xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	++kvm->stat.generic.remote_tlb_flush_requests;
84 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
85 }
86 
87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 	return !pfn_is_map_memory(pfn);
90 }
91 
92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 	struct kvm_mmu_memory_cache *mc = arg;
95 
96 	/* Allocated with __GFP_ZERO, so no need to zero */
97 	return kvm_mmu_memory_cache_alloc(mc);
98 }
99 
100 static void *kvm_host_zalloc_pages_exact(size_t size)
101 {
102 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
103 }
104 
105 static void kvm_host_get_page(void *addr)
106 {
107 	get_page(virt_to_page(addr));
108 }
109 
110 static void kvm_host_put_page(void *addr)
111 {
112 	put_page(virt_to_page(addr));
113 }
114 
115 static int kvm_host_page_count(void *addr)
116 {
117 	return page_count(virt_to_page(addr));
118 }
119 
120 static phys_addr_t kvm_host_pa(void *addr)
121 {
122 	return __pa(addr);
123 }
124 
125 static void *kvm_host_va(phys_addr_t phys)
126 {
127 	return __va(phys);
128 }
129 
130 static void clean_dcache_guest_page(void *va, size_t size)
131 {
132 	__clean_dcache_guest_page(va, size);
133 }
134 
135 static void invalidate_icache_guest_page(void *va, size_t size)
136 {
137 	__invalidate_icache_guest_page(va, size);
138 }
139 
140 /*
141  * Unmapping vs dcache management:
142  *
143  * If a guest maps certain memory pages as uncached, all writes will
144  * bypass the data cache and go directly to RAM.  However, the CPUs
145  * can still speculate reads (not writes) and fill cache lines with
146  * data.
147  *
148  * Those cache lines will be *clean* cache lines though, so a
149  * clean+invalidate operation is equivalent to an invalidate
150  * operation, because no cache lines are marked dirty.
151  *
152  * Those clean cache lines could be filled prior to an uncached write
153  * by the guest, and the cache coherent IO subsystem would therefore
154  * end up writing old data to disk.
155  *
156  * This is why right after unmapping a page/section and invalidating
157  * the corresponding TLBs, we flush to make sure the IO subsystem will
158  * never hit in the cache.
159  *
160  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
161  * we then fully enforce cacheability of RAM, no matter what the guest
162  * does.
163  */
164 /**
165  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
166  * @mmu:   The KVM stage-2 MMU pointer
167  * @start: The intermediate physical base address of the range to unmap
168  * @size:  The size of the area to unmap
169  * @may_block: Whether or not we are permitted to block
170  *
171  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
172  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
173  * destroying the VM), otherwise another faulting VCPU may come in and mess
174  * with things behind our backs.
175  */
176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
177 				 bool may_block)
178 {
179 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
180 	phys_addr_t end = start + size;
181 
182 	assert_spin_locked(&kvm->mmu_lock);
183 	WARN_ON(size & ~PAGE_MASK);
184 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
185 				   may_block));
186 }
187 
188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
189 {
190 	__unmap_stage2_range(mmu, start, size, true);
191 }
192 
193 static void stage2_flush_memslot(struct kvm *kvm,
194 				 struct kvm_memory_slot *memslot)
195 {
196 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
197 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
198 
199 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
200 }
201 
202 /**
203  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
204  * @kvm: The struct kvm pointer
205  *
206  * Go through the stage 2 page tables and invalidate any cache lines
207  * backing memory already mapped to the VM.
208  */
209 static void stage2_flush_vm(struct kvm *kvm)
210 {
211 	struct kvm_memslots *slots;
212 	struct kvm_memory_slot *memslot;
213 	int idx;
214 
215 	idx = srcu_read_lock(&kvm->srcu);
216 	spin_lock(&kvm->mmu_lock);
217 
218 	slots = kvm_memslots(kvm);
219 	kvm_for_each_memslot(memslot, slots)
220 		stage2_flush_memslot(kvm, memslot);
221 
222 	spin_unlock(&kvm->mmu_lock);
223 	srcu_read_unlock(&kvm->srcu, idx);
224 }
225 
226 /**
227  * free_hyp_pgds - free Hyp-mode page tables
228  */
229 void free_hyp_pgds(void)
230 {
231 	mutex_lock(&kvm_hyp_pgd_mutex);
232 	if (hyp_pgtable) {
233 		kvm_pgtable_hyp_destroy(hyp_pgtable);
234 		kfree(hyp_pgtable);
235 		hyp_pgtable = NULL;
236 	}
237 	mutex_unlock(&kvm_hyp_pgd_mutex);
238 }
239 
240 static bool kvm_host_owns_hyp_mappings(void)
241 {
242 	if (static_branch_likely(&kvm_protected_mode_initialized))
243 		return false;
244 
245 	/*
246 	 * This can happen at boot time when __create_hyp_mappings() is called
247 	 * after the hyp protection has been enabled, but the static key has
248 	 * not been flipped yet.
249 	 */
250 	if (!hyp_pgtable && is_protected_kvm_enabled())
251 		return false;
252 
253 	WARN_ON(!hyp_pgtable);
254 
255 	return true;
256 }
257 
258 static int __create_hyp_mappings(unsigned long start, unsigned long size,
259 				 unsigned long phys, enum kvm_pgtable_prot prot)
260 {
261 	int err;
262 
263 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
264 		return -EINVAL;
265 
266 	mutex_lock(&kvm_hyp_pgd_mutex);
267 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
268 	mutex_unlock(&kvm_hyp_pgd_mutex);
269 
270 	return err;
271 }
272 
273 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
274 {
275 	if (!is_vmalloc_addr(kaddr)) {
276 		BUG_ON(!virt_addr_valid(kaddr));
277 		return __pa(kaddr);
278 	} else {
279 		return page_to_phys(vmalloc_to_page(kaddr)) +
280 		       offset_in_page(kaddr);
281 	}
282 }
283 
284 static int pkvm_share_hyp(phys_addr_t start, phys_addr_t end)
285 {
286 	phys_addr_t addr;
287 	int ret;
288 
289 	for (addr = ALIGN_DOWN(start, PAGE_SIZE); addr < end; addr += PAGE_SIZE) {
290 		ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp,
291 					__phys_to_pfn(addr));
292 		if (ret)
293 			return ret;
294 	}
295 
296 	return 0;
297 }
298 
299 /**
300  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
301  * @from:	The virtual kernel start address of the range
302  * @to:		The virtual kernel end address of the range (exclusive)
303  * @prot:	The protection to be applied to this range
304  *
305  * The same virtual address as the kernel virtual address is also used
306  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
307  * physical pages.
