1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_lock(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 84 } 85 86 static bool kvm_is_device_pfn(unsigned long pfn) 87 { 88 return !pfn_valid(pfn); 89 } 90 91 static void *stage2_memcache_zalloc_page(void *arg) 92 { 93 struct kvm_mmu_memory_cache *mc = arg; 94 95 /* Allocated with __GFP_ZERO, so no need to zero */ 96 return kvm_mmu_memory_cache_alloc(mc); 97 } 98 99 static void *kvm_host_zalloc_pages_exact(size_t size) 100 { 101 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 102 } 103 104 static void kvm_host_get_page(void *addr) 105 { 106 get_page(virt_to_page(addr)); 107 } 108 109 static void kvm_host_put_page(void *addr) 110 { 111 put_page(virt_to_page(addr)); 112 } 113 114 static int kvm_host_page_count(void *addr) 115 { 116 return page_count(virt_to_page(addr)); 117 } 118 119 static phys_addr_t kvm_host_pa(void *addr) 120 { 121 return __pa(addr); 122 } 123 124 static void *kvm_host_va(phys_addr_t phys) 125 { 126 return __va(phys); 127 } 128 129 /* 130 * Unmapping vs dcache management: 131 * 132 * If a guest maps certain memory pages as uncached, all writes will 133 * bypass the data cache and go directly to RAM. However, the CPUs 134 * can still speculate reads (not writes) and fill cache lines with 135 * data. 136 * 137 * Those cache lines will be *clean* cache lines though, so a 138 * clean+invalidate operation is equivalent to an invalidate 139 * operation, because no cache lines are marked dirty. 140 * 141 * Those clean cache lines could be filled prior to an uncached write 142 * by the guest, and the cache coherent IO subsystem would therefore 143 * end up writing old data to disk. 144 * 145 * This is why right after unmapping a page/section and invalidating 146 * the corresponding TLBs, we flush to make sure the IO subsystem will 147 * never hit in the cache. 148 * 149 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 150 * we then fully enforce cacheability of RAM, no matter what the guest 151 * does. 152 */ 153 /** 154 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 155 * @mmu: The KVM stage-2 MMU pointer 156 * @start: The intermediate physical base address of the range to unmap 157 * @size: The size of the area to unmap 158 * @may_block: Whether or not we are permitted to block 159 * 160 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 161 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 162 * destroying the VM), otherwise another faulting VCPU may come in and mess 163 * with things behind our backs. 164 */ 165 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 166 bool may_block) 167 { 168 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 169 phys_addr_t end = start + size; 170 171 assert_spin_locked(&kvm->mmu_lock); 172 WARN_ON(size & ~PAGE_MASK); 173 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 174 may_block)); 175 } 176 177 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 178 { 179 __unmap_stage2_range(mmu, start, size, true); 180 } 181 182 static void stage2_flush_memslot(struct kvm *kvm, 183 struct kvm_memory_slot *memslot) 184 { 185 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 186 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 187 188 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 189 } 190 191 /** 192 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 193 * @kvm: The struct kvm pointer 194 * 195 * Go through the stage 2 page tables and invalidate any cache lines 196 * backing memory already mapped to the VM. 197 */ 198 static void stage2_flush_vm(struct kvm *kvm) 199 { 200 struct kvm_memslots *slots; 201 struct kvm_memory_slot *memslot; 202 int idx; 203 204 idx = srcu_read_lock(&kvm->srcu); 205 spin_lock(&kvm->mmu_lock); 206 207 slots = kvm_memslots(kvm); 208 kvm_for_each_memslot(memslot, slots) 209 stage2_flush_memslot(kvm, memslot); 210 211 spin_unlock(&kvm->mmu_lock); 212 srcu_read_unlock(&kvm->srcu, idx); 213 } 214 215 /** 216 * free_hyp_pgds - free Hyp-mode page tables 217 */ 218 void free_hyp_pgds(void) 219 { 220 mutex_lock(&kvm_hyp_pgd_mutex); 221 if (hyp_pgtable) { 222 kvm_pgtable_hyp_destroy(hyp_pgtable); 223 kfree(hyp_pgtable); 224 hyp_pgtable = NULL; 225 } 226 mutex_unlock(&kvm_hyp_pgd_mutex); 227 } 228 229 static bool kvm_host_owns_hyp_mappings(void) 230 { 231 if (static_branch_likely(&kvm_protected_mode_initialized)) 232 return false; 233 234 /* 235 * This can happen at boot time when __create_hyp_mappings() is called 236 * after the hyp protection has been enabled, but the static key has 237 * not been flipped yet. 238 */ 239 if (!hyp_pgtable && is_protected_kvm_enabled()) 240 return false; 241 242 WARN_ON(!hyp_pgtable); 243 244 return true; 245 } 246 247 static int __create_hyp_mappings(unsigned long start, unsigned long size, 248 unsigned long phys, enum kvm_pgtable_prot prot) 249 { 250 int err; 251 252 if (!kvm_host_owns_hyp_mappings()) { 253 return kvm_call_hyp_nvhe(__pkvm_create_mappings, 254 start, size, phys, prot); 255 } 256 257 mutex_lock(&kvm_hyp_pgd_mutex); 258 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 259 mutex_unlock(&kvm_hyp_pgd_mutex); 260 261 return err; 262 } 263 264 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 265 { 266 if (!is_vmalloc_addr(kaddr)) { 267 BUG_ON(!virt_addr_valid(kaddr)); 268 return __pa(kaddr); 269 } else { 270 return page_to_phys(vmalloc_to_page(kaddr)) + 271 offset_in_page(kaddr); 272 } 273 } 274 275 /** 276 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 277 * @from: The virtual kernel start address of the range 278 * @to: The virtual kernel end address of the range (exclusive) 279 * @prot: The protection to be applied to this range 280 * 281 * The same virtual address as the kernel virtual address is also used 282 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 283 * physical pages. 