1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, 35 phys_addr_t size) 36 { 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 43 { 44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 45 46 return __stage2_range_addr_end(addr, end, size); 47 } 48 49 /* 50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 53 * long will also starve other vCPUs. We have to also make sure that the page 54 * tables are not freed while we released the lock. 55 */ 56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 57 phys_addr_t end, 58 int (*fn)(struct kvm_pgtable *, u64, u64), 59 bool resched) 60 { 61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 62 int ret; 63 u64 next; 64 65 do { 66 struct kvm_pgtable *pgt = mmu->pgt; 67 if (!pgt) 68 return -EINVAL; 69 70 next = stage2_range_addr_end(addr, end); 71 ret = fn(pgt, addr, next - addr); 72 if (ret) 73 break; 74 75 if (resched && next != end) 76 cond_resched_rwlock_write(&kvm->mmu_lock); 77 } while (addr = next, addr != end); 78 79 return ret; 80 } 81 82 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 83 stage2_apply_range(mmu, addr, end, fn, true) 84 85 /* 86 * Get the maximum number of page-tables pages needed to split a range 87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already 88 * mapped at level 2, or at level 1 if allowed. 89 */ 90 static int kvm_mmu_split_nr_page_tables(u64 range) 91 { 92 int n = 0; 93 94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) 95 n += DIV_ROUND_UP(range, PUD_SIZE); 96 n += DIV_ROUND_UP(range, PMD_SIZE); 97 return n; 98 } 99 100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm) 101 { 102 struct kvm_mmu_memory_cache *cache; 103 u64 chunk_size, min; 104 105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 106 return true; 107 108 chunk_size = kvm->arch.mmu.split_page_chunk_size; 109 min = kvm_mmu_split_nr_page_tables(chunk_size); 110 cache = &kvm->arch.mmu.split_page_cache; 111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 112 } 113 114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, 115 phys_addr_t end) 116 { 117 struct kvm_mmu_memory_cache *cache; 118 struct kvm_pgtable *pgt; 119 int ret, cache_capacity; 120 u64 next, chunk_size; 121 122 lockdep_assert_held_write(&kvm->mmu_lock); 123 124 chunk_size = kvm->arch.mmu.split_page_chunk_size; 125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); 126 127 if (chunk_size == 0) 128 return 0; 129 130 cache = &kvm->arch.mmu.split_page_cache; 131 132 do { 133 if (need_split_memcache_topup_or_resched(kvm)) { 134 write_unlock(&kvm->mmu_lock); 135 cond_resched(); 136 /* Eager page splitting is best-effort. */ 137 ret = __kvm_mmu_topup_memory_cache(cache, 138 cache_capacity, 139 cache_capacity); 140 write_lock(&kvm->mmu_lock); 141 if (ret) 142 break; 143 } 144 145 pgt = kvm->arch.mmu.pgt; 146 if (!pgt) 147 return -EