain memory pages as uncached, all writes will
206  * bypass the data cache and go directly to RAM.  However, the CPUs
207  * can still speculate reads (not writes) and fill cache lines with
208  * data.
209  *
210  * Those cache lines will be *clean* cache lines though, so a
211  * clean+invalidate operation is equivalent to an invalidate
212  * operation, because no cache lines are marked dirty.
213  *
214  * Those clean cache lines could be filled prior to an uncached write
215  * by the guest, and the cache coherent IO subsystem would therefore
216  * end up writing old data to disk.
217  *
218  * This is why right after unmapping a page/section and invalidating
219  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
220  * the IO subsystem will never hit in the cache.
221  *
222  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
223  * we then fully enforce cacheability of RAM, no matter what the guest
224  * does.
225  */
226 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
227 		       phys_addr_t addr, phys_addr_t end)
228 {
229 	phys_addr_t start_addr = addr;
230 	pte_t *pte, *start_pte;
231 
232 	start_pte = pte = pte_offset_kernel(pmd, addr);
233 	do {
234 		if (!pte_none(*pte)) {
235 			pte_t old_pte = *pte;
236 
237 			kvm_set_pte(pte, __pte(0));
238 			kvm_tlb_flush_vmid_ipa(kvm, addr);
239 
240 			/* No need to invalidate the cache for device mappings */
241 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
242 				kvm_flush_dcache_pte(old_pte);
243 
244 			put_page(virt_to_page(pte));
245 		}
246 	} while (pte++, addr += PAGE_SIZE, addr != end);
247 
248 	if (stage2_pte_table_empty(kvm, start_pte))
249 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
250 }
251 
252 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
253 		       phys_addr_t addr, phys_addr_t end)
254 {
255 	phys_addr_t next, start_addr = addr;
256 	pmd_t *pmd, *start_pmd;
257 
258 	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
259 	do {
260 		next = stage2_pmd_addr_end(kvm, addr, end);
261 		if (!pmd_none(*pmd)) {
262 			if (pmd_thp_or_huge(*pmd)) {
263 				pmd_t old_pmd = *pmd;
264 
265 				pmd_clear(pmd);
266 				kvm_tlb_flush_vmid_ipa(kvm, addr);
267 
268 				kvm_flush_dcache_pmd(old_pmd);
269 
270 				put_page(virt_to_page(pmd));
271 			} else {
272 				unmap_stage2_ptes(kvm, pmd, addr, next);
273 			}
274 		}
275 	} while (pmd++, addr = next, addr != end);
276 
277 	if (stage2_pmd_table_empty(kvm, start_pmd))
278 		clear_stage2_pud_entry(kvm, pud, start_addr);
279 }
280 
281 static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
282 		       phys_addr_t addr, phys_addr_t end)
283 {
284 	phys_addr_t next, start_addr = addr;
285 	pud_t *pud, *start_pud;
286 
287 	start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
288 	do {
289 		next = stage2_pud_addr_end(kvm, addr, end);
290 		if (!stage2_pud_none(kvm, *pud)) {
291 			if (stage2_pud_huge(kvm, *pud)) {
292 				pud_t old_pud = *pud;
293 
294 				stage2_pud_clear(kvm, pud);
295 				kvm_tlb_flush_vmid_ipa(kvm, addr);
296 				kvm_flush_dcache_pud(old_pud);
297 				put_page(virt_to_page(pud));
298 			} else {
299 				unmap_stage2_pmds(kvm, pud, addr, next);
300 			}
301 		}
302 	} while (pud++, addr = next, addr != end);
303 
304 	if (stage2_pud_table_empty(kvm, start_pud))
305 		clear_stage2_p4d_entry(kvm, p4d, start_addr);
306 }
307 
308 static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
309 		       phys_addr_t addr, phys_addr_t end)
310 {
311 	phys_addr_t next, start_addr = addr;
312 	p4d_t *p4d, *start_p4d;
313 
314 	start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
315 	do {
316 		next = stage2_p4d_addr_end(kvm, addr, end);
317 		if (!stage2_p4d_none(kvm, *p4d))
318 			unmap_stage2_puds(kvm, p4d, addr, next);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	if (stage2_p4d_table_empty(kvm, start_p4d))
322 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
323 }
324 
325 /**
326  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
327  * @kvm:   The VM pointer
328  * @start: The intermediate physical base address of the range to unmap
329  * @size:  The size of the area to unmap
330  *
331  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
332  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
333  * destroying the VM), otherwise another faulting VCPU may come in and mess
334  * with things behind our backs.
335  */
336 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
337 {
338 	pgd_t *pgd;
339 	phys_addr_t addr = start, end = start + size;
340 	phys_addr_t next;
341 
342 	assert_spin_locked(&kvm->mmu_lock);
343 	WARN_ON(size & ~PAGE_MASK);
344 
345 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
346 	do {
347 		/*
348 		 * Make sure the page table is still active, as another thread
349 		 * could have possibly freed the page table, while we released
350 		 * the lock.
351 		 */
352 		if (!READ_ONCE(kvm->arch.pgd))
353 			break;
354 		next = stage2_pgd_addr_end(kvm, addr, end);
355 		if (!stage2_pgd_none(kvm, *pgd))
356 			unmap_stage2_p4ds(kvm, pgd, addr, next);
357 		/*
358 		 * If the range is too large, release the kvm->mmu_lock
359 		 * to prevent starvation and lockup detector warnings.
360 		 */
361 		if (next != end)
362 			cond_resched_lock(&kvm->mmu_lock);
363 	} while (pgd++, addr = next, addr != end);
364 }
365 
366 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
367 			      phys_addr_t addr, phys_addr_t end)
368 {
369 	pte_t *pte;
370 
371 	pte = pte_offset_kernel(pmd, addr);
372 	do {
373 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
374 			kvm_flush_dcache_pte(*pte);
375 	} while (pte++, addr += PAGE_SIZE, addr != end);
376 }
377 
378 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
379 			      phys_addr_t addr, phys_addr_t end)
380 {
381 	pmd_t *pmd;
382 	phys_addr_t next;
383 
384 	pmd = stage2_pmd_offset(kvm, pud, addr);
385 	do {
386 		next = stage2_pmd_addr_end(kvm, addr, end);
387 		if (!pmd_none(*pmd)) {
388 			if (pmd_thp_or_huge(*pmd))
389 				kvm_flush_dcache_pmd(*pmd);
390 			else
391 				stage2_flush_ptes(kvm, pmd, addr, next);
392 		}
393 	} while (pmd++, addr = next, addr != end);
394 }
395 
396 static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
397 			      phys_addr_t addr, phys_addr_t end)
398 {
399 	pud_t *pud;
400 	phys_addr_t next;
401 
402 	pud = stage2_pud_offset(kvm, p4d, addr);
403 	do {
404 		next = stage2_pud_addr_end(kvm, addr, end);
405 		if (!stage2_pud_none(kvm, *pud)) {
406 			if (stage2_pud_huge(kvm, *pud))
407 				kvm_flush_dcache_pud(*pud);
408 			else
409 				stage2_flush_pmds(kvm, pud, addr, next);
410 		}
411 	} while (pud++, addr = next, addr != end);
412 }
413 
414 static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
415 			      phys_addr_t addr, phys_addr_t end)
416 {
417 	p4d_t *p4d;
418 	phys_addr_t next;
419 
420 	p4d = stage2_p4d_offset(kvm, pgd, addr);
421 	do {
422 		next = stage2_p4d_addr_end(kvm, addr, end);
423 		if (!stage2_p4d_none(kvm, *p4d))
424 			stage2_flush_puds(kvm, p4d, addr, next);
425 	} while (p4d++, addr = next, addr != end);
426 }
427 
428 static void stage2_flush_memslot(struct kvm *kvm,
429 				 struct kvm_memory_slot *memslot)
430 {
431 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
432 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
433 	phys_addr_t next;
434 	pgd_t *pgd;
435 
436 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
437 	do {
438 		next = stage2_pgd_addr_end(kvm, addr, end);
439 		if (!stage2_pgd_none(kvm, *pgd))
440 			stage2_flush_p4ds(kvm, pgd, addr, next);
441 
442 		if (next != end)
443 			cond_resched_lock(&kvm->mmu_lock);
444 	} while (pgd++, addr = next, addr != end);
445 }
446 
447 /**
448  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
449  * @kvm: The struct kvm pointer
450  *
451  * Go through the stage 2 page tables and invalidate any cache lines
452  * backing memory already mapped to the VM.
