1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_ras.h> 18 #include <asm/kvm_asm.h> 19 #include <asm/kvm_emulate.h> 20 #include <asm/virt.h> 21 22 #include "trace.h" 23 24 static pgd_t *boot_hyp_pgd; 25 static pgd_t *hyp_pgd; 26 static pgd_t *merged_hyp_pgd; 27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 28 29 static unsigned long hyp_idmap_start; 30 static unsigned long hyp_idmap_end; 31 static phys_addr_t hyp_idmap_vector; 32 33 static unsigned long io_map_base; 34 35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) 36 37 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) 38 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) 39 40 static bool is_iomap(unsigned long flags) 41 { 42 return flags & KVM_S2PTE_FLAG_IS_IOMAP; 43 } 44 45 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 46 { 47 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 48 } 49 50 /** 51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 52 * @kvm: pointer to kvm structure. 53 * 54 * Interface to HYP function to flush all VM TLB entries 55 */ 56 void kvm_flush_remote_tlbs(struct kvm *kvm) 57 { 58 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); 59 } 60 61 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) 62 { 63 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); 64 } 65 66 /* 67 * D-Cache management functions. They take the page table entries by 68 * value, as they are flushing the cache using the kernel mapping (or 69 * kmap on 32bit). 70 */ 71 static void kvm_flush_dcache_pte(pte_t pte) 72 { 73 __kvm_flush_dcache_pte(pte); 74 } 75 76 static void kvm_flush_dcache_pmd(pmd_t pmd) 77 { 78 __kvm_flush_dcache_pmd(pmd); 79 } 80 81 static void kvm_flush_dcache_pud(pud_t pud) 82 { 83 __kvm_flush_dcache_pud(pud); 84 } 85 86 static bool kvm_is_device_pfn(unsigned long pfn) 87 { 88 return !pfn_valid(pfn); 89 } 90 91 /** 92 * stage2_dissolve_pmd() - clear and flush huge PMD entry 93 * @kvm: pointer to kvm structure. 94 * @addr: IPA 95 * @pmd: pmd pointer for IPA 96 * 97 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. 98 */ 99 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) 100 { 101 if (!pmd_thp_or_huge(*pmd)) 102 return; 103 104 pmd_clear(pmd); 105 kvm_tlb_flush_vmid_ipa(kvm, addr); 106 put_page(virt_to_page(pmd)); 107 } 108 109 /** 110 * stage2_dissolve_pud() - clear and flush huge PUD entry 111 * @kvm: pointer to kvm structure. 112 * @addr: IPA 113 * @pud: pud pointer for IPA 114 * 115 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. 116 */ 117 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp) 118 { 119 if (!stage2_pud_huge(kvm, *pudp)) 120 return; 121 122 stage2_pud_clear(kvm, pudp); 123 kvm_tlb_flush_vmid_ipa(kvm, addr); 124 put_page(virt_to_page(pudp)); 125 } 126 127 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr) 128 { 129 p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL); 130 stage2_pgd_clear(kvm, pgd); 131 kvm_tlb_flush_vmid_ipa(kvm, addr); 132 stage2_p4d_free(kvm, p4d_table); 133 put_page(virt_to_page(pgd)); 134 } 135 136 static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr) 137 { 138 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0); 139 stage2_p4d_clear(kvm, p4d); 140 kvm_tlb_flush_vmid_ipa(kvm, addr); 141 stage2_pud_free(kvm, pud_table); 142 put_page(virt_to_page(p4d)); 143 } 144 145 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) 146 { 147 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); 148 VM_BUG_ON(stage2_pud_huge(kvm, *pud)); 149 stage2_pud_clear(kvm, pud); 150 kvm_tlb_flush_vmid_ipa(kvm, addr); 151 stage2_pmd_free(kvm, pmd_table); 152 put_page(virt_to_page(pud)); 153 } 154 155 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) 156 { 157 pte_t *pte_table = pte_offset_kernel(pmd, 0); 158 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 159 pmd_clear(pmd); 160 kvm_tlb_flush_vmid_ipa(kvm, addr); 161 free_page((unsigned long)pte_table); 162 put_page(virt_to_page(pmd)); 163 } 164 165 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) 166 { 167 WRITE_ONCE(*ptep, new_pte); 168 dsb(ishst); 169 } 170 171 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) 172 { 173 WRITE_ONCE(*pmdp, new_pmd); 174 dsb(ishst); 175 } 176 177 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) 178 { 179 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); 180 } 181 182 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) 183 { 184 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); 185 dsb(ishst); 186 } 187 188 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp) 189 { 190 WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp)); 191 dsb(ishst); 192 } 193 194 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp) 195 { 196 #ifndef __PAGETABLE_P4D_FOLDED 197 WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp)); 198 dsb(ishst); 199 #endif 200 } 201 202 /* 203 * Unmapping vs dcache management: 204 * 205 * If a guest maps certain memory pages as uncached, all writes will 206 * bypass the data cache and go directly to RAM. However, the CPUs 207 * can still speculate reads (not writes) and fill cache lines with 208 * data. 209 * 210 * Those cache lines will be *clean* cache lines though, so a 211 * clean+invalidate operation is equivalent to an invalidate 212 * operation, because no cache lines are marked dirty. 213 * 214 * Those clean cache lines could be filled prior to an uncached write 215 * by the guest, and the cache coherent IO subsystem would therefore 216 * end up writing old data to disk. 217 * 218 * This is why right after unmapping a page/section and invalidating 219 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure 220 * the IO subsystem will never hit in the cache. 221 * 222 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 223 * we then fully enforce cacheability of RAM, no matter what the guest 224 * does. 225 */ 226 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd, 227 phys_addr_t addr, phys_addr_t end) 228 { 229 phys_addr_t start_addr = addr; 230 pte_t *pte, *start_pte; 231 232 start_pte = pte = pte_offset_kernel(pmd, addr); 233 do { 234 if (!pte_none(*pte)) { 235 pte_t old_pte = *pte; 236 237 kvm_set_pte(pte, __pte(0)); 238 kvm_tlb_flush_vmid_ipa(kvm, addr); 239 240 /* No need to invalidate the cache for device mappings */ 241 if (!kvm_is_device_pfn(pte_pfn(old_pte))) 242 kvm_flush_dcache_pte(old_pte); 243 244 put_page(virt_to_page(pte)); 245 } 246 } while (pte++, addr += PAGE_SIZE, addr != end); 247 248 if (stage2_pte_table_empty(kvm, start_pte)) 249 clear_stage2_pmd_entry(kvm, pmd, start_addr); 250 } 251 252 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud, 253 phys_addr_t addr, phys_addr_t end) 254 { 255 phys_addr_t next, start_addr = addr; 256 pmd_t *pmd, *start_pmd; 257 258 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); 259 do { 260 next = stage2_pmd_addr_end(kvm, addr, end); 261 if (!pmd_none(*pmd)) { 262 if (pmd_thp_or_huge(*pmd)) { 263 pmd_t old_pmd = *pmd; 264 265 pmd_clear(pmd); 266 kvm_tlb_flush_vmid_ipa(kvm, addr); 267 268 kvm_flush_dcache_pmd(old_pmd); 269 270 put_page(virt_to_page(pmd)); 271 } else { 272 unmap_stage2_ptes(kvm, pmd, addr, next); 273 } 274 } 275 } while (pmd++, addr = next, addr != end); 276 277 if (stage2_pmd_table_empty(kvm, start_pmd)) 278 clear_stage2_pud_entry(kvm, pud, start_addr); 279 } 280 281 static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d, 282 phys_addr_t addr, phys_addr_t end) 283 { 284 phys_addr_t next, start_addr = addr; 285 pud_t *pud, *start_pud; 286 287 start_pud = pud = stage2_pud_offset(kvm, p4d, addr); 288 do { 289 next = stage2_pud_addr_end(kvm, addr, end); 290 if (!stage2_pud_none(kvm, *pud)) { 291 if (stage2_pud_huge(kvm, *pud)) { 292 pud_t old_pud = *pud; 293 294 stage2_pud_clear(kvm, pud); 295 kvm_tlb_flush_vmid_ipa(kvm, addr); 296 kvm_flush_dcache_pud(old_pud); 297 put_page(virt_to_page(pud)); 298 } else { 299 unmap_stage2_pmds(kvm, pud, addr, next); 300 } 301 } 302 } while (pud++, addr = next, addr != end); 303 304 if (stage2_pud_table_empty(kvm, start_pud)) 305 clear_stage2_p4d_entry(kvm, p4d, start_addr); 306 } 307 308 static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd, 309 phys_addr_t addr, phys_addr_t end) 310 { 311 phys_addr_t next, start_addr = addr; 312 p4d_t *p4d, *start_p4d; 313 314 start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr); 315 do { 316 next = stage2_p4d_addr_end(kvm, addr, end); 317 if (!stage2_p4d_none(kvm, *p4d)) 318 unmap_stage2_puds(kvm, p4d, addr, next); 319 } while (p4d++, addr = next, addr != end); 320 321 if (stage2_p4d_table_empty(kvm, start_p4d)) 322 clear_stage2_pgd_entry(kvm, pgd, start_addr); 323 } 324 325 /** 326 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 327 * @kvm: The VM pointer 328 * @start: The intermediate physical base address of the range to unmap 329 * @size: The size of the area to unmap 330 * 331 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 332 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 333 * destroying the VM), otherwise another faulting VCPU may come in and mess 334 * with things behind our backs. 