1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_ras.h> 18 #include <asm/kvm_asm.h> 19 #include <asm/kvm_emulate.h> 20 #include <asm/virt.h> 21 22 #include "trace.h" 23 24 static pgd_t *boot_hyp_pgd; 25 static pgd_t *hyp_pgd; 26 static pgd_t *merged_hyp_pgd; 27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 28 29 static unsigned long hyp_idmap_start; 30 static unsigned long hyp_idmap_end; 31 static phys_addr_t hyp_idmap_vector; 32 33 static unsigned long io_map_base; 34 35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) 36 37 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) 38 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) 39 40 static bool is_iomap(unsigned long flags) 41 { 42 return flags & KVM_S2PTE_FLAG_IS_IOMAP; 43 } 44 45 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 46 { 47 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 48 } 49 50 /** 51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 52 * @kvm: pointer to kvm structure. 53 * 54 * Interface to HYP function to flush all VM TLB entries 55 */ 56 void kvm_flush_remote_tlbs(struct kvm *kvm) 57 { 58 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 59 } 60 61 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, 62 int level) 63 { 64 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level); 65 } 66 67 /* 68 * D-Cache management functions. They take the page table entries by 69 * value, as they are flushing the cache using the kernel mapping (or 70 * kmap on 32bit). 71 */ 72 static void kvm_flush_dcache_pte(pte_t pte) 73 { 74 __kvm_flush_dcache_pte(pte); 75 } 76 77 static void kvm_flush_dcache_pmd(pmd_t pmd) 78 { 79 __kvm_flush_dcache_pmd(pmd); 80 } 81 82 static void kvm_flush_dcache_pud(pud_t pud) 83 { 84 __kvm_flush_dcache_pud(pud); 85 } 86 87 static bool kvm_is_device_pfn(unsigned long pfn) 88 { 89 return !pfn_valid(pfn); 90 } 91 92 /** 93 * stage2_dissolve_pmd() - clear and flush huge PMD entry 94 * @mmu: pointer to mmu structure to operate on 95 * @addr: IPA 96 * @pmd: pmd pointer for IPA 97 * 98 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. 99 */ 100 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd) 101 { 102 if (!pmd_thp_or_huge(*pmd)) 103 return; 104 105 pmd_clear(pmd); 106 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 107 put_page(virt_to_page(pmd)); 108 } 109 110 /** 111 * stage2_dissolve_pud() - clear and flush huge PUD entry 112 * @mmu: pointer to mmu structure to operate on 113 * @addr: IPA 114 * @pud: pud pointer for IPA 115 * 116 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. 117 */ 118 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp) 119 { 120 struct kvm *kvm = mmu->kvm; 121 122 if (!stage2_pud_huge(kvm, *pudp)) 123 return; 124 125 stage2_pud_clear(kvm, pudp); 126 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 127 put_page(virt_to_page(pudp)); 128 } 129 130 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr) 131 { 132 struct kvm *kvm = mmu->kvm; 133 p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL); 134 stage2_pgd_clear(kvm, pgd); 135 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 136 stage2_p4d_free(kvm, p4d_table); 137 put_page(virt_to_page(pgd)); 138 } 139 140 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr) 141 { 142 struct kvm *kvm = mmu->kvm; 143 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0); 144 stage2_p4d_clear(kvm, p4d); 145 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 146 stage2_pud_free(kvm, pud_table); 147 put_page(virt_to_page(p4d)); 148 } 149 150 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr) 151 { 152 struct kvm *kvm = mmu->kvm; 153 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); 154 155 VM_BUG_ON(stage2_pud_huge(kvm, *pud)); 156 stage2_pud_clear(kvm, pud); 157 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 158 stage2_pmd_free(kvm, pmd_table); 159 put_page(virt_to_page(pud)); 160 } 161 162 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr) 163 { 164 pte_t *pte_table = pte_offset_kernel(pmd, 0); 165 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 166 pmd_clear(pmd); 167 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); 168 free_page((unsigned long)pte_table); 169 put_page(virt_to_page(pmd)); 170 } 171 172 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) 173 { 174 WRITE_ONCE(*ptep, new_pte); 175 dsb(ishst); 176 } 177 178 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) 179 { 180 WRITE_ONCE(*pmdp, new_pmd); 181 dsb(ishst); 182 } 183 184 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) 185 { 186 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); 187 } 188 189 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) 190 { 191 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); 192 dsb(ishst); 193 } 194 195 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp) 196 { 197 WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp)); 198 dsb(ishst); 199 } 200 201 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp) 202 { 203 #ifndef __PAGETABLE_P4D_FOLDED 204 WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp)); 205 dsb(ishst); 206 #endif 207 } 208 209 /* 210 * Unmapping vs dcache management: 211 * 212 * If a guest maps certain memory pages as uncached, all writes will 213 * bypass the data cache and go directly to RAM. However, the CPUs 214 * can still speculate reads (not writes) and fill cache lines with 215 * data. 216 * 217 * Those cache lines will be *clean* cache lines though, so a 218 * clean+invalidate operation is equivalent to an invalidate 219 * operation, because no cache lines are marked dirty. 220 * 221 * Those clean cache lines could be filled prior to an uncached write 222 * by the guest, and the cache coherent IO subsystem would therefore 223 * end up writing old data to disk. 224 * 225 * This is why right after unmapping a page/section and invalidating 226 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure 227 * the IO subsystem will never hit in the cache. 228 * 229 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 230 * we then fully enforce cacheability of RAM, no matter what the guest 231 * does. 232 */ 233 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, 234 phys_addr_t addr, phys_addr_t end) 235 { 236 phys_addr_t start_addr = addr; 237 pte_t *pte, *start_pte; 238 239 start_pte = pte = pte_offset_kernel(pmd, addr); 240 do { 241 if (!pte_none(*pte)) { 242 pte_t old_pte = *pte; 243 244 kvm_set_pte(pte, __pte(0)); 245 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); 246 247 /* No need to invalidate the cache for device mappings */ 248 if (!kvm_is_device_pfn(pte_pfn(old_pte))) 249 kvm_flush_dcache_pte(old_pte); 250 251 put_page(virt_to_page(pte)); 252 } 253 } while (pte++, addr += PAGE_SIZE, addr != end); 254 255 if (stage2_pte_table_empty(mmu->kvm, start_pte)) 256 clear_stage2_pmd_entry(mmu, pmd, start_addr); 257 } 258 259 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 260 phys_addr_t addr, phys_addr_t end) 261 { 262 struct kvm *kvm = mmu->kvm; 263 phys_addr_t next, start_addr = addr; 264 pmd_t *pmd, *start_pmd; 265 266 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); 267 do { 268 next = stage2_pmd_addr_end(kvm, addr, end); 269 if (!pmd_none(*pmd)) { 270 if (pmd_thp_or_huge(*pmd)) { 271 pmd_t old_pmd = *pmd; 272 273 pmd_clear(pmd); 274 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 275 276 kvm_flush_dcache_pmd(old_pmd); 277 278 put_page(virt_to_page(pmd)); 279 } else { 280 unmap_stage2_ptes(mmu, pmd, addr, next); 281 } 282 } 283 } while (pmd++, addr = next, addr != end); 284 285 if (stage2_pmd_table_empty(kvm, start_pmd)) 286 clear_stage2_pud_entry(mmu, pud, start_addr); 287 } 288 289 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 290 phys_addr_t addr, phys_addr_t end) 291 { 292 struct kvm *kvm = mmu->kvm; 293 phys_addr_t next, start_addr = addr; 294 pud_t *pud, *start_pud; 295 296 start_pud = pud = stage2_pud_offset(kvm, p4d, addr); 297 do { 298 next = stage2_pud_addr_end(kvm, addr, end); 299 if (!stage2_pud_none(kvm, *pud)) { 300 if (stage2_pud_huge(kvm, *pud)) { 301 pud_t old_pud = *pud; 302 303 stage2_pud_clear(kvm, pud); 304 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 305 kvm_flush_dcache_pud(old_pud); 306 put_page(virt_to_page(pud)); 307 } else { 308 unmap_stage2_pmds(mmu, pud, addr, next); 309 } 310 } 311 } while (pud++, addr = next, addr != end); 312 313 if (stage2_pud_table_empty(kvm, start_pud)) 314 clear_stage2_p4d_entry(mmu, p4d, start_addr); 315 } 316 317 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 318 phys_addr_t addr, phys_addr_t end) 319 { 320 struct kvm *kvm = mmu->kvm; 321 phys_addr_t next, start_addr = addr; 322 p4d_t *p4d, *start_p4d; 323 324 start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr); 325 do { 326 next = stage2_p4d_addr_end(kvm, addr, end); 327 if (!stage2_p4d_none(kvm, *p4d)) 328 unmap_stage2_puds(mmu, p4d, addr, next); 329 } while (p4d++, addr = next, addr != end); 330 331 if (stage2_p4d_table_empty(kvm, start_p4d)) 332 clear_stage2_pgd_entry(mmu, pgd, start_addr); 333 } 334 335 /** 336 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 337 * @kvm: The VM pointer 338 * @start: The intermediate physical base address of the range to unmap 339 * @size: The size of the area to unmap 340 * 341 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 342 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 343 * destroying the VM), otherwise another faulting VCPU may come in and mess 344 * with things behind our backs. 