308  */
309 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
310 {
311 	phys_addr_t phys_addr;
312 	unsigned long virt_addr;
313 	unsigned long start = kern_hyp_va((unsigned long)from);
314 	unsigned long end = kern_hyp_va((unsigned long)to);
315 
316 	if (is_kernel_in_hyp_mode())
317 		return 0;
318 
319 	if (!kvm_host_owns_hyp_mappings()) {
320 		if (WARN_ON(prot != PAGE_HYP))
321 			return -EPERM;
322 		return pkvm_share_hyp(kvm_kaddr_to_phys(from),
323 				      kvm_kaddr_to_phys(to));
324 	}
325 
326 	start = start & PAGE_MASK;
327 	end = PAGE_ALIGN(end);
328 
329 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
330 		int err;
331 
332 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
333 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
334 					    prot);
335 		if (err)
336 			return err;
337 	}
338 
339 	return 0;
340 }
341 
342 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
343 					unsigned long *haddr,
344 					enum kvm_pgtable_prot prot)
345 {
346 	unsigned long base;
347 	int ret = 0;
348 
349 	if (!kvm_host_owns_hyp_mappings()) {
350 		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
351 					 phys_addr, size, prot);
352 		if (IS_ERR_OR_NULL((void *)base))
353 			return PTR_ERR((void *)base);
354 		*haddr = base;
355 
356 		return 0;
357 	}
358 
359 	mutex_lock(&kvm_hyp_pgd_mutex);
360 
361 	/*
362 	 * This assumes that we have enough space below the idmap
363 	 * page to allocate our VAs. If not, the check below will
364 	 * kick. A potential alternative would be to detect that
365 	 * overflow and switch to an allocation above the idmap.
366 	 *
367 	 * The allocated size is always a multiple of PAGE_SIZE.
368 	 */
369 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
370 	base = io_map_base - size;
371 
372 	/*
373 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
374 	 * allocating the new area, as it would indicate we've
375 	 * overflowed the idmap/IO address range.
376 	 */
377 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
378 		ret = -ENOMEM;
379 	else
380 		io_map_base = base;
381 
382 	mutex_unlock(&kvm_hyp_pgd_mutex);
383 
384 	if (ret)
385 		goto out;
386 
387 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
388 	if (ret)
389 		goto out;
390 
391 	*haddr = base + offset_in_page(phys_addr);
392 out:
393 	return ret;
394 }
395 
396 /**
397  * create_hyp_io_mappings - Map IO into both kernel and HYP
398  * @phys_addr:	The physical start address which gets mapped
399  * @size:	Size of the region being mapped
400  * @kaddr:	Kernel VA for this mapping
401  * @haddr:	HYP VA for this mapping
402  */
403 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
404 			   void __iomem **kaddr,
405 			   void __iomem **haddr)
406 {
407 	unsigned long addr;
408 	int ret;
409 
410 	*kaddr = ioremap(phys_addr, size);
411 	if (!*kaddr)
412 		return -ENOMEM;
413 
414 	if (is_kernel_in_hyp_mode()) {
415 		*haddr = *kaddr;
416 		return 0;
417 	}
418 
419 	ret = __create_hyp_private_mapping(phys_addr, size,
420 					   &addr, PAGE_HYP_DEVICE);
421 	if (ret) {
422 		iounmap(*kaddr);
423 		*kaddr = NULL;
424 		*haddr = NULL;
425 		return ret;
426 	}
427 
428 	*haddr = (void __iomem *)addr;
429 	return 0;
430 }
431 
432 /**
433  * create_hyp_exec_mappings - Map an executable range into HYP
434  * @phys_addr:	The physical start address which gets mapped
435  * @size:	Size of the region being mapped
436  * @haddr:	HYP VA for this mapping
437  */
438 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
439 			     void **haddr)
440 {
441 	unsigned long addr;
442 	int ret;
443 
444 	BUG_ON(is_kernel_in_hyp_mode());
445 
446 	ret = __create_hyp_private_mapping(phys_addr, size,
447 					   &addr, PAGE_HYP_EXEC);
448 	if (ret) {
449 		*haddr = NULL;
450 		return ret;
451 	}
452 
453 	*haddr = (void *)addr;
454 	return 0;
455 }
456 
457 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
458 	/* We shouldn't need any other callback to walk the PT */
459 	.phys_to_virt		= kvm_host_va,
460 };
461 
462 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
463 {
464 	struct kvm_pgtable pgt = {
465 		.pgd		= (kvm_pte_t *)kvm->mm->pgd,
466 		.ia_bits	= VA_BITS,
467 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
468 				   CONFIG_PGTABLE_LEVELS),
469 		.mm_ops		= &kvm_user_mm_ops,
470 	};
471 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
472 	u32 level = ~0;
473 	int ret;
474 
475 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
476 	VM_BUG_ON(ret);
477 	VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
478 	VM_BUG_ON(!(pte & PTE_VALID));
479 
480 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
481 }
482 
483 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
484 	.zalloc_page		= stage2_memcache_zalloc_page,
485 	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
486 	.free_pages_exact	= free_pages_exact,
487 	.get_page		= kvm_host_get_page,
488 	.put_page		= kvm_host_put_page,
489 	.page_count		= kvm_host_page_count,
490 	.phys_to_virt		= kvm_host_va,
491 	.virt_to_phys		= kvm_host_pa,
492 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
493 	.icache_inval_pou	= invalidate_icache_guest_page,
494 };
495 
496 /**
497  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
498  * @kvm:	The pointer to the KVM structure
499  * @mmu:	The pointer to the s2 MMU structure
500  *
501  * Allocates only the stage-2 HW PGD level table(s).