335 */ 336 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) 337 { 338 pgd_t *pgd; 339 phys_addr_t addr = start, end = start + size; 340 phys_addr_t next; 341 342 assert_spin_locked(&kvm->mmu_lock); 343 WARN_ON(size & ~PAGE_MASK); 344 345 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); 346 do { 347 /* 348 * Make sure the page table is still active, as another thread 349 * could have possibly freed the page table, while we released 350 * the lock. 351 */ 352 if (!READ_ONCE(kvm->arch.pgd)) 353 break; 354 next = stage2_pgd_addr_end(kvm, addr, end); 355 if (!stage2_pgd_none(kvm, *pgd)) 356 unmap_stage2_p4ds(kvm, pgd, addr, next); 357 /* 358 * If the range is too large, release the kvm->mmu_lock 359 * to prevent starvation and lockup detector warnings. 360 */ 361 if (next != end) 362 cond_resched_lock(&kvm->mmu_lock); 363 } while (pgd++, addr = next, addr != end); 364 } 365 366 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd, 367 phys_addr_t addr, phys_addr_t end) 368 { 369 pte_t *pte; 370 371 pte = pte_offset_kernel(pmd, addr); 372 do { 373 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) 374 kvm_flush_dcache_pte(*pte); 375 } while (pte++, addr += PAGE_SIZE, addr != end); 376 } 377 378 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud, 379 phys_addr_t addr, phys_addr_t end) 380 { 381 pmd_t *pmd; 382 phys_addr_t next; 383 384 pmd = stage2_pmd_offset(kvm, pud, addr); 385 do { 386 next = stage2_pmd_addr_end(kvm, addr, end); 387 if (!pmd_none(*pmd)) { 388 if (pmd_thp_or_huge(*pmd)) 389 kvm_flush_dcache_pmd(*pmd); 390 else 391 stage2_flush_ptes(kvm, pmd, addr, next); 392 } 393 } while (pmd++, addr = next, addr != end); 394 } 395 396 static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d, 397 phys_addr_t addr, phys_addr_t end) 398 { 399 pud_t *pud; 400 phys_addr_t next; 401 402 pud = stage2_pud_offset(kvm, p4d, addr); 403 do { 404 next = stage2_pud_addr_end(kvm, addr, end); 405 if (!stage2_pud_none(kvm, *pud)) { 406 if (stage2_pud_huge(kvm, *pud)) 407 kvm_flush_dcache_pud(*pud); 408 else 409 stage2_flush_pmds(kvm, pud, addr, next); 410 } 411 } while (pud++, addr = next, addr != end); 412 } 413 414 static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd, 415 phys_addr_t addr, phys_addr_t end) 416 { 417 p4d_t *p4d; 418 phys_addr_t next; 419 420 p4d = stage2_p4d_offset(kvm, pgd, addr); 421 do { 422 next = stage2_p4d_addr_end(kvm, addr, end); 423 if (!stage2_p4d_none(kvm, *p4d)) 424 stage2_flush_puds(kvm, p4d, addr, next); 425 } while (p4d++, addr = next, addr != end); 426 } 427 428 static void stage2_flush_memslot(struct kvm *kvm, 429 struct kvm_memory_slot *memslot) 430 { 431 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 432 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 433 phys_addr_t next; 434 pgd_t *pgd; 435 436 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); 437 do { 438 next = stage2_pgd_addr_end(kvm, addr, end); 439 if (!stage2_pgd_none(kvm, *pgd)) 440 stage2_flush_p4ds(kvm, pgd, addr, next); 441 442 if (next != end) 443 cond_resched_lock(&kvm->mmu_lock); 444 } while (pgd++, addr = next, addr != end); 445 } 446 447 /** 448 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 449 * @kvm: The struct kvm pointer 450 * 451 * Go through the stage 2 page tables and invalidate any cache lines 452 * backing memory already mapped to the VM. 453 */ 454 static void stage2_flush_vm(struct kvm *kvm) 455 { 456 struct kvm_memslots *slots; 457 struct kvm_memory_slot *memslot; 458 int idx; 459 460 idx = srcu_read_lock(&kvm->srcu); 461 spin_lock(&kvm->mmu_lock); 462 463 slots = kvm_memslots(kvm); 464 kvm_for_each_memslot(memslot, slots) 465 stage2_flush_memslot(kvm, memslot); 466 467 spin_unlock(&kvm->mmu_lock); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static void clear_hyp_pgd_entry(pgd_t *pgd) 472 { 473 p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL); 474 pgd_clear(pgd); 475 p4d_free(NULL, p4d_table); 476 put_page(virt_to_page(pgd)); 477 } 478 479 static void clear_hyp_p4d_entry(p4d_t *p4d) 480 { 481 pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL); 482 VM_BUG_ON(p4d_huge(*p4d)); 483 p4d_clear(p4d); 484 pud_free(NULL, pud_table); 485 put_page(virt_to_page(p4d)); 486 } 487 488 static void clear_hyp_pud_entry(pud_t *pud) 489 { 490 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); 491 VM_BUG_ON(pud_huge(*pud)); 492 pud_clear(pud); 493 pmd_free(NULL, pmd_table); 494 put_page(virt_to_page(pud)); 495 } 496 497 static void clear_hyp_pmd_entry(pmd_t *pmd) 498 { 499 pte_t *pte_table = pte_offset_kernel(pmd, 0); 500 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 501 pmd_clear(pmd); 502 pte_free_kernel(NULL, pte_table); 503 put_page(virt_to_page(pmd)); 504 } 505 506 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 507 { 508 pte_t *pte, *start_pte; 509 510 start_pte = pte = pte_offset_kernel(pmd, addr); 511 do { 512 if (!pte_none(*pte)) { 513 kvm_set_pte(pte, __pte(0)); 514 put_page(virt_to_page(pte)); 515 } 516 } while (pte++, addr += PAGE_SIZE, addr != end); 517 518 if (hyp_pte_table_empty(start_pte)) 519 clear_hyp_pmd_entry(pmd); 520 } 521 522 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) 523 { 524 phys_addr_t next; 525 pmd_t *pmd, *start_pmd; 526 527 start_pmd = pmd = pmd_offset(pud, addr); 528 do { 529 next = pmd_addr_end(addr, end); 530 /* Hyp doesn't use huge pmds */ 531 if (!pmd_none(*pmd)) 532 unmap_hyp_ptes(pmd, addr, next); 533 } while (pmd++, addr = next, addr != end); 534 535 if (hyp_pmd_table_empty(start_pmd)) 536 clear_hyp_pud_entry(pud); 537 } 538 539 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end) 540 { 541 phys_addr_t next; 542 pud_t *pud, *start_pud; 543 544 start_pud = pud = pud_offset(p4d, addr); 545 do { 546 next = pud_addr_end(addr, end); 547 /* Hyp doesn't use huge puds */ 548 if (!pud_none(*pud)) 549 unmap_hyp_pmds(pud, addr, next); 550 } while (pud++, addr = next, addr != end); 551 552 if (hyp_pud_table_empty(start_pud)) 553 clear_hyp_p4d_entry(p4d); 554 } 555 556 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) 557 { 558 phys_addr_t next; 559 p4d_t *p4d, *start_p4d; 560 561 start_p4d = p4d = p4d_offset(pgd, addr); 562 do { 563 next = p4d_addr_end(addr, end); 564 /* Hyp doesn't use huge p4ds */ 565 if (!p4d_none(*p4d)) 566 unmap_hyp_puds(p4d, addr, next); 567 } while (p4d++, addr = next, addr != end); 568 569 if (hyp_p4d_table_empty(start_p4d)) 570 clear_hyp_pgd_entry(pgd); 571 } 572 573 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) 574 { 575 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); 576 } 577 578 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, 579 phys_addr_t start, u64 size) 580 { 581 pgd_t *pgd; 582 phys_addr_t addr = start, end = start + size; 583 phys_addr_t next; 584 585 /* 586 * We don't unmap anything from HYP, except at the hyp tear down. 587 * Hence, we don't have to invalidate the TLBs here. 588 */ 589 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 590 do { 591 next = pgd_addr_end(addr, end); 592 if (!pgd_none(*pgd)) 593 unmap_hyp_p4ds(pgd, addr, next); 594 } while (pgd++, addr = next, addr != end); 595 } 596 597 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) 598 { 599 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); 600 } 601 602 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) 603 { 604 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); 605 } 606 607 /** 608 * free_hyp_pgds - free Hyp-mode page tables 609 * 610 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and 611 * therefore contains either mappings in the kernel memory area (above 612 * PAGE_OFFSET), or device mappings in the idmap range. 613 * 614 * boot_hyp_pgd should only map the idmap range, and is only used in 615 * the extended idmap case. 616 */ 617 void free_hyp_pgds(void) 618 { 619 pgd_t *id_pgd; 620 621 mutex_lock(&kvm_hyp_pgd_mutex); 622 623 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; 624 625 if (id_pgd) { 626 /* In case we never called hyp_mmu_init() */ 627 if (!io_map_base) 628 io_map_base = hyp_idmap_start; 629 unmap_hyp_idmap_range(id_pgd, io_map_base, 630 hyp_idmap_start + PAGE_SIZE - io_map_base); 631 } 632 633 if (boot_hyp_pgd) { 634 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); 635 boot_hyp_pgd = NULL; 636 } 637 638 if (hyp_pgd) { 639 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), 640 (uintptr_t)high_memory - PAGE_OFFSET); 641 642 free_pages((unsigned long)hyp_pgd, hyp_pgd_order); 643 hyp_pgd = NULL; 644 } 645 if (merged_hyp_pgd) { 646 clear_page(merged_hyp_pgd); 647 free_page((unsigned long)merged_hyp_pgd); 648 merged_hyp_pgd = NULL; 649 } 650 651 mutex_unlock(&kvm_hyp_pgd_mutex); 652 } 653 654 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, 655 unsigned long end, unsigned long pfn, 656 pgprot_t prot) 657 { 658 pte_t *pte; 659 unsigned long addr; 660 661 addr = start; 662 do { 663 pte = pte_offset_kernel(pmd, addr); 664 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); 665 get_page(virt_to_page(pte)); 666 pfn++; 667 } while (addr += PAGE_SIZE, addr != end); 668 } 669 670 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, 671 unsigned long end, unsigned long pfn, 672 pgprot_t prot) 673 { 674 pmd_t *pmd; 675 pte_t *pte; 676 unsigned long addr, next; 677 678 addr = start; 679 do { 680 pmd = pmd_offset(pud, addr); 681 682 BUG_ON(pmd_sect(*pmd)); 683 684 if (pmd_none(*pmd)) { 685 pte = pte_alloc_one_kernel(NULL); 686 if (!pte) { 687 kvm_err("Cannot allocate Hyp pte\n"); 688 return -ENOMEM; 689 } 690 kvm_pmd_populate(pmd, pte); 691 get_page(virt_to_page(pmd)); 692 } 693 694 next = pmd_addr_end(addr, end); 695 696 create_hyp_pte_mappings(pmd, addr, next, pfn, prot); 697 pfn += (next - addr) >> PAGE_SHIFT; 698 } while (addr = next, addr != end); 699 700 return 0; 701 } 702 703 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start, 704 unsigned long end, unsigned long pfn, 705 pgprot_t prot) 706 { 707 pud_t *pud; 708 pmd_t *pmd; 709 unsigned long addr, next; 710 int ret; 711 712 addr = start; 713 do { 714 pud = pud_offset(p4d, addr); 715 716 if (pud_none_or_clear_bad(pud)) { 717 pmd = pmd_alloc_one(NULL, addr); 718 if (!pmd) { 719 kvm_err("Cannot allocate Hyp pmd\n"); 720 return -ENOMEM; 721 } 722 kvm_pud_populate(pud, pmd); 723 get_page(virt_to_page(pud)); 724 } 725 726 next = pud_addr_end(addr, end); 727 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); 728 if (ret) 729 return ret; 730 pfn += (next - addr) >> PAGE_SHIFT; 731 } while (addr = next, addr != end); 732 733 return 0; 734 } 735 736 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start, 737 unsigned long end, unsigned long pfn, 738 pgprot_t prot) 739 { 740 p4d_t *p4d; 741 pud_t *pud; 742 unsigned long addr, next; 743 int ret; 744 745 addr = start; 746 do { 747 p4d = p4d_offset(pgd, addr); 748 749 if (p4d_none(*p4d)) { 750 pud = pud_alloc_one(NULL, addr); 751 if (!pud) { 752 kvm_err("Cannot allocate Hyp pud\n"); 753 return -ENOMEM; 754 } 755 kvm_p4d_populate(p4d, pud); 756 get_page(virt_to_page(p4d)); 757 } 758 759 next = p4d_addr_end(addr, end); 760 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot); 761 if (ret) 762 return ret; 763 pfn += (next - addr) >> PAGE_SHIFT; 764 } while (addr = next, addr != end); 765 766 return 0; 767 } 768 769 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, 770 unsigned long start, unsigned long end, 771 unsigned long pfn, pgprot_t prot) 772 { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 unsigned long addr, next; 776 int err = 0; 777 778 mutex_lock(&kvm_hyp_pgd_mutex); 779 addr = start & PAGE_MASK; 780 end = PAGE_ALIGN(end); 781 do { 782 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 783 784 if (pgd_none(*pgd)) { 785 p4d = p4d_alloc_one(NULL, addr); 786 if (!p4d) { 787 kvm_err("Cannot allocate Hyp p4d\n"); 788 err = -ENOMEM; 789 goto out; 790 } 791 kvm_pgd_populate(pgd, p4d); 792 get_page(virt_to_page(pgd)); 793 } 794 795 next = pgd_addr_end(addr, end); 796 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot); 797 if (err) 798 goto out; 799 pfn += (next - addr) >> PAGE_SHIFT; 800 } while (addr = next, addr != end); 801 out: 802 mutex_unlock(&kvm_hyp_pgd_mutex); 803 return err; 804 } 805 806 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 807 { 808 if (!is_vmalloc_addr(kaddr)) { 809 BUG_ON(!virt_addr_valid(kaddr)); 810 return __pa(kaddr); 811 } else { 812 return page_to_phys(vmalloc_to_page(kaddr)) + 813 offset_in_page(kaddr); 814 } 815 } 816 817 /** 818 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 819 * @from: The virtual kernel start address of the range 820 * @to: The virtual kernel end address of the range (exclusive) 821 * @prot: The protection to be applied to this range 822 * 823 * The same virtual address as the kernel virtual address is also used 824 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 825 * physical pages. 826 */ 827 int create_hyp_mappings(void *from, void *to, pgprot_t prot) 828 { 829 phys_addr_t phys_addr; 830 unsigned long virt_addr; 831 unsigned long start = kern_hyp_va((unsigned long)from); 832 unsigned long end = kern_hyp_va((unsigned long)to); 833 834 if (is_kernel_in_hyp_mode()) 835 return 0; 836 837 start = start & PAGE_MASK; 838 end = PAGE_ALIGN(end); 839 840 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 841 int err; 842 843 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 844 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, 845 virt_addr, virt_addr + PAGE_SIZE, 846 __phys_to_pfn(phys_addr), 847 prot); 848 if (err) 849 return err; 850 } 851 852 return 0; 853 } 854 855 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 856 unsigned long *haddr, pgprot_t prot) 857 { 858 pgd_t *pgd = hyp_pgd; 859 unsigned long base; 860 int ret = 0; 861 862 mutex_lock(&kvm_hyp_pgd_mutex); 863 864 /* 865 * This assumes that we have enough space below the idmap 866 * page to allocate our VAs. If not, the check below will 867 * kick. A potential alternative would be to detect that 868 * overflow and switch to an allocation above the idmap. 869 * 870 * The allocated size is always a multiple of PAGE_SIZE. 871 */ 872 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 873 base = io_map_base - size; 874 875 /* 876 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 877 * allocating the new area, as it would indicate we've 878 * overflowed the idmap/IO address range. 879 */ 880 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 881 ret = -ENOMEM; 882 else 883 io_map_base = base; 884 885 mutex_unlock(&kvm_hyp_pgd_mutex); 886 887 if (ret) 888 goto out; 889 890 if (__kvm_cpu_uses_extended_idmap()) 891 pgd = boot_hyp_pgd; 892 893 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 894 base, base + size, 895 __phys_to_pfn(phys_addr), prot); 896 if (ret) 897 goto out; 898 899 *haddr = base + offset_in_page(phys_addr); 900 901 out: 902 return ret; 903 } 904 905 /** 906 * create_hyp_io_mappings - Map IO into both kernel and HYP 907 * @phys_addr: The physical start address which gets mapped 908 * @size: Size of the region being mapped 909 * @kaddr: Kernel VA for this mapping 910 * @haddr: HYP VA for this mapping 911 */ 912 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 913 void __iomem **kaddr, 914 void __iomem **haddr) 915 { 916 unsigned long addr; 917 int ret; 918 919 *kaddr = ioremap(phys_addr, size); 920 if (!*kaddr) 921 return -ENOMEM; 922 923 if (is_kernel_in_hyp_mode()) { 924 *haddr = *kaddr; 925 return 0; 926 } 927 928 ret = __create_hyp_private_mapping(phys_addr, size, 929 &addr, PAGE_HYP_DEVICE); 930 if (ret) { 931 iounmap(*kaddr); 932 *kaddr = NULL; 933 *haddr = NULL; 934 return ret; 935 } 936 937 *haddr = (void __iomem *)addr; 938 return 0; 939 } 940 941 /** 942 * create_hyp_exec_mappings - Map an executable range into HYP 943 * @phys_addr: The physical start address which gets mapped 944 * @size: Size of the region being mapped 945 * @haddr: HYP VA for this mapping 946 */ 947 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 948 void **haddr) 949 { 950 unsigned long addr; 951 int ret; 952 953 BUG_ON(is_kernel_in_hyp_mode()); 954 955 ret = __create_hyp_private_mapping(phys_addr, size, 956 &addr, PAGE_HYP_EXEC); 957 if (ret) { 958 *haddr = NULL; 959 return ret; 960 } 961 962 *haddr = (void *)addr; 963 return 0; 964 } 965 966 /** 967 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. 968 * @kvm: The KVM struct pointer for the VM. 969 * 970 * Allocates only the stage-2 HW PGD level table(s) of size defined by 971 * stage2_pgd_size(kvm). 972 * 973 * Note we don't need locking here as this is only called when the VM is 974 * created, which can only be done once. 975 */ 976 int kvm_alloc_stage2_pgd(struct kvm *kvm) 977 { 978 phys_addr_t pgd_phys; 979 pgd_t *pgd; 980 981 if (kvm->arch.pgd != NULL) { 982 kvm_err("kvm_arch already initialized?\n"); 983 return -EINVAL; 984 } 985 986 /* Allocate the HW PGD, making sure that each page gets its own refcount */ 987 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); 988 if (!pgd) 989 return -ENOMEM; 990 991 pgd_phys = virt_to_phys(pgd); 992 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) 993 return -EINVAL; 994 995 kvm->arch.pgd = pgd; 996 kvm->arch.pgd_phys = pgd_phys; 997 return 0; 998 } 999 1000 static void stage2_unmap_memslot(struct kvm *kvm, 1001 struct kvm_memory_slot *memslot) 1002 { 1003 hva_t hva = memslot->userspace_addr; 1004 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 1005 phys_addr_t size = PAGE_SIZE * memslot->npages; 1006 hva_t reg_end = hva + size; 1007 1008 /* 1009 * A memory region could potentially cover multiple VMAs, and any holes 1010 * between them, so iterate over all of them to find out if we should 1011 * unmap any of them. 1012 * 1013 * +--------------------------------------------+ 1014 * +---------------+----------------+ +----------------+ 1015 * | : VMA 1 | VMA 2 | | VMA 3 : | 1016 * +---------------+----------------+ +----------------+ 1017 * | memory region | 1018 * +--------------------------------------------+ 1019 */ 1020 do { 1021 struct vm_area_struct *vma = find_vma(current->mm, hva); 1022 hva_t vm_start, vm_end; 1023 1024 if (!vma || vma->vm_start >= reg_end) 1025 break; 1026 1027 /* 1028 * Take the intersection of this VMA with the memory region 1029 */ 1030 vm_start = max(hva, vma->vm_start); 1031 vm_end = min(reg_end, vma->vm_end); 1032 1033 if (!