345 */ 346 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 347 bool may_block) 348 { 349 struct kvm *kvm = mmu->kvm; 350 pgd_t *pgd; 351 phys_addr_t addr = start, end = start + size; 352 phys_addr_t next; 353 354 assert_spin_locked(&kvm->mmu_lock); 355 WARN_ON(size & ~PAGE_MASK); 356 357 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 358 do { 359 /* 360 * Make sure the page table is still active, as another thread 361 * could have possibly freed the page table, while we released 362 * the lock. 363 */ 364 if (!READ_ONCE(mmu->pgd)) 365 break; 366 next = stage2_pgd_addr_end(kvm, addr, end); 367 if (!stage2_pgd_none(kvm, *pgd)) 368 unmap_stage2_p4ds(mmu, pgd, addr, next); 369 /* 370 * If the range is too large, release the kvm->mmu_lock 371 * to prevent starvation and lockup detector warnings. 372 */ 373 if (may_block && next != end) 374 cond_resched_lock(&kvm->mmu_lock); 375 } while (pgd++, addr = next, addr != end); 376 } 377 378 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 379 { 380 __unmap_stage2_range(mmu, start, size, true); 381 } 382 383 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, 384 phys_addr_t addr, phys_addr_t end) 385 { 386 pte_t *pte; 387 388 pte = pte_offset_kernel(pmd, addr); 389 do { 390 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) 391 kvm_flush_dcache_pte(*pte); 392 } while (pte++, addr += PAGE_SIZE, addr != end); 393 } 394 395 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 396 phys_addr_t addr, phys_addr_t end) 397 { 398 struct kvm *kvm = mmu->kvm; 399 pmd_t *pmd; 400 phys_addr_t next; 401 402 pmd = stage2_pmd_offset(kvm, pud, addr); 403 do { 404 next = stage2_pmd_addr_end(kvm, addr, end); 405 if (!pmd_none(*pmd)) { 406 if (pmd_thp_or_huge(*pmd)) 407 kvm_flush_dcache_pmd(*pmd); 408 else 409 stage2_flush_ptes(mmu, pmd, addr, next); 410 } 411 } while (pmd++, addr = next, addr != end); 412 } 413 414 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 415 phys_addr_t addr, phys_addr_t end) 416 { 417 struct kvm *kvm = mmu->kvm; 418 pud_t *pud; 419 phys_addr_t next; 420 421 pud = stage2_pud_offset(kvm, p4d, addr); 422 do { 423 next = stage2_pud_addr_end(kvm, addr, end); 424 if (!stage2_pud_none(kvm, *pud)) { 425 if (stage2_pud_huge(kvm, *pud)) 426 kvm_flush_dcache_pud(*pud); 427 else 428 stage2_flush_pmds(mmu, pud, addr, next); 429 } 430 } while (pud++, addr = next, addr != end); 431 } 432 433 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 434 phys_addr_t addr, phys_addr_t end) 435 { 436 struct kvm *kvm = mmu->kvm; 437 p4d_t *p4d; 438 phys_addr_t next; 439 440 p4d = stage2_p4d_offset(kvm, pgd, addr); 441 do { 442 next = stage2_p4d_addr_end(kvm, addr, end); 443 if (!stage2_p4d_none(kvm, *p4d)) 444 stage2_flush_puds(mmu, p4d, addr, next); 445 } while (p4d++, addr = next, addr != end); 446 } 447 448 static void stage2_flush_memslot(struct kvm *kvm, 449 struct kvm_memory_slot *memslot) 450 { 451 struct kvm_s2_mmu *mmu = &kvm->arch.mmu; 452 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 453 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 454 phys_addr_t next; 455 pgd_t *pgd; 456 457 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 458 do { 459 next = stage2_pgd_addr_end(kvm, addr, end); 460 if (!stage2_pgd_none(kvm, *pgd)) 461 stage2_flush_p4ds(mmu, pgd, addr, next); 462 463 if (next != end) 464 cond_resched_lock(&kvm->mmu_lock); 465 } while (pgd++, addr = next, addr != end); 466 } 467 468 /** 469 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 470 * @kvm: The struct kvm pointer 471 * 472 * Go through the stage 2 page tables and invalidate any cache lines 473 * backing memory already mapped to the VM. 474 */ 475 static void stage2_flush_vm(struct kvm *kvm) 476 { 477 struct kvm_memslots *slots; 478 struct kvm_memory_slot *memslot; 479 int idx; 480 481 idx = srcu_read_lock(&kvm->srcu); 482 spin_lock(&kvm->mmu_lock); 483 484 slots = kvm_memslots(kvm); 485 kvm_for_each_memslot(memslot, slots) 486 stage2_flush_memslot(kvm, memslot); 487 488 spin_unlock(&kvm->mmu_lock); 489 srcu_read_unlock(&kvm->srcu, idx); 490 } 491 492 static void clear_hyp_pgd_entry(pgd_t *pgd) 493 { 494 p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL); 495 pgd_clear(pgd); 496 p4d_free(NULL, p4d_table); 497 put_page(virt_to_page(pgd)); 498 } 499 500 static void clear_hyp_p4d_entry(p4d_t *p4d) 501 { 502 pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL); 503 VM_BUG_ON(p4d_huge(*p4d)); 504 p4d_clear(p4d); 505 pud_free(NULL, pud_table); 506 put_page(virt_to_page(p4d)); 507 } 508 509 static void clear_hyp_pud_entry(pud_t *pud) 510 { 511 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); 512 VM_BUG_ON(pud_huge(*pud)); 513 pud_clear(pud); 514 pmd_free(NULL, pmd_table); 515 put_page(virt_to_page(pud)); 516 } 517 518 static void clear_hyp_pmd_entry(pmd_t *pmd) 519 { 520 pte_t *pte_table = pte_offset_kernel(pmd, 0); 521 VM_BUG_ON(pmd_thp_or_huge(*pmd)); 522 pmd_clear(pmd); 523 pte_free_kernel(NULL, pte_table); 524 put_page(virt_to_page(pmd)); 525 } 526 527 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 528 { 529 pte_t *pte, *start_pte; 530 531 start_pte = pte = pte_offset_kernel(pmd, addr); 532 do { 533 if (!pte_none(*pte)) { 534 kvm_set_pte(pte, __pte(0)); 535 put_page(virt_to_page(pte)); 536 } 537 } while (pte++, addr += PAGE_SIZE, addr != end); 538 539 if (hyp_pte_table_empty(start_pte)) 540 clear_hyp_pmd_entry(pmd); 541 } 542 543 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) 544 { 545 phys_addr_t next; 546 pmd_t *pmd, *start_pmd; 547 548 start_pmd = pmd = pmd_offset(pud, addr); 549 do { 550 next = pmd_addr_end(addr, end); 551 /* Hyp doesn't use huge pmds */ 552 if (!pmd_none(*pmd)) 553 unmap_hyp_ptes(pmd, addr, next); 554 } while (pmd++, addr = next, addr != end); 555 556 if (hyp_pmd_table_empty(start_pmd)) 557 clear_hyp_pud_entry(pud); 558 } 559 560 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end) 561 { 562 phys_addr_t next; 563 pud_t *pud, *start_pud; 564 565 start_pud = pud = pud_offset(p4d, addr); 566 do { 567 next = pud_addr_end(addr, end); 568 /* Hyp doesn't use huge puds */ 569 if (!pud_none(*pud)) 570 unmap_hyp_pmds(pud, addr, next); 571 } while (pud++, addr = next, addr != end); 572 573 if (hyp_pud_table_empty(start_pud)) 574 clear_hyp_p4d_entry(p4d); 575 } 576 577 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) 578 { 579 phys_addr_t next; 580 p4d_t *p4d, *start_p4d; 581 582 start_p4d = p4d = p4d_offset(pgd, addr); 583 do { 584 next = p4d_addr_end(addr, end); 585 /* Hyp doesn't use huge p4ds */ 586 if (!p4d_none(*p4d)) 587 unmap_hyp_puds(p4d, addr, next); 588 } while (p4d++, addr = next, addr != end); 589 590 if (hyp_p4d_table_empty(start_p4d)) 591 clear_hyp_pgd_entry(pgd); 592 } 593 594 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) 595 { 596 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); 597 } 598 599 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, 600 phys_addr_t start, u64 size) 601 { 602 pgd_t *pgd; 603 phys_addr_t addr = start, end = start + size; 604 phys_addr_t next; 605 606 /* 607 * We don't unmap anything from HYP, except at the hyp tear down. 608 * Hence, we don't have to invalidate the TLBs here. 609 */ 610 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 611 do { 612 next = pgd_addr_end(addr, end); 613 if (!pgd_none(*pgd)) 614 unmap_hyp_p4ds(pgd, addr, next); 615 } while (pgd++, addr = next, addr != end); 616 } 617 618 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) 619 { 620 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); 621 } 622 623 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) 624 { 625 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); 626 } 627 628 /** 629 * free_hyp_pgds - free Hyp-mode page tables 630 * 631 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and 632 * therefore contains either mappings in the kernel memory area (above 633 * PAGE_OFFSET), or device mappings in the idmap range. 634 * 635 * boot_hyp_pgd should only map the idmap range, and is only used in 636 * the extended idmap case. 637 */ 638 void free_hyp_pgds(void) 639 { 640 pgd_t *id_pgd; 641 642 mutex_lock(&kvm_hyp_pgd_mutex); 643 644 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; 645 646 if (id_pgd) { 647 /* In case we never called hyp_mmu_init() */ 648 if (!io_map_base) 649 io_map_base = hyp_idmap_start; 650 unmap_hyp_idmap_range(id_pgd, io_map_base, 651 hyp_idmap_start + PAGE_SIZE - io_map_base); 652 } 653 654 if (boot_hyp_pgd) { 655 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); 656 boot_hyp_pgd = NULL; 657 } 658 659 if (hyp_pgd) { 660 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), 661 (uintptr_t)high_memory - PAGE_OFFSET); 662 663 free_pages((unsigned long)hyp_pgd, hyp_pgd_order); 664 hyp_pgd = NULL; 665 } 666 if (merged_hyp_pgd) { 667 clear_page(merged_hyp_pgd); 668 free_page((unsigned long)merged_hyp_pgd); 669 merged_hyp_pgd = NULL; 670 } 671 672 mutex_unlock(&kvm_hyp_pgd_mutex); 673 } 674 675 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, 676 unsigned long end, unsigned long pfn, 677 pgprot_t prot) 678 { 679 pte_t *pte; 680 unsigned long addr; 681 682 addr = start; 683 do { 684 pte = pte_offset_kernel(pmd, addr); 685 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); 686 get_page(virt_to_page(pte)); 687 pfn++; 688 } while (addr += PAGE_SIZE, addr != end); 689 } 690 691 