453  */
454 static void stage2_flush_vm(struct kvm *kvm)
455 {
456 	struct kvm_memslots *slots;
457 	struct kvm_memory_slot *memslot;
458 	int idx;
459 
460 	idx = srcu_read_lock(&kvm->srcu);
461 	spin_lock(&kvm->mmu_lock);
462 
463 	slots = kvm_memslots(kvm);
464 	kvm_for_each_memslot(memslot, slots)
465 		stage2_flush_memslot(kvm, memslot);
466 
467 	spin_unlock(&kvm->mmu_lock);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static void clear_hyp_pgd_entry(pgd_t *pgd)
472 {
473 	p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
474 	pgd_clear(pgd);
475 	p4d_free(NULL, p4d_table);
476 	put_page(virt_to_page(pgd));
477 }
478 
479 static void clear_hyp_p4d_entry(p4d_t *p4d)
480 {
481 	pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
482 	VM_BUG_ON(p4d_huge(*p4d));
483 	p4d_clear(p4d);
484 	pud_free(NULL, pud_table);
485 	put_page(virt_to_page(p4d));
486 }
487 
488 static void clear_hyp_pud_entry(pud_t *pud)
489 {
490 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
491 	VM_BUG_ON(pud_huge(*pud));
492 	pud_clear(pud);
493 	pmd_free(NULL, pmd_table);
494 	put_page(virt_to_page(pud));
495 }
496 
497 static void clear_hyp_pmd_entry(pmd_t *pmd)
498 {
499 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
500 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
501 	pmd_clear(pmd);
502 	pte_free_kernel(NULL, pte_table);
503 	put_page(virt_to_page(pmd));
504 }
505 
506 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
507 {
508 	pte_t *pte, *start_pte;
509 
510 	start_pte = pte = pte_offset_kernel(pmd, addr);
511 	do {
512 		if (!pte_none(*pte)) {
513 			kvm_set_pte(pte, __pte(0));
514 			put_page(virt_to_page(pte));
515 		}
516 	} while (pte++, addr += PAGE_SIZE, addr != end);
517 
518 	if (hyp_pte_table_empty(start_pte))
519 		clear_hyp_pmd_entry(pmd);
520 }
521 
522 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
523 {
524 	phys_addr_t next;
525 	pmd_t *pmd, *start_pmd;
526 
527 	start_pmd = pmd = pmd_offset(pud, addr);
528 	do {
529 		next = pmd_addr_end(addr, end);
530 		/* Hyp doesn't use huge pmds */
531 		if (!pmd_none(*pmd))
532 			unmap_hyp_ptes(pmd, addr, next);
533 	} while (pmd++, addr = next, addr != end);
534 
535 	if (hyp_pmd_table_empty(start_pmd))
536 		clear_hyp_pud_entry(pud);
537 }
538 
539 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
540 {
541 	phys_addr_t next;
542 	pud_t *pud, *start_pud;
543 
544 	start_pud = pud = pud_offset(p4d, addr);
545 	do {
546 		next = pud_addr_end(addr, end);
547 		/* Hyp doesn't use huge puds */
548 		if (!pud_none(*pud))
549 			unmap_hyp_pmds(pud, addr, next);
550 	} while (pud++, addr = next, addr != end);
551 
552 	if (hyp_pud_table_empty(start_pud))
553 		clear_hyp_p4d_entry(p4d);
554 }
555 
556 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
557 {
558 	phys_addr_t next;
559 	p4d_t *p4d, *start_p4d;
560 
561 	start_p4d = p4d = p4d_offset(pgd, addr);
562 	do {
563 		next = p4d_addr_end(addr, end);
564 		/* Hyp doesn't use huge p4ds */
565 		if (!p4d_none(*p4d))
566 			unmap_hyp_puds(p4d, addr, next);
567 	} while (p4d++, addr = next, addr != end);
568 
569 	if (hyp_p4d_table_empty(start_p4d))
570 		clear_hyp_pgd_entry(pgd);
571 }
572 
573 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
574 {
575 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
576 }
577 
578 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
579 			      phys_addr_t start, u64 size)
580 {
581 	pgd_t *pgd;
582 	phys_addr_t addr = start, end = start + size;
583 	phys_addr_t next;
584 
585 	/*
586 	 * We don't unmap anything from HYP, except at the hyp tear down.
587 	 * Hence, we don't have to invalidate the TLBs here.
588 	 */
589 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
590 	do {
591 		next = pgd_addr_end(addr, end);
592 		if (!pgd_none(*pgd))
593 			unmap_hyp_p4ds(pgd, addr, next);
594 	} while (pgd++, addr = next, addr != end);
595 }
596 
597 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
598 {
599 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
600 }
601 
602 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
603 {
604 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
605 }
606 
607 /**
608  * free_hyp_pgds - free Hyp-mode page tables
609  *
610  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
611  * therefore contains either mappings in the kernel memory area (above
612  * PAGE_OFFSET), or device mappings in the idmap range.
613  *
614  * boot_hyp_pgd should only map the idmap range, and is only used in
615  * the extended idmap case.
616  */
617 void free_hyp_pgds(void)
618 {
619 	pgd_t *id_pgd;
620 
621 	mutex_lock(&kvm_hyp_pgd_mutex);
622 
623 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
624 
625 	if (id_pgd) {
626 		/* In case we never called hyp_mmu_init() */
627 		if (!io_map_base)
628 			io_map_base = hyp_idmap_start;
629 		unmap_hyp_idmap_range(id_pgd, io_map_base,
630 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
631 	}
632 
633 	if (boot_hyp_pgd) {
634 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
635 		boot_hyp_pgd = NULL;
636 	}
637 
638 	if (hyp_pgd) {
639 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
640 				(uintptr_t)high_memory - PAGE_OFFSET);
641 
642 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
643 		hyp_pgd = NULL;
644 	}
645 	if (merged_hyp_pgd) {
646 		clear_page(merged_hyp_pgd);
647 		free_page((unsigned long)merged_hyp_pgd);
648 		merged_hyp_pgd = NULL;
649 	}
650 
651 	mutex_unlock(&kvm_hyp_pgd_mutex);
652 }
653 
654 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
655 				    unsigned long end, unsigned long pfn,
656 				    pgprot_t prot)
657 {
658 	pte_t *pte;
659 	unsigned long addr;
660 
661 	addr = start;
662 	do {
663 		pte = pte_offset_kernel(pmd, addr);
664 		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
665 		get_page(virt_to_page(pte));
666 		pfn++;
667 	} while (addr += PAGE_SIZE, addr != end);
668 }
669 
670 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
671 				   unsigned long end, unsigned long pfn,
672 				   pgprot_t prot)
673 {
674 	pmd_t *pmd;
675 	pte_t *pte;
676 	unsigned long addr, next;
677 
678 	addr = start;
679 	do {
680 		pmd = pmd_offset(pud, addr);
681 
682 		BUG_ON(pmd_sect(*pmd));
683 
684 		if (pmd_none(*pmd)) {
685 			pte = pte_alloc_one_kernel(NULL);
686 			if (!pte) {
687 				kvm_err("Cannot allocate Hyp pte\n");
688 				return -ENOMEM;
689 			}
690 			kvm_pmd_populate(pmd, pte);
691 			get_page(virt_to_page(pmd));
692 		}
693 
694 		next = pmd_addr_end(addr, end);
695 
696 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
697 		pfn += (next - addr) >> PAGE_SHIFT;
698 	} while (addr = next, addr != end);
699 
700 	return 0;
701 }
702 
703 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
704 				   unsigned long end, unsigned long pfn,
705 				   pgprot_t prot)
706 {
707 	pud_t *pud;
708 	pmd_t *pmd;
709 	unsigned long addr, next;
710 	int ret;
711 
712 	addr = start;
713 	do {
714 		pud = pud_offset(p4d, addr);
715 
716 		if (pud_none_or_clear_bad(pud)) {
717 			pmd = pmd_alloc_one(NULL, addr);
718 			if (!pmd) {
719 				kvm_err("Cannot allocate Hyp pmd\n");
720 				return -ENOMEM;
721 			}
722 			kvm_pud_populate(pud, pmd);
723 			get_page(virt_to_page(pud));
724 		}
725 
726 		next = pud_addr_end(addr, end);
727 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
728 		if (ret)
729 			return ret;
730 		pfn += (next - addr) >> PAGE_SHIFT;
731 	} while (addr = next, addr != end);
732 
733 	return 0;
734 }
735 
736 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
737 				   unsigned long end, unsigned long pfn,
738 				   pgprot_t prot)
739 {
740 	p4d_t *p4d;
741 	pud_t *pud;
742 	unsigned long addr, next;
743 	int ret;
744 
745 	addr = start;
746 	do {
747 		p4d = p4d_offset(pgd, addr);
748 
749 		if (p4d_none(*p4d)) {
750 			pud = pud_alloc_one(NULL, addr);
751 			if (!pud) {
752 				kvm_err("Cannot allocate Hyp pud\n");
753 				return -ENOMEM;
754 			}
755 			kvm_p4d_populate(p4d, pud);
756 			get_page(virt_to_page(p4d));
757 		}
758 
759 		next = p4d_addr_end(addr, end);
760 		ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
761 		if (ret)
762 			return ret;
763 		pfn += (next - addr) >> PAGE_SHIFT;
764 	} while (addr = next, addr != end);
765 
766 	return 0;
767 }
768 
769 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
770 				 unsigned long start, unsigned long end,
771 				 unsigned long pfn, pgprot_t prot)
772 {
773 	pgd_t *pgd;
774 	p4d_t *p4d;
775 	unsigned long addr, next;
776 	int err = 0;
777 
778 	mutex_lock(&kvm_hyp_pgd_mutex);
779 	addr = start & PAGE_MASK;
780 	end = PAGE_ALIGN(end);
781 	do {
782 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
783 
784 		if (pgd_none(*pgd)) {
785 			p4d = p4d_alloc_one(NULL, addr);
786 			if (!p4d) {
787 				kvm_err("Cannot allocate Hyp p4d\n");
788 				err = -ENOMEM;
789 				goto out;
790 			}
791 			kvm_pgd_populate(pgd, p4d);
792 			get_page(virt_to_page(pgd));
793 		}
794 
795 		next = pgd_addr_end(addr, end);
796 		err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
797 		if (err)
798 			goto out;
799 		pfn += (next - addr) >> PAGE_SHIFT;
800 	} while (addr = next, addr != end);
801 out:
802 	mutex_unlock(&kvm_hyp_pgd_mutex);
803 	return err;
804 }
805 
806 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
807 {
808 	if (!is_vmalloc_addr(kaddr)) {
809 		BUG_ON(!virt_addr_valid(kaddr));
810 		return __pa(kaddr);
811 	} else {
812 		return page_to_phys(vmalloc_to_page(kaddr)) +
813 		       offset_in_page(kaddr);
814 	}
815 }
816 
817 /**
818  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
819  * @from:	The virtual kernel start address of the range
820  * @to:		The virtual kernel end address of the range (exclusive)
821  * @prot:	The protection to be applied to this range
822  *
823  * The same virtual address as the kernel virtual address is also used
824  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
825  * physical pages.