(vma->vm_flags & VM_PFNMAP)) { 1034 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 1035 unmap_stage2_range(kvm, gpa, vm_end - vm_start); 1036 } 1037 hva = vm_end; 1038 } while (hva < reg_end); 1039 } 1040 1041 /** 1042 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 1043 * @kvm: The struct kvm pointer 1044 * 1045 * Go through the memregions and unmap any regular RAM 1046 * backing memory already mapped to the VM. 1047 */ 1048 void stage2_unmap_vm(struct kvm *kvm) 1049 { 1050 struct kvm_memslots *slots; 1051 struct kvm_memory_slot *memslot; 1052 int idx; 1053 1054 idx = srcu_read_lock(&kvm->srcu); 1055 mmap_read_lock(current->mm); 1056 spin_lock(&kvm->mmu_lock); 1057 1058 slots = kvm_memslots(kvm); 1059 kvm_for_each_memslot(memslot, slots) 1060 stage2_unmap_memslot(kvm, memslot); 1061 1062 spin_unlock(&kvm->mmu_lock); 1063 mmap_read_unlock(current->mm); 1064 srcu_read_unlock(&kvm->srcu, idx); 1065 } 1066 1067 /** 1068 * kvm_free_stage2_pgd - free all stage-2 tables 1069 * @kvm: The KVM struct pointer for the VM. 1070 * 1071 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all 1072 * underlying level-2 and level-3 tables before freeing the actual level-1 table 1073 * and setting the struct pointer to NULL. 1074 */ 1075 void kvm_free_stage2_pgd(struct kvm *kvm) 1076 { 1077 void *pgd = NULL; 1078 1079 spin_lock(&kvm->mmu_lock); 1080 if (kvm->arch.pgd) { 1081 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm)); 1082 pgd = READ_ONCE(kvm->arch.pgd); 1083 kvm->arch.pgd = NULL; 1084 kvm->arch.pgd_phys = 0; 1085 } 1086 spin_unlock(&kvm->mmu_lock); 1087 1088 /* Free the HW pgd, one page at a time */ 1089 if (pgd) 1090 free_pages_exact(pgd, stage2_pgd_size(kvm)); 1091 } 1092 1093 static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1094 phys_addr_t addr) 1095 { 1096 pgd_t *pgd; 1097 p4d_t *p4d; 1098 1099 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); 1100 if (stage2_pgd_none(kvm, *pgd)) { 1101 if (!cache) 1102 return NULL; 1103 p4d = kvm_mmu_memory_cache_alloc(cache); 1104 stage2_pgd_populate(kvm, pgd, p4d); 1105 get_page(virt_to_page(pgd)); 1106 } 1107 1108 return stage2_p4d_offset(kvm, pgd, addr); 1109 } 1110 1111 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1112 phys_addr_t addr) 1113 { 1114 p4d_t *p4d; 1115 pud_t *pud; 1116 1117 p4d = stage2_get_p4d(kvm, cache, addr); 1118 if (stage2_p4d_none(kvm, *p4d)) { 1119 if (!cache) 1120 return NULL; 1121 pud = kvm_mmu_memory_cache_alloc(cache); 1122 stage2_p4d_populate(kvm, p4d, pud); 1123 get_page(virt_to_page(p4d)); 1124 } 1125 1126 return stage2_pud_offset(kvm, p4d, addr); 1127 } 1128 1129 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1130 phys_addr_t addr) 1131 { 1132 pud_t *pud; 1133 pmd_t *pmd; 1134 1135 pud = stage2_get_pud(kvm, cache, addr); 1136 if (!pud || stage2_pud_huge(kvm, *pud)) 1137 return NULL; 1138 1139 if (stage2_pud_none(kvm, *pud)) { 1140 if (!cache) 1141 return NULL; 1142 pmd = kvm_mmu_memory_cache_alloc(cache); 1143 stage2_pud_populate(kvm, pud, pmd); 1144 get_page(virt_to_page(pud)); 1145 } 1146 1147 return stage2_pmd_offset(kvm, pud, addr); 1148 } 1149 1150 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache 1151 *cache, phys_addr_t addr, const pmd_t *new_pmd) 1152 { 1153 pmd_t *pmd, old_pmd; 1154 1155 retry: 1156 pmd = stage2_get_pmd(kvm, cache, addr); 1157 VM_BUG_ON(!pmd); 1158 1159 old_pmd = *pmd; 1160 /* 1161 * Multiple vcpus faulting on the same PMD entry, can 1162 * lead to them sequentially updating the PMD with the 1163 * same value. Following the break-before-make 1164 * (pmd_clear() followed by tlb_flush()) process can 1165 * hinder forward progress due to refaults generated 1166 * on missing translations. 1167 * 1168 * Skip updating the page table if the entry is 1169 * unchanged. 1170 */ 1171 if (pmd_val(old_pmd) == pmd_val(*new_pmd)) 1172 return 0; 1173 1174 if (pmd_present(old_pmd)) { 1175 /* 1176 * If we already have PTE level mapping for this block, 1177 * we must unmap it to avoid inconsistent TLB state and 1178 * leaking the table page. We could end up in this situation 1179 * if the memory slot was marked for dirty logging and was 1180 * reverted, leaving PTE level mappings for the pages accessed 1181 * during the period. So, unmap the PTE level mapping for this 1182 * block and retry, as we could have released the upper level 1183 * table in the process. 1184 * 1185 * Normal THP split/merge follows mmu_notifier callbacks and do 1186 * get handled accordingly. 1187 */ 1188 if (!pmd_thp_or_huge(old_pmd)) { 1189 unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE); 1190 goto retry; 1191 } 1192 /* 1193 * Mapping in huge pages should only happen through a 1194 * fault. If a page is merged into a transparent huge 1195 * page, the individual subpages of that huge page 1196 * should be unmapped through MMU notifiers before we 1197 * get here. 1198 * 1199 * Merging of CompoundPages is not supported; they 1200 * should become splitting first, unmapped, merged, 1201 * and mapped back in on-demand. 1202 */ 1203 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); 1204 pmd_clear(pmd); 1205 kvm_tlb_flush_vmid_ipa(kvm, addr); 1206 } else { 1207 get_page(virt_to_page(pmd)); 1208 } 1209 1210 kvm_set_pmd(pmd, *new_pmd); 1211 return 0; 1212 } 1213 1214 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1215 phys_addr_t addr, const pud_t *new_pudp) 1216 { 1217 pud_t *pudp, old_pud; 1218 1219 retry: 1220 pudp = stage2_get_pud(kvm, cache, addr); 1221 VM_BUG_ON(!pudp); 1222 1223 old_pud = *pudp; 1224 1225 /* 1226 * A large number of vcpus faulting on the same stage 2 entry, 1227 * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). 1228 * Skip updating the page tables if there is no change. 1229 */ 1230 if (pud_val(old_pud) == pud_val(*new_pudp)) 1231 return 0; 1232 1233 if (stage2_pud_present(kvm, old_pud)) { 1234 /* 1235 * If we already have table level mapping for this block, unmap 1236 * the range for this block and retry. 1237 */ 1238 if (!stage2_pud_huge(kvm, old_pud)) { 1239 unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE); 1240 goto retry; 1241 } 1242 1243 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); 1244 stage2_pud_clear(kvm, pudp); 1245 kvm_tlb_flush_vmid_ipa(kvm, addr); 1246 } else { 1247 get_page(virt_to_page(pudp)); 1248 } 1249 1250 kvm_set_pud(pudp, *new_pudp); 1251 return 0; 1252 } 1253 1254 /* 1255 * stage2_get_leaf_entry - walk the stage2 VM page tables and return 1256 * true if a valid and present leaf-entry is found. A pointer to the 1257 * leaf-entry is returned in the appropriate level variable - pudpp, 1258 * pmdpp, ptepp. 1259 */ 1260 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr, 1261 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) 1262 { 1263 pud_t *pudp; 1264 pmd_t *pmdp; 1265 pte_t *ptep; 1266 1267 *pudpp = NULL; 1268 *pmdpp = NULL; 1269 *ptepp = NULL; 1270 1271 pudp = stage2_get_pud(kvm, NULL, addr); 1272 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) 1273 return false; 1274 1275 if (stage2_pud_huge(kvm, *pudp)) { 1276 *pudpp = pudp; 1277 return true; 1278 } 1279 1280 pmdp = stage2_pmd_offset(kvm, pudp, addr); 1281 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) 1282 return false; 1283 1284 if (pmd_thp_or_huge(*pmdp)) { 1285 *pmdpp = pmdp; 1286 return true; 1287 } 1288 1289 ptep = pte_offset_kernel(pmdp, addr); 1290 if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) 1291 return false; 1292 1293 *ptepp = ptep; 1294 return true; 1295 } 1296 1297 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz) 1298 { 1299 pud_t *pudp; 1300 pmd_t *pmdp; 1301 pte_t *ptep; 1302 bool found; 1303 1304 found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep); 1305 if (!found) 1306 return false; 1307 1308 if (pudp) 1309 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp); 1310 else if (pmdp) 1311 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp); 1312 else 1313 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep); 1314 } 1315 1316 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1317 phys_addr_t addr, const pte_t *new_pte, 1318 unsigned long flags) 1319 { 1320 pud_t *pud; 1321 pmd_t *pmd; 1322 pte_t *pte, old_pte; 1323 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; 1324 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; 1325 1326 VM_BUG_ON(logging_active && !cache); 1327 1328 /* Create stage-2 page table mapping - Levels 0 and 1 */ 1329 pud = stage2_get_pud(kvm, cache, addr); 1330 if (!pud) { 1331 /* 1332 * Ignore calls from kvm_set_spte_hva for unallocated 1333 * address ranges. 1334 */ 1335 return 0; 1336 } 1337 1338 /* 1339 * While dirty page logging - dissolve huge PUD, then continue 1340 * on to allocate page. 1341 */ 1342 if (logging_active) 1343 stage2_dissolve_pud(kvm, addr, pud); 1344 1345 if (stage2_pud_none(kvm, *pud)) { 1346 if (!cache) 1347 return 0; /* ignore calls from kvm_set_spte_hva */ 1348 pmd = kvm_mmu_memory_cache_alloc(cache); 1349 stage2_pud_populate(kvm, pud, pmd); 1350 get_page(virt_to_page(pud)); 1351 } 1352 1353 pmd = stage2_pmd_offset(kvm, pud, addr); 1354 if (!pmd) { 1355 /* 1356 * Ignore calls from kvm_set_spte_hva for unallocated 1357 * address ranges. 