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, 692 unsigned long end, unsigned long pfn, 693 pgprot_t prot) 694 { 695 pmd_t *pmd; 696 pte_t *pte; 697 unsigned long addr, next; 698 699 addr = start; 700 do { 701 pmd = pmd_offset(pud, addr); 702 703 BUG_ON(pmd_sect(*pmd)); 704 705 if (pmd_none(*pmd)) { 706 pte = pte_alloc_one_kernel(NULL); 707 if (!pte) { 708 kvm_err("Cannot allocate Hyp pte\n"); 709 return -ENOMEM; 710 } 711 kvm_pmd_populate(pmd, pte); 712 get_page(virt_to_page(pmd)); 713 } 714 715 next = pmd_addr_end(addr, end); 716 717 create_hyp_pte_mappings(pmd, addr, next, pfn, prot); 718 pfn += (next - addr) >> PAGE_SHIFT; 719 } while (addr = next, addr != end); 720 721 return 0; 722 } 723 724 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start, 725 unsigned long end, unsigned long pfn, 726 pgprot_t prot) 727 { 728 pud_t *pud; 729 pmd_t *pmd; 730 unsigned long addr, next; 731 int ret; 732 733 addr = start; 734 do { 735 pud = pud_offset(p4d, addr); 736 737 if (pud_none_or_clear_bad(pud)) { 738 pmd = pmd_alloc_one(NULL, addr); 739 if (!pmd) { 740 kvm_err("Cannot allocate Hyp pmd\n"); 741 return -ENOMEM; 742 } 743 kvm_pud_populate(pud, pmd); 744 get_page(virt_to_page(pud)); 745 } 746 747 next = pud_addr_end(addr, end); 748 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); 749 if (ret) 750 return ret; 751 pfn += (next - addr) >> PAGE_SHIFT; 752 } while (addr = next, addr != end); 753 754 return 0; 755 } 756 757 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start, 758 unsigned long end, unsigned long pfn, 759 pgprot_t prot) 760 { 761 p4d_t *p4d; 762 pud_t *pud; 763 unsigned long addr, next; 764 int ret; 765 766 addr = start; 767 do { 768 p4d = p4d_offset(pgd, addr); 769 770 if (p4d_none(*p4d)) { 771 pud = pud_alloc_one(NULL, addr); 772 if (!pud) { 773 kvm_err("Cannot allocate Hyp pud\n"); 774 return -ENOMEM; 775 } 776 kvm_p4d_populate(p4d, pud); 777 get_page(virt_to_page(p4d)); 778 } 779 780 next = p4d_addr_end(addr, end); 781 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot); 782 if (ret) 783 return ret; 784 pfn += (next - addr) >> PAGE_SHIFT; 785 } while (addr = next, addr != end); 786 787 return 0; 788 } 789 790 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, 791 unsigned long start, unsigned long end, 792 unsigned long pfn, pgprot_t prot) 793 { 794 pgd_t *pgd; 795 p4d_t *p4d; 796 unsigned long addr, next; 797 int err = 0; 798 799 mutex_lock(&kvm_hyp_pgd_mutex); 800 addr = start & PAGE_MASK; 801 end = PAGE_ALIGN(end); 802 do { 803 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); 804 805 if (pgd_none(*pgd)) { 806 p4d = p4d_alloc_one(NULL, addr); 807 if (!p4d) { 808 kvm_err("Cannot allocate Hyp p4d\n"); 809 err = -ENOMEM; 810 goto out; 811 } 812 kvm_pgd_populate(pgd, p4d); 813 get_page(virt_to_page(pgd)); 814 } 815 816 next = pgd_addr_end(addr, end); 817 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot); 818 if (err) 819 goto out; 820 pfn += (next - addr) >> PAGE_SHIFT; 821 } while (addr = next, addr != end); 822 out: 823 mutex_unlock(&kvm_hyp_pgd_mutex); 824 return err; 825 } 826 827 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 828 { 829 if (!is_vmalloc_addr(kaddr)) { 830 BUG_ON(!virt_addr_valid(kaddr)); 831 return __pa(kaddr); 832 } else { 833 return page_to_phys(vmalloc_to_page(kaddr)) + 834 offset_in_page(kaddr); 835 } 836 } 837 838 /** 839 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 840 * @from: The virtual kernel start address of the range 841 * @to: The virtual kernel end address of the range (exclusive) 842 * @prot: The protection to be applied to this range 843 * 844 * The same virtual address as the kernel virtual address is also used 845 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 846 * physical pages. 847 */ 848 int create_hyp_mappings(void *from, void *to, pgprot_t prot) 849 { 850 phys_addr_t phys_addr; 851 unsigned long virt_addr; 852 unsigned long start = kern_hyp_va((unsigned long)from); 853 unsigned long end = kern_hyp_va((unsigned long)to); 854 855 if (is_kernel_in_hyp_mode()) 856 return 0; 857 858 start = start & PAGE_MASK; 859 end = PAGE_ALIGN(end); 860 861 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 862 int err; 863 864 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 865 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, 866 virt_addr, virt_addr + PAGE_SIZE, 867 __phys_to_pfn(phys_addr), 868 prot); 869 if (err) 870 return err; 871 } 872 873 return 0; 874 } 875 876 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 877 unsigned long *haddr, pgprot_t prot) 878 { 879 pgd_t *pgd = hyp_pgd; 880 unsigned long base; 881 int ret = 0; 882 883 mutex_lock(&kvm_hyp_pgd_mutex); 884 885 /* 886 * This assumes that we have enough space below the idmap 887 * page to allocate our VAs. If not, the check below will 888 * kick. A potential alternative would be to detect that 889 * overflow and switch to an allocation above the idmap. 890 * 891 * The allocated size is always a multiple of PAGE_SIZE. 892 */ 893 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 894 base = io_map_base - size; 895 896 /* 897 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 898 * allocating the new area, as it would indicate we've 899 * overflowed the idmap/IO address range. 900 */ 901 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 902 ret = -ENOMEM; 903 else 904 io_map_base = base; 905 906 mutex_unlock(&kvm_hyp_pgd_mutex); 907 908 if (ret) 909 goto out; 910 911 if (__kvm_cpu_uses_extended_idmap()) 912 pgd = boot_hyp_pgd; 913 914 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 915 base, base + size, 916 __phys_to_pfn(phys_addr), prot); 917 if (ret) 918 goto out; 919 920 *haddr = base + offset_in_page(phys_addr); 921 922 out: 923 return ret; 924 } 925 926 /** 927 * create_hyp_io_mappings - Map IO into both kernel and HYP 928 * @phys_addr: The physical start address which gets mapped 929 * @size: Size of the region being mapped 930 * @kaddr: Kernel VA for this mapping 931 * @haddr: HYP VA for this mapping 932 */ 933 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 934 void __iomem **kaddr, 935 void __iomem **haddr) 936 { 937 unsigned long addr; 938 int ret; 939 940 *kaddr = ioremap(phys_addr, size); 941 if (!*kaddr) 942 return -ENOMEM; 943 944 if (is_kernel_in_hyp_mode()) { 945 *haddr = *kaddr; 946 return 0; 947 } 948 949 ret = __create_hyp_private_mapping(phys_addr, size, 950 &addr, PAGE_HYP_DEVICE); 951 if (ret) { 952 iounmap(*kaddr); 953 *kaddr = NULL; 954 *haddr = NULL; 955 return ret; 956 } 957 958 *haddr = (void __iomem *)addr; 959 return 0; 960 } 961 962 /** 963 * create_hyp_exec_mappings - Map an executable range into HYP 964 * @phys_addr: The physical start address which gets mapped 965 * @size: Size of the region being mapped 966 * @haddr: HYP VA for this mapping 967 */ 968 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 969 void **haddr) 970 { 971 unsigned long addr; 972 int ret; 973 974 BUG_ON(is_kernel_in_hyp_mode()); 975 976 ret = __create_hyp_private_mapping(phys_addr, size, 977 &addr, PAGE_HYP_EXEC); 978 if (ret) { 979 *haddr = NULL; 980 return ret; 981 } 982 983 *haddr = (void *)addr; 984 return 0; 985 } 986 987 /** 988 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 989 * @kvm: The pointer to the KVM structure 990 * @mmu: The pointer to the s2 MMU structure 991 * 992 * Allocates only the stage-2 HW PGD level table(s) of size defined by 993 * stage2_pgd_size(mmu->kvm). 994 * 995 * Note we don't need locking here as this is only called when the VM is 996 * created, which can only be done once. 997 */ 998 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 999 { 1000 phys_addr_t pgd_phys; 1001 pgd_t *pgd; 1002 int cpu; 1003 1004 if (mmu->pgd != NULL) { 1005 kvm_err("kvm_arch already initialized?\n"); 1006 return -EINVAL; 1007 } 1008 1009 /* Allocate the HW PGD, making sure that each page gets its own refcount */ 1010 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); 1011 if (!pgd) 1012 return -ENOMEM; 1013 1014 pgd_phys = virt_to_phys(pgd); 1015 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) 1016 return -EINVAL; 1017 1018 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 1019 if (!mmu->last_vcpu_ran) { 1020 free_pages_exact(pgd, stage2_pgd_size(kvm)); 1021 return -ENOMEM; 1022 } 1023 1024 for_each_possible_cpu(cpu) 1025 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 1026 1027 mmu->kvm = kvm; 1028 mmu->pgd = pgd; 1029 mmu->pgd_phys = pgd_phys; 1030 mmu->vmid.vmid_gen = 0; 1031 1032 return 0; 1033 } 1034 1035 static void stage2_unmap_memslot(struct kvm *kvm, 1036 struct kvm_memory_slot *memslot) 1037 { 1038 hva_t hva = memslot->userspace_addr; 1039 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 1040 phys_addr_t size = PAGE_SIZE * memslot->npages; 1041 hva_t reg_end = hva + size; 1042 1043 /* 1044 * A memory region could potentially cover multiple VMAs, and any holes 1045 * between them, so iterate over all of them to find out if we should 1046 * unmap any of them. 1047 * 1048 * +--------------------------------------------+ 1049 * +---------------+----------------+ +----------------+ 1050 * | : VMA 1 | VMA 2 | | VMA 3 : | 1051 * +---------------+----------------+ +----------------+ 1052 * | memory region | 1053 * +--------------------------------------------+ 1054 */ 1055 do { 1056 struct vm_area_struct *vma = find_vma(current->mm, hva); 1057 hva_t vm_start, vm_end; 1058 1059 if (!vma || vma->vm_start >= reg_end) 1060 break; 1061 1062 /* 1063 * Take the intersection of this VMA with the memory region 1064 */ 1065 vm_start = max(hva, vma->vm_start); 1066 vm_end = min(reg_end, vma->vm_end); 1067 1068 if (!