826  */
827 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
828 {
829 	phys_addr_t phys_addr;
830 	unsigned long virt_addr;
831 	unsigned long start = kern_hyp_va((unsigned long)from);
832 	unsigned long end = kern_hyp_va((unsigned long)to);
833 
834 	if (is_kernel_in_hyp_mode())
835 		return 0;
836 
837 	start = start & PAGE_MASK;
838 	end = PAGE_ALIGN(end);
839 
840 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
841 		int err;
842 
843 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
844 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
845 					    virt_addr, virt_addr + PAGE_SIZE,
846 					    __phys_to_pfn(phys_addr),
847 					    prot);
848 		if (err)
849 			return err;
850 	}
851 
852 	return 0;
853 }
854 
855 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
856 					unsigned long *haddr, pgprot_t prot)
857 {
858 	pgd_t *pgd = hyp_pgd;
859 	unsigned long base;
860 	int ret = 0;
861 
862 	mutex_lock(&kvm_hyp_pgd_mutex);
863 
864 	/*
865 	 * This assumes that we have enough space below the idmap
866 	 * page to allocate our VAs. If not, the check below will
867 	 * kick. A potential alternative would be to detect that
868 	 * overflow and switch to an allocation above the idmap.
869 	 *
870 	 * The allocated size is always a multiple of PAGE_SIZE.
871 	 */
872 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
873 	base = io_map_base - size;
874 
875 	/*
876 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
877 	 * allocating the new area, as it would indicate we've
878 	 * overflowed the idmap/IO address range.
879 	 */
880 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
881 		ret = -ENOMEM;
882 	else
883 		io_map_base = base;
884 
885 	mutex_unlock(&kvm_hyp_pgd_mutex);
886 
887 	if (ret)
888 		goto out;
889 
890 	if (__kvm_cpu_uses_extended_idmap())
891 		pgd = boot_hyp_pgd;
892 
893 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
894 				    base, base + size,
895 				    __phys_to_pfn(phys_addr), prot);
896 	if (ret)
897 		goto out;
898 
899 	*haddr = base + offset_in_page(phys_addr);
900 
901 out:
902 	return ret;
903 }
904 
905 /**
906  * create_hyp_io_mappings - Map IO into both kernel and HYP
907  * @phys_addr:	The physical start address which gets mapped
908  * @size:	Size of the region being mapped
909  * @kaddr:	Kernel VA for this mapping
910  * @haddr:	HYP VA for this mapping
911  */
912 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
913 			   void __iomem **kaddr,
914 			   void __iomem **haddr)
915 {
916 	unsigned long addr;
917 	int ret;
918 
919 	*kaddr = ioremap(phys_addr, size);
920 	if (!*kaddr)
921 		return -ENOMEM;
922 
923 	if (is_kernel_in_hyp_mode()) {
924 		*haddr = *kaddr;
925 		return 0;
926 	}
927 
928 	ret = __create_hyp_private_mapping(phys_addr, size,
929 					   &addr, PAGE_HYP_DEVICE);
930 	if (ret) {
931 		iounmap(*kaddr);
932 		*kaddr = NULL;
933 		*haddr = NULL;
934 		return ret;
935 	}
936 
937 	*haddr = (void __iomem *)addr;
938 	return 0;
939 }
940 
941 /**
942  * create_hyp_exec_mappings - Map an executable range into HYP
943  * @phys_addr:	The physical start address which gets mapped
944  * @size:	Size of the region being mapped
945  * @haddr:	HYP VA for this mapping
946  */
947 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
948 			     void **haddr)
949 {
950 	unsigned long addr;
951 	int ret;
952 
953 	BUG_ON(is_kernel_in_hyp_mode());
954 
955 	ret = __create_hyp_private_mapping(phys_addr, size,
956 					   &addr, PAGE_HYP_EXEC);
957 	if (ret) {
958 		*haddr = NULL;
959 		return ret;
960 	}
961 
962 	*haddr = (void *)addr;
963 	return 0;
964 }
965 
966 /**
967  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
968  * @kvm:	The KVM struct pointer for the VM.
969  *
970  * Allocates only the stage-2 HW PGD level table(s) of size defined by
971  * stage2_pgd_size(kvm).
972  *
973  * Note we don't need locking here as this is only called when the VM is
974  * created, which can only be done once.
975  */
976 int kvm_alloc_stage2_pgd(struct kvm *kvm)
977 {
978 	phys_addr_t pgd_phys;
979 	pgd_t *pgd;
980 
981 	if (kvm->arch.pgd != NULL) {
982 		kvm_err("kvm_arch already initialized?\n");
983 		return -EINVAL;
984 	}
985 
986 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
987 	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
988 	if (!pgd)
989 		return -ENOMEM;
990 
991 	pgd_phys = virt_to_phys(pgd);
992 	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
993 		return -EINVAL;
994 
995 	kvm->arch.pgd = pgd;
996 	kvm->arch.pgd_phys = pgd_phys;
997 	return 0;
998 }
999 
1000 static void stage2_unmap_memslot(struct kvm *kvm,
1001 				 struct kvm_memory_slot *memslot)
1002 {
1003 	hva_t hva = memslot->userspace_addr;
1004 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1005 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1006 	hva_t reg_end = hva + size;
1007 
1008 	/*
1009 	 * A memory region could potentially cover multiple VMAs, and any holes
1010 	 * between them, so iterate over all of them to find out if we should
1011 	 * unmap any of them.
1012 	 *
1013 	 *     +--------------------------------------------+
1014 	 * +---------------+----------------+   +----------------+
1015 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1016 	 * +---------------+----------------+   +----------------+
1017 	 *     |               memory region                |
1018 	 *     +--------------------------------------------+
1019 	 */
1020 	do {
1021 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1022 		hva_t vm_start, vm_end;
1023 
1024 		if (!vma || vma->vm_start >= reg_end)
1025 			break;
1026 
1027 		/*
1028 		 * Take the intersection of this VMA with the memory region
1029 		 */
1030 		vm_start = max(hva, vma->vm_start);
1031 		vm_end = min(reg_end, vma->vm_end);
1032 
1033 		if (!(vma->vm_flags & VM_PFNMAP)) {
1034 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1035 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
1036 		}
1037 		hva = vm_end;
1038 	} while (hva < reg_end);
1039 }
1040 
1041 /**
1042  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1043  * @kvm: The struct kvm pointer
1044  *
1045  * Go through the memregions and unmap any regular RAM
1046  * backing memory already mapped to the VM.
1047  */
1048 void stage2_unmap_vm(struct kvm *kvm)
1049 {
1050 	struct kvm_memslots *slots;
1051 	struct kvm_memory_slot *memslot;
1052 	int idx;
1053 
1054 	idx = srcu_read_lock(&kvm->srcu);
1055 	mmap_read_lock(current->mm);
1056 	spin_lock(&kvm->mmu_lock);
1057 
1058 	slots = kvm_memslots(kvm);
1059 	kvm_for_each_memslot(memslot, slots)
1060 		stage2_unmap_memslot(kvm, memslot);
1061 
1062 	spin_unlock(&kvm->mmu_lock);
1063 	mmap_read_unlock(current->mm);
1064 	srcu_read_unlock(&kvm->srcu, idx);
1065 }
1066 
1067 /**
1068  * kvm_free_stage2_pgd - free all stage-2 tables
1069  * @kvm:	The KVM struct pointer for the VM.
1070  *
1071  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
1072  * underlying level-2 and level-3 tables before freeing the actual level-1 table
1073  * and setting the struct pointer to NULL.