502  * Note we don't need locking here as this is only called when the VM is
503  * created, which can only be done once.
504  */
505 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
506 {
507 	int cpu, err;
508 	struct kvm_pgtable *pgt;
509 
510 	if (mmu->pgt != NULL) {
511 		kvm_err("kvm_arch already initialized?\n");
512 		return -EINVAL;
513 	}
514 
515 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
516 	if (!pgt)
517 		return -ENOMEM;
518 
519 	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
520 	if (err)
521 		goto out_free_pgtable;
522 
523 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
524 	if (!mmu->last_vcpu_ran) {
525 		err = -ENOMEM;
526 		goto out_destroy_pgtable;
527 	}
528 
529 	for_each_possible_cpu(cpu)
530 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
531 
532 	mmu->arch = &kvm->arch;
533 	mmu->pgt = pgt;
534 	mmu->pgd_phys = __pa(pgt->pgd);
535 	WRITE_ONCE(mmu->vmid.vmid_gen, 0);
536 	return 0;
537 
538 out_destroy_pgtable:
539 	kvm_pgtable_stage2_destroy(pgt);
540 out_free_pgtable:
541 	kfree(pgt);
542 	return err;
543 }
544 
545 static void stage2_unmap_memslot(struct kvm *kvm,
546 				 struct kvm_memory_slot *memslot)
547 {
548 	hva_t hva = memslot->userspace_addr;
549 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
550 	phys_addr_t size = PAGE_SIZE * memslot->npages;
551 	hva_t reg_end = hva + size;
552 
553 	/*
554 	 * A memory region could potentially cover multiple VMAs, and any holes
555 	 * between them, so iterate over all of them to find out if we should
556 	 * unmap any of them.
557 	 *
558 	 *     +--------------------------------------------+
559 	 * +---------------+----------------+   +----------------+
560 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
561 	 * +---------------+----------------+   +----------------+
562 	 *     |               memory region                |
563 	 *     +--------------------------------------------+
564 	 */
565 	do {
566 		struct vm_area_struct *vma;
567 		hva_t vm_start, vm_end;
568 
569 		vma = find_vma_intersection(current->mm, hva, reg_end);
570 		if (!vma)
571 			break;
572 
573 		/*
574 		 * Take the intersection of this VMA with the memory region
575 		 */
576 		vm_start = max(hva, vma->vm_start);
577 		vm_end = min(reg_end, vma->vm_end);
578 
579 		if (!(vma->vm_flags & VM_PFNMAP)) {
580 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
581 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
582 		}
583 		hva = vm_end;
584 	} while (hva < reg_end);
585 }
586 
587 /**
588  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
589  * @kvm: The struct kvm pointer
590  *
591  * Go through the memregions and unmap any regular RAM
592  * backing memory already mapped to the VM.
593  */
594 void stage2_unmap_vm(struct kvm *kvm)
595 {
596 	struct kvm_memslots *slots;
597 	struct kvm_memory_slot *memslot;
598 	int idx;
599 
600 	idx = srcu_read_lock(&kvm->srcu);
601 	mmap_read_lock(current->mm);
602 	spin_lock(&kvm->mmu_lock);
603 
604 	slots = kvm_memslots(kvm);
605 	kvm_for_each_memslot(memslot, slots)
606 		stage2_unmap_memslot(kvm, memslot);
607 
608 	spin_unlock(&kvm->mmu_lock);
609 	mmap_read_unlock(current->mm);
610 	srcu_read_unlock(&kvm->srcu, idx);
611 }
612 
613 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
614 {
615 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
616 	struct kvm_pgtable *pgt = NULL;
617 
618 	spin_lock(&kvm->mmu_lock);
619 	pgt = mmu->pgt;
620 	if (pgt) {
621 		mmu->pgd_phys = 0;
622 		mmu->pgt = NULL;
623 		free_percpu(mmu->last_vcpu_ran);
624 	}
625 	spin_unlock(&kvm->mmu_lock);
626 
627 	if (pgt) {
628 		kvm_pgtable_stage2_destroy(pgt);
629 		kfree(pgt);
630 	}
631 }
632 
633 /**
634  * kvm_phys_addr_ioremap - map a device range to guest IPA
635  *
636  * @kvm:	The KVM pointer
637  * @guest_ipa:	The IPA at which to insert the mapping
638  * @pa:		The physical address of the device
639  * @size:	The size of the mapping
640  * @writable:   Whether or not to create a writable mapping
641  */
642 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
643 			  phys_addr_t pa, unsigned long size, bool writable)
644 {
645 	phys_addr_t addr;
646 	int ret = 0;
647 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
648 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
649 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
650 				     KVM_PGTABLE_PROT_R |
651 				     (writable ? KVM_PGTABLE_PROT_W : 0);
652 
653 	size += offset_in_page(guest_ipa);
654 	guest_ipa &= PAGE_MASK;
655 
656 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
657 		ret = kvm_mmu_topup_memory_cache(&cache,
658 						 kvm_mmu_cache_min_pages(kvm));
659 		if (ret)
660 			break;
661 
662 		spin_lock(&kvm->mmu_lock);
663 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
664 					     &cache);
665 		spin_unlock(&kvm->mmu_lock);
666 		if (ret)
667 			break;
668 
669 		pa += PAGE_SIZE;
670 	}
671 
672 	kvm_mmu_free_memory_cache(&cache);
673 	return ret;
674 }
675 
676 /**
677  * stage2_wp_range() - write protect stage2 memory region range
678  * @mmu:        The KVM stage-2 MMU pointer
679  * @addr:	Start address of range
680  * @end:	End address of range
681  */
682 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
683 {
684 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
685 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
686 }
687 
688 /**
689  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
690  * @kvm:	The KVM pointer
691  * @slot:	The memory slot to write protect
692  *
693  * Called to start logging dirty pages after memory region
694  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
695  * all present PUD, PMD and PTEs are write protected in the memory region.