(vma->vm_flags & VM_PFNMAP)) { 1069 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 1070 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 1071 } 1072 hva = vm_end; 1073 } while (hva < reg_end); 1074 } 1075 1076 /** 1077 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 1078 * @kvm: The struct kvm pointer 1079 * 1080 * Go through the memregions and unmap any regular RAM 1081 * backing memory already mapped to the VM. 1082 */ 1083 void stage2_unmap_vm(struct kvm *kvm) 1084 { 1085 struct kvm_memslots *slots; 1086 struct kvm_memory_slot *memslot; 1087 int idx; 1088 1089 idx = srcu_read_lock(&kvm->srcu); 1090 mmap_read_lock(current->mm); 1091 spin_lock(&kvm->mmu_lock); 1092 1093 slots = kvm_memslots(kvm); 1094 kvm_for_each_memslot(memslot, slots) 1095 stage2_unmap_memslot(kvm, memslot); 1096 1097 spin_unlock(&kvm->mmu_lock); 1098 mmap_read_unlock(current->mm); 1099 srcu_read_unlock(&kvm->srcu, idx); 1100 } 1101 1102 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1103 { 1104 struct kvm *kvm = mmu->kvm; 1105 void *pgd = NULL; 1106 1107 spin_lock(&kvm->mmu_lock); 1108 if (mmu->pgd) { 1109 unmap_stage2_range(mmu, 0, kvm_phys_size(kvm)); 1110 pgd = READ_ONCE(mmu->pgd); 1111 mmu->pgd = NULL; 1112 } 1113 spin_unlock(&kvm->mmu_lock); 1114 1115 /* Free the HW pgd, one page at a time */ 1116 if (pgd) { 1117 free_pages_exact(pgd, stage2_pgd_size(kvm)); 1118 free_percpu(mmu->last_vcpu_ran); 1119 } 1120 } 1121 1122 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1123 phys_addr_t addr) 1124 { 1125 struct kvm *kvm = mmu->kvm; 1126 pgd_t *pgd; 1127 p4d_t *p4d; 1128 1129 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 1130 if (stage2_pgd_none(kvm, *pgd)) { 1131 if (!cache) 1132 return NULL; 1133 p4d = kvm_mmu_memory_cache_alloc(cache); 1134 stage2_pgd_populate(kvm, pgd, p4d); 1135 get_page(virt_to_page(pgd)); 1136 } 1137 1138 return stage2_p4d_offset(kvm, pgd, addr); 1139 } 1140 1141 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1142 phys_addr_t addr) 1143 { 1144 struct kvm *kvm = mmu->kvm; 1145 p4d_t *p4d; 1146 pud_t *pud; 1147 1148 p4d = stage2_get_p4d(mmu, cache, addr); 1149 if (stage2_p4d_none(kvm, *p4d)) { 1150 if (!cache) 1151 return NULL; 1152 pud = kvm_mmu_memory_cache_alloc(cache); 1153 stage2_p4d_populate(kvm, p4d, pud); 1154 get_page(virt_to_page(p4d)); 1155 } 1156 1157 return stage2_pud_offset(kvm, p4d, addr); 1158 } 1159 1160 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, 1161 phys_addr_t addr) 1162 { 1163 struct kvm *kvm = mmu->kvm; 1164 pud_t *pud; 1165 pmd_t *pmd; 1166 1167 pud = stage2_get_pud(mmu, cache, addr); 1168 if (!pud || stage2_pud_huge(kvm, *pud)) 1169 return NULL; 1170 1171 if (stage2_pud_none(kvm, *pud)) { 1172 if (!cache) 1173 return NULL; 1174 pmd = kvm_mmu_memory_cache_alloc(cache); 1175 stage2_pud_populate(kvm, pud, pmd); 1176 get_page(virt_to_page(pud)); 1177 } 1178 1179 return stage2_pmd_offset(kvm, pud, addr); 1180 } 1181 1182 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu, 1183 struct kvm_mmu_memory_cache *cache, 1184 phys_addr_t addr, const pmd_t *new_pmd) 1185 { 1186 pmd_t *pmd, old_pmd; 1187 1188 retry: 1189 pmd = stage2_get_pmd(mmu, cache, addr); 1190 VM_BUG_ON(!pmd); 1191 1192 old_pmd = *pmd; 1193 /* 1194 * Multiple vcpus faulting on the same PMD entry, can 1195 * lead to them sequentially updating the PMD with the 1196 * same value. Following the break-before-make 1197 * (pmd_clear() followed by tlb_flush()) process can 1198 * hinder forward progress due to refaults generated 1199 * on missing translations. 1200 * 1201 * Skip updating the page table if the entry is 1202 * unchanged. 1203 */ 1204 if (pmd_val(old_pmd) == pmd_val(*new_pmd)) 1205 return 0; 1206 1207 if (pmd_present(old_pmd)) { 1208 /* 1209 * If we already have PTE level mapping for this block, 1210 * we must unmap it to avoid inconsistent TLB state and 1211 * leaking the table page. We could end up in this situation 1212 * if the memory slot was marked for dirty logging and was 1213 * reverted, leaving PTE level mappings for the pages accessed 1214 * during the period. So, unmap the PTE level mapping for this 1215 * block and retry, as we could have released the upper level 1216 * table in the process. 1217 * 1218 * Normal THP split/merge follows mmu_notifier callbacks and do 1219 * get handled accordingly. 1220 */ 1221 if (!pmd_thp_or_huge(old_pmd)) { 1222 unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE); 1223 goto retry; 1224 } 1225 /* 1226 * Mapping in huge pages should only happen through a 1227 * fault. If a page is merged into a transparent huge 1228 * page, the individual subpages of that huge page 1229 * should be unmapped through MMU notifiers before we 1230 * get here. 1231 * 1232 * Merging of CompoundPages is not supported; they 1233 * should become splitting first, unmapped, merged, 1234 * and mapped back in on-demand. 1235 */ 1236 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); 1237 pmd_clear(pmd); 1238 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); 1239 } else { 1240 get_page(virt_to_page(pmd)); 1241 } 1242 1243 kvm_set_pmd(pmd, *new_pmd); 1244 return 0; 1245 } 1246 1247 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu, 1248 struct kvm_mmu_memory_cache *cache, 1249 phys_addr_t addr, const pud_t *new_pudp) 1250 { 1251 struct kvm *kvm = mmu->kvm; 1252 pud_t *pudp, old_pud; 1253 1254 retry: 1255 pudp = stage2_get_pud(mmu, cache, addr); 1256 VM_BUG_ON(!pudp); 1257 1258 old_pud = *pudp; 1259 1260 /* 1261 * A large number of vcpus faulting on the same stage 2 entry, 1262 * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). 1263 * Skip updating the page tables if there is no change. 1264 */ 1265 if (pud_val(old_pud) == pud_val(*new_pudp)) 1266 return 0; 1267 1268 if (stage2_pud_present(kvm, old_pud)) { 1269 /* 1270 * If we already have table level mapping for this block, unmap 1271 * the range for this block and retry. 1272 */ 1273 if (!stage2_pud_huge(kvm, old_pud)) { 1274 unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE); 1275 goto retry; 1276 } 1277 1278 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); 1279 stage2_pud_clear(kvm, pudp); 1280 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); 1281 } else { 1282 get_page(virt_to_page(pudp)); 1283 } 1284 1285 kvm_set_pud(pudp, *new_pudp); 1286 return 0; 1287 } 1288 1289 /* 1290 * stage2_get_leaf_entry - walk the stage2 VM page tables and return 1291 * true if a valid and present leaf-entry is found. A pointer to the 1292 * leaf-entry is returned in the appropriate level variable - pudpp, 1293 * pmdpp, ptepp. 1294 */ 1295 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr, 1296 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) 1297 { 1298 struct kvm *kvm = mmu->kvm; 1299 pud_t *pudp; 1300 pmd_t *pmdp; 1301 pte_t *ptep; 1302 1303 *pudpp = NULL; 1304 *pmdpp = NULL; 1305 *ptepp = NULL; 1306 1307 pudp = stage2_get_pud(mmu, NULL, addr); 1308 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) 1309 return false; 1310 1311 if (stage2_pud_huge(kvm, *pudp)) { 1312 *pudpp = pudp; 1313 return true; 1314 } 1315 1316 pmdp = stage2_pmd_offset(kvm, pudp, addr); 1317 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) 1318 return false; 1319 1320 if (pmd_thp_or_huge(*pmdp)) { 1321 *pmdpp = pmdp; 1322 return true; 1323 } 1324 1325 ptep = pte_offset_kernel(pmdp, addr); 1326 if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) 1327 return false; 1328 1329 *ptepp = ptep; 1330 return true; 1331 } 1332 1333 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz) 1334 { 1335 pud_t *pudp; 1336 pmd_t *pmdp; 1337 pte_t *ptep; 1338 bool found; 1339 1340 found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep); 1341 if (!found) 1342 return false; 1343 1344 if (pudp) 1345 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp); 1346 else if (pmdp) 1347 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp); 1348 else 1349 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep); 1350 } 1351 1352 static int stage2_set_pte(struct kvm_s2_mmu *mmu, 1353 struct kvm_mmu_memory_cache *cache, 1354 phys_addr_t addr, const pte_t *new_pte, 1355 unsigned long flags) 1356 { 1357 struct kvm *kvm = mmu->kvm; 1358 pud_t *pud; 1359 pmd_t *pmd; 1360 pte_t *pte, old_pte; 1361 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; 1362 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; 1363 1364 VM_BUG_ON(logging_active && !cache); 1365 1366 /* Create stage-2 page table mapping - Levels 0 and 1 */ 1367 pud = stage2_get_pud(mmu, cache, addr); 1368 if (!pud) { 1369 /* 1370 * Ignore calls from kvm_set_spte_hva for unallocated 1371 * address ranges. 1372 */ 1373 return 0; 1374 } 1375 1376 /* 1377 * While dirty page logging - dissolve huge PUD, then continue 1378 * on to allocate page. 1379 */ 1380 if (logging_active) 1381 stage2_dissolve_pud(mmu, addr, pud); 1382 1383 if (stage2_pud_none(kvm, *pud)) { 1384 if (!cache) 1385 return 0; /* ignore calls from kvm_set_spte_hva */ 1386 pmd = kvm_mmu_memory_cache_alloc(cache); 1387 stage2_pud_populate(kvm, pud, pmd); 1388 get_page(virt_to_page(pud)); 1389 } 1390 1391 pmd = stage2_pmd_offset(kvm, pud, addr); 1392 if (!pmd) { 1393 /* 1394 * Ignore calls from kvm_set_spte_hva for unallocated 1395 * address ranges. 1396 */ 1397 return 0; 1398 } 1399 1400 /* 1401 * While dirty page logging - dissolve huge PMD, then continue on to 1402 * allocate page. 1403 */ 1404 if (logging_active) 1405 stage2_dissolve_pmd(mmu, addr, pmd); 1406 1407 /* Create stage-2 page mappings - Level 2 */ 1408 if (pmd_none(*pmd)) { 1409 if (!cache) 1410 return 0; /* ignore calls from kvm_set_spte_hva */ 1411 pte = kvm_mmu_memory_cache_alloc(cache); 1412 kvm_pmd_populate(pmd, pte); 1413 get_page(virt_to_page(pmd)); 1414 } 1415 1416 pte = pte_offset_kernel(pmd, addr); 1417 1418 if (iomap && pte_present(*pte)) 1419 return -EFAULT; 1420 1421 /* Create 2nd stage page table mapping - Level 3 */ 1422 old_pte = *pte; 1423 if (pte_present(old_pte)) { 1424 /* Skip page table update if there is no change */ 1425 if (pte_val(old_pte) == pte_val(*new_pte)) 1426 return 0; 1427 1428 kvm_set_pte(pte, __pte(0)); 1429 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); 1430 } else { 1431 get_page(virt_to_page(pte)); 1432 } 1433 1434 kvm_set_pte(pte, *new_pte); 1435 return 0; 1436 } 1437 1438 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1439 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1440 { 1441 if (pte_young(*pte)) { 1442 *pte = pte_mkold(*pte); 1443 return 1; 1444 } 1445 return 0; 1446 } 1447 #else 1448 static int stage2_ptep_test_and_clear_young(pte_t *pte) 1449 { 1450 return __ptep_test_and_clear_young(pte); 1451 } 1452 #endif 1453 1454 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) 1455 { 1456 return stage2_ptep_test_and_clear_young((pte_t *)pmd); 1457 } 1458 1459 static int stage2_pudp_test_and_clear_young(pud_t *pud) 1460 { 1461 return stage2_ptep_test_and_clear_young((pte_t *)pud); 1462 } 1463 1464 /** 1465 * kvm_phys_addr_ioremap - map a device range to guest IPA 1466 * 1467 * @kvm: The KVM pointer 1468 * @guest_ipa: The IPA at which to insert the mapping 1469 * @pa: The physical address of the device 1470 * @size: The size of the mapping 1471 */ 1472 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1473 phys_addr_t pa, unsigned long size, bool writable) 1474 { 1475 phys_addr_t addr, end; 1476 int ret = 0; 1477 unsigned long pfn; 1478 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 1479 1480 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; 1481 pfn = __phys_to_pfn(pa); 1482 1483 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { 1484 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); 1485 1486 if (writable) 1487 pte = kvm_s2pte_mkwrite(pte); 1488 1489 ret = kvm_mmu_topup_memory_cache(&cache, 1490 kvm_mmu_cache_min_pages(kvm)); 1491 if (ret) 1492 goto out; 1493 spin_lock(&kvm->mmu_lock); 1494 ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte, 1495 KVM_S2PTE_FLAG_IS_IOMAP); 1496 spin_unlock(&kvm->mmu_lock); 1497 if (ret) 1498 goto out; 1499 1500 pfn++; 1501 } 1502 1503 out: 1504 kvm_mmu_free_memory_cache(&cache); 1505 return ret; 1506 } 1507 1508 /** 1509 * stage2_wp_ptes - write protect PMD range 1510 * @pmd: pointer to pmd entry 1511 * @addr: range start address 1512 * @end: range end address 1513 */ 1514 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) 1515 { 1516 pte_t *pte; 1517 1518 pte = pte_offset_kernel(pmd, addr); 1519 do { 1520 if (!pte_none(*pte)) { 1521 if (!kvm_s2pte_readonly(pte)) 1522 kvm_set_s2pte_readonly(pte); 1523 } 1524 } while (pte++, addr += PAGE_SIZE, addr != end); 1525 } 1526 1527 /** 1528 * stage2_wp_pmds - write protect PUD range 1529 * kvm: kvm instance for the VM 1530 * @pud: pointer to pud entry 1531 * @addr: range start address 1532 * @end: range end address 1533 */ 1534 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, 1535 phys_addr_t addr, phys_addr_t end) 1536 { 1537 struct kvm *kvm = mmu->kvm; 1538 pmd_t *pmd; 1539 phys_addr_t next; 1540 1541 pmd = stage2_pmd_offset(kvm, pud, addr); 1542 1543 do { 1544 next = stage2_pmd_addr_end(kvm, addr, end); 1545 if (!pmd_none(*pmd)) { 1546 if (pmd_thp_or_huge(*pmd)) { 1547 if (!kvm_s2pmd_readonly(pmd)) 1548 kvm_set_s2pmd_readonly(pmd); 1549 } else { 1550 stage2_wp_ptes(pmd, addr, next); 1551 } 1552 } 1553 } while (pmd++, addr = next, addr != end); 1554 } 1555 1556 /** 1557 * stage2_wp_puds - write protect P4D range 1558 * @p4d: pointer to p4d entry 1559 * @addr: range start address 1560 * @end: range end address 1561 */ 1562 static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, 1563 phys_addr_t addr, phys_addr_t end) 1564 { 1565 struct kvm *kvm = mmu->kvm; 1566 pud_t *pud; 1567 phys_addr_t next; 1568 1569 pud = stage2_pud_offset(kvm, p4d, addr); 1570 do { 1571 next = stage2_pud_addr_end(kvm, addr, end); 1572 if (!stage2_pud_none(kvm, *pud)) { 1573 if (stage2_pud_huge(kvm, *pud)) { 1574 if (!kvm_s2pud_readonly(pud)) 1575 kvm_set_s2pud_readonly(pud); 1576 } else { 1577 stage2_wp_pmds(mmu, pud, addr, next); 1578 } 1579 } 1580 } while (pud++, addr = next, addr != end); 1581 } 1582 1583 /** 1584 * stage2_wp_p4ds - write protect PGD range 1585 * @pgd: pointer to pgd entry 1586 * @addr: range start address 1587 * @end: range end address 1588 */ 1589 static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, 1590 phys_addr_t addr, phys_addr_t end) 1591 { 1592 struct kvm *kvm = mmu->kvm; 1593 p4d_t *p4d; 1594 phys_addr_t next; 1595 1596 p4d = stage2_p4d_offset(kvm, pgd, addr); 1597 do { 1598 next = stage2_p4d_addr_end(kvm, addr, end); 1599 if (!stage2_p4d_none(kvm, *p4d)) 1600 stage2_wp_puds(mmu, p4d, addr, next); 1601 } while (p4d++, addr = next, addr != end); 1602 } 1603 1604 /** 1605 * stage2_wp_range() - write protect stage2 memory region range 1606 * @kvm: The KVM pointer 1607 * @addr: Start address of range 1608 * @end: End address of range 1609 */ 1610 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1611 { 1612 struct kvm *kvm = mmu->kvm; 1613 pgd_t *pgd; 1614 phys_addr_t next; 1615 1616 pgd = mmu->pgd + stage2_pgd_index(kvm, addr); 1617 do { 1618 /* 1619 * Release kvm_mmu_lock periodically if the memory region is 1620 * large. Otherwise, we may see kernel panics with 1621 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, 1622 * CONFIG_LOCKDEP. Additionally, holding the lock too long 1623 * will also starve other vCPUs. We have to also make sure 1624 * that the page tables are not freed while we released 1625 * the lock. 1626 */ 1627 cond_resched_lock(&kvm->mmu_lock); 1628 if (!READ_ONCE(mmu->pgd)) 1629 break; 1630 next = stage2_pgd_addr_end(kvm, addr, end); 1631 if (stage2_pgd_present(kvm, *pgd)) 1632 stage2_wp_p4ds(mmu, pgd, addr, next); 1633 } while (pgd++, addr = next, addr != end); 1634 } 1635 1636 /** 1637 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1638 * @kvm: The KVM pointer 1639 * @slot: The memory slot to write protect 1640 * 1641 * Called to start logging dirty pages after memory region 1642 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1643 * all present PUD, PMD and PTEs are write protected in the memory region. 1644 * Afterwards read of dirty page log can be called. 1645 * 1646 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1647 * serializing operations for VM memory regions. 1648 */ 1649 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1650 { 1651 struct kvm_memslots *slots = kvm_memslots(kvm); 1652 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1653 phys_addr_t start, end; 1654 1655 if (WARN_ON_ONCE(!memslot)) 1656 return; 1657 1658 start = memslot->base_gfn << PAGE_SHIFT; 1659 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1660 1661 spin_lock(&kvm->mmu_lock); 1662 stage2_wp_range(&kvm->arch.mmu, start, end); 1663 spin_unlock(&kvm->mmu_lock); 1664 kvm_flush_remote_tlbs(kvm); 1665 } 1666 1667 /** 1668 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 1669 * @kvm: The KVM pointer 1670 * @slot: The memory slot associated with mask 1671 * @gfn_offset: The gfn offset in memory slot 1672 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 1673 * slot to be write protected 1674 * 1675 * Walks bits set in mask write protects the associated pte's. Caller must 1676 * acquire kvm_mmu_lock. 1677 */ 1678 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1679 struct kvm_memory_slot *slot, 1680 gfn_t gfn_offset, unsigned long mask) 1681 { 1682 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1683 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1684 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1685 1686 stage2_wp_range(&kvm->arch.mmu, start, end); 1687 } 1688 1689 /* 1690 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1691 * dirty pages. 