1074  */
1075 void kvm_free_stage2_pgd(struct kvm *kvm)
1076 {
1077 	void *pgd = NULL;
1078 
1079 	spin_lock(&kvm->mmu_lock);
1080 	if (kvm->arch.pgd) {
1081 		unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1082 		pgd = READ_ONCE(kvm->arch.pgd);
1083 		kvm->arch.pgd = NULL;
1084 		kvm->arch.pgd_phys = 0;
1085 	}
1086 	spin_unlock(&kvm->mmu_lock);
1087 
1088 	/* Free the HW pgd, one page at a time */
1089 	if (pgd)
1090 		free_pages_exact(pgd, stage2_pgd_size(kvm));
1091 }
1092 
1093 static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1094 			     phys_addr_t addr)
1095 {
1096 	pgd_t *pgd;
1097 	p4d_t *p4d;
1098 
1099 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1100 	if (stage2_pgd_none(kvm, *pgd)) {
1101 		if (!cache)
1102 			return NULL;
1103 		p4d = kvm_mmu_memory_cache_alloc(cache);
1104 		stage2_pgd_populate(kvm, pgd, p4d);
1105 		get_page(virt_to_page(pgd));
1106 	}
1107 
1108 	return stage2_p4d_offset(kvm, pgd, addr);
1109 }
1110 
1111 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1112 			     phys_addr_t addr)
1113 {
1114 	p4d_t *p4d;
1115 	pud_t *pud;
1116 
1117 	p4d = stage2_get_p4d(kvm, cache, addr);
1118 	if (stage2_p4d_none(kvm, *p4d)) {
1119 		if (!cache)
1120 			return NULL;
1121 		pud = kvm_mmu_memory_cache_alloc(cache);
1122 		stage2_p4d_populate(kvm, p4d, pud);
1123 		get_page(virt_to_page(p4d));
1124 	}
1125 
1126 	return stage2_pud_offset(kvm, p4d, addr);
1127 }
1128 
1129 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1130 			     phys_addr_t addr)
1131 {
1132 	pud_t *pud;
1133 	pmd_t *pmd;
1134 
1135 	pud = stage2_get_pud(kvm, cache, addr);
1136 	if (!pud || stage2_pud_huge(kvm, *pud))
1137 		return NULL;
1138 
1139 	if (stage2_pud_none(kvm, *pud)) {
1140 		if (!cache)
1141 			return NULL;
1142 		pmd = kvm_mmu_memory_cache_alloc(cache);
1143 		stage2_pud_populate(kvm, pud, pmd);
1144 		get_page(virt_to_page(pud));
1145 	}
1146 
1147 	return stage2_pmd_offset(kvm, pud, addr);
1148 }
1149 
1150 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1151 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1152 {
1153 	pmd_t *pmd, old_pmd;
1154 
1155 retry:
1156 	pmd = stage2_get_pmd(kvm, cache, addr);
1157 	VM_BUG_ON(!pmd);
1158 
1159 	old_pmd = *pmd;
1160 	/*
1161 	 * Multiple vcpus faulting on the same PMD entry, can
1162 	 * lead to them sequentially updating the PMD with the
1163 	 * same value. Following the break-before-make
1164 	 * (pmd_clear() followed by tlb_flush()) process can
1165 	 * hinder forward progress due to refaults generated
1166 	 * on missing translations.
1167 	 *
1168 	 * Skip updating the page table if the entry is
1169 	 * unchanged.
1170 	 */
1171 	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1172 		return 0;
1173 
1174 	if (pmd_present(old_pmd)) {
1175 		/*
1176 		 * If we already have PTE level mapping for this block,
1177 		 * we must unmap it to avoid inconsistent TLB state and
1178 		 * leaking the table page. We could end up in this situation
1179 		 * if the memory slot was marked for dirty logging and was
1180 		 * reverted, leaving PTE level mappings for the pages accessed
1181 		 * during the period. So, unmap the PTE level mapping for this
1182 		 * block and retry, as we could have released the upper level
1183 		 * table in the process.
1184 		 *
1185 		 * Normal THP split/merge follows mmu_notifier callbacks and do
1186 		 * get handled accordingly.
1187 		 */
1188 		if (!pmd_thp_or_huge(old_pmd)) {
1189 			unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1190 			goto retry;
1191 		}
1192 		/*
1193 		 * Mapping in huge pages should only happen through a
1194 		 * fault.  If a page is merged into a transparent huge
1195 		 * page, the individual subpages of that huge page
1196 		 * should be unmapped through MMU notifiers before we
1197 		 * get here.
1198 		 *
1199 		 * Merging of CompoundPages is not supported; they
1200 		 * should become splitting first, unmapped, merged,
1201 		 * and mapped back in on-demand.
1202 		 */
1203 		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1204 		pmd_clear(pmd);
1205 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1206 	} else {
1207 		get_page(virt_to_page(pmd));
1208 	}
1209 
1210 	kvm_set_pmd(pmd, *new_pmd);
1211 	return 0;
1212 }
1213 
1214 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1215 			       phys_addr_t addr, const pud_t *new_pudp)
1216 {
1217 	pud_t *pudp, old_pud;
1218 
1219 retry:
1220 	pudp = stage2_get_pud(kvm, cache, addr);
1221 	VM_BUG_ON(!pudp);
1222 
1223 	old_pud = *pudp;
1224 
1225 	/*
1226 	 * A large number of vcpus faulting on the same stage 2 entry,
1227 	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1228 	 * Skip updating the page tables if there is no change.
1229 	 */
1230 	if (pud_val(old_pud) == pud_val(*new_pudp))
1231 		return 0;
1232 
1233 	if (stage2_pud_present(kvm, old_pud)) {
1234 		/*
1235 		 * If we already have table level mapping for this block, unmap
1236 		 * the range for this block and retry.
1237 		 */
1238 		if (!stage2_pud_huge(kvm, old_pud)) {
1239 			unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1240 			goto retry;
1241 		}
1242 
1243 		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1244 		stage2_pud_clear(kvm, pudp);
1245 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1246 	} else {
1247 		get_page(virt_to_page(pudp));
1248 	}
1249 
1250 	kvm_set_pud(pudp, *new_pudp);
1251 	return 0;
1252 }
1253 
1254 /*
1255  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1256  * true if a valid and present leaf-entry is found. A pointer to the
1257  * leaf-entry is returned in the appropriate level variable - pudpp,
1258  * pmdpp, ptepp.
1259  */
1260 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1261 				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1262 {
1263 	pud_t *pudp;
1264 	pmd_t *pmdp;
1265 	pte_t *ptep;
1266 
1267 	*pudpp = NULL;
1268 	*pmdpp = NULL;
1269 	*ptepp = NULL;
1270 
1271 	pudp = stage2_get_pud(kvm, NULL, addr);
1272 	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1273 		return false;
1274 
1275 	if (stage2_pud_huge(kvm, *pudp)) {
1276 		*pudpp = pudp;
1277 		return true;
1278 	}
1279 
1280 	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1281 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1282 		return false;
1283 
1284 	if (pmd_thp_or_huge(*pmdp)) {
1285 		*pmdpp = pmdp;
1286 		return true;
1287 	}
1288 
1289 	ptep = pte_offset_kernel(pmdp, addr);
1290 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1291 		return false;
1292 
1293 	*ptepp = ptep;
1294 	return true;
1295 }
1296 
1297 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz)
1298 {
1299 	pud_t *pudp;
1300 	pmd_t *pmdp;
1301 	pte_t *ptep;
1302 	bool found;
1303 
1304 	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1305 	if (!found)
1306 		return false;
1307 
1308 	if (pudp)
1309 		return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1310 	else if (pmdp)
1311 		return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1312 	else
1313 		return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1314 }
1315 
1316 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1317 			  phys_addr_t addr, const pte_t *new_pte,
1318 			  unsigned long flags)
1319 {
1320 	pud_t *pud;
1321 	pmd_t *pmd;
1322 	pte_t *pte, old_pte;
1323 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1324 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1325 
1326 	VM_BUG_ON(logging_active && !cache);
1327 
1328 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1329 	pud = stage2_get_pud(kvm, cache, addr);
1330 	if (!pud) {
1331 		/*
1332 		 * Ignore calls from kvm_set_spte_hva for unallocated
1333 		 * address ranges.
1334 		 */
1335 		return 0;
1336 	}
1337 
1338 	/*
1339 	 * While dirty page logging - dissolve huge PUD, then continue
1340 	 * on to allocate page.
1341 	 */
1342 	if (logging_active)
1343 		stage2_dissolve_pud(kvm, addr, pud);
1344 
1345 	if (stage2_pud_none(kvm, *pud)) {
1346 		if (!cache)
1347 			return 0; /* ignore calls from kvm_set_spte_hva */
1348 		pmd = kvm_mmu_memory_cache_alloc(cache);
1349 		stage2_pud_populate(kvm, pud, pmd);
1350 		get_page(virt_to_page(pud));
1351 	}
1352 
1353 	pmd = stage2_pmd_offset(kvm, pud, addr);
1354 	if (!pmd) {
1355 		/*
1356 		 * Ignore calls from kvm_set_spte_hva for unallocated
1357 		 * address ranges.
1358 		 */
1359 		return 0;
1360 	}
1361 
1362 	/*
1363 	 * While dirty page logging - dissolve huge PMD, then continue on to
1364 	 * allocate page.