696  * Afterwards read of dirty page log can be called.
697  *
698  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
699  * serializing operations for VM memory regions.
700  */
701 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
702 {
703 	struct kvm_memslots *slots = kvm_memslots(kvm);
704 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
705 	phys_addr_t start, end;
706 
707 	if (WARN_ON_ONCE(!memslot))
708 		return;
709 
710 	start = memslot->base_gfn << PAGE_SHIFT;
711 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
712 
713 	spin_lock(&kvm->mmu_lock);
714 	stage2_wp_range(&kvm->arch.mmu, start, end);
715 	spin_unlock(&kvm->mmu_lock);
716 	kvm_flush_remote_tlbs(kvm);
717 }
718 
719 /**
720  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
721  * @kvm:	The KVM pointer
722  * @slot:	The memory slot associated with mask
723  * @gfn_offset:	The gfn offset in memory slot
724  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
725  *		slot to be write protected
726  *
727  * Walks bits set in mask write protects the associated pte's. Caller must
728  * acquire kvm_mmu_lock.
729  */
730 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
731 		struct kvm_memory_slot *slot,
732 		gfn_t gfn_offset, unsigned long mask)
733 {
734 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
735 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
736 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
737 
738 	stage2_wp_range(&kvm->arch.mmu, start, end);
739 }
740 
741 /*
742  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
743  * dirty pages.
744  *
745  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
746  * enable dirty logging for them.
747  */
748 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
749 		struct kvm_memory_slot *slot,
750 		gfn_t gfn_offset, unsigned long mask)
751 {
752 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
753 }
754 
755 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
756 {
757 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
758 }
759 
760 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
761 					       unsigned long hva,
762 					       unsigned long map_size)
763 {
764 	gpa_t gpa_start;
765 	hva_t uaddr_start, uaddr_end;
766 	size_t size;
767 
768 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
769 	if (map_size == PAGE_SIZE)
770 		return true;
771 
772 	size = memslot->npages * PAGE_SIZE;
773 
774 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
775 
776 	uaddr_start = memslot->userspace_addr;
777 	uaddr_end = uaddr_start + size;
778 
779 	/*
780 	 * Pages belonging to memslots that don't have the same alignment
781 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
782 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
783 	 *
784 	 * Consider a layout like the following:
785 	 *
786 	 *    memslot->userspace_addr:
787 	 *    +-----+--------------------+--------------------+---+
788 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
789 	 *    +-----+--------------------+--------------------+---+
790 	 *
791 	 *    memslot->base_gfn << PAGE_SHIFT:
792 	 *      +---+--------------------+--------------------+-----+
793 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
794 	 *      +---+--------------------+--------------------+-----+
795 	 *
796 	 * If we create those stage-2 blocks, we'll end up with this incorrect
797 	 * mapping:
798 	 *   d -> f
799 	 *   e -> g
800 	 *   f -> h
801 	 */
802 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
803 		return false;
804 
805 	/*
806 	 * Next, let's make sure we're not trying to map anything not covered
807 	 * by the memslot. This means we have to prohibit block size mappings
808 	 * for the beginning and end of a non-block aligned and non-block sized
809 	 * memory slot (illustrated by the head and tail parts of the
810 	 * userspace view above containing pages 'abcde' and 'xyz',
811 	 * respectively).
812 	 *
813 	 * Note that it doesn't matter if we do the check using the
814 	 * userspace_addr or the base_gfn, as both are equally aligned (per
815 	 * the check above) and equally sized.
816 	 */
817 	return (hva & ~(map_size - 1)) >= uaddr_start &&
818 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
819 }
820 
821 /*
822  * Check if the given hva is backed by a transparent huge page (THP) and
823  * whether it can be mapped using block mapping in stage2. If so, adjust
824  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
825  * supported. This will need to be updated to support other THP sizes.
826  *
827  * Returns the size of the mapping.
828  */
829 static unsigned long
830 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
831 			    unsigned long hva, kvm_pfn_t *pfnp,
832 			    phys_addr_t *ipap)
833 {
834 	kvm_pfn_t pfn = *pfnp;
835 
836 	/*
837 	 * Make sure the adjustment is done only for THP pages. Also make
838 	 * sure that the HVA and IPA are sufficiently aligned and that the
839 	 * block map is contained within the memslot.
840 	 */
841 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
842 	    get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
843 		/*
844 		 * The address we faulted on is backed by a transparent huge
845 		 * page.  However, because we map the compound huge page and
846 		 * not the individual tail page, we need to transfer the
847 		 * refcount to the head page.  We have to be careful that the
848 		 * THP doesn't start to split while we are adjusting the
849 		 * refcounts.
850 		 *
851 		 * We are sure this doesn't happen, because mmu_notifier_retry
852 		 * was successful and we are holding the mmu_lock, so if this
853 		 * THP is trying to split, it will be blocked in the mmu
854 		 * notifier before touching any of the pages, specifically
855 		 * before being able to call __split_huge_page_refcount().
856 		 *
857 		 * We can therefore safely transfer the refcount from PG_tail
858 		 * to PG_head and switch the pfn from a tail page to the head
859 		 * page accordingly.