1692 * 1693 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1694 * enable dirty logging for them. 1695 */ 1696 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1697 struct kvm_memory_slot *slot, 1698 gfn_t gfn_offset, unsigned long mask) 1699 { 1700 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1701 } 1702 1703 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 1704 { 1705 __clean_dcache_guest_page(pfn, size); 1706 } 1707 1708 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 1709 { 1710 __invalidate_icache_guest_page(pfn, size); 1711 } 1712 1713 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1714 { 1715 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1716 } 1717 1718 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1719 unsigned long hva, 1720 unsigned long map_size) 1721 { 1722 gpa_t gpa_start; 1723 hva_t uaddr_start, uaddr_end; 1724 size_t size; 1725 1726 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1727 if (map_size == PAGE_SIZE) 1728 return true; 1729 1730 size = memslot->npages * PAGE_SIZE; 1731 1732 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1733 1734 uaddr_start = memslot->userspace_addr; 1735 uaddr_end = uaddr_start + size; 1736 1737 /* 1738 * Pages belonging to memslots that don't have the same alignment 1739 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1740 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1741 * 1742 * Consider a layout like the following: 1743 * 1744 * memslot->userspace_addr: 1745 * +-----+--------------------+--------------------+---+ 1746 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1747 * +-----+--------------------+--------------------+---+ 1748 * 1749 * memslot->base_gfn << PAGE_SHIFT: 1750 * +---+--------------------+--------------------+-----+ 1751 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1752 * +---+--------------------+--------------------+-----+ 1753 * 1754 * If we create those stage-2 blocks, we'll end up with this incorrect 1755 * mapping: 1756 * d -> f 1757 * e -> g 1758 * f -> h 1759 */ 1760 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1761 return false; 1762 1763 /* 1764 * Next, let's make sure we're not trying to map anything not covered 1765 * by the memslot. This means we have to prohibit block size mappings 1766 * for the beginning and end of a non-block aligned and non-block sized 1767 * memory slot (illustrated by the head and tail parts of the 1768 * userspace view above containing pages 'abcde' and 'xyz', 1769 * respectively). 1770 * 1771 * Note that it doesn't matter if we do the check using the 1772 * userspace_addr or the base_gfn, as both are equally aligned (per 1773 * the check above) and equally sized. 1774 */ 1775 return (hva & ~(map_size - 1)) >= uaddr_start && 1776 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1777 } 1778 1779 /* 1780 * Check if the given hva is backed by a transparent huge page (THP) and 1781 * whether it can be mapped using block mapping in stage2. If so, adjust 1782 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1783 * supported. This will need to be updated to support other THP sizes. 1784 * 1785 * Returns the size of the mapping. 1786 */ 1787 static unsigned long 1788 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 1789 unsigned long hva, kvm_pfn_t *pfnp, 1790 phys_addr_t *ipap) 1791 { 1792 kvm_pfn_t pfn = *pfnp; 1793 1794 /* 1795 * Make sure the adjustment is done only for THP pages. Also make 1796 * sure that the HVA and IPA are sufficiently aligned and that the 1797 * block map is contained within the memslot. 1798 */ 1799 if (kvm_is_transparent_hugepage(pfn) && 1800 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1801 /* 1802 * The address we faulted on is backed by a transparent huge 1803 * page. However, because we map the compound huge page and 1804 * not the individual tail page, we need to transfer the 1805 * refcount to the head page. We have to be careful that the 1806 * THP doesn't start to split while we are adjusting the 1807 * refcounts. 1808 * 1809 * We are sure this doesn't happen, because mmu_notifier_retry 1810 * was successful and we are holding the mmu_lock, so if this 1811 * THP is trying to split, it will be blocked in the mmu 1812 * notifier before touching any of the pages, specifically 1813 * before being able to call __split_huge_page_refcount(). 1814 * 1815 * We can therefore safely transfer the refcount from PG_tail 1816 * to PG_head and switch the pfn from a tail page to the head 1817 * page accordingly. 1818 */ 1819 *ipap &= PMD_MASK; 1820 kvm_release_pfn_clean(pfn); 1821 pfn &= ~(PTRS_PER_PMD - 1); 1822 kvm_get_pfn(pfn); 1823 *pfnp = pfn; 1824 1825 return PMD_SIZE; 1826 } 1827 1828 /* Use page mapping if we cannot use block mapping. */ 1829 return PAGE_SIZE; 1830 } 1831 1832 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1833 struct kvm_memory_slot *memslot, unsigned long hva, 1834 unsigned long fault_status) 1835 { 1836 int ret; 1837 bool write_fault, writable, force_pte = false; 1838 bool exec_fault, needs_exec; 1839 unsigned long mmu_seq; 1840 gfn_t gfn = fault_ipa >> PAGE_SHIFT; 1841 struct kvm *kvm = vcpu->kvm; 1842 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1843 struct vm_area_struct *vma; 1844 short vma_shift; 1845 kvm_pfn_t pfn; 1846 pgprot_t mem_type = PAGE_S2; 1847 bool logging_active = memslot_is_logging(memslot); 1848 unsigned long vma_pagesize, flags = 0; 1849 struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; 1850 1851 write_fault = kvm_is_write_fault(vcpu); 1852 exec_fault = kvm_vcpu_trap_is_iabt(vcpu); 1853 VM_BUG_ON(write_fault && exec_fault); 1854 1855 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1856 kvm_err("Unexpected L2 read permission error\n"); 1857 return -EFAULT; 1858 } 1859 1860 /* Let's check if we will get back a huge page backed by hugetlbfs */ 1861 mmap_read_lock(current->mm); 1862 vma = find_vma_intersection(current->mm, hva, hva + 1); 1863 if (unlikely(!vma)) { 1864 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1865 mmap_read_unlock(current->mm); 1866 return -EFAULT; 1867 } 1868 1869 if (is_vm_hugetlb_page(vma)) 1870 vma_shift = huge_page_shift(hstate_vma(vma)); 1871 else 1872 vma_shift = PAGE_SHIFT; 1873 1874 vma_pagesize = 1ULL << vma_shift; 1875 if (logging_active || 1876 (vma->vm_flags & VM_PFNMAP) || 1877 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { 1878 force_pte = true; 1879 vma_pagesize = PAGE_SIZE; 1880 } 1881 1882 /* 1883 * The stage2 has a minimum of 2 level table (For arm64 see 1884 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can 1885 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). 1886 * As for PUD huge maps, we must make sure that we have at least 1887 * 3 levels, i.e, PMD is not folded. 1888 */ 1889 if (vma_pagesize == PMD_SIZE || 1890 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) 1891 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; 1892 mmap_read_unlock(current->mm); 1893 1894 /* We need minimum second+third level pages */ 1895 ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm)); 1896 if (ret) 1897 return ret; 1898 1899 mmu_seq = vcpu->kvm->mmu_notifier_seq; 1900 /* 1901 * Ensure the read of mmu_notifier_seq happens before we call 1902 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1903 * the page we just got a reference to gets unmapped before we have a 1904 * chance to grab the mmu_lock, which ensure that if the page gets 1905 * unmapped afterwards, the call to kvm_unmap_hva will take it away 1906 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1907 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1908 */ 1909 smp_rmb(); 1910 1911 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); 1912 if (pfn == KVM_PFN_ERR_HWPOISON) { 1913 kvm_send_hwpoison_signal(hva, vma_shift); 1914 return 0; 1915 } 1916 if (is_error_noslot_pfn(pfn)) 1917 return -EFAULT; 1918 1919 if (kvm_is_device_pfn(pfn)) { 1920 mem_type = PAGE_S2_DEVICE; 1921 flags |= KVM_S2PTE_FLAG_IS_IOMAP; 1922 } else if (logging_active) { 1923 /* 1924 * Faults on pages in a memslot with logging enabled 1925 * should not be mapped with huge pages (it introduces churn 1926 * and performance degradation), so force a pte mapping. 1927 */ 1928 flags |= KVM_S2_FLAG_LOGGING_ACTIVE; 1929 1930 /* 1931 * Only actually map the page as writable if this was a write 1932 * fault. 1933 */ 1934 if (!write_fault) 1935 writable = false; 1936 } 1937 1938 if (exec_fault && is_iomap(flags)) 1939 return -ENOEXEC; 1940 1941 spin_lock(&kvm->mmu_lock); 1942 if (mmu_notifier_retry(kvm, mmu_seq)) 1943 goto out_unlock; 1944 1945 /* 1946 * If we are not forced to use page mapping, check if we are 1947 * backed by a THP and thus use block mapping if possible. 1948 */ 1949 if (vma_pagesize == PAGE_SIZE && !force_pte) 1950 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 1951 &pfn, &fault_ipa); 1952 if (writable) 1953 kvm_set_pfn_dirty(pfn); 1954 1955 if (fault_status != FSC_PERM && !is_iomap(flags)) 1956 clean_dcache_guest_page(pfn, vma_pagesize); 1957 1958 if (exec_fault) 1959 invalidate_icache_guest_page(pfn, vma_pagesize); 1960 1961 /* 1962 * If we took an execution fault we have made the 1963 * icache/dcache coherent above and should now let the s2 1964 * mapping be executable. 1965 * 1966 * Write faults (!exec_fault && FSC_PERM) are orthogonal to 1967 * execute permissions, and we preserve whatever we have. 1968 */ 1969 needs_exec = exec_fault || 1970 (fault_status == FSC_PERM && 1971 stage2_is_exec(mmu, fault_ipa, vma_pagesize)); 1972 1973 if (vma_pagesize == PUD_SIZE) { 1974 pud_t new_pud = kvm_pfn_pud(pfn, mem_type); 1975 1976 new_pud = kvm_pud_mkhuge(new_pud); 1977 if (writable) 1978 new_pud = kvm_s2pud_mkwrite(new_pud); 1979 1980 if (needs_exec) 1981 new_pud = kvm_s2pud_mkexec(new_pud); 1982 1983 ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud); 1984 } else if (vma_pagesize == PMD_SIZE) { 1985 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); 1986 1987 new_pmd = kvm_pmd_mkhuge(new_pmd); 1988 1989 if (writable) 1990 new_pmd = kvm_s2pmd_mkwrite(new_pmd); 1991 1992 if (needs_exec) 1993 new_pmd = kvm_s2pmd_mkexec(new_pmd); 1994 1995 ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd); 1996 } else { 1997 pte_t new_pte = kvm_pfn_pte(pfn, mem_type); 1998 1999 if (writable) { 2000 new_pte = kvm_s2pte_mkwrite(new_pte); 2001 mark_page_dirty(kvm, gfn); 2002 } 2003 2004 if (needs_exec) 2005 new_pte = kvm_s2pte_mkexec(new_pte); 2006 2007 ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags); 2008 } 2009 2010 out_unlock: 2011 spin_unlock(&kvm->mmu_lock); 2012 kvm_set_pfn_accessed(pfn); 2013 kvm_release_pfn_clean(pfn); 2014 return ret; 2015 } 2016 2017 /* 2018 * Resolve the access fault by making the page young again. 