1365 	 */
1366 	if (logging_active)
1367 		stage2_dissolve_pmd(kvm, addr, pmd);
1368 
1369 	/* Create stage-2 page mappings - Level 2 */
1370 	if (pmd_none(*pmd)) {
1371 		if (!cache)
1372 			return 0; /* ignore calls from kvm_set_spte_hva */
1373 		pte = kvm_mmu_memory_cache_alloc(cache);
1374 		kvm_pmd_populate(pmd, pte);
1375 		get_page(virt_to_page(pmd));
1376 	}
1377 
1378 	pte = pte_offset_kernel(pmd, addr);
1379 
1380 	if (iomap && pte_present(*pte))
1381 		return -EFAULT;
1382 
1383 	/* Create 2nd stage page table mapping - Level 3 */
1384 	old_pte = *pte;
1385 	if (pte_present(old_pte)) {
1386 		/* Skip page table update if there is no change */
1387 		if (pte_val(old_pte) == pte_val(*new_pte))
1388 			return 0;
1389 
1390 		kvm_set_pte(pte, __pte(0));
1391 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1392 	} else {
1393 		get_page(virt_to_page(pte));
1394 	}
1395 
1396 	kvm_set_pte(pte, *new_pte);
1397 	return 0;
1398 }
1399 
1400 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1401 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1402 {
1403 	if (pte_young(*pte)) {
1404 		*pte = pte_mkold(*pte);
1405 		return 1;
1406 	}
1407 	return 0;
1408 }
1409 #else
1410 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1411 {
1412 	return __ptep_test_and_clear_young(pte);
1413 }
1414 #endif
1415 
1416 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1417 {
1418 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1419 }
1420 
1421 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1422 {
1423 	return stage2_ptep_test_and_clear_young((pte_t *)pud);
1424 }
1425 
1426 /**
1427  * kvm_phys_addr_ioremap - map a device range to guest IPA
1428  *
1429  * @kvm:	The KVM pointer
1430  * @guest_ipa:	The IPA at which to insert the mapping
1431  * @pa:		The physical address of the device
1432  * @size:	The size of the mapping
1433  */
1434 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1435 			  phys_addr_t pa, unsigned long size, bool writable)
1436 {
1437 	phys_addr_t addr, end;
1438 	int ret = 0;
1439 	unsigned long pfn;
1440 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1441 
1442 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1443 	pfn = __phys_to_pfn(pa);
1444 
1445 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1446 		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1447 
1448 		if (writable)
1449 			pte = kvm_s2pte_mkwrite(pte);
1450 
1451 		ret = kvm_mmu_topup_memory_cache(&cache,
1452 						 kvm_mmu_cache_min_pages(kvm));
1453 		if (ret)
1454 			goto out;
1455 		spin_lock(&kvm->mmu_lock);
1456 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1457 						KVM_S2PTE_FLAG_IS_IOMAP);
1458 		spin_unlock(&kvm->mmu_lock);
1459 		if (ret)
1460 			goto out;
1461 
1462 		pfn++;
1463 	}
1464 
1465 out:
1466 	kvm_mmu_free_memory_cache(&cache);
1467 	return ret;
1468 }
1469 
1470 /**
1471  * stage2_wp_ptes - write protect PMD range
1472  * @pmd:	pointer to pmd entry
1473  * @addr:	range start address
1474  * @end:	range end address
1475  */
1476 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1477 {
1478 	pte_t *pte;
1479 
1480 	pte = pte_offset_kernel(pmd, addr);
1481 	do {
1482 		if (!pte_none(*pte)) {
1483 			if (!kvm_s2pte_readonly(pte))
1484 				kvm_set_s2pte_readonly(pte);
1485 		}
1486 	} while (pte++, addr += PAGE_SIZE, addr != end);
1487 }
1488 
1489 /**
1490  * stage2_wp_pmds - write protect PUD range
1491  * kvm:		kvm instance for the VM
1492  * @pud:	pointer to pud entry
1493  * @addr:	range start address
1494  * @end:	range end address
1495  */
1496 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1497 			   phys_addr_t addr, phys_addr_t end)
1498 {
1499 	pmd_t *pmd;
1500 	phys_addr_t next;
1501 
1502 	pmd = stage2_pmd_offset(kvm, pud, addr);
1503 
1504 	do {
1505 		next = stage2_pmd_addr_end(kvm, addr, end);
1506 		if (!pmd_none(*pmd)) {
1507 			if (pmd_thp_or_huge(*pmd)) {
1508 				if (!kvm_s2pmd_readonly(pmd))
1509 					kvm_set_s2pmd_readonly(pmd);
1510 			} else {
1511 				stage2_wp_ptes(pmd, addr, next);
1512 			}
1513 		}
1514 	} while (pmd++, addr = next, addr != end);
1515 }
1516 
1517 /**
1518  * stage2_wp_puds - write protect P4D range
1519  * @pgd:	pointer to pgd entry
1520  * @addr:	range start address
1521  * @end:	range end address
1522  */
1523 static void  stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
1524 			    phys_addr_t addr, phys_addr_t end)
1525 {
1526 	pud_t *pud;
1527 	phys_addr_t next;
1528 
1529 	pud = stage2_pud_offset(kvm, p4d, addr);
1530 	do {
1531 		next = stage2_pud_addr_end(kvm, addr, end);
1532 		if (!stage2_pud_none(kvm, *pud)) {
1533 			if (stage2_pud_huge(kvm, *pud)) {
1534 				if (!kvm_s2pud_readonly(pud))
1535 					kvm_set_s2pud_readonly(pud);
1536 			} else {
1537 				stage2_wp_pmds(kvm, pud, addr, next);
1538 			}
1539 		}
1540 	} while (pud++, addr = next, addr != end);
1541 }
1542 
1543 /**
1544  * stage2_wp_p4ds - write protect PGD range
1545  * @pgd:	pointer to pgd entry
1546  * @addr:	range start address
1547  * @end:	range end address
1548  */
1549 static void  stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
1550 			    phys_addr_t addr, phys_addr_t end)
1551 {
1552 	p4d_t *p4d;
1553 	phys_addr_t next;
1554 
1555 	p4d = stage2_p4d_offset(kvm, pgd, addr);
1556 	do {
1557 		next = stage2_p4d_addr_end(kvm, addr, end);
1558 		if (!stage2_p4d_none(kvm, *p4d))
1559 			stage2_wp_puds(kvm, p4d, addr, next);
1560 	} while (p4d++, addr = next, addr != end);
1561 }
1562 
1563 /**
1564  * stage2_wp_range() - write protect stage2 memory region range
1565  * @kvm:	The KVM pointer
1566  * @addr:	Start address of range
1567  * @end:	End address of range
1568  */
1569 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1570 {
1571 	pgd_t *pgd;
1572 	phys_addr_t next;
1573 
1574 	pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1575 	do {
1576 		/*
1577 		 * Release kvm_mmu_lock periodically if the memory region is
1578 		 * large. Otherwise, we may see kernel panics with
1579 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1580 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1581 		 * will also starve other vCPUs. We have to also make sure
1582 		 * that the page tables are not freed while we released
1583 		 * the lock.
1584 		 */
1585 		cond_resched_lock(&kvm->mmu_lock);
1586 		if (!READ_ONCE(kvm->arch.pgd))
1587 			break;
1588 		next = stage2_pgd_addr_end(kvm, addr, end);
1589 		if (stage2_pgd_present(kvm, *pgd))
1590 			stage2_wp_p4ds(kvm, pgd, addr, next);
1591 	} while (pgd++, addr = next, addr != end);
1592 }
1593 
1594 /**
1595  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1596  * @kvm:	The KVM pointer
1597  * @slot:	The memory slot to write protect
1598  *
1599  * Called to start logging dirty pages after memory region
1600  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1601  * all present PUD, PMD and PTEs are write protected in the memory region.
1602  * Afterwards read of dirty page log can be called.
1603  *
1604  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1605  * serializing operations for VM memory regions.
1606  */
1607 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1608 {
1609 	struct kvm_memslots *slots = kvm_memslots(kvm);
1610 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1611 	phys_addr_t start, end;
1612 
1613 	if (WARN_ON_ONCE(!memslot))
1614 		return;
1615 
1616 	start = memslot->base_gfn << PAGE_SHIFT;
1617 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1618 
1619 	spin_lock(&kvm->mmu_lock);
1620 	stage2_wp_range(kvm, start, end);
1621 	spin_unlock(&kvm->mmu_lock);
1622 	kvm_flush_remote_tlbs(kvm);
1623 }
1624 
1625 /**
1626  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1627  * @kvm:	The KVM pointer
1628  * @slot:	The memory slot associated with mask
1629  * @gfn_offset:	The gfn offset in memory slot
1630  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1631  *		slot to be write protected
1632  *
1633  * Walks bits set in mask write protects the associated pte's. Caller must
1634  * acquire kvm_mmu_lock.
1635  */
1636 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1637 		struct kvm_memory_slot *slot,
1638 		gfn_t gfn_offset, unsigned long mask)
1639 {
1640 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1641 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1642 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1643 
1644 	stage2_wp_range(kvm, start, end);
1645 }
1646 
1647 /*
1648  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1649  * dirty pages.
1650  *
1651  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1652  * enable dirty logging for them.