860 		 */
861 		*ipap &= PMD_MASK;
862 		kvm_release_pfn_clean(pfn);
863 		pfn &= ~(PTRS_PER_PMD - 1);
864 		get_page(pfn_to_page(pfn));
865 		*pfnp = pfn;
866 
867 		return PMD_SIZE;
868 	}
869 
870 	/* Use page mapping if we cannot use block mapping. */
871 	return PAGE_SIZE;
872 }
873 
874 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
875 {
876 	unsigned long pa;
877 
878 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
879 		return huge_page_shift(hstate_vma(vma));
880 
881 	if (!(vma->vm_flags & VM_PFNMAP))
882 		return PAGE_SHIFT;
883 
884 	VM_BUG_ON(is_vm_hugetlb_page(vma));
885 
886 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
887 
888 #ifndef __PAGETABLE_PMD_FOLDED
889 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
890 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
891 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
892 		return PUD_SHIFT;
893 #endif
894 
895 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
896 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
897 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
898 		return PMD_SHIFT;
899 
900 	return PAGE_SHIFT;
901 }
902 
903 /*
904  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
905  * able to see the page's tags and therefore they must be initialised first. If
906  * PG_mte_tagged is set, tags have already been initialised.
907  *
908  * The race in the test/set of the PG_mte_tagged flag is handled by:
909  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
910  *   racing to santise the same page
911  * - mmap_lock protects between a VM faulting a page in and the VMM performing
912  *   an mprotect() to add VM_MTE
913  */
914 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
915 			     unsigned long size)
916 {
917 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
918 	struct page *page;
919 
920 	if (!kvm_has_mte(kvm))
921 		return 0;
922 
923 	/*
924 	 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
925 	 * that may not support tags.
926 	 */
927 	page = pfn_to_online_page(pfn);
928 
929 	if (!page)
930 		return -EFAULT;
931 
932 	for (i = 0; i < nr_pages; i++, page++) {
933 		if (!test_bit(PG_mte_tagged, &page->flags)) {
934 			mte_clear_page_tags(page_address(page));
935 			set_bit(PG_mte_tagged, &page->flags);
936 		}
937 	}
938 
939 	return 0;
940 }
941 
942 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
943 			  struct kvm_memory_slot *memslot, unsigned long hva,
944 			  unsigned long fault_status)
945 {
946 	int ret = 0;
947 	bool write_fault, writable, force_pte = false;
948 	bool exec_fault;
949 	bool device = false;
950 	bool shared;
951 	unsigned long mmu_seq;
952 	struct kvm *kvm = vcpu->kvm;
953 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
954 	struct vm_area_struct *vma;
955 	short vma_shift;
956 	gfn_t gfn;
957 	kvm_pfn_t pfn;
958 	bool logging_active = memslot_is_logging(memslot);
959 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
960 	unsigned long vma_pagesize, fault_granule;
961 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
962 	struct kvm_pgtable *pgt;
963 
964 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
965 	write_fault = kvm_is_write_fault(vcpu);
966 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
967 	VM_BUG_ON(write_fault && exec_fault);
968 
969 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
970 		kvm_err("Unexpected L2 read permission error\n");
971 		return -EFAULT;
972 	}
973 
974 	/*
975 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
976 	 * get block mapping for device MMIO region.
977 	 */
978 	mmap_read_lock(current->mm);
979 	vma = vma_lookup(current->mm, hva);
980 	if (unlikely(!vma)) {
981 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
982 		mmap_read_unlock(current->mm);
983 		return -EFAULT;
984 	}
985 
986 	/*
987 	 * logging_active is guaranteed to never be true for VM_PFNMAP
988 	 * memslots.
989 	 */
990 	if (logging_active) {
991 		force_pte = true;
992 		vma_shift = PAGE_SHIFT;
993 	} else {
994 		vma_shift = get_vma_page_shift(vma, hva);
995 	}
996 
997 	shared = (vma->vm_flags & VM_SHARED);
998 
999 	switch (vma_shift) {
1000 #ifndef __PAGETABLE_PMD_FOLDED
1001 	case PUD_SHIFT:
1002 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1003 			break;
1004 		fallthrough;
1005 #endif
1006 	case CONT_PMD_SHIFT:
1007 		vma_shift = PMD_SHIFT;
1008 		fallthrough;
1009 	case PMD_SHIFT:
1010 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1011 			break;
1012 		fallthrough;
1013 	case CONT_PTE_SHIFT:
1014 		vma_shift = PAGE_SHIFT;
1015 		force_pte = true;
1016 		fallthrough;
1017 	case PAGE_SHIFT:
1018 		break;
1019 	default:
1020 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1021 	}
1022 
1023 	vma_pagesize = 1UL << vma_shift;
1024 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1025 		fault_ipa &= ~(vma_pagesize - 1);
1026 
1027 	gfn = fault_ipa >> PAGE_SHIFT;
1028 	mmap_read_unlock(current->mm);
1029 
1030 	/*
1031 	 * Permission faults just need to update the existing leaf entry,
1032 	 * and so normally don't require allocations from the memcache. The
1033 	 * only exception to this is when dirty logging is enabled at runtime
1034 	 * and a write fault needs to collapse a block entry into a table.
1035 	 */
1036 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1037 		ret = kvm_mmu_topup_memory_cache(memcache,
1038 						 kvm_mmu_cache_min_pages(kvm));
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1044 	/*
1045 	 * Ensure the read of mmu_notifier_seq happens before we call
1046 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1047 	 * the page we just got a reference to gets unmapped before we have a
1048 	 * chance to grab the mmu_lock, which ensure that if the page gets
1049 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1050 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1051 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1052 	 *
1053 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1054 	 * used to avoid unnecessary overhead introduced to locate the memory
1055 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1056 	 */
1057 	smp_rmb();
1058 
1059 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1060 				   write_fault, &writable, NULL);
1061 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1062 		kvm_send_hwpoison_signal(hva, vma_shift);
1063 		return 0;
1064 	}
1065 	if (is_error_noslot_pfn(pfn))
1066 		return -EFAULT;
1067 
1068 	if (kvm_is_device_pfn(pfn)) {
1069 		/*
1070 		 * If the page was identified as device early by looking at
1071 		 * the VMA flags, vma_pagesize is already representing the
1072 		 * largest quantity we can map.  If instead it was mapped
1073 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1074 		 * and must not be upgraded.