284 */ 285 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 286 { 287 phys_addr_t phys_addr; 288 unsigned long virt_addr; 289 unsigned long start = kern_hyp_va((unsigned long)from); 290 unsigned long end = kern_hyp_va((unsigned long)to); 291 292 if (is_kernel_in_hyp_mode()) 293 return 0; 294 295 start = start & PAGE_MASK; 296 end = PAGE_ALIGN(end); 297 298 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 299 int err; 300 301 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 302 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 303 prot); 304 if (err) 305 return err; 306 } 307 308 return 0; 309 } 310 311 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 312 unsigned long *haddr, 313 enum kvm_pgtable_prot prot) 314 { 315 unsigned long base; 316 int ret = 0; 317 318 if (!kvm_host_owns_hyp_mappings()) { 319 base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 320 phys_addr, size, prot); 321 if (IS_ERR_OR_NULL((void *)base)) 322 return PTR_ERR((void *)base); 323 *haddr = base; 324 325 return 0; 326 } 327 328 mutex_lock(&kvm_hyp_pgd_mutex); 329 330 /* 331 * This assumes that we have enough space below the idmap 332 * page to allocate our VAs. If not, the check below will 333 * kick. A potential alternative would be to detect that 334 * overflow and switch to an allocation above the idmap. 335 * 336 * The allocated size is always a multiple of PAGE_SIZE. 337 */ 338 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 339 base = io_map_base - size; 340 341 /* 342 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 343 * allocating the new area, as it would indicate we've 344 * overflowed the idmap/IO address range. 345 */ 346 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 347 ret = -ENOMEM; 348 else 349 io_map_base = base; 350 351 mutex_unlock(&kvm_hyp_pgd_mutex); 352 353 if (ret) 354 goto out; 355 356 ret = __create_hyp_mappings(base, size, phys_addr, prot); 357 if (ret) 358 goto out; 359 360 *haddr = base + offset_in_page(phys_addr); 361 out: 362 return ret; 363 } 364 365 /** 366 * create_hyp_io_mappings - Map IO into both kernel and HYP 367 * @phys_addr: The physical start address which gets mapped 368 * @size: Size of the region being mapped 369 * @kaddr: Kernel VA for this mapping 370 * @haddr: HYP VA for this mapping 371 */ 372 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 373 void __iomem **kaddr, 374 void __iomem **haddr) 375 { 376 unsigned long addr; 377 int ret; 378 379 *kaddr = ioremap(phys_addr, size); 380 if (!*kaddr) 381 return -ENOMEM; 382 383 if (is_kernel_in_hyp_mode()) { 384 *haddr = *kaddr; 385 return 0; 386 } 387 388 ret = __create_hyp_private_mapping(phys_addr, size, 389 &addr, PAGE_HYP_DEVICE); 390 if (ret) { 391 iounmap(*kaddr); 392 *kaddr = NULL; 393 *haddr = NULL; 394 return ret; 395 } 396 397 *haddr = (void __iomem *)addr; 398 return 0; 399 } 400 401 /** 402 * create_hyp_exec_mappings - Map an executable range into HYP 403 * @phys_addr: The physical start address which gets mapped 404 * @size: Size of the region being mapped 405 * @haddr: HYP VA for this mapping 406 */ 407 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 408 void **haddr) 409 { 410 unsigned long addr; 411 int ret; 412 413 BUG_ON(is_kernel_in_hyp_mode()); 414 415 ret = __create_hyp_private_mapping(phys_addr, size, 416 &addr, PAGE_HYP_EXEC); 417 if (ret) { 418 *haddr = NULL; 419 return ret; 420 } 421 422 *haddr = (void *)addr; 423 return 0; 424 } 425 426 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 427 .zalloc_page = stage2_memcache_zalloc_page, 428 .zalloc_pages_exact = kvm_host_zalloc_pages_exact, 429 .free_pages_exact = free_pages_exact, 430 .get_page = kvm_host_get_page, 431 .put_page = kvm_host_put_page, 432 .page_count = kvm_host_page_count, 433 .phys_to_virt = kvm_host_va, 434 .virt_to_phys = kvm_host_pa, 435 }; 436 437 /** 438 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 439 * @kvm: The pointer to the KVM structure 440 * @mmu: The pointer to the s2 MMU structure 441 * 442 * Allocates only the stage-2 HW PGD level table(s). 443 * Note we don't need locking here as this is only called when the VM is 444 * created, which can only be done once. 445 */ 446 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 447 { 448 int cpu, err; 449 struct kvm_pgtable *pgt; 450 451 if (mmu->pgt != NULL) { 452 kvm_err("kvm_arch already initialized?