2019 * Note that because the faulting entry is guaranteed not to be 2020 * cached in the TLB, we don't need to invalidate anything. 2021 * Only the HW Access Flag updates are supported for Stage 2 (no DBM), 2022 * so there is no need for atomic (pte|pmd)_mkyoung operations. 2023 */ 2024 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 2025 { 2026 pud_t *pud; 2027 pmd_t *pmd; 2028 pte_t *pte; 2029 kvm_pfn_t pfn; 2030 bool pfn_valid = false; 2031 2032 trace_kvm_access_fault(fault_ipa); 2033 2034 spin_lock(&vcpu->kvm->mmu_lock); 2035 2036 if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte)) 2037 goto out; 2038 2039 if (pud) { /* HugeTLB */ 2040 *pud = kvm_s2pud_mkyoung(*pud); 2041 pfn = kvm_pud_pfn(*pud); 2042 pfn_valid = true; 2043 } else if (pmd) { /* THP, HugeTLB */ 2044 *pmd = pmd_mkyoung(*pmd); 2045 pfn = pmd_pfn(*pmd); 2046 pfn_valid = true; 2047 } else { 2048 *pte = pte_mkyoung(*pte); /* Just a page... */ 2049 pfn = pte_pfn(*pte); 2050 pfn_valid = true; 2051 } 2052 2053 out: 2054 spin_unlock(&vcpu->kvm->mmu_lock); 2055 if (pfn_valid) 2056 kvm_set_pfn_accessed(pfn); 2057 } 2058 2059 /** 2060 * kvm_handle_guest_abort - handles all 2nd stage aborts 2061 * @vcpu: the VCPU pointer 2062 * 2063 * Any abort that gets to the host is almost guaranteed to be caused by a 2064 * missing second stage translation table entry, which can mean that either the 2065 * guest simply needs more memory and we must allocate an appropriate page or it 2066 * can mean that the guest tried to access I/O memory, which is emulated by user 2067 * space. The distinction is based on the IPA causing the fault and whether this 2068 * memory region has been registered as standard RAM by user space. 2069 */ 2070 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 2071 { 2072 unsigned long fault_status; 2073 phys_addr_t fault_ipa; 2074 struct kvm_memory_slot *memslot; 2075 unsigned long hva; 2076 bool is_iabt, write_fault, writable; 2077 gfn_t gfn; 2078 int ret, idx; 2079 2080 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 2081 2082 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 2083 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 2084 2085 /* Synchronous External Abort? */ 2086 if (kvm_vcpu_abt_issea(vcpu)) { 2087 /* 2088 * For RAS the host kernel may handle this abort. 2089 * There is no need to pass the error into the guest. 2090 */ 2091 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 2092 kvm_inject_vabt(vcpu); 2093 2094 return 1; 2095 } 2096 2097 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 2098 kvm_vcpu_get_hfar(vcpu), fault_ipa); 2099 2100 /* Check the stage-2 fault is trans. fault or write fault */ 2101 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 2102 fault_status != FSC_ACCESS) { 2103 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 2104 kvm_vcpu_trap_get_class(vcpu), 2105 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 2106 (unsigned long)kvm_vcpu_get_esr(vcpu)); 2107 return -EFAULT; 2108 } 2109 2110 idx = srcu_read_lock(&vcpu->kvm->srcu); 2111 2112 gfn = fault_ipa >> PAGE_SHIFT; 2113 memslot = gfn_to_memslot(vcpu->kvm, gfn); 2114 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 2115 write_fault = kvm_is_write_fault(vcpu); 2116 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 2117 /* 2118 * The guest has put either its instructions or its page-tables 2119 * somewhere it shouldn't have. Userspace won't be able to do 2120 * anything about this (there's no syndrome for a start), so 2121 * re-inject the abort back into the guest. 2122 */ 2123 if (is_iabt) { 2124 ret = -ENOEXEC; 2125 goto out; 2126 } 2127 2128 if (kvm_vcpu_dabt_iss1tw(vcpu)) { 2129 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 2130 ret = 1; 2131 goto out_unlock; 2132 } 2133 2134 /* 2135 * Check for a cache maintenance operation. Since we 2136 * ended-up here, we know it is outside of any memory 2137 * slot. But we can't find out if that is for a device, 2138 * or if the guest is just being stupid. The only thing 2139 * we know for sure is that this range cannot be cached. 2140 * 2141 * So let's assume that the guest is just being 2142 * cautious, and skip the instruction. 2143 */ 2144 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 2145 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 2146 ret = 1; 2147 goto out_unlock; 2148 } 2149 2150 /* 2151 * The IPA is reported as [MAX:12], so we need to 2152 * complement it with the bottom 12 bits from the 2153 * faulting VA. This is always 12 bits, irrespective 2154 * of the page size. 2155 */ 2156 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 2157 ret = io_mem_abort(vcpu, fault_ipa); 2158 goto out_unlock; 2159 } 2160 2161 /* Userspace should not be able to register out-of-bounds IPAs */ 2162 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 2163 2164 if (fault_status == FSC_ACCESS) { 2165 handle_access_fault(vcpu, fault_ipa); 2166 ret = 1; 2167 goto out_unlock; 2168 } 2169 2170 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 2171 if (ret == 0) 2172 ret = 1; 2173 out: 2174 if (ret == -ENOEXEC) { 2175 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 2176 ret = 1; 2177 } 2178 out_unlock: 2179 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2180 return ret; 2181 } 2182 2183 static int handle_hva_to_gpa(struct kvm *kvm, 2184 unsigned long start, 2185 unsigned long end, 2186 int (*handler)(struct kvm *kvm, 2187 gpa_t gpa, u64 size, 2188 void *data), 2189 void *data) 2190 { 2191 struct kvm_memslots *slots; 2192 struct kvm_memory_slot *memslot; 2193 int ret = 0; 2194 2195 slots = kvm_memslots(kvm); 2196 2197 /* we only care about the pages that the guest sees */ 2198 kvm_for_each_memslot(memslot, slots) { 2199 unsigned long hva_start, hva_end; 2200 gfn_t gpa; 2201 2202 hva_start = max(start, memslot->userspace_addr); 2203 hva_end = min(end, memslot->userspace_addr + 2204 (memslot->npages << PAGE_SHIFT)); 2205 if (hva_start >= hva_end) 2206 continue; 2207 2208 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; 2209 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); 2210 } 2211 2212 return ret; 2213 } 2214 2215 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2216 { 2217 unsigned flags = *(unsigned *)data; 2218 bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE; 2219 2220 __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block); 2221 return 0; 2222 } 2223 2224 int kvm_unmap_hva_range(struct kvm *kvm, 2225 unsigned long start, unsigned long end, unsigned flags) 2226 { 2227 if (!kvm->arch.mmu.pgd) 2228 return 0; 2229 2230 trace_kvm_unmap_hva_range(start, end); 2231 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags); 2232 return 0; 2233 } 2234 2235 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2236 { 2237 pte_t *pte = (pte_t *)data; 2238 2239 WARN_ON(size != PAGE_SIZE); 2240 /* 2241 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE 2242 * flag clear because MMU notifiers will have unmapped a huge PMD before 2243 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and 2244 * therefore stage2_set_pte() never needs to clear out a huge PMD 2245 * through this calling path. 2246 */ 2247 stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0); 2248 return 0; 2249 } 2250 2251 2252 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 2253 { 2254 unsigned long end = hva + PAGE_SIZE; 2255 kvm_pfn_t pfn = pte_pfn(pte); 2256 pte_t stage2_pte; 2257 2258 if (!kvm->arch.mmu.pgd) 2259 return 0; 2260 2261 trace_kvm_set_spte_hva(hva); 2262 2263 /* 2264 * We've moved a page around, probably through CoW, so let's treat it 2265 * just like a translation fault and clean the cache to the PoC. 2266 */ 2267 clean_dcache_guest_page(pfn, PAGE_SIZE); 2268 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); 2269 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); 2270 2271 return 0; 2272 } 2273 2274 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2275 { 2276 pud_t *pud; 2277 pmd_t *pmd; 2278 pte_t *pte; 2279 2280 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2281 if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) 2282 return 0; 2283 2284 if (pud) 2285 return stage2_pudp_test_and_clear_young(pud); 2286 else if (pmd) 2287 return stage2_pmdp_test_and_clear_young(pmd); 2288 else 2289 return stage2_ptep_test_and_clear_young(pte); 2290 } 2291 2292 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 2293 { 2294 pud_t *pud; 2295 pmd_t *pmd; 2296 pte_t *pte; 2297 2298 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 2299 if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) 2300 return 0; 2301 2302 if (pud) 2303 return kvm_s2pud_young(*pud); 2304 else if (pmd) 2305 return pmd_young(*pmd); 2306 else 2307 return pte_young(*pte); 2308 } 2309 2310 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 2311 { 2312 if (!kvm->arch.mmu.pgd) 2313 return 0; 2314 trace_kvm_age_hva(start, end); 2315 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 2316 } 2317 2318 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 2319 { 2320 if (!kvm->arch.mmu.pgd) 2321 return 