1075 		 *
1076 		 * In both cases, we don't let transparent_hugepage_adjust()
1077 		 * change things at the last minute.
1078 		 */
1079 		device = true;
1080 	} else if (logging_active && !write_fault) {
1081 		/*
1082 		 * Only actually map the page as writable if this was a write
1083 		 * fault.
1084 		 */
1085 		writable = false;
1086 	}
1087 
1088 	if (exec_fault && device)
1089 		return -ENOEXEC;
1090 
1091 	spin_lock(&kvm->mmu_lock);
1092 	pgt = vcpu->arch.hw_mmu->pgt;
1093 	if (mmu_notifier_retry(kvm, mmu_seq))
1094 		goto out_unlock;
1095 
1096 	/*
1097 	 * If we are not forced to use page mapping, check if we are
1098 	 * backed by a THP and thus use block mapping if possible.
1099 	 */
1100 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1101 		if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1102 			vma_pagesize = fault_granule;
1103 		else
1104 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1105 								   hva, &pfn,
1106 								   &fault_ipa);
1107 	}
1108 
1109 	if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1110 		/* Check the VMM hasn't introduced a new VM_SHARED VMA */
1111 		if (!shared)
1112 			ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1113 		else
1114 			ret = -EFAULT;
1115 		if (ret)
1116 			goto out_unlock;
1117 	}
1118 
1119 	if (writable)
1120 		prot |= KVM_PGTABLE_PROT_W;
1121 
1122 	if (exec_fault)
1123 		prot |= KVM_PGTABLE_PROT_X;
1124 
1125 	if (device)
1126 		prot |= KVM_PGTABLE_PROT_DEVICE;
1127 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1128 		prot |= KVM_PGTABLE_PROT_X;
1129 
1130 	/*
1131 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1132 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1133 	 * kvm_pgtable_stage2_map() should be called to change block size.
1134 	 */
1135 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1136 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1137 	} else {
1138 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1139 					     __pfn_to_phys(pfn), prot,
1140 					     memcache);
1141 	}
1142 
1143 	/* Mark the page dirty only if the fault is handled successfully */
1144 	if (writable && !ret) {
1145 		kvm_set_pfn_dirty(pfn);
1146 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1147 	}
1148 
1149 out_unlock:
1150 	spin_unlock(&kvm->mmu_lock);
1151 	kvm_set_pfn_accessed(pfn);
1152 	kvm_release_pfn_clean(pfn);
1153 	return ret != -EAGAIN ? ret : 0;
1154 }
1155 
1156 /* Resolve the access fault by making the page young again. */
1157 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1158 {
1159 	pte_t pte;
1160 	kvm_pte_t kpte;
1161 	struct kvm_s2_mmu *mmu;
1162 
1163 	trace_kvm_access_fault(fault_ipa);
1164 
1165 	spin_lock(&vcpu->kvm->mmu_lock);
1166 	mmu = vcpu->arch.hw_mmu;
1167 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1168 	spin_unlock(&vcpu->kvm->mmu_lock);
1169 
1170 	pte = __pte(kpte);
1171 	if (pte_valid(pte))
1172 		kvm_set_pfn_accessed(pte_pfn(pte));
1173 }
1174 
1175 /**
1176  * kvm_handle_guest_abort - handles all 2nd stage aborts
1177  * @vcpu:	the VCPU pointer
1178  *
1179  * Any abort that gets to the host is almost guaranteed to be caused by a
1180  * missing second stage translation table entry, which can mean that either the
1181  * guest simply needs more memory and we must allocate an appropriate page or it
1182  * can mean that the guest tried to access I/O memory, which is emulated by user
1183  * space. The distinction is based on the IPA causing the fault and whether this
1184  * memory region has been registered as standard RAM by user space.
1185  */
1186 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1187 {
1188 	unsigned long fault_status;
1189 	phys_addr_t fault_ipa;
1190 	struct kvm_memory_slot *memslot;
1191 	unsigned long hva;
1192 	bool is_iabt, write_fault, writable;
1193 	gfn_t gfn;
1194 	int ret, idx;
1195 
1196 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1197 
1198 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1199 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1200 
1201 	/* Synchronous External Abort? */
1202 	if (kvm_vcpu_abt_issea(vcpu)) {
1203 		/*
1204 		 * For RAS the host kernel may handle this abort.
1205 		 * There is no need to pass the error into the guest.
1206 		 */
1207 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1208 			kvm_inject_vabt(vcpu);
1209 
1210 		return 1;
1211 	}
1212 
1213 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1214 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1215 
1216 	/* Check the stage-2 fault is trans. fault or write fault */
1217 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1218 	    fault_status != FSC_ACCESS) {
1219 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1220 			kvm_vcpu_trap_get_class(vcpu),
1221 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1222 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1223 		return -EFAULT;
1224 	}
1225 
1226 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1227 
1228 	gfn = fault_ipa >> PAGE_SHIFT;
1229 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1230 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1231 	write_fault = kvm_is_write_fault(vcpu);
1232 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1233 		/*
1234 		 * The guest has put either its instructions or its page-tables
1235 		 * somewhere it shouldn't have. Userspace won't be able to do
1236 		 * anything about this (there's no syndrome for a start), so
1237 		 * re-inject the abort back into the guest.