\n"); 453 return -EINVAL; 454 } 455 456 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL); 457 if (!pgt) 458 return -ENOMEM; 459 460 err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops); 461 if (err) 462 goto out_free_pgtable; 463 464 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 465 if (!mmu->last_vcpu_ran) { 466 err = -ENOMEM; 467 goto out_destroy_pgtable; 468 } 469 470 for_each_possible_cpu(cpu) 471 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 472 473 mmu->arch = &kvm->arch; 474 mmu->pgt = pgt; 475 mmu->pgd_phys = __pa(pgt->pgd); 476 mmu->vmid.vmid_gen = 0; 477 return 0; 478 479 out_destroy_pgtable: 480 kvm_pgtable_stage2_destroy(pgt); 481 out_free_pgtable: 482 kfree(pgt); 483 return err; 484 } 485 486 static void stage2_unmap_memslot(struct kvm *kvm, 487 struct kvm_memory_slot *memslot) 488 { 489 hva_t hva = memslot->userspace_addr; 490 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 491 phys_addr_t size = PAGE_SIZE * memslot->npages; 492 hva_t reg_end = hva + size; 493 494 /* 495 * A memory region could potentially cover multiple VMAs, and any holes 496 * between them, so iterate over all of them to find out if we should 497 * unmap any of them. 498 * 499 * +--------------------------------------------+ 500 * +---------------+----------------+ +----------------+ 501 * | : VMA 1 | VMA 2 | | VMA 3 : | 502 * +---------------+----------------+ +----------------+ 503 * | memory region | 504 * +--------------------------------------------+ 505 */ 506 do { 507 struct vm_area_struct *vma; 508 hva_t vm_start, vm_end; 509 510 vma = find_vma_intersection(current->mm, hva, reg_end); 511 if (!vma) 512 break; 513 514 /* 515 * Take the intersection of this VMA with the memory region 516 */ 517 vm_start = max(hva, vma->vm_start); 518 vm_end = min(reg_end, vma->vm_end); 519 520 if (!(vma->vm_flags & VM_PFNMAP)) { 521 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 522 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 523 } 524 hva = vm_end; 525 } while (hva < reg_end); 526 } 527 528 /** 529 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 530 * @kvm: The struct kvm pointer 531 * 532 * Go through the memregions and unmap any regular RAM 533 * backing memory already mapped to the VM. 534 */ 535 void stage2_unmap_vm(struct kvm *kvm) 536 { 537 struct kvm_memslots *slots; 538 struct kvm_memory_slot *memslot; 539 int idx; 540 541 idx = srcu_read_lock(&kvm->srcu); 542 mmap_read_lock(current->mm); 543 spin_lock(&kvm->mmu_lock); 544 545 slots = kvm_memslots(kvm); 546 kvm_for_each_memslot(memslot, slots) 547 stage2_unmap_memslot(kvm, memslot); 548 549 spin_unlock(&kvm->mmu_lock); 550 mmap_read_unlock(current->mm); 551 srcu_read_unlock(&kvm->srcu, idx); 552 } 553 554 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 555 { 556 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 557 struct kvm_pgtable *pgt = NULL; 558 559 spin_lock(&kvm->mmu_lock); 560 pgt = mmu->pgt; 561 if (pgt) { 562 mmu->pgd_phys = 0; 563 mmu->pgt = NULL; 564 free_percpu(mmu->last_vcpu_ran); 565 } 566 spin_unlock(&kvm->mmu_lock); 567 568 if (pgt) { 569 kvm_pgtable_stage2_destroy(pgt); 570 kfree(pgt); 571 } 572 } 573 574 /** 575 * kvm_phys_addr_ioremap - map a device range to guest IPA 576 * 577 * @kvm: The KVM pointer 578 * @guest_ipa: The IPA at which to insert the mapping 579 * @pa: The physical address of the device 580 * @size: The size of the mapping 581 * @writable: Whether or not to create a writable mapping 582 */ 583 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 584 phys_addr_t pa, unsigned long size, bool writable) 585 { 586 phys_addr_t addr; 587 int ret = 0; 588 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 589 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 590 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 591 KVM_PGTABLE_PROT_R | 592 (writable ? KVM_PGTABLE_PROT_W : 0); 593 594 size += offset_in_page(guest_ipa); 595 guest_ipa &= PAGE_MASK; 596 597 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 598 ret = kvm_mmu_topup_memory_cache(&cache, 599 kvm_mmu_cache_min_pages(kvm)); 600 if (ret) 601 break; 602 603 spin_lock(&kvm->mmu_lock); 604 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 605 &cache); 606 spin_unlock(&kvm->mmu_lock); 607 if (ret) 608 break; 609 610 pa += PAGE_SIZE; 611 } 612 613 kvm_mmu_free_memory_cache(&cache); 614 return ret; 615 } 616 617 /** 618 * stage2_wp_range() - write protect stage2 memory region range 619 * @mmu: The KVM stage-2 MMU pointer 620 * @addr: Start address of range 621 * @end: End address of range 622 */ 623 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 624 { 625 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 626 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 627 } 628 629 /** 630 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 631 * @kvm: The KVM pointer 632 * @slot: The memory slot to write protect 633 * 634 * Called to start logging dirty pages after memory region 635 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 636 * all present PUD, PMD and PTEs are write protected in the memory region. 637 * Afterwards read of dirty page log can be called. 638 * 639 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 640 * serializing operations for VM memory regions. 641 */ 642 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 643 { 644 struct kvm_memslots *slots = kvm_memslots(kvm); 645 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 646 phys_addr_t start, end; 647 648 if (WARN_ON_ONCE(!memslot)) 649 return; 650 651 start = memslot->base_gfn << PAGE_SHIFT; 652 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 653 654 spin_lock(&kvm->mmu_lock); 655 stage2_wp_range(&kvm->arch.mmu, start, end); 656 spin_unlock(&kvm->mmu_lock); 657 kvm_flush_remote_tlbs(kvm); 658 } 659 660 /** 661 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 662 * @kvm: The KVM pointer 663 * @slot: The memory slot associated with mask 664 * @gfn_offset: The gfn offset in memory slot 665 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 666 * slot to be write protected 667 * 668 * Walks bits set in mask write protects the associated pte's. Caller must 669 * acquire kvm_mmu_lock. 670 */ 671 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 672 struct kvm_memory_slot *slot, 673 gfn_t gfn_offset, unsigned long mask) 674 { 675 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 676 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 677 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 678 679 stage2_wp_range(&kvm->arch.mmu, start, end); 680 } 681 682 /* 683 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 684 * dirty pages. 685 * 686 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 687 * enable dirty logging for them. 688 */ 689 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 690 struct kvm_memory_slot *slot, 691 gfn_t gfn_offset, unsigned long mask) 692 { 693 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 694 } 695 696 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 697 { 698 __clean_dcache_guest_page(pfn, size); 699 } 700 701 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 702 { 703 __invalidate_icache_guest_page(pfn, size); 704 } 705 706 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 707 { 708 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 709 } 710 711 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 712 unsigned long hva, 713 unsigned long map_size) 714 { 715 gpa_t gpa_start; 716 hva_t uaddr_start, uaddr_end; 717 size_t size; 718 719 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 720 if (map_size == PAGE_SIZE) 721 return true; 722 723 size = memslot->npages * PAGE_SIZE; 724 725 gpa_start = memslot->base_gfn << PAGE_SHIFT; 726 727 uaddr_start = memslot->userspace_addr; 728 uaddr_end = uaddr_start + size; 729 730 /* 731 * Pages belonging to memslots that don't have the same alignment 732 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 733 * PMD/PUD entries, because we'll end up mapping the wrong pages. 734 * 735 * Consider a layout like the following: 736 * 737 * memslot->userspace_addr: 738 * +-----+--------------------+--------------------+---+ 739 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 740 * +-----+--------------------+--------------------+---+ 741 * 742 * memslot->base_gfn << PAGE_SHIFT: 743 * +---+--------------------+--------------------+-----+ 744 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 745 * +---+--------------------+--------------------+-----+ 746 * 747 * If we create those stage-2 blocks, we'll end up with this incorrect 748 * mapping: 749 * d -> f 750 * e -> g 751 * f -> h 752 */ 753 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 754 return false; 755 756 /* 757 * Next, let's make sure we're not trying to map anything not covered 758 * by the memslot. This means we have to prohibit block size mappings 759 * for the beginning and end of a non-block aligned and non-block sized 760 * memory slot (illustrated by the head and tail parts of the 761 * userspace view above containing pages 'abcde' and 'xyz', 762 * respectively). 763 * 764 * Note that it doesn't matter if we do the check using the 765 * userspace_addr or the base_gfn, as both are equally aligned (per 766 * the check above) and equally sized. 767 */ 768 return (hva & ~(map_size - 1)) >= uaddr_start && 769 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 770 } 771 772 /* 773 * Check if the given hva is backed by a transparent huge page (THP) and 774 * whether it can be mapped using block mapping in stage2. If so, adjust 775 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 776 * supported. This will need to be updated to support other THP sizes. 777 * 778 * Returns the size of the mapping. 779 */ 780 static unsigned long 781 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 782 unsigned long hva, kvm_pfn_t *pfnp, 783 phys_addr_t *ipap) 784 { 785 kvm_pfn_t pfn = *pfnp; 786 787 /* 788 * Make sure the adjustment is done only for THP pages. Also make 789 * sure that the HVA and IPA are sufficiently aligned and that the 790 * block map is contained within the memslot. 791 */ 792 if (kvm_is_transparent_hugepage(pfn) && 793 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 794 /* 795 * The address we faulted on is backed by a transparent huge 796 * page. However, because we map the compound huge page and 797 * not the individual tail page, we need to transfer the 798 * refcount to the head page. We have to be careful that the 799 * THP doesn't start to split while we are adjusting the 800 * refcounts. 801 * 802 * We are sure this doesn't happen, because mmu_notifier_retry 803 * was successful and we are holding the mmu_lock, so if this 804 * THP is trying to split, it will be blocked in the mmu 805 * notifier before touching any of the pages, specifically 806 * before being able to call __split_huge_page_refcount(). 807 * 808 * We can therefore safely transfer the refcount from PG_tail 809 * to PG_head and switch the pfn from a tail page to the head 810 * page accordingly. 