1358 */ 1359 return 0; 1360 } 1361 1362 /* 1363 * While dirty page logging - dissolve huge PMD, then continue on to 1364 * allocate page. 1365 */ 1366 if (logging_active) 1367 stage2_dissolve_pmd(kvm, addr, pmd); 1368 1369 /* Create stage-2 page mappings - Level 2 */ 1370 if (pmd_none(*pmd)) { 1371 if (!cache) 1372 return 0; /* ignore calls from kvm_set_spte_hva */ 1373 pte = kvm_mmu_memory_cache_alloc(cache); 1374 kvm_pmd_populate(pmd, pte); 1375 get_page(virt_to_page(pmd)); 1376 } 1377 1378 pte = pte_offset_kernel(pmd, addr); 1379 1380 if (iomap && pte_present(*pte)) 1381 return -EFAULT; 1382 1383 /* Create 2nd stage page table mapping - Level 3 */ 1384 old_pte = *pte; 1385 if (pte_present(old_pte)) { 1386 /* Skip page table update if there is no change */ 1387 if (pte_val(old_pte) == pte_val(*new_pte)) 1388 return 0; 1389 1390 kvm_set_pte(pte, __pte(0)); 1391 kvm_tlb_flush_vmid_ipa(kvm, addr); 1392 } else { 1393 get_page(virt_to_page(pte)); 1394 } 1395 1396 kvm_set_pte(pte, *new_pte); 1397 return 0; 1398 } 1399 1400 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1401 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1402 { 1403 if (pte_young(*pte)) { 1404 *pte = pte_mkold(*pte); 1405 return 1; 1406 } 1407 return 0; 1408 } 1409 #else 1410 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1411 { 1412 return __ptep_test_and_clear_young(pte); 1413 } 1414 #endif 1415 1416 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) 1417 { 1418 return stage2_ptep_test_and_clear_young((pte_t *)pmd); 1419 } 1420 1421 static int stage2_pudp_test_and_clear_young(pud_t *pud) 1422 { 1423 return stage2_ptep_test_and_clear_young((pte_t *)pud); 1424 } 1425 1426 /** 1427 * kvm_phys_addr_ioremap - map a device range to guest IPA 1428 * 1429 * @kvm: The KVM pointer 1430 * @guest_ipa: The IPA at which to insert the mapping 1431 * @pa: The physical address of the device 1432 * @size: The size of the mapping 1433 */ 1434 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1435 phys_addr_t pa, unsigned long size, bool writable) 1436 { 1437 phys_addr_t addr, end; 1438 int ret = 0; 1439 unsigned long pfn; 1440 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 1441 1442 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; 1443 pfn = __phys_to_pfn(pa); 1444 1445 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { 1446 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); 1447 1448 if (writable) 1449 pte = kvm_s2pte_mkwrite(pte); 1450 1451 ret = kvm_mmu_topup_memory_cache(&cache, 1452 kvm_mmu_cache_min_pages(kvm)); 1453 if (ret) 1454 goto out; 1455 spin_lock(&kvm->mmu_lock); 1456 ret = stage2_set_pte(kvm, &cache, addr, &pte, 1457 KVM_S2PTE_FLAG_IS_IOMAP); 1458 spin_unlock(&kvm->mmu_lock); 1459 if (ret) 1460 goto out; 1461 1462 pfn++; 1463 } 1464 1465 out: 1466 kvm_mmu_free_memory_cache(&cache); 1467 return ret; 1468 } 1469 1470 /** 1471 * stage2_wp_ptes - write protect PMD range 1472 * @pmd: pointer to pmd entry 1473 * @addr: range start address 1474 * @end: range end address 1475 */ 1476 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 1477 { 1478 pte_t *pte; 1479 1480 pte = pte_offset_kernel(pmd, addr); 1481 do { 1482 if (!pte_none(*pte)) { 1483 if (!kvm_s2pte_readonly(pte)) 1484 kvm_set_s2pte_readonly(pte); 1485 } 1486 } while (pte++, addr += PAGE_SIZE, addr != end); 1487 } 1488 1489 /** 1490 * stage2_wp_pmds - write protect PUD range 1491 * kvm: kvm instance for the VM 1492 * @pud: pointer to pud entry 1493 * @addr: range start address 1494 * @end: range end address 1495 */ 1496 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud, 1497 phys_addr_t addr, phys_addr_t end) 1498 { 1499 pmd_t *pmd; 1500 phys_addr_t next; 1501 1502 pmd = stage2_pmd_offset(kvm, pud, addr); 1503 1504 do { 1505 next = stage2_pmd_addr_end(kvm, addr, end); 1506 if (!pmd_none(*pmd)) { 1507 if (pmd_thp_or_huge(*pmd)) { 1508 if (!kvm_s2pmd_readonly(pmd)) 1509 kvm_set_s2pmd_readonly(pmd); 1510 } else { 1511 stage2_wp_ptes(pmd, addr, next); 1512 } 1513 } 1514 } while (pmd++, addr = next, addr != end); 1515 } 1516 1517 /** 1518 * stage2_wp_puds - write protect P4D range 1519 * @pgd: pointer to pgd entry 1520 * @addr: range start address 1521 * @end: range end address 1522 */ 1523 static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d, 1524 phys_addr_t addr, phys_addr_t end) 1525 { 1526 pud_t *pud; 1527 phys_addr_t next; 1528 1529 pud = stage2_pud_offset(kvm, p4d, addr); 1530 do { 1531 next = stage2_pud_addr_end(kvm, addr, end); 1532 if (!stage2_pud_none(kvm, *pud)) { 1533 if (stage2_pud_huge(kvm, *pud)) { 1534 if (!kvm_s2pud_readonly(pud)) 1535 kvm_set_s2pud_readonly(pud); 1536 } else { 1537 stage2_wp_pmds(kvm, pud, addr, next); 1538 } 1539 } 1540 } while (pud++, addr = next, addr != end); 1541 } 1542 1543 /** 1544 * stage2_wp_p4ds - write protect PGD range 1545 * @pgd: pointer to pgd entry 1546 * @addr: range start address 1547 * @end: range end address 1548 */ 1549 static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd, 1550 phys_addr_t addr, phys_addr_t end) 1551 { 1552 p4d_t *p4d; 1553 phys_addr_t next; 1554 1555 p4d = stage2_p4d_offset(kvm, pgd, addr); 1556 do { 1557 next = stage2_p4d_addr_end(kvm, addr, end); 1558 if (!stage2_p4d_none(kvm, *p4d)) 1559 stage2_wp_puds(kvm, p4d, addr, next); 1560 } while (p4d++, addr = next, addr != end); 1561 } 1562 1563 /** 1564 * stage2_wp_range() - write protect stage2 memory region range 1565 * @kvm: The KVM pointer 1566 * @addr: Start address of range 1567 * @end: End address of range 1568 */ 1569 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) 1570 { 1571 pgd_t *pgd; 1572 phys_addr_t next; 1573 1574 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); 1575 do { 1576 /* 1577 * Release kvm_mmu_lock periodically if the memory region is 1578 * large. Otherwise, we may see kernel panics with 1579 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, 1580 * CONFIG_LOCKDEP. Additionally, holding the lock too long 1581 * will also starve other vCPUs. We have to also make sure 1582 * that the page tables are not freed while we released 1583 * the lock. 1584 */ 1585 cond_resched_lock(&kvm->mmu_lock); 1586 if (!READ_ONCE(kvm->arch.pgd)) 1587 break; 1588 next = stage2_pgd_addr_end(kvm, addr, end); 1589 if (stage2_pgd_present(kvm, *pgd)) 1590 stage2_wp_p4ds(kvm, pgd, addr, next); 1591 } while (pgd++, addr = next, addr != end); 1592 } 1593 1594 /** 1595 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1596 * @kvm: The KVM pointer 1597 * @slot: The memory slot to write protect 1598 * 1599 * Called to start logging dirty pages after memory region 1600 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1601 * all present PUD, PMD and PTEs are write protected in the memory region. 1602 * Afterwards read of dirty page log can be called. 1603 * 1604 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1605 * serializing operations for VM memory regions. 1606 */ 1607 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1608 { 1609 struct kvm_memslots *slots = kvm_memslots(kvm); 1610 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1611 phys_addr_t start, end; 1612 1613 if (WARN_ON_ONCE(!memslot)) 1614 return; 1615 1616 start = memslot->base_gfn << PAGE_SHIFT; 1617 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1618 1619 spin_lock(&kvm->mmu_lock); 1620 stage2_wp_range(kvm, start, end); 1621 spin_unlock(&kvm->mmu_lock); 1622 kvm_flush_remote_tlbs(kvm); 1623 } 1624 1625 /** 1626 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 1627 * @kvm: The KVM pointer 1628 * @slot: The memory slot associated with mask 1629 * @gfn_offset: The gfn offset in memory slot 1630 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 1631 * slot to be write protected 1632 * 1633 * Walks bits set in mask write protects the associated pte's. Caller must 1634 * acquire kvm_mmu_lock. 1635 */ 1636 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1637 struct kvm_memory_slot *slot, 1638 gfn_t gfn_offset, unsigned long mask) 1639 { 1640 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1641 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1642 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1643 1644 stage2_wp_range(kvm, start, end); 1645 } 1646 1647 /* 1648 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1649 * dirty pages. 