1653  */
1654 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1655 		struct kvm_memory_slot *slot,
1656 		gfn_t gfn_offset, unsigned long mask)
1657 {
1658 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1659 }
1660 
1661 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1662 {
1663 	__clean_dcache_guest_page(pfn, size);
1664 }
1665 
1666 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1667 {
1668 	__invalidate_icache_guest_page(pfn, size);
1669 }
1670 
1671 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1672 {
1673 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1674 }
1675 
1676 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1677 					       unsigned long hva,
1678 					       unsigned long map_size)
1679 {
1680 	gpa_t gpa_start;
1681 	hva_t uaddr_start, uaddr_end;
1682 	size_t size;
1683 
1684 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1685 	if (map_size == PAGE_SIZE)
1686 		return true;
1687 
1688 	size = memslot->npages * PAGE_SIZE;
1689 
1690 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1691 
1692 	uaddr_start = memslot->userspace_addr;
1693 	uaddr_end = uaddr_start + size;
1694 
1695 	/*
1696 	 * Pages belonging to memslots that don't have the same alignment
1697 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1698 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1699 	 *
1700 	 * Consider a layout like the following:
1701 	 *
1702 	 *    memslot->userspace_addr:
1703 	 *    +-----+--------------------+--------------------+---+
1704 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1705 	 *    +-----+--------------------+--------------------+---+
1706 	 *
1707 	 *    memslot->base_gfn << PAGE_SHIFT:
1708 	 *      +---+--------------------+--------------------+-----+
1709 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1710 	 *      +---+--------------------+--------------------+-----+
1711 	 *
1712 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1713 	 * mapping:
1714 	 *   d -> f
1715 	 *   e -> g
1716 	 *   f -> h
1717 	 */
1718 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1719 		return false;
1720 
1721 	/*
1722 	 * Next, let's make sure we're not trying to map anything not covered
1723 	 * by the memslot. This means we have to prohibit block size mappings
1724 	 * for the beginning and end of a non-block aligned and non-block sized
1725 	 * memory slot (illustrated by the head and tail parts of the
1726 	 * userspace view above containing pages 'abcde' and 'xyz',
1727 	 * respectively).
1728 	 *
1729 	 * Note that it doesn't matter if we do the check using the
1730 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1731 	 * the check above) and equally sized.
1732 	 */
1733 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1734 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1735 }
1736 
1737 /*
1738  * Check if the given hva is backed by a transparent huge page (THP) and
1739  * whether it can be mapped using block mapping in stage2. If so, adjust
1740  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1741  * supported. This will need to be updated to support other THP sizes.
1742  *
1743  * Returns the size of the mapping.
1744  */
1745 static unsigned long
1746 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1747 			    unsigned long hva, kvm_pfn_t *pfnp,
1748 			    phys_addr_t *ipap)
1749 {
1750 	kvm_pfn_t pfn = *pfnp;
1751 
1752 	/*
1753 	 * Make sure the adjustment is done only for THP pages. Also make
1754 	 * sure that the HVA and IPA are sufficiently aligned and that the
1755 	 * block map is contained within the memslot.
1756 	 */
1757 	if (kvm_is_transparent_hugepage(pfn) &&
1758 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1759 		/*
1760 		 * The address we faulted on is backed by a transparent huge
1761 		 * page.  However, because we map the compound huge page and
1762 		 * not the individual tail page, we need to transfer the
1763 		 * refcount to the head page.  We have to be careful that the
1764 		 * THP doesn't start to split while we are adjusting the
1765 		 * refcounts.
1766 		 *
1767 		 * We are sure this doesn't happen, because mmu_notifier_retry
1768 		 * was successful and we are holding the mmu_lock, so if this
1769 		 * THP is trying to split, it will be blocked in the mmu
1770 		 * notifier before touching any of the pages, specifically
1771 		 * before being able to call __split_huge_page_refcount().
1772 		 *
1773 		 * We can therefore safely transfer the refcount from PG_tail
1774 		 * to PG_head and switch the pfn from a tail page to the head
1775 		 * page accordingly.
1776 		 */
1777 		*ipap &= PMD_MASK;
1778 		kvm_release_pfn_clean(pfn);
1779 		pfn &= ~(PTRS_PER_PMD - 1);
1780 		kvm_get_pfn(pfn);
1781 		*pfnp = pfn;
1782 
1783 		return PMD_SIZE;
1784 	}
1785 
1786 	/* Use page mapping if we cannot use block mapping. */
1787 	return PAGE_SIZE;
1788 }
1789 
1790 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1791 			  struct kvm_memory_slot *memslot, unsigned long hva,
1792 			  unsigned long fault_status)
1793 {
1794 	int ret;
1795 	bool write_fault, writable, force_pte = false;
1796 	bool exec_fault, needs_exec;
1797 	unsigned long mmu_seq;
1798 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1799 	struct kvm *kvm = vcpu->kvm;
1800 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1801 	struct vm_area_struct *vma;
1802 	short vma_shift;
1803 	kvm_pfn_t pfn;
1804 	pgprot_t mem_type = PAGE_S2;
1805 	bool logging_active = memslot_is_logging(memslot);
1806 	unsigned long vma_pagesize, flags = 0;
1807 
1808 	write_fault = kvm_is_write_fault(vcpu);
1809 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1810 	VM_BUG_ON(write_fault && exec_fault);
1811 
1812 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1813 		kvm_err("Unexpected L2 read permission error\n");
1814 		return -EFAULT;
1815 	}
1816 
1817 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1818 	mmap_read_lock(current->mm);
1819 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1820 	if (unlikely(!vma)) {
1821 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1822 		mmap_read_unlock(current->mm);
1823 		return -EFAULT;
1824 	}
1825 
1826 	if (is_vm_hugetlb_page(vma))
1827 		vma_shift = huge_page_shift(hstate_vma(vma));
1828 	else
1829 		vma_shift = PAGE_SHIFT;
1830 
1831 	vma_pagesize = 1ULL << vma_shift;
1832 	if (logging_active ||
1833 	    (vma->vm_flags & VM_PFNMAP) ||
1834 	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1835 		force_pte = true;
1836 		vma_pagesize = PAGE_SIZE;
1837 	}
1838 
1839 	/*
1840 	 * The stage2 has a minimum of 2 level table (For arm64 see
1841 	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1842 	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1843 	 * As for PUD huge maps, we must make sure that we have at least
1844 	 * 3 levels, i.e, PMD is not folded.
1845 	 */
1846 	if (vma_pagesize == PMD_SIZE ||
1847 	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1848 		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1849 	mmap_read_unlock(current->mm);
1850 
1851 	/* We need minimum second+third level pages */
1852 	ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1853 	if (ret)
1854 		return ret;
1855 
1856 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1857 	/*
1858 	 * Ensure the read of mmu_notifier_seq happens before we call
1859 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1860 	 * the page we just got a reference to gets unmapped before we have a
1861 	 * chance to grab the mmu_lock, which ensure that if the page gets
1862 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1863 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1864 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1865 	 */
1866 	smp_rmb();
1867 
1868 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1869 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1870 		kvm_send_hwpoison_signal(hva, vma_shift);
1871 		return 0;
1872 	}
1873 	if (is_error_noslot_pfn(pfn))
1874 		return -EFAULT;
1875 
1876 	if (kvm_is_device_pfn(pfn)) {
1877 		mem_type = PAGE_S2_DEVICE;
1878 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1879 	} else if (logging_active) {
1880 		/*
1881 		 * Faults on pages in a memslot with logging enabled
1882 		 * should not be mapped with huge pages (it introduces churn
1883 		 * and performance degradation), so force a pte mapping.
1884 		 */
1885 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1886 
1887 		/*
1888 		 * Only actually map the page as writable if this was a write
1889 		 * fault.
1890 		 */
1891 		if (!write_fault)
1892 			writable = false;
1893 	}
1894 
1895 	if (exec_fault && is_iomap(flags))
1896 		return -ENOEXEC;
1897 
1898 	spin_lock(&kvm->mmu_lock);
1899 	if (mmu_notifier_retry(kvm, mmu_seq))
1900 		goto out_unlock;
1901 
1902 	/*
1903 	 * If we are not forced to use page mapping, check if we are
1904 	 * backed by a THP and thus use block mapping if possible.
1905 	 */
1906 	if (vma_pagesize == PAGE_SIZE && !force_pte)
1907 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1908 							   &pfn, &fault_ipa);
1909 	if (writable)
1910 		kvm_set_pfn_dirty(pfn);
1911 
1912 	if (fault_status != FSC_PERM && !is_iomap(flags))
1913 		clean_dcache_guest_page(pfn, vma_pagesize);
1914 
1915 	if (exec_fault)
1916 		invalidate_icache_guest_page(pfn, vma_pagesize);
1917 
1918 	/*
1919 	 * If we took an execution fault we have made the
1920 	 * icache/dcache coherent above and should now let the s2
1921 	 * mapping be executable.
1922 	 *
1923 	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1924 	 * execute permissions, and we preserve whatever we have.
1925 	 */
1926 	needs_exec = exec_fault ||
1927 		(fault_status == FSC_PERM &&
1928 		 stage2_is_exec(kvm, fault_ipa, vma_pagesize));
1929 
1930 	if (vma_pagesize == PUD_SIZE) {
1931 		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1932 
1933 		new_pud = kvm_pud_mkhuge(new_pud);
1934 		if (writable)
1935 			new_pud = kvm_s2pud_mkwrite(new_pud);
1936 
1937 		if (needs_exec)
1938 			new_pud = kvm_s2pud_mkexec(new_pud);
1939 
1940 		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1941 	} else if (vma_pagesize == PMD_SIZE) {
1942 		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1943 
1944 		new_pmd = kvm_pmd_mkhuge(new_pmd);
1945 
1946 		if (writable)
1947 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1948 
1949 		if (needs_exec)
1950 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1951 
1952 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1953 	} else {
1954 		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1955 
1956 		if (writable) {
1957 			new_pte = kvm_s2pte_mkwrite(new_pte);
1958 			mark_page_dirty(kvm, gfn);
1959 		}
1960 
1961 		if (needs_exec)
1962 			new_pte = kvm_s2pte_mkexec(new_pte);
1963 
1964 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1965 	}
1966 
1967 out_unlock:
1968 	spin_unlock(&kvm->mmu_lock);
1969 	kvm_set_pfn_accessed(pfn);
1970 	kvm_release_pfn_clean(pfn);
1971 	return ret;
1972 }
1973 
1974 /*
1975  * Resolve the access fault by making the page young again.