811 */ 812 *ipap &= PMD_MASK; 813 kvm_release_pfn_clean(pfn); 814 pfn &= ~(PTRS_PER_PMD - 1); 815 kvm_get_pfn(pfn); 816 *pfnp = pfn; 817 818 return PMD_SIZE; 819 } 820 821 /* Use page mapping if we cannot use block mapping. */ 822 return PAGE_SIZE; 823 } 824 825 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 826 struct kvm_memory_slot *memslot, unsigned long hva, 827 unsigned long fault_status) 828 { 829 int ret = 0; 830 bool write_fault, writable, force_pte = false; 831 bool exec_fault; 832 bool device = false; 833 unsigned long mmu_seq; 834 struct kvm *kvm = vcpu->kvm; 835 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 836 struct vm_area_struct *vma; 837 short vma_shift; 838 gfn_t gfn; 839 kvm_pfn_t pfn; 840 bool logging_active = memslot_is_logging(memslot); 841 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 842 unsigned long vma_pagesize, fault_granule; 843 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 844 struct kvm_pgtable *pgt; 845 846 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 847 write_fault = kvm_is_write_fault(vcpu); 848 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 849 VM_BUG_ON(write_fault && exec_fault); 850 851 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 852 kvm_err("Unexpected L2 read permission error\n"); 853 return -EFAULT; 854 } 855 856 /* Let's check if we will get back a huge page backed by hugetlbfs */ 857 mmap_read_lock(current->mm); 858 vma = find_vma_intersection(current->mm, hva, hva + 1); 859 if (unlikely(!vma)) { 860 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 861 mmap_read_unlock(current->mm); 862 return -EFAULT; 863 } 864 865 if (is_vm_hugetlb_page(vma)) 866 vma_shift = huge_page_shift(hstate_vma(vma)); 867 else 868 vma_shift = PAGE_SHIFT; 869 870 if (logging_active || 871 (vma->vm_flags & VM_PFNMAP)) { 872 force_pte = true; 873 vma_shift = PAGE_SHIFT; 874 } 875 876 switch (vma_shift) { 877 #ifndef __PAGETABLE_PMD_FOLDED 878 case PUD_SHIFT: 879 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 880 break; 881 fallthrough; 882 #endif 883 case CONT_PMD_SHIFT: 884 vma_shift = PMD_SHIFT; 885 fallthrough; 886 case PMD_SHIFT: 887 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 888 break; 889 fallthrough; 890 case CONT_PTE_SHIFT: 891 vma_shift = PAGE_SHIFT; 892 force_pte = true; 893 fallthrough; 894 case PAGE_SHIFT: 895 break; 896 default: 897 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 898 } 899 900 vma_pagesize = 1UL << vma_shift; 901 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 902 fault_ipa &= ~(vma_pagesize - 1); 903 904 gfn = fault_ipa >> PAGE_SHIFT; 905 mmap_read_unlock(current->mm); 906 907 /* 908 * Permission faults just need to update the existing leaf entry, 909 * and so normally don't require allocations from the memcache. The 910 * only exception to this is when dirty logging is enabled at runtime 911 * and a write fault needs to collapse a block entry into a table. 912 */ 913 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 914 ret = kvm_mmu_topup_memory_cache(memcache, 915 kvm_mmu_cache_min_pages(kvm)); 916 if (ret) 917 return ret; 918 } 919 920 mmu_seq = vcpu->kvm->mmu_notifier_seq; 921 /* 922 * Ensure the read of mmu_notifier_seq happens before we call 923 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 924 * the page we just got a reference to gets unmapped before we have a 925 * chance to grab the mmu_lock, which ensure that if the page gets 926 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 927 * from us again properly. This smp_rmb() interacts with the smp_wmb() 928 * in kvm_mmu_notifier_invalidate_<page|range_end>. 929 * 930 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 931 * used to avoid unnecessary overhead introduced to locate the memory 932 * slot because it's always fixed even @gfn is adjusted for huge pages. 933 */ 934 smp_rmb(); 935 936 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 937 write_fault, &writable, NULL); 938 if (pfn == KVM_PFN_ERR_HWPOISON) { 939 kvm_send_hwpoison_signal(hva, vma_shift); 940 return 0; 941 } 942 if (is_error_noslot_pfn(pfn)) 943 return -EFAULT; 944 945 if (kvm_is_device_pfn(pfn)) { 946 device = true; 947 force_pte = true; 948 } else if (logging_active && !write_fault) { 949 /* 950 * Only actually map the page as writable if this was a write 951 * fault. 952 */ 953 writable = false; 954 } 955 956 if (exec_fault && device) 957 return -ENOEXEC; 958 959 spin_lock(&kvm->mmu_lock); 960 pgt = vcpu->arch.hw_mmu->pgt; 961 if (mmu_notifier_retry(kvm, mmu_seq)) 962 goto out_unlock; 963 964 /* 965 * If we are not forced to use page mapping, check if we are 966 * backed by a THP and thus use block mapping if possible. 967 */ 968 if (vma_pagesize == PAGE_SIZE && !force_pte) 969 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 970 &pfn, &fault_ipa); 971 if (writable) 972 prot |= KVM_PGTABLE_PROT_W; 973 974 if (fault_status != FSC_PERM && !device) 975 clean_dcache_guest_page(pfn, vma_pagesize); 976 977 if (exec_fault) { 978 prot |= KVM_PGTABLE_PROT_X; 979 invalidate_icache_guest_page(pfn, vma_pagesize); 980 } 981 982 if (device) 983 prot |= KVM_PGTABLE_PROT_DEVICE; 984 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 985 prot |= KVM_PGTABLE_PROT_X; 986 987 /* 988 * Under the premise of getting a FSC_PERM fault, we just need to relax 989 * permissions only if vma_pagesize equals fault_granule. Otherwise, 990 * kvm_pgtable_stage2_map() should be called to change block size. 991 */ 992 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 993 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 