1650 * 1651 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1652 * enable dirty logging for them. 1653 */ 1654 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1655 struct kvm_memory_slot *slot, 1656 gfn_t gfn_offset, unsigned long mask) 1657 { 1658 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1659 } 1660 1661 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 1662 { 1663 __clean_dcache_guest_page(pfn, size); 1664 } 1665 1666 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 1667 { 1668 __invalidate_icache_guest_page(pfn, size); 1669 } 1670 1671 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1672 { 1673 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1674 } 1675 1676 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1677 unsigned long hva, 1678 unsigned long map_size) 1679 { 1680 gpa_t gpa_start; 1681 hva_t uaddr_start, uaddr_end; 1682 size_t size; 1683 1684 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1685 if (map_size == PAGE_SIZE) 1686 return true; 1687 1688 size = memslot->npages * PAGE_SIZE; 1689 1690 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1691 1692 uaddr_start = memslot->userspace_addr; 1693 uaddr_end = uaddr_start + size; 1694 1695 /* 1696 * Pages belonging to memslots that don't have the same alignment 1697 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1698 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1699 * 1700 * Consider a layout like the following: 1701 * 1702 * memslot->userspace_addr: 1703 * +-----+--------------------+--------------------+---+ 1704 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1705 * +-----+--------------------+--------------------+---+ 1706 * 1707 * memslot->base_gfn << PAGE_SHIFT: 1708 * +---+--------------------+--------------------+-----+ 1709 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1710 * +---+--------------------+--------------------+-----+ 1711 * 1712 * If we create those stage-2 blocks, we'll end up with this incorrect 1713 * mapping: 1714 * d -> f 1715 * e -> g 1716 * f -> h 1717 */ 1718 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1719 return false; 1720 1721 /* 1722 * Next, let's make sure we're not trying to map anything not covered 1723 * by the memslot. This means we have to prohibit block size mappings 1724 * for the beginning and end of a non-block aligned and non-block sized 1725 * memory slot (illustrated by the head and tail parts of the 1726 * userspace view above containing pages 'abcde' and 'xyz', 1727 * respectively). 1728 * 1729 * Note that it doesn't matter if we do the check using the 1730 * userspace_addr or the base_gfn, as both are equally aligned (per 1731 * the check above) and equally sized. 1732 */ 1733 return (hva & ~(map_size - 1)) >= uaddr_start && 1734 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1735 } 1736 1737 /* 1738 * Check if the given hva is backed by a transparent huge page (THP) and 1739 * whether it can be mapped using block mapping in stage2. If so, adjust 1740 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1741 * supported. This will need to be updated to support other THP sizes. 1742 * 1743 * Returns the size of the mapping. 1744 */ 1745 static unsigned long 1746 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 1747 unsigned long hva, kvm_pfn_t *pfnp, 1748 phys_addr_t *ipap) 1749 { 1750 kvm_pfn_t pfn = *pfnp; 1751 1752 /* 1753 * Make sure the adjustment is done only for THP pages. Also make 1754 * sure that the HVA and IPA are sufficiently aligned and that the 1755 * block map is contained within the memslot. 1756 */ 1757 if (kvm_is_transparent_hugepage(pfn) && 1758 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1759 /* 1760 * The address we faulted on is backed by a transparent huge 1761 * page. However, because we map the compound huge page and 1762 * not the individual tail page, we need to transfer the 1763 * refcount to the head page. We have to be careful that the 1764 * THP doesn't start to split while we are adjusting the 1765 * refcounts. 1766 * 1767 * We are sure this doesn't happen, because mmu_notifier_retry 1768 * was successful and we are holding the mmu_lock, so if this 1769 * THP is trying to split, it will be blocked in the mmu 1770 * notifier before touching any of the pages, specifically 1771 * before being able to call __split_huge_page_refcount(). 1772 * 1773 * We can therefore safely transfer the refcount from PG_tail 1774 * to PG_head and switch the pfn from a tail page to the head 1775 * page accordingly. 1776 */ 1777 *ipap &= PMD_MASK; 1778 kvm_release_pfn_clean(pfn); 1779 pfn &= ~(PTRS_PER_PMD - 1); 1780 kvm_get_pfn(pfn); 1781 *pfnp = pfn; 1782 1783 return PMD_SIZE; 1784 } 1785 1786 /* Use page mapping if we cannot use block mapping. */ 1787 return PAGE_SIZE; 1788 } 1789 1790 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1791 struct kvm_memory_slot *memslot, unsigned long hva, 1792 unsigned long fault_status) 1793 { 1794 int ret; 1795 bool write_fault, writable, force_pte = false; 1796 bool exec_fault, needs_exec; 1797 unsigned long mmu_seq; 1798 gfn_t gfn = fault_ipa >> PAGE_SHIFT; 1799 struct kvm *kvm = vcpu->kvm; 1800 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1801 struct vm_area_struct *vma; 1802 short vma_shift; 1803 kvm_pfn_t pfn; 1804 pgprot_t mem_type = PAGE_S2; 1805 bool logging_active = memslot_is_logging(memslot); 1806 unsigned long vma_pagesize, flags = 0; 1807 1808 write_fault = kvm_is_write_fault(vcpu); 1809 exec_fault = kvm_vcpu_trap_is_iabt(vcpu); 1810 VM_BUG_ON(write_fault && exec_fault); 1811 1812 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1813 kvm_err("Unexpected L2 read permission error\n"); 1814 return -EFAULT; 1815 } 1816 1817 /* Let's check if we will get back a huge page backed by hugetlbfs */ 1818 mmap_read_lock(current->mm); 1819 vma = find_vma_intersection(current->mm, hva, hva + 1); 1820 if (unlikely(!vma)) { 1821 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1822 mmap_read_unlock(current->mm); 1823 return -EFAULT; 1824 } 1825 1826 if (is_vm_hugetlb_page(vma)) 1827 vma_shift = huge_page_shift(hstate_vma(vma)); 1828 else 1829 vma_shift = PAGE_SHIFT; 1830 1831 vma_pagesize = 1ULL << vma_shift; 1832 if (logging_active || 1833 (vma->vm_flags & VM_PFNMAP) || 1834 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { 1835 force_pte = true; 1836 vma_pagesize = PAGE_SIZE; 1837 } 1838 1839 /* 1840 * The stage2 has a minimum of 2 level table (For arm64 see 1841 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can 1842 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). 1843 * As for PUD huge maps, we must make sure that we have at least 1844 * 3 levels, i.e, PMD is not folded. 1845 */ 1846 if (vma_pagesize == PMD_SIZE || 1847 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) 1848 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; 1849 mmap_read_unlock(current->mm); 1850 1851 /* We need minimum second+third level pages */ 1852 ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm)); 1853 if (ret) 1854 return ret; 1855 1856 mmu_seq = vcpu->kvm->mmu_notifier_seq; 1857 /* 1858 * Ensure the read of mmu_notifier_seq happens before we call 1859 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1860 * the page we just got a reference to gets unmapped before we have a 1861 * chance to grab the mmu_lock, which ensure that if the page gets 1862 * unmapped afterwards, the call to kvm_unmap_hva will take it away 1863 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1864 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1865 */ 1866 smp_rmb(); 1867 1868 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); 1869 if (pfn == KVM_PFN_ERR_HWPOISON) { 1870 kvm_send_hwpoison_signal(hva, vma_shift); 1871 return 0; 1872 } 1873 if (is_error_noslot_pfn(pfn)) 1874 return -EFAULT; 1875 1876 if (kvm_is_device_pfn(pfn)) { 1877 mem_type = PAGE_S2_DEVICE; 1878 flags |= KVM_S2PTE_FLAG_IS_IOMAP; 1879 } else if (logging_active) { 1880 /* 1881 * Faults on pages in a memslot with logging enabled 1882 * should not be mapped with huge pages (it introduces churn 1883 * and performance degradation), so force a pte mapping. 1884 */ 1885 flags |= KVM_S2_FLAG_LOGGING_ACTIVE; 1886 1887 /* 1888 * Only actually map the page as writable if this was a write 1889 * fault. 1890 */ 1891 if (!write_fault) 1892 writable = false; 1893 } 1894 1895 if (exec_fault && is_iomap(flags)) 1896 return -ENOEXEC; 1897 1898 spin_lock(&kvm->mmu_lock); 1899 if (mmu_notifier_retry(kvm, mmu_seq)) 1900 goto out_unlock; 1901 1902 /* 1903 * If we are not forced to use page mapping, check if we are 1904 * backed by a THP and thus use block mapping if possible. 1905 */ 1906 if (vma_pagesize == PAGE_SIZE && !force_pte) 1907 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 1908 &pfn, &fault_ipa); 1909 if (writable) 1910 kvm_set_pfn_dirty(pfn); 1911 1912 if (fault_status != FSC_PERM && !is_iomap(flags)) 1913 clean_dcache_guest_page(pfn, vma_pagesize); 1914 1915 if (exec_fault) 1916 invalidate_icache_guest_page(pfn, vma_pagesize); 1917 1918 /* 1919 * If we took an execution fault we have made the 1920 * icache/dcache coherent above and should now let the s2 1921 * mapping be executable. 1922 * 1923 * Write faults (!exec_fault && FSC_PERM) are orthogonal to 1924 * execute permissions, and we preserve whatever we have. 1925 */ 1926 needs_exec = exec_fault || 1927 (fault_status == FSC_PERM && 1928 stage2_is_exec(kvm, fault_ipa, vma_pagesize)); 1929 1930 if (vma_pagesize == PUD_SIZE) { 1931 pud_t new_pud = kvm_pfn_pud(pfn, mem_type); 1932 1933 new_pud = kvm_pud_mkhuge(new_pud); 1934 if (writable) 1935 new_pud = kvm_s2pud_mkwrite(new_pud); 1936 1937 if (needs_exec) 1938 new_pud = kvm_s2pud_mkexec(new_pud); 1939 1940 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud); 1941 } else if (vma_pagesize == PMD_SIZE) { 1942 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); 1943 1944 new_pmd = kvm_pmd_mkhuge(new_pmd); 1945 1946 if (writable) 1947 new_pmd = kvm_s2pmd_mkwrite(new_pmd); 1948 1949 if (needs_exec) 1950 new_pmd = kvm_s2pmd_mkexec(new_pmd); 1951 1952 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); 1953 } else { 1954 pte_t new_pte = kvm_pfn_pte(pfn, mem_type); 1955 1956 if (writable) { 1957 new_pte = kvm_s2pte_mkwrite(new_pte); 1958 mark_page_dirty(kvm, gfn); 1959 } 1960 1961 if (needs_exec) 1962 new_pte = kvm_s2pte_mkexec(new_pte); 1963 1964 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); 1965 } 1966 1967 out_unlock: 1968 spin_unlock(&kvm->mmu_lock); 1969 kvm_set_pfn_accessed(pfn); 1970 kvm_release_pfn_clean(pfn); 1971 return ret; 1972 } 1973 1974 /* 1975 * Resolve the access fault by making the page young again. 