1976  * Note that because the faulting entry is guaranteed not to be
1977  * cached in the TLB, we don't need to invalidate anything.
1978  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1979  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1980  */
1981 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1982 {
1983 	pud_t *pud;
1984 	pmd_t *pmd;
1985 	pte_t *pte;
1986 	kvm_pfn_t pfn;
1987 	bool pfn_valid = false;
1988 
1989 	trace_kvm_access_fault(fault_ipa);
1990 
1991 	spin_lock(&vcpu->kvm->mmu_lock);
1992 
1993 	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1994 		goto out;
1995 
1996 	if (pud) {		/* HugeTLB */
1997 		*pud = kvm_s2pud_mkyoung(*pud);
1998 		pfn = kvm_pud_pfn(*pud);
1999 		pfn_valid = true;
2000 	} else	if (pmd) {	/* THP, HugeTLB */
2001 		*pmd = pmd_mkyoung(*pmd);
2002 		pfn = pmd_pfn(*pmd);
2003 		pfn_valid = true;
2004 	} else {
2005 		*pte = pte_mkyoung(*pte);	/* Just a page... */
2006 		pfn = pte_pfn(*pte);
2007 		pfn_valid = true;
2008 	}
2009 
2010 out:
2011 	spin_unlock(&vcpu->kvm->mmu_lock);
2012 	if (pfn_valid)
2013 		kvm_set_pfn_accessed(pfn);
2014 }
2015 
2016 /**
2017  * kvm_handle_guest_abort - handles all 2nd stage aborts
2018  * @vcpu:	the VCPU pointer
2019  *
2020  * Any abort that gets to the host is almost guaranteed to be caused by a
2021  * missing second stage translation table entry, which can mean that either the
2022  * guest simply needs more memory and we must allocate an appropriate page or it
2023  * can mean that the guest tried to access I/O memory, which is emulated by user
2024  * space. The distinction is based on the IPA causing the fault and whether this
2025  * memory region has been registered as standard RAM by user space.
2026  */
2027 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2028 {
2029 	unsigned long fault_status;
2030 	phys_addr_t fault_ipa;
2031 	struct kvm_memory_slot *memslot;
2032 	unsigned long hva;
2033 	bool is_iabt, write_fault, writable;
2034 	gfn_t gfn;
2035 	int ret, idx;
2036 
2037 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2038 
2039 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2040 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2041 
2042 	/* Synchronous External Abort? */
2043 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
2044 		/*
2045 		 * For RAS the host kernel may handle this abort.
2046 		 * There is no need to pass the error into the guest.
2047 		 */
2048 		if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
2049 			return 1;
2050 
2051 		if (unlikely(!is_iabt)) {
2052 			kvm_inject_vabt(vcpu);
2053 			return 1;
2054 		}
2055 	}
2056 
2057 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
2058 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
2059 
2060 	/* Check the stage-2 fault is trans. fault or write fault */
2061 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2062 	    fault_status != FSC_ACCESS) {
2063 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2064 			kvm_vcpu_trap_get_class(vcpu),
2065 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2066 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
2067 		return -EFAULT;
2068 	}
2069 
2070 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2071 
2072 	gfn = fault_ipa >> PAGE_SHIFT;
2073 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
2074 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2075 	write_fault = kvm_is_write_fault(vcpu);
2076 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2077 		if (is_iabt) {
2078 			/* Prefetch Abort on I/O address */
2079 			ret = -ENOEXEC;
2080 			goto out;
2081 		}
2082 
2083 		/*
2084 		 * Check for a cache maintenance operation. Since we
2085 		 * ended-up here, we know it is outside of any memory
2086 		 * slot. But we can't find out if that is for a device,
2087 		 * or if the guest is just being stupid. The only thing
2088 		 * we know for sure is that this range cannot be cached.
2089 		 *
2090 		 * So let's assume that the guest is just being
2091 		 * cautious, and skip the instruction.
2092 		 */
2093 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
2094 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2095 			ret = 1;
2096 			goto out_unlock;
2097 		}
2098 
2099 		/*
2100 		 * The IPA is reported as [MAX:12], so we need to
2101 		 * complement it with the bottom 12 bits from the
2102 		 * faulting VA. This is always 12 bits, irrespective
2103 		 * of the page size.
2104 		 */
2105 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2106 		ret = io_mem_abort(vcpu, fault_ipa);
2107 		goto out_unlock;
2108 	}
2109 
2110 	/* Userspace should not be able to register out-of-bounds IPAs */
2111 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2112 
2113 	if (fault_status == FSC_ACCESS) {
2114 		handle_access_fault(vcpu, fault_ipa);
2115 		ret = 1;
2116 		goto out_unlock;
2117 	}
2118 
2119 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2120 	if (ret == 0)
2121 		ret = 1;
2122 out:
2123 	if (ret == -ENOEXEC) {
2124 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2125 		ret = 1;
2126 	}
2127 out_unlock:
2128 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2129 	return ret;
2130 }
2131 
2132 static int handle_hva_to_gpa(struct kvm *kvm,
2133 			     unsigned long start,
2134 			     unsigned long end,
2135 			     int (*handler)(struct kvm *kvm,
2136 					    gpa_t gpa, u64 size,
2137 					    void *data),
2138 			     void *data)
2139 {
2140 	struct kvm_memslots *slots;
2141 	struct kvm_memory_slot *memslot;
2142 	int ret = 0;
2143 
2144 	slots = kvm_memslots(kvm);
2145 
2146 	/* we only care about the pages that the guest sees */
2147 	kvm_for_each_memslot(memslot, slots) {
2148 		unsigned long hva_start, hva_end;
2149 		gfn_t gpa;
2150 
2151 		hva_start = max(start, memslot->userspace_addr);
2152 		hva_end = min(end, memslot->userspace_addr +
2153 					(memslot->npages << PAGE_SHIFT));
2154 		if (hva_start >= hva_end)
2155 			continue;
2156 
2157 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2158 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2159 	}
2160 
2161 	return ret;
2162 }
2163 
2164 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2165 {
2166 	unmap_stage2_range(kvm, gpa, size);
2167 	return 0;
2168 }
2169 
2170 int kvm_unmap_hva_range(struct kvm *kvm,
2171 			unsigned long start, unsigned long end)
2172 {
2173 	if (!kvm->arch.pgd)
2174 		return 0;
2175 
2176 	trace_kvm_unmap_hva_range(start, end);
2177 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2178 	return 0;
2179 }
2180 
2181 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2182 {
2183 	pte_t *pte = (pte_t *)data;
2184 
2185 	WARN_ON(size != PAGE_SIZE);
2186 	/*
2187 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2188 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
2189 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2190 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
2191 	 * through this calling path.
2192 	 */
2193 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2194 	return 0;
2195 }
2196 
2197 
2198 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2199 {
2200 	unsigned long end = hva + PAGE_SIZE;
2201 	kvm_pfn_t pfn = pte_pfn(pte);
2202 	pte_t stage2_pte;
2203 
2204 	if (!kvm->arch.pgd)
2205 		return 0;
2206 
2207 	trace_kvm_set_spte_hva(hva);
2208 
2209 	/*
2210 	 * We've moved a page around, probably through CoW, so let's treat it
2211 	 * just like a translation fault and clean the cache to the PoC.