994 } else { 995 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 996 __pfn_to_phys(pfn), prot, 997 memcache); 998 } 999 1000 /* Mark the page dirty only if the fault is handled successfully */ 1001 if (writable && !ret) { 1002 kvm_set_pfn_dirty(pfn); 1003 mark_page_dirty_in_slot(kvm, memslot, gfn); 1004 } 1005 1006 out_unlock: 1007 spin_unlock(&kvm->mmu_lock); 1008 kvm_set_pfn_accessed(pfn); 1009 kvm_release_pfn_clean(pfn); 1010 return ret != -EAGAIN ? ret : 0; 1011 } 1012 1013 /* Resolve the access fault by making the page young again. */ 1014 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1015 { 1016 pte_t pte; 1017 kvm_pte_t kpte; 1018 struct kvm_s2_mmu *mmu; 1019 1020 trace_kvm_access_fault(fault_ipa); 1021 1022 spin_lock(&vcpu->kvm->mmu_lock); 1023 mmu = vcpu->arch.hw_mmu; 1024 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1025 spin_unlock(&vcpu->kvm->mmu_lock); 1026 1027 pte = __pte(kpte); 1028 if (pte_valid(pte)) 1029 kvm_set_pfn_accessed(pte_pfn(pte)); 1030 } 1031 1032 /** 1033 * kvm_handle_guest_abort - handles all 2nd stage aborts 1034 * @vcpu: the VCPU pointer 1035 * 1036 * Any abort that gets to the host is almost guaranteed to be caused by a 1037 * missing second stage translation table entry, which can mean that either the 1038 * guest simply needs more memory and we must allocate an appropriate page or it 1039 * can mean that the guest tried to access I/O memory, which is emulated by user 1040 * space. The distinction is based on the IPA causing the fault and whether this 1041 * memory region has been registered as standard RAM by user space. 1042 */ 1043 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1044 { 1045 unsigned long fault_status; 1046 phys_addr_t fault_ipa; 1047 struct kvm_memory_slot *memslot; 1048 unsigned long hva; 1049 bool is_iabt, write_fault, writable; 1050 gfn_t gfn; 1051 int ret, idx; 1052 1053 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1054 1055 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1056 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1057 1058 /* Synchronous External Abort? */ 1059 if (kvm_vcpu_abt_issea(vcpu)) { 1060 /* 1061 * For RAS the host kernel may handle this abort. 1062 * There is no need to pass the error into the guest. 1063 */ 1064 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1065 kvm_inject_vabt(vcpu); 1066 1067 return 1; 1068 } 1069 1070 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1071 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1072 1073 /* Check the stage-2 fault is trans. fault or write fault */ 1074 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1075 fault_status != FSC_ACCESS) { 1076 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1077 kvm_vcpu_trap_get_class(vcpu), 1078 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1079 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1080 return -EFAULT; 1081 } 1082 1083 idx = srcu_read_lock(&vcpu->kvm->srcu); 1084 1085 gfn = fault_ipa >> PAGE_SHIFT; 1086 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1087 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1088 write_fault = kvm_is_write_fault(vcpu); 1089 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1090 /* 1091 * The guest has put either its instructions or its page-tables 1092 * somewhere it shouldn't have. Userspace won't be able to do 1093 * anything about this (there's no syndrome for a start), so 1094 * re-inject the abort back into the guest. 1095 */ 1096 if (is_iabt) { 1097 ret = -ENOEXEC; 1098 goto out; 1099 } 1100 1101 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1102 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1103 ret = 1; 1104 goto out_unlock; 1105 } 1106 1107 /* 1108 * Check for a cache maintenance operation. Since we 1109 * ended-up here, we know it is outside of any memory 1110 * slot. But we can't find out if that is for a device, 1111 * or if the guest is just being stupid. The only thing 1112 * we know for sure is that this range cannot be cached. 1113 * 1114 * So let's assume that the guest is just being 1115 * cautious, and skip the instruction. 1116 */ 1117 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1118 kvm_incr_pc(vcpu); 1119 ret = 1; 1120 goto out_unlock; 1121 } 1122 1123 /* 1124 * The IPA is reported as [MAX:12], so we need to 1125 * complement it with the bottom 12 bits from the 1126 * faulting VA. This is always 12 bits, irrespective 1127 * of the page size. 1128 */ 1129 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1130 ret = io_mem_abort(vcpu, fault_ipa); 1131 goto out_unlock; 1132 } 1133 1134 /* Userspace should not be able to register out-of-bounds IPAs */ 1135 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1136 1137 if (fault_status == FSC_ACCESS) { 1138 handle_access_fault(vcpu, fault_ipa); 1139 ret = 1; 1140 goto out_unlock; 1141 } 1142 1143 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1144 if (ret == 0) 1145 ret = 1; 1146 out: 1147 if (ret == -ENOEXEC) { 1148 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1149 ret = 1; 1150 } 1151 out_unlock: 1152 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1153 return ret; 1154 } 1155 1156 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1157 { 1158 if (!kvm->arch.mmu.pgt) 1159 return false; 1160 1161 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1162 (range->end - range->start) << PAGE_SHIFT, 1163 range->may_block); 1164 1165 return false; 1166 } 1167 1168 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1169 { 1170 kvm_pfn_t pfn = pte_pfn(range->pte); 1171 1172 if (!kvm->arch.mmu.pgt) 1173 return false; 1174 1175 WARN_ON(range->end - range->start != 1); 1176 1177 /* 1178 * We've moved a page around, probably through CoW, so let's treat it 1179 * just like a translation fault and clean the cache to the PoC. 1180 */ 1181 clean_dcache_guest_page(pfn, PAGE_SIZE); 1182 1183 /* 1184 * The MMU notifiers will have unmapped a huge PMD before calling 1185 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1186 * therefore we never need to clear out a huge PMD through this 1187 * calling path and a memcache is not required. 