1238 		 */
1239 		if (is_iabt) {
1240 			ret = -ENOEXEC;
1241 			goto out;
1242 		}
1243 
1244 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1245 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1246 			ret = 1;
1247 			goto out_unlock;
1248 		}
1249 
1250 		/*
1251 		 * Check for a cache maintenance operation. Since we
1252 		 * ended-up here, we know it is outside of any memory
1253 		 * slot. But we can't find out if that is for a device,
1254 		 * or if the guest is just being stupid. The only thing
1255 		 * we know for sure is that this range cannot be cached.
1256 		 *
1257 		 * So let's assume that the guest is just being
1258 		 * cautious, and skip the instruction.
1259 		 */
1260 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1261 			kvm_incr_pc(vcpu);
1262 			ret = 1;
1263 			goto out_unlock;
1264 		}
1265 
1266 		/*
1267 		 * The IPA is reported as [MAX:12], so we need to
1268 		 * complement it with the bottom 12 bits from the
1269 		 * faulting VA. This is always 12 bits, irrespective
1270 		 * of the page size.
1271 		 */
1272 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1273 		ret = io_mem_abort(vcpu, fault_ipa);
1274 		goto out_unlock;
1275 	}
1276 
1277 	/* Userspace should not be able to register out-of-bounds IPAs */
1278 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1279 
1280 	if (fault_status == FSC_ACCESS) {
1281 		handle_access_fault(vcpu, fault_ipa);
1282 		ret = 1;
1283 		goto out_unlock;
1284 	}
1285 
1286 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1287 	if (ret == 0)
1288 		ret = 1;
1289 out:
1290 	if (ret == -ENOEXEC) {
1291 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1292 		ret = 1;
1293 	}
1294 out_unlock:
1295 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1296 	return ret;
1297 }
1298 
1299 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1300 {
1301 	if (!kvm->arch.mmu.pgt)
1302 		return false;
1303 
1304 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1305 			     (range->end - range->start) << PAGE_SHIFT,
1306 			     range->may_block);
1307 
1308 	return false;
1309 }
1310 
1311 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1312 {
1313 	kvm_pfn_t pfn = pte_pfn(range->pte);
1314 	int ret;
1315 
1316 	if (!kvm->arch.mmu.pgt)
1317 		return false;
1318 
1319 	WARN_ON(range->end - range->start != 1);
1320 
1321 	ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1322 	if (ret)
1323 		return false;
1324 
1325 	/*
1326 	 * We've moved a page around, probably through CoW, so let's treat
1327 	 * it just like a translation fault and the map handler will clean
1328 	 * the cache to the PoC.
1329 	 *
1330 	 * The MMU notifiers will have unmapped a huge PMD before calling
1331 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1332 	 * therefore we never need to clear out a huge PMD through this
1333 	 * calling path and a memcache is not required.
1334 	 */
1335 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1336 			       PAGE_SIZE, __pfn_to_phys(pfn),
1337 			       KVM_PGTABLE_PROT_R, NULL);
1338 
1339 	return false;
1340 }
1341 
1342 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1343 {
1344 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1345 	kvm_pte_t kpte;
1346 	pte_t pte;
1347 
1348 	if (!kvm->arch.mmu.pgt)
1349 		return false;
1350 
1351 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1352 
1353 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1354 					range->start << PAGE_SHIFT);
1355 	pte = __pte(kpte);
1356 	return pte_valid(pte) && pte_young(pte);
1357 }
1358 
1359 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1360 {
1361 	if (!kvm->arch.mmu.pgt)
1362 		return false;
1363 
1364 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1365 					   range->start << PAGE_SHIFT);
1366 }
1367 
1368 phys_addr_t kvm_mmu_get_httbr(void)
1369 {
1370 	return __pa(hyp_pgtable->pgd);
1371 }
1372 
1373 phys_addr_t kvm_get_idmap_vector(void)
1374 {
1375 	return hyp_idmap_vector;
1376 }
1377 
1378 static int kvm_map_idmap_text(void)
1379 {
1380 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1381 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1382 					PAGE_HYP_EXEC);
1383 	if (err)
1384 		kvm_err("Failed to idmap %lx-%lx\n",
1385 			hyp_idmap_start, hyp_idmap_end);
1386 
1387 	return err;
1388 }
1389 
1390 static void *kvm_hyp_zalloc_page(void *arg)
1391 {
1392 	return (void *)get_zeroed_page(GFP_KERNEL);
1393 }
1394 
1395 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1396 	.zalloc_page		= kvm_hyp_zalloc_page,
1397 	.get_page		= kvm_host_get_page,
1398 	.put_page		= kvm_host_put_page,
1399 	.phys_to_virt		= kvm_host_va,
1400 	.virt_to_phys		= kvm_host_pa,
1401 };
1402 
1403 int kvm_mmu_init(u32 *hyp_va_bits)
1404 {
1405 	int err;
1406 
1407 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1408 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1409 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1410 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1411 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1412 
1413 	/*
1414 	 * We rely on the linker script to ensure at build time that the HYP
1415 	 * init code does not cross a page boundary.
1416 	 */
1417 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1418 
1419 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1420 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1421 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1422 	kvm_debug("HYP VA range: %lx:%lx\n",
1423 		  kern_hyp_va(PAGE_OFFSET),
1424 		  kern_hyp_va((unsigned long)high_memory - 1));
1425 
1426 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1427 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1428 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1429 		/*
1430 		 * The idmap page is intersecting with the VA space,
1431 		 * it is not safe to continue further.