1976 * Note that because the faulting entry is guaranteed not to be 1977 * cached in the TLB, we don't need to invalidate anything. 1978 * Only the HW Access Flag updates are supported for Stage 2 (no DBM), 1979 * so there is no need for atomic (pte|pmd)_mkyoung operations. 1980 */ 1981 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1982 { 1983 pud_t *pud; 1984 pmd_t *pmd; 1985 pte_t *pte; 1986 kvm_pfn_t pfn; 1987 bool pfn_valid = false; 1988 1989 trace_kvm_access_fault(fault_ipa); 1990 1991 spin_lock(&vcpu->kvm->mmu_lock); 1992 1993 if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte)) 1994 goto out; 1995 1996 if (pud) { /* HugeTLB */ 1997 *pud = kvm_s2pud_mkyoung(*pud); 1998 pfn = kvm_pud_pfn(*pud); 1999 pfn_valid = true; 2000 } else if (pmd) { /* THP, HugeTLB */ 2001 *pmd = pmd_mkyoung(*pmd); 2002 pfn = pmd_pfn(*pmd); 2003 pfn_valid = true; 2004 } else { 2005 *pte = pte_mkyoung(*pte); /* Just a page... */ 2006 pfn = pte_pfn(*pte); 2007 pfn_valid = true; 2008 } 2009 2010 out: 2011 spin_unlock(&vcpu->kvm->mmu_lock); 2012 if (pfn_valid) 2013 kvm_set_pfn_accessed(pfn); 2014 } 2015 2016 /** 2017 * kvm_handle_guest_abort - handles all 2nd stage aborts 2018 * @vcpu: the VCPU pointer 2019 * 2020 * Any abort that gets to the host is almost guaranteed to be caused by a 2021 * missing second stage translation table entry, which can mean that either the 2022 * guest simply needs more memory and we must allocate an appropriate page or it 2023 * can mean that the guest tried to access I/O memory, which is emulated by user 2024 * space. The distinction is based on the IPA causing the fault and whether this 2025 * memory region has been registered as standard RAM by user space. 2026 */ 2027 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 2028 { 2029 unsigned long fault_status; 2030 phys_addr_t fault_ipa; 2031 struct kvm_memory_slot *memslot; 2032 unsigned long hva; 2033 bool is_iabt, write_fault, writable; 2034 gfn_t gfn; 2035 int ret, idx; 2036 2037 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 2038 2039 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 2040 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 2041 2042 /* Synchronous External Abort? */ 2043 if (kvm_vcpu_dabt_isextabt(vcpu)) { 2044 /* 2045 * For RAS the host kernel may handle this abort. 2046 * There is no need to pass the error into the guest. 2047 */ 2048 if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu))) 2049 return 1; 2050 2051 if (unlikely(!is_iabt)) { 2052 kvm_inject_vabt(vcpu); 2053 return 1; 2054 } 2055 } 2056 2057 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu), 2058 kvm_vcpu_get_hfar(vcpu), fault_ipa); 2059 2060 /* Check the stage-2 fault is trans. fault or write fault */ 2061 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 2062 fault_status != FSC_ACCESS) { 2063 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 2064 kvm_vcpu_trap_get_class(vcpu), 2065 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 2066 (unsigned long)kvm_vcpu_get_hsr(vcpu)); 2067 return -EFAULT; 2068 } 2069 2070 idx = srcu_read_lock(&vcpu->kvm->srcu); 2071 2072 gfn = fault_ipa >> PAGE_SHIFT; 2073 memslot = gfn_to_memslot(vcpu->kvm, gfn); 2074 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 2075 write_fault = kvm_is_write_fault(vcpu); 2076 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 2077 if (is_iabt) { 2078 /* Prefetch Abort on I/O address */ 2079 ret = -ENOEXEC; 2080 goto out; 2081 } 2082 2083 /* 2084 * Check for a cache maintenance operation. Since we 2085 * ended-up here, we know it is outside of any memory 2086 * slot. But we can't find out if that is for a device, 2087 * or if the guest is just being stupid. The only thing 2088 * we know for sure is that this range cannot be cached. 2089 * 2090 * So let's assume that the guest is just being 2091 * cautious, and skip the instruction. 2092 */ 2093 if (kvm_vcpu_dabt_is_cm(vcpu)) { 2094 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 2095 ret = 1; 2096 goto out_unlock; 2097 } 2098 2099 /* 2100 * The IPA is reported as [MAX:12], so we need to 2101 * complement it with the bottom 12 bits from the 2102 * faulting VA. This is always 12 bits, irrespective 2103 * of the page size. 2104 */ 2105 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 2106 ret = io_mem_abort(vcpu, fault_ipa); 2107 goto out_unlock; 2108 } 2109 2110 /* Userspace should not be able to register out-of-bounds IPAs */ 2111 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 2112 2113 if (fault_status == FSC_ACCESS) { 2114 handle_access_fault(vcpu, fault_ipa); 2115 ret = 1; 2116 goto out_unlock; 2117 } 2118 2119 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 2120 if (ret == 0) 2121 ret = 1; 2122 out: 2123 if (ret == -ENOEXEC) { 2124 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 2125 ret = 1; 2126 } 2127 out_unlock: 2128 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2129 return ret; 2130 } 2131 2132 static int handle_hva_to_gpa(struct kvm *kvm, 2133 unsigned long start, 2134 unsigned long end, 2135 int (*handler)(struct kvm *kvm, 2136 gpa_t gpa, u64 size, 2137 void *data), 2138 void *data) 2139 { 2140 struct kvm_memslots *slots; 2141 struct kvm_memory_slot *memslot; 2142 int ret = 0; 2143 2144 slots = kvm_memslots(kvm); 2145 2146 /* we only care about the pages that the guest sees */ 2147 kvm_for_each_memslot(memslot, slots) { 2148 unsigned long hva_start, hva_end; 2149 gfn_t gpa; 2150 2151 hva_start = max(start, memslot->userspace_addr); 2152 hva_end = min(end, memslot->userspace_addr + 2153 (memslot->npages << PAGE_SHIFT)); 2154 if (hva_start >= hva_end) 2155 continue; 2156 2157 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; 2158 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); 2159 } 2160 2161 return ret; 2162 } 2163 2164 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2165 { 2166 unmap_stage2_range(kvm, gpa, size); 2167 return 0; 2168 } 2169 2170 int kvm_unmap_hva_range(struct kvm *kvm, 2171 unsigned long start, unsigned long end) 2172 { 2173 if (!kvm->arch.pgd) 2174 return 0; 2175 2176 trace_kvm_unmap_hva_range(start, end); 2177 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); 2178 return 0; 2179 } 2180 2181 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2182 { 2183 pte_t *pte = (pte_t *)data; 2184 2185 WARN_ON(size != PAGE_SIZE); 2186 /* 2187 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE 2188 * flag clear because MMU notifiers will have unmapped a huge PMD before 2189 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and 2190 * therefore stage2_set_pte() never needs to clear out a huge PMD 2191 * through this calling path. 2192 */ 2193 stage2_set_pte(kvm, NULL, gpa, pte, 0); 2194 return 0; 2195 } 2196 2197 2198 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 2199 { 2200 unsigned long end = hva + PAGE_SIZE; 2201 kvm_pfn_t pfn = pte_pfn(pte); 2202 pte_t stage2_pte; 2203 2204 if (!kvm->arch.pgd) 2205 return 0; 2206 2207 trace_kvm_set_spte_hva(hva); 2208 2209 /* 2210 * We've moved a page around, probably through CoW, so let's treat it 2211 * just like a translation fault and clean the cache to the PoC. 2212 */ 2213 clean_dcache_guest_page(pfn, PAGE_SIZE); 2214 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); 2215 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); 2216 2217 return 0; 2218 } 2219 2220 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2221 { 2222 pud_t *pud; 2223 pmd_t *pmd; 2224 pte_t *pte; 2225 2226 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2227 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) 2228 return 0; 2229 2230 if (pud) 2231 return stage2_pudp_test_and_clear_young(pud); 2232 else if (pmd) 2233 return stage2_pmdp_test_and_clear_young(pmd); 2234 else 2235 return stage2_ptep_test_and_clear_young(pte); 2236 } 2237 2238 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2239 { 2240 pud_t *pud; 2241 pmd_t *pmd; 2242 pte_t *pte; 2243 2244 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2245 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) 2246 return 0; 2247 2248 if (pud) 2249 return kvm_s2pud_young(*pud); 2250 else if (pmd) 2251 return pmd_young(*pmd); 2252 else 2253 return pte_young(*pte); 2254 } 2255 2256 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 2257 { 2258 if (!kvm->arch.pgd) 2259 return 0; 2260 trace_kvm_age_hva(start, end); 2261 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 2262 } 2263 2264 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 2265 { 2266 if (!kvm->arch.pgd) 2267 return 0; 2268 trace_kvm_test_age_hva(hva); 2269 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, 2270 kvm_test_age_hva_handler, NULL); 2271 } 2272 2273 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 2274 { 2275 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 2276 } 2277 2278 phys_addr_t kvm_mmu_get_httbr(void) 2279 { 2280 if (__kvm_cpu_uses_extended_idmap()) 2281 return virt_to_phys(merged_hyp_pgd); 2282 else 2283 return virt_to_phys(hyp_pgd); 2284 } 2285 2286 phys_addr_t kvm_get_idmap_vector(void) 2287 { 2288 return hyp_idmap_vector; 2289 } 2290 2291 static int kvm_map_idmap_text(pgd_t *pgd) 2292 { 2293 int err; 2294 2295 /* Create the idmap in the boot page tables */ 2296 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 2297 hyp_idmap_start, hyp_idmap_end, 2298 __phys_to_pfn(hyp_idmap_start), 2299 PAGE_HYP_EXEC); 2300 if (err) 2301 kvm_err("Failed to idmap %lx-%lx\n", 2302 hyp_idmap_start, hyp_idmap_end); 2303 2304 return err; 2305 } 2306 2307 int kvm_mmu_init(void) 2308 { 2309 int err; 2310 2311 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 2312 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 2313 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 2314 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 2315 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 2316 2317 /* 2318 * We rely on the linker script to ensure at build time that the HYP 2319 * init code does not cross a page boundary. 