1188 */ 1189 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1190 PAGE_SIZE, __pfn_to_phys(pfn), 1191 KVM_PGTABLE_PROT_R, NULL); 1192 1193 return false; 1194 } 1195 1196 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1197 { 1198 u64 size = (range->end - range->start) << PAGE_SHIFT; 1199 kvm_pte_t kpte; 1200 pte_t pte; 1201 1202 if (!kvm->arch.mmu.pgt) 1203 return false; 1204 1205 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1206 1207 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1208 range->start << PAGE_SHIFT); 1209 pte = __pte(kpte); 1210 return pte_valid(pte) && pte_young(pte); 1211 } 1212 1213 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1214 { 1215 if (!kvm->arch.mmu.pgt) 1216 return false; 1217 1218 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1219 range->start << PAGE_SHIFT); 1220 } 1221 1222 phys_addr_t kvm_mmu_get_httbr(void) 1223 { 1224 return __pa(hyp_pgtable->pgd); 1225 } 1226 1227 phys_addr_t kvm_get_idmap_vector(void) 1228 { 1229 return hyp_idmap_vector; 1230 } 1231 1232 static int kvm_map_idmap_text(void) 1233 { 1234 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1235 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1236 PAGE_HYP_EXEC); 1237 if (err) 1238 kvm_err("Failed to idmap %lx-%lx\n", 1239 hyp_idmap_start, hyp_idmap_end); 1240 1241 return err; 1242 } 1243 1244 static void *kvm_hyp_zalloc_page(void *arg) 1245 { 1246 return (void *)get_zeroed_page(GFP_KERNEL); 1247 } 1248 1249 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1250 .zalloc_page = kvm_hyp_zalloc_page, 1251 .get_page = kvm_host_get_page, 1252 .put_page = kvm_host_put_page, 1253 .phys_to_virt = kvm_host_va, 1254 .virt_to_phys = kvm_host_pa, 1255 }; 1256 1257 int kvm_mmu_init(u32 *hyp_va_bits) 1258 { 1259 int err; 1260 1261 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1262 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1263 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1264 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1265 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1266 1267 /* 1268 * We rely on the linker script to ensure at build time that the HYP 1269 * init code does not cross a page boundary. 1270 */ 1271 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1272 1273 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1274 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1275 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1276 kvm_debug("HYP VA range: %lx:%lx\n", 1277 kern_hyp_va(PAGE_OFFSET), 1278 kern_hyp_va((unsigned long)high_memory - 1)); 1279 1280 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1281 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1282 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1283 /* 1284 * The idmap page is intersecting with the VA space, 1285 * it is not safe to continue further. 1286 */ 1287 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1288 err = -EINVAL; 1289 goto out; 1290 } 1291 1292 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1293 if (!hyp_pgtable) { 1294 kvm_err("Hyp mode page-table not allocated\n"); 1295 err = -ENOMEM; 1296 goto out; 1297 } 1298 1299 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1300 if (err) 1301 goto out_free_pgtable; 1302 1303 err = kvm_map_idmap_text(); 1304 if (err) 1305 goto out_destroy_pgtable; 1306 1307 io_map_base = hyp_idmap_start; 1308 return 0; 1309 1310 out_destroy_pgtable: 1311 kvm_pgtable_hyp_destroy(hyp_pgtable); 1312 out_free_pgtable: 1313 kfree(hyp_pgtable); 1314 hyp_pgtable = NULL; 1315 out: 1316 return err; 1317 } 1318 1319 void kvm_arch_commit_memory_region(struct kvm *kvm, 1320 const struct kvm_userspace_memory_region *mem, 1321 struct kvm_memory_slot *old, 1322 const struct kvm_memory_slot *new, 1323 enum kvm_mr_change change) 1324 { 1325 /* 1326 * At this point memslot has been committed and there is an 1327 * allocated dirty_bitmap[], dirty pages will be tracked while the 1328 * memory slot is write protected. 1329 */ 1330 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1331 /* 1332 * If we're with initial-all-set, we don't need to write 1333 * protect any pages because they're all reported as dirty. 1334 * Huge pages and normal pages will be write protect gradually. 1335 */ 1336 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1337 kvm_mmu_wp_memory_region(kvm, mem->slot); 1338 } 1339 } 1340 } 1341 1342 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1343 struct kvm_memory_slot *memslot, 1344 const struct kvm_userspace_memory_region *mem, 1345 enum kvm_mr_change change) 1346 { 1347 hva_t hva = mem->userspace_addr; 1348 hva_t reg_end = hva + mem->memory_size; 1349 bool writable = !