2212 	 */
2213 	clean_dcache_guest_page(pfn, PAGE_SIZE);
2214 	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2215 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2216 
2217 	return 0;
2218 }
2219 
2220 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2221 {
2222 	pud_t *pud;
2223 	pmd_t *pmd;
2224 	pte_t *pte;
2225 
2226 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2227 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2228 		return 0;
2229 
2230 	if (pud)
2231 		return stage2_pudp_test_and_clear_young(pud);
2232 	else if (pmd)
2233 		return stage2_pmdp_test_and_clear_young(pmd);
2234 	else
2235 		return stage2_ptep_test_and_clear_young(pte);
2236 }
2237 
2238 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2239 {
2240 	pud_t *pud;
2241 	pmd_t *pmd;
2242 	pte_t *pte;
2243 
2244 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2245 	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2246 		return 0;
2247 
2248 	if (pud)
2249 		return kvm_s2pud_young(*pud);
2250 	else if (pmd)
2251 		return pmd_young(*pmd);
2252 	else
2253 		return pte_young(*pte);
2254 }
2255 
2256 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2257 {
2258 	if (!kvm->arch.pgd)
2259 		return 0;
2260 	trace_kvm_age_hva(start, end);
2261 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2262 }
2263 
2264 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2265 {
2266 	if (!kvm->arch.pgd)
2267 		return 0;
2268 	trace_kvm_test_age_hva(hva);
2269 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2270 				 kvm_test_age_hva_handler, NULL);
2271 }
2272 
2273 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2274 {
2275 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2276 }
2277 
2278 phys_addr_t kvm_mmu_get_httbr(void)
2279 {
2280 	if (__kvm_cpu_uses_extended_idmap())
2281 		return virt_to_phys(merged_hyp_pgd);
2282 	else
2283 		return virt_to_phys(hyp_pgd);
2284 }
2285 
2286 phys_addr_t kvm_get_idmap_vector(void)
2287 {
2288 	return hyp_idmap_vector;
2289 }
2290 
2291 static int kvm_map_idmap_text(pgd_t *pgd)
2292 {
2293 	int err;
2294 
2295 	/* Create the idmap in the boot page tables */
2296 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2297 				      hyp_idmap_start, hyp_idmap_end,
2298 				      __phys_to_pfn(hyp_idmap_start),
2299 				      PAGE_HYP_EXEC);
2300 	if (err)
2301 		kvm_err("Failed to idmap %lx-%lx\n",
2302 			hyp_idmap_start, hyp_idmap_end);
2303 
2304 	return err;
2305 }
2306 
2307 int kvm_mmu_init(void)
2308 {
2309 	int err;
2310 
2311 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2312 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2313 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2314 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2315 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2316 
2317 	/*
2318 	 * We rely on the linker script to ensure at build time that the HYP
2319 	 * init code does not cross a page boundary.
2320 	 */
2321 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2322 
2323 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2324 	kvm_debug("HYP VA range: %lx:%lx\n",
2325 		  kern_hyp_va(PAGE_OFFSET),
2326 		  kern_hyp_va((unsigned long)high_memory - 1));
2327 
2328 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2329 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2330 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2331 		/*
2332 		 * The idmap page is intersecting with the VA space,
2333 		 * it is not safe to continue further.
2334 		 */
2335 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2336 		err = -EINVAL;
2337 		goto out;
2338 	}
2339 
2340 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2341 	if (!hyp_pgd) {
2342 		kvm_err("Hyp mode PGD not allocated\n");
2343 		err = -ENOMEM;
2344 		goto out;
2345 	}
2346 
2347 	if (__kvm_cpu_uses_extended_idmap()) {
2348 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2349 							 hyp_pgd_order);
2350 		if (!boot_hyp_pgd) {
2351 			kvm_err("Hyp boot PGD not allocated\n");
2352 			err = -ENOMEM;
2353 			goto out;
2354 		}
2355 
2356 		err = kvm_map_idmap_text(boot_hyp_pgd);
2357 		if (err)
2358 			goto out;
2359 
2360 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2361 		if (!merged_hyp_pgd) {
2362 			kvm_err("Failed to allocate extra HYP pgd\n");
2363 			goto out;
2364 		}
2365 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2366 				    hyp_idmap_start);
2367 	} else {
2368 		err = kvm_map_idmap_text(hyp_pgd);
2369 		if (err)
2370 			goto out;
2371 	}
2372 
2373 	io_map_base = hyp_idmap_start;
2374 	return 0;
2375 out:
2376 	free_hyp_pgds();
2377 	return err;
2378 }
2379 
2380 void kvm_arch_commit_memory_region(struct kvm *kvm,
2381 				   const struct kvm_userspace_memory_region *mem,
2382 				   struct kvm_memory_slot *old,
2383 				   const struct kvm_memory_slot *new,
2384 				   enum kvm_mr_change change)
2385 {
2386 	/*
2387 	 * At this point memslot has been committed and there is an
2388 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2389 	 * memory slot is write protected.
2390 	 */
2391 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2392 		/*
2393 		 * If we're with initial-all-set, we don't need to write
2394 		 * protect any pages because they're all reported as dirty.
2395 		 * Huge pages and normal pages will be write protect gradually.
2396 		 */
2397 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2398 			kvm_mmu_wp_memory_region(kvm, mem->slot);
2399 		}
2400 	}
2401 }
2402 
2403 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2404 				   struct kvm_memory_slot *memslot,
2405 				   const struct kvm_userspace_memory_region *mem,
2406 				   enum kvm_mr_change change)
2407 {
2408 	hva_t hva = mem->userspace_addr;
2409 	hva_t reg_end = hva + mem->memory_size;
2410 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2411 	int ret = 0;
2412 
2413 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2414 			change != KVM_MR_FLAGS_ONLY)
2415 		return 0;
2416 
2417 	/*
2418 	 * Prevent userspace from creating a memory region outside of the IPA
2419 	 * space addressable by the KVM guest IPA space.
2420 	 */
2421 	if (memslot->base_gfn + memslot->npages >=
2422 	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2423 		return -EFAULT;
2424 
2425 	mmap_read_lock(current->mm);
2426 	/*
2427 	 * A memory region could potentially cover multiple VMAs, and any holes
2428 	 * between them, so iterate over all of them to find out if we can map
2429 	 * any of them right now.
2430 	 *
2431 	 *     +--------------------------------------------+
2432 	 * +---------------+----------------+   +----------------+
2433 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2434 	 * +---------------+----------------+   +----------------+
2435 	 *     |               memory region                |
2436 	 *     +--------------------------------------------+
2437 	 */
2438 	do {
2439 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2440 		hva_t vm_start, vm_end;
2441 
2442 		if (!vma || vma->vm_start >= reg_end)
2443 			break;
2444 
2445 		/*
2446 		 * Take the intersection of this VMA with the memory region
2447 		 */
2448 		vm_start = max(hva, vma->vm_start);
2449 		vm_end = min(reg_end, vma->vm_end);
2450 
2451 		if (vma->vm_flags & VM_PFNMAP) {
2452 			gpa_t gpa = mem->guest_phys_addr +
2453 				    (vm_start - mem->userspace_addr);
2454 			phys_addr_t pa;
2455 
2456 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2457 			pa += vm_start - vma->vm_start;
2458 
2459 			/* IO region dirty page logging not allowed */
2460 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2461 				ret = -EINVAL;
2462 				goto out;
2463 			}
2464 
2465 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2466 						    vm_end - vm_start,
2467 						    writable);
2468 			if (ret)
2469 				break;
2470 		}
2471 		hva = vm_end;
2472 	} while (hva < reg_end);
2473 
2474 	if (change == KVM_MR_FLAGS_ONLY)
2475 		goto out;
2476 
2477 	spin_lock(&kvm->mmu_lock);
2478 	if (ret)
2479 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2480 	else
2481 		stage2_flush_memslot(kvm, memslot);
2482 	spin_unlock(&kvm->mmu_lock);
2483 out:
2484 	mmap_read_unlock(current->mm);
2485 	return ret;
2486 }
2487 
2488 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2489 {
2490 }
2491 
2492 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2493 {
2494 }
2495 
2496 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2497 {
2498 	kvm_free_stage2_pgd(kvm);
2499 }
2500 
2501 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2502 				   struct kvm_memory_slot *slot)
2503 {
2504 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2505 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2506 
2507 	spin_lock(&kvm->mmu_lock);
2508 	unmap_stage2_range(kvm, gpa, size);
2509 	spin_unlock(&kvm->mmu_lock);
2510 }
2511 
2512 /*
2513  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2514  *
2515  * Main problems:
2516  * - S/W ops are local to a CPU (not broadcast)
2517  * - We have line migration behind our back (speculation)
2518  * - System caches don't support S/W at all (damn!)
2519  *
2520  * In the face of the above, the best we can do is to try and convert
2521  * S/W ops to VA ops. Because the guest is not allowed to infer the
2522  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2523  * which is a rather good thing for us.
2524  *
2525  * Also, it is only used when turning caches on/off ("The expected
2526  * usage of the cache maintenance instructions that operate by set/way
2527  * is associated with the cache maintenance instructions associated
2528  * with the powerdown and powerup of caches, if this is required by
2529  * the implementation.").
2530  *
2531  * We use the following policy:
2532  *
2533  * - If we trap a S/W operation, we enable VM trapping to detect
2534  *   caches being turned on/off, and do a full clean.
2535  *
2536  * - We flush the caches on both caches being turned on and off.
2537  *
2538  * - Once the caches are enabled, we stop trapping VM ops.
2539  */
2540 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2541 {
2542 	unsigned long hcr = *vcpu_hcr(vcpu);
2543 
2544 	/*
2545 	 * If this is the first time we do a S/W operation
2546 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2547 	 * VM trapping.
2548 	 *
2549 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2550 	 * Caches to be turned off. At that point, we'll be able to
2551 	 * clean the caches again.
2552 	 */
2553 	if (!(hcr & HCR_TVM)) {
2554 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2555 					vcpu_has_cache_enabled(vcpu));
2556 		stage2_flush_vm(vcpu->kvm);
2557 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2558 	}
2559 }
2560 
2561 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2562 {
2563 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2564 
2565 	/*
2566 	 * If switching the MMU+caches on, need to invalidate the caches.
2567 	 * If switching it off, need to clean the caches.
2568 	 * Clean + invalidate does the trick always.
2569 	 */
2570 	if (now_enabled != was_enabled)
2571 		stage2_flush_vm(vcpu->kvm);
2572 
2573 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2574 	if (now_enabled)
2575 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2576 
2577 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2578 }
2579