2320 */ 2321 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 2322 2323 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 2324 kvm_debug("HYP VA range: %lx:%lx\n", 2325 kern_hyp_va(PAGE_OFFSET), 2326 kern_hyp_va((unsigned long)high_memory - 1)); 2327 2328 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 2329 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 2330 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 2331 /* 2332 * The idmap page is intersecting with the VA space, 2333 * it is not safe to continue further. 2334 */ 2335 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 2336 err = -EINVAL; 2337 goto out; 2338 } 2339 2340 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); 2341 if (!hyp_pgd) { 2342 kvm_err("Hyp mode PGD not allocated\n"); 2343 err = -ENOMEM; 2344 goto out; 2345 } 2346 2347 if (__kvm_cpu_uses_extended_idmap()) { 2348 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2349 hyp_pgd_order); 2350 if (!boot_hyp_pgd) { 2351 kvm_err("Hyp boot PGD not allocated\n"); 2352 err = -ENOMEM; 2353 goto out; 2354 } 2355 2356 err = kvm_map_idmap_text(boot_hyp_pgd); 2357 if (err) 2358 goto out; 2359 2360 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 2361 if (!merged_hyp_pgd) { 2362 kvm_err("Failed to allocate extra HYP pgd\n"); 2363 goto out; 2364 } 2365 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, 2366 hyp_idmap_start); 2367 } else { 2368 err = kvm_map_idmap_text(hyp_pgd); 2369 if (err) 2370 goto out; 2371 } 2372 2373 io_map_base = hyp_idmap_start; 2374 return 0; 2375 out: 2376 free_hyp_pgds(); 2377 return err; 2378 } 2379 2380 void kvm_arch_commit_memory_region(struct kvm *kvm, 2381 const struct kvm_userspace_memory_region *mem, 2382 struct kvm_memory_slot *old, 2383 const struct kvm_memory_slot *new, 2384 enum kvm_mr_change change) 2385 { 2386 /* 2387 * At this point memslot has been committed and there is an 2388 * allocated dirty_bitmap[], dirty pages will be tracked while the 2389 * memory slot is write protected. 2390 */ 2391 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2392 /* 2393 * If we're with initial-all-set, we don't need to write 2394 * protect any pages because they're all reported as dirty. 2395 * Huge pages and normal pages will be write protect gradually. 2396 */ 2397 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 2398 kvm_mmu_wp_memory_region(kvm, mem->slot); 2399 } 2400 } 2401 } 2402 2403 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2404 struct kvm_memory_slot *memslot, 2405 const struct kvm_userspace_memory_region *mem, 2406 enum kvm_mr_change change) 2407 { 2408 hva_t hva = mem->userspace_addr; 2409 hva_t reg_end = hva + mem->memory_size; 2410 bool writable = !(mem->flags & KVM_MEM_READONLY); 2411 int ret = 0; 2412 2413 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2414 change != KVM_MR_FLAGS_ONLY) 2415 return 0; 2416 2417 /* 2418 * Prevent userspace from creating a memory region outside of the IPA 2419 * space addressable by the KVM guest IPA space. 2420 */ 2421 if (memslot->base_gfn + memslot->npages >= 2422 (kvm_phys_size(kvm) >> PAGE_SHIFT)) 2423 return -EFAULT; 2424 2425 mmap_read_lock(current->mm); 2426 /* 2427 * A memory region could potentially cover multiple VMAs, and any holes 2428 * between them, so iterate over all of them to find out if we can map 2429 * any of them right now. 2430 * 2431 * +--------------------------------------------+ 2432 * +---------------+----------------+ +----------------+ 2433 * | : VMA 1 | VMA 2 | | VMA 3 : | 2434 * +---------------+----------------+ +----------------+ 2435 * | memory region | 2436 * +--------------------------------------------+ 2437 */ 2438 do { 2439 struct vm_area_struct *vma = find_vma(current->mm, hva); 2440 hva_t vm_start, vm_end; 2441 2442 if (!vma || vma->vm_start >= reg_end) 2443 break; 2444 2445 /* 2446 * Take the intersection of this VMA with the memory region 2447 */ 2448 vm_start = max(hva, vma->vm_start); 2449 vm_end = min(reg_end, vma->vm_end); 2450 2451 if (vma->vm_flags & VM_PFNMAP) { 2452 gpa_t gpa = mem->guest_phys_addr + 2453 (vm_start - mem->userspace_addr); 2454 phys_addr_t pa; 2455 2456 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 2457 pa += vm_start - vma->vm_start; 2458 2459 /* IO region dirty page logging not allowed */ 2460 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2461 ret = -EINVAL; 2462 goto out; 2463 } 2464 2465 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 2466 vm_end - vm_start, 2467 writable); 2468 if (ret) 2469 break; 2470 } 2471 hva = vm_end; 2472 } while (hva < reg_end); 2473 2474 if (change == KVM_MR_FLAGS_ONLY) 2475 goto out; 2476 2477 spin_lock(&kvm->mmu_lock); 2478 if (ret) 2479 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); 2480 else 2481 stage2_flush_memslot(kvm, memslot); 2482 spin_unlock(&kvm->mmu_lock); 2483 out: 2484 mmap_read_unlock(current->mm); 2485 return ret; 2486 } 2487 2488 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2489 { 2490 } 2491 2492 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2493 { 2494 } 2495 2496 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2497 { 2498 kvm_free_stage2_pgd(kvm); 2499 } 2500 2501 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2502 struct kvm_memory_slot *slot) 2503 { 2504 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2505 phys_addr_t size = slot->npages << PAGE_SHIFT; 2506 2507 spin_lock(&kvm->mmu_lock); 2508 unmap_stage2_range(kvm, gpa, size); 2509 spin_unlock(&kvm->mmu_lock); 2510 } 2511 2512 /* 2513 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2514 * 2515 * Main problems: 2516 * - S/W ops are local to a CPU (not broadcast) 2517 * - We have line migration behind our back (speculation) 2518 * - System caches don't support S/W at all (damn!) 2519 * 2520 * In the face of the above, the best we can do is to try and convert 2521 * S/W ops to VA ops. Because the guest is not allowed to infer the 2522 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2523 * which is a rather good thing for us. 2524 * 2525 * Also, it is only used when turning caches on/off ("The expected 2526 * usage of the cache maintenance instructions that operate by set/way 2527 * is associated with the cache maintenance instructions associated 2528 * with the powerdown and powerup of caches, if this is required by 2529 * the implementation."). 2530 * 2531 * We use the following policy: 2532 * 2533 * - If we trap a S/W operation, we enable VM trapping to detect 2534 * caches being turned on/off, and do a full clean. 2535 * 2536 * - We flush the caches on both caches being turned on and off. 2537 * 2538 * - Once the caches are enabled, we stop trapping VM ops. 2539 */ 2540 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2541 { 2542 unsigned long hcr = *vcpu_hcr(vcpu); 2543 2544 /* 2545 * If this is the first time we do a S/W operation 2546 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2547 * VM trapping. 2548 * 2549 * Otherwise, rely on the VM trapping to wait for the MMU + 2550 * Caches to be turned off. At that point, we'll be able to 2551 * clean the caches again. 2552 */ 2553 if (!(hcr & HCR_TVM)) { 2554 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2555 vcpu_has_cache_enabled(vcpu)); 2556 stage2_flush_vm(vcpu->kvm); 2557 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2558 } 2559 } 2560 2561 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2562 { 2563 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2564 2565 /* 2566 * If switching the MMU+caches on, need to invalidate the caches. 2567 * If switching it off, need to clean the caches. 2568 * Clean + invalidate does the trick always. 2569 */ 2570 if (now_enabled != was_enabled) 2571 stage2_flush_vm(vcpu->kvm); 2572 2573 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2574 if (now_enabled) 2575 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2576 2577 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2578 } 2579