(mem->flags & KVM_MEM_READONLY); 1350 int ret = 0; 1351 1352 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1353 change != KVM_MR_FLAGS_ONLY) 1354 return 0; 1355 1356 /* 1357 * Prevent userspace from creating a memory region outside of the IPA 1358 * space addressable by the KVM guest IPA space. 1359 */ 1360 if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1361 return -EFAULT; 1362 1363 mmap_read_lock(current->mm); 1364 /* 1365 * A memory region could potentially cover multiple VMAs, and any holes 1366 * between them, so iterate over all of them to find out if we can map 1367 * any of them right now. 1368 * 1369 * +--------------------------------------------+ 1370 * +---------------+----------------+ +----------------+ 1371 * | : VMA 1 | VMA 2 | | VMA 3 : | 1372 * +---------------+----------------+ +----------------+ 1373 * | memory region | 1374 * +--------------------------------------------+ 1375 */ 1376 do { 1377 struct vm_area_struct *vma; 1378 hva_t vm_start, vm_end; 1379 1380 vma = find_vma_intersection(current->mm, hva, reg_end); 1381 if (!vma) 1382 break; 1383 1384 /* 1385 * Take the intersection of this VMA with the memory region 1386 */ 1387 vm_start = max(hva, vma->vm_start); 1388 vm_end = min(reg_end, vma->vm_end); 1389 1390 if (vma->vm_flags & VM_PFNMAP) { 1391 gpa_t gpa = mem->guest_phys_addr + 1392 (vm_start - mem->userspace_addr); 1393 phys_addr_t pa; 1394 1395 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 1396 pa += vm_start - vma->vm_start; 1397 1398 /* IO region dirty page logging not allowed */ 1399 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1400 ret = -EINVAL; 1401 goto out; 1402 } 1403 1404 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 1405 vm_end - vm_start, 1406 writable); 1407 if (ret) 1408 break; 1409 } 1410 hva = vm_end; 1411 } while (hva < reg_end); 1412 1413 if (change == KVM_MR_FLAGS_ONLY) 1414 goto out; 1415 1416 spin_lock(&kvm->mmu_lock); 1417 if (ret) 1418 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); 1419 else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1420 stage2_flush_memslot(kvm, memslot); 1421 spin_unlock(&kvm->mmu_lock); 1422 out: 1423 mmap_read_unlock(current->mm); 1424 return ret; 1425 } 1426 1427 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1428 { 1429 } 1430 1431 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1432 { 1433 } 1434 1435 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1436 { 1437 kvm_free_stage2_pgd(&kvm->arch.mmu); 1438 } 1439 1440 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1441 struct kvm_memory_slot *slot) 1442 { 1443 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1444 phys_addr_t size = slot->npages << PAGE_SHIFT; 1445 1446 spin_lock(&kvm->mmu_lock); 1447 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1448 spin_unlock(&kvm->mmu_lock); 1449 } 1450 1451 /* 1452 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1453 * 1454 * Main problems: 1455 * - S/W ops are local to a CPU (not broadcast) 1456 * - We have line migration behind our back (speculation) 1457 * - System caches don't support S/W at all (damn!) 1458 * 1459 * In the face of the above, the best we can do is to try and convert 1460 * S/W ops to VA ops. Because the guest is not allowed to infer the 1461 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1462 * which is a rather good thing for us. 1463 * 1464 * Also, it is only used when turning caches on/off ("The expected 1465 * usage of the cache maintenance instructions that operate by set/way 1466 * is associated with the cache maintenance instructions associated 1467 * with the powerdown and powerup of caches, if this is required by 1468 * the implementation."). 1469 * 1470 * We use the following policy: 1471 * 1472 * - If we trap a S/W operation, we enable VM trapping to detect 1473 * caches being turned on/off, and do a full clean. 1474 * 1475 * - We flush the caches on both caches being turned on and off. 1476 * 1477 * - Once the caches are enabled, we stop trapping VM ops. 1478 */ 1479 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1480 { 1481 unsigned long hcr = *vcpu_hcr(vcpu); 1482 1483 /* 1484 * If this is the first time we do a S/W operation 1485 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1486 * VM trapping. 1487 * 1488 * Otherwise, rely on the VM trapping to wait for the MMU + 1489 * Caches to be turned off. At that point, we'll be able to 1490 * clean the caches again. 1491 */ 1492 if (!(hcr & HCR_TVM)) { 1493 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1494 vcpu_has_cache_enabled(vcpu)); 1495 stage2_flush_vm(vcpu->kvm); 1496 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1497 } 1498 } 1499 1500 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1501 { 1502 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1503 1504 /* 1505 * If switching the MMU+caches on, need to invalidate the caches. 1506 * If switching it off, need to clean the caches. 1507 * Clean + invalidate does the trick always. 1508 */ 1509 if (now_enabled != was_enabled) 1510 stage2_flush_vm(vcpu->kvm); 1511 1512 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1513 if (now_enabled) 1514 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1515 1516 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1517 } 1518