0; 2322 trace_kvm_test_age_hva(hva); 2323 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, 2324 kvm_test_age_hva_handler, NULL); 2325 } 2326 2327 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 2328 { 2329 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 2330 } 2331 2332 phys_addr_t kvm_mmu_get_httbr(void) 2333 { 2334 if (__kvm_cpu_uses_extended_idmap()) 2335 return virt_to_phys(merged_hyp_pgd); 2336 else 2337 return virt_to_phys(hyp_pgd); 2338 } 2339 2340 phys_addr_t kvm_get_idmap_vector(void) 2341 { 2342 return hyp_idmap_vector; 2343 } 2344 2345 static int kvm_map_idmap_text(pgd_t *pgd) 2346 { 2347 int err; 2348 2349 /* Create the idmap in the boot page tables */ 2350 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), 2351 hyp_idmap_start, hyp_idmap_end, 2352 __phys_to_pfn(hyp_idmap_start), 2353 PAGE_HYP_EXEC); 2354 if (err) 2355 kvm_err("Failed to idmap %lx-%lx\n", 2356 hyp_idmap_start, hyp_idmap_end); 2357 2358 return err; 2359 } 2360 2361 int kvm_mmu_init(void) 2362 { 2363 int err; 2364 2365 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 2366 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 2367 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 2368 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 2369 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 2370 2371 /* 2372 * We rely on the linker script to ensure at build time that the HYP 2373 * init code does not cross a page boundary. 2374 */ 2375 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 2376 2377 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 2378 kvm_debug("HYP VA range: %lx:%lx\n", 2379 kern_hyp_va(PAGE_OFFSET), 2380 kern_hyp_va((unsigned long)high_memory - 1)); 2381 2382 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 2383 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 2384 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 2385 /* 2386 * The idmap page is intersecting with the VA space, 2387 * it is not safe to continue further. 2388 */ 2389 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 2390 err = -EINVAL; 2391 goto out; 2392 } 2393 2394 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); 2395 if (!hyp_pgd) { 2396 kvm_err("Hyp mode PGD not allocated\n"); 2397 err = -ENOMEM; 2398 goto out; 2399 } 2400 2401 if (__kvm_cpu_uses_extended_idmap()) { 2402 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 2403 hyp_pgd_order); 2404 if (!boot_hyp_pgd) { 2405 kvm_err("Hyp boot PGD not allocated\n"); 2406 err = -ENOMEM; 2407 goto out; 2408 } 2409 2410 err = kvm_map_idmap_text(boot_hyp_pgd); 2411 if (err) 2412 goto out; 2413 2414 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 2415 if (!merged_hyp_pgd) { 2416 kvm_err("Failed to allocate extra HYP pgd\n"); 2417 goto out; 2418 } 2419 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, 2420 hyp_idmap_start); 2421 } else { 2422 err = kvm_map_idmap_text(hyp_pgd); 2423 if (err) 2424 goto out; 2425 } 2426 2427 io_map_base = hyp_idmap_start; 2428 return 0; 2429 out: 2430 free_hyp_pgds(); 2431 return err; 2432 } 2433 2434 void kvm_arch_commit_memory_region(struct kvm *kvm, 2435 const struct kvm_userspace_memory_region *mem, 2436 struct kvm_memory_slot *old, 2437 const struct kvm_memory_slot *new, 2438 enum kvm_mr_change change) 2439 { 2440 /* 2441 * At this point memslot has been committed and there is an 2442 * allocated dirty_bitmap[], dirty pages will be tracked while the 2443 * memory slot is write protected. 2444 */ 2445 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2446 /* 2447 * If we're with initial-all-set, we don't need to write 2448 * protect any pages because they're all reported as dirty. 2449 * Huge pages and normal pages will be write protect gradually. 2450 */ 2451 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 2452 kvm_mmu_wp_memory_region(kvm, mem->slot); 2453 } 2454 } 2455 } 2456 2457 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2458 struct kvm_memory_slot *memslot, 2459 const struct kvm_userspace_memory_region *mem, 2460 enum kvm_mr_change change) 2461 { 2462 hva_t hva = mem->userspace_addr; 2463 hva_t reg_end = hva + mem->memory_size; 2464 bool writable = !(mem->flags & KVM_MEM_READONLY); 2465 int ret = 0; 2466 2467 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2468 change != KVM_MR_FLAGS_ONLY) 2469 return 0; 2470 2471 /* 2472 * Prevent userspace from creating a memory region outside of the IPA 2473 * space addressable by the KVM guest IPA space. 2474 */ 2475 if (memslot->base_gfn + memslot->npages >= 2476 (kvm_phys_size(kvm) >> PAGE_SHIFT)) 2477 return -EFAULT; 2478 2479 mmap_read_lock(current->mm); 2480 /* 2481 * A memory region could potentially cover multiple VMAs, and any holes 2482 * between them, so iterate over all of them to find out if we can map 2483 * any of them right now. 2484 * 2485 * +--------------------------------------------+ 2486 * +---------------+----------------+ +----------------+ 2487 * | : VMA 1 | VMA 2 | | VMA 3 : | 2488 * +---------------+----------------+ +----------------+ 2489 * | memory region | 2490 * +--------------------------------------------+ 2491 */ 2492 do { 2493 struct vm_area_struct *vma = find_vma(current->mm, hva); 2494 hva_t vm_start, vm_end; 2495 2496 if (!vma || vma->vm_start >= reg_end) 2497 break; 2498 2499 /* 2500 * Take the intersection of this VMA with the memory region 2501 */ 2502 vm_start = max(hva, vma->vm_start); 2503 vm_end = min(reg_end, vma->vm_end); 2504 2505 if (vma->vm_flags & VM_PFNMAP) { 2506 gpa_t gpa = mem->guest_phys_addr + 2507 (vm_start - mem->userspace_addr); 2508 phys_addr_t pa; 2509 2510 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 2511 pa += vm_start - vma->vm_start; 2512 2513 /* IO region dirty page logging not allowed */ 2514 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2515 ret = -EINVAL; 2516 goto out; 2517 } 2518 2519 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 2520 vm_end - vm_start, 2521 writable); 2522 if (ret) 2523 break; 2524 } 2525 hva = vm_end; 2526 } while (hva < reg_end); 2527 2528 if (change == KVM_MR_FLAGS_ONLY) 2529 goto out; 2530 2531 spin_lock(&kvm->mmu_lock); 2532 if (ret) 2533 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); 2534 else 2535 stage2_flush_memslot(kvm, memslot); 2536 spin_unlock(&kvm->mmu_lock); 2537 out: 2538 mmap_read_unlock(current->mm); 2539 return ret; 2540 } 2541 2542 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2543 { 2544 } 2545 2546 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2547 { 2548 } 2549 2550 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2551 { 2552 kvm_free_stage2_pgd(&kvm->arch.mmu); 2553 } 2554 2555 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2556 struct kvm_memory_slot *slot) 2557 { 2558 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2559 phys_addr_t size = slot->npages << PAGE_SHIFT; 2560 2561 spin_lock(&kvm->mmu_lock); 2562 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2563 spin_unlock(&kvm->mmu_lock); 2564 } 2565 2566 /* 2567 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2568 * 2569 * Main problems: 2570 * - S/W ops are local to a CPU (not broadcast) 2571 * - We have line migration behind our back (speculation) 2572 * - System caches don't support S/W at all (damn!) 2573 * 2574 * In the face of the above, the best we can do is to try and convert 2575 * S/W ops to VA ops. Because the guest is not allowed to infer the 2576 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2577 * which is a rather good thing for us. 2578 * 2579 * Also, it is only used when turning caches on/off ("The expected 2580 * usage of the cache maintenance instructions that operate by set/way 2581 * is associated with the cache maintenance instructions associated 2582 * with the powerdown and powerup of caches, if this is required by 2583 * the implementation."). 2584 * 2585 * We use the following policy: 2586 * 2587 * - If we trap a S/W operation, we enable VM trapping to detect 2588 * caches being turned on/off, and do a full clean. 2589 * 2590 * - We flush the caches on both caches being turned on and off. 2591 * 2592 * - Once the caches are enabled, we stop trapping VM ops. 2593 */ 2594 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2595 { 2596 unsigned long hcr = *vcpu_hcr(vcpu); 2597 2598 /* 2599 * If this is the first time we do a S/W operation 2600 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2601 * VM trapping. 2602 * 2603 * Otherwise, rely on the VM trapping to wait for the MMU + 2604 * Caches to be turned off. At that point, we'll be able to 2605 * clean the caches again. 2606 */ 2607 if (!(hcr & HCR_TVM)) { 2608 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2609 vcpu_has_cache_enabled(vcpu)); 2610 stage2_flush_vm(vcpu->kvm); 2611 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2612 } 2613 } 2614 2615 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2616 { 2617 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2618 2619 /* 2620 * If switching the MMU+caches on, need to invalidate the caches. 2621 * If switching it off, need to clean the caches. 2622 * Clean + invalidate does the trick always. 2623 */ 2624 if (now_enabled != was_enabled) 2625 stage2_flush_vm(vcpu->kvm); 2626 2627 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2628 if (now_enabled) 2629 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2630 2631 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2632 } 2633