1432 		 */
1433 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1434 		err = -EINVAL;
1435 		goto out;
1436 	}
1437 
1438 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1439 	if (!hyp_pgtable) {
1440 		kvm_err("Hyp mode page-table not allocated\n");
1441 		err = -ENOMEM;
1442 		goto out;
1443 	}
1444 
1445 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1446 	if (err)
1447 		goto out_free_pgtable;
1448 
1449 	err = kvm_map_idmap_text();
1450 	if (err)
1451 		goto out_destroy_pgtable;
1452 
1453 	io_map_base = hyp_idmap_start;
1454 	return 0;
1455 
1456 out_destroy_pgtable:
1457 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1458 out_free_pgtable:
1459 	kfree(hyp_pgtable);
1460 	hyp_pgtable = NULL;
1461 out:
1462 	return err;
1463 }
1464 
1465 void kvm_arch_commit_memory_region(struct kvm *kvm,
1466 				   const struct kvm_userspace_memory_region *mem,
1467 				   struct kvm_memory_slot *old,
1468 				   const struct kvm_memory_slot *new,
1469 				   enum kvm_mr_change change)
1470 {
1471 	/*
1472 	 * At this point memslot has been committed and there is an
1473 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1474 	 * memory slot is write protected.
1475 	 */
1476 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1477 		/*
1478 		 * If we're with initial-all-set, we don't need to write
1479 		 * protect any pages because they're all reported as dirty.
1480 		 * Huge pages and normal pages will be write protect gradually.
1481 		 */
1482 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1483 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1484 		}
1485 	}
1486 }
1487 
1488 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1489 				   struct kvm_memory_slot *memslot,
1490 				   const struct kvm_userspace_memory_region *mem,
1491 				   enum kvm_mr_change change)
1492 {
1493 	hva_t hva = mem->userspace_addr;
1494 	hva_t reg_end = hva + mem->memory_size;
1495 	int ret = 0;
1496 
1497 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1498 			change != KVM_MR_FLAGS_ONLY)
1499 		return 0;
1500 
1501 	/*
1502 	 * Prevent userspace from creating a memory region outside of the IPA
1503 	 * space addressable by the KVM guest IPA space.
1504 	 */
1505 	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1506 		return -EFAULT;
1507 
1508 	mmap_read_lock(current->mm);
1509 	/*
1510 	 * A memory region could potentially cover multiple VMAs, and any holes
1511 	 * between them, so iterate over all of them.
1512 	 *
1513 	 *     +--------------------------------------------+
1514 	 * +---------------+----------------+   +----------------+
1515 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1516 	 * +---------------+----------------+   +----------------+
1517 	 *     |               memory region                |
1518 	 *     +--------------------------------------------+
1519 	 */
1520 	do {
1521 		struct vm_area_struct *vma;
1522 
1523 		vma = find_vma_intersection(current->mm, hva, reg_end);
1524 		if (!vma)
1525 			break;
1526 
1527 		/*
1528 		 * VM_SHARED mappings are not allowed with MTE to avoid races
1529 		 * when updating the PG_mte_tagged page flag, see
1530 		 * sanitise_mte_tags for more details.
1531 		 */
1532 		if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1533 			ret = -EINVAL;
1534 			break;
1535 		}
1536 
1537 		if (vma->vm_flags & VM_PFNMAP) {
1538 			/* IO region dirty page logging not allowed */
1539 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1540 				ret = -EINVAL;
1541 				break;
1542 			}
1543 		}
1544 		hva = min(reg_end, vma->vm_end);
1545 	} while (hva < reg_end);
1546 
1547 	mmap_read_unlock(current->mm);
1548 	return ret;
1549 }
1550 
1551 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1552 {
1553 }
1554 
1555 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1556 {
1557 }
1558 
1559 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1560 {
1561 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1562 }
1563 
1564 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1565 				   struct kvm_memory_slot *slot)
1566 {
1567 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1568 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1569 
1570 	spin_lock(&kvm->mmu_lock);
1571 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1572 	spin_unlock(&kvm->mmu_lock);
1573 }
1574 
1575 /*
1576  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1577  *
1578  * Main problems:
1579  * - S/W ops are local to a CPU (not broadcast)
1580  * - We have line migration behind our back (speculation)
1581  * - System caches don't support S/W at all (damn!)
1582  *
1583  * In the face of the above, the best we can do is to try and convert
1584  * S/W ops to VA ops. Because the guest is not allowed to infer the
1585  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1586  * which is a rather good thing for us.
1587  *
1588  * Also, it is only used when turning caches on/off ("The expected
1589  * usage of the cache maintenance instructions that operate by set/way
1590  * is associated with the cache maintenance instructions associated
1591  * with the powerdown and powerup of caches, if this is required by
1592  * the implementation.").
1593  *
1594  * We use the following policy:
1595  *
1596  * - If we trap a S/W operation, we enable VM trapping to detect
1597  *   caches being turned on/off, and do a full clean.
1598  *
1599  * - We flush the caches on both caches being turned on and off.
1600  *
1601  * - Once the caches are enabled, we stop trapping VM ops.
1602  */
1603 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1604 {
1605 	unsigned long hcr = *vcpu_hcr(vcpu);
1606 
1607 	/*
1608 	 * If this is the first time we do a S/W operation
1609 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1610 	 * VM trapping.
1611 	 *
1612 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1613 	 * Caches to be turned off. At that point, we'll be able to
1614 	 * clean the caches again.
1615 	 */
1616 	if (!(hcr & HCR_TVM)) {
1617 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1618 					vcpu_has_cache_enabled(vcpu));
1619 		stage2_flush_vm(vcpu->kvm);
1620 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1621 	}
1622 }
1623 
1624 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1625 {
1626 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1627 
1628 	/*
1629 	 * If switching the MMU+caches on, need to invalidate the caches.
1630 	 * If switching it off, need to clean the caches.
1631 	 * Clean + invalidate does the trick always.
1632 	 */
1633 	if (now_enabled != was_enabled)
1634 		stage2_flush_vm(vcpu->kvm);
1635 
1636 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1637 	if (now_enabled)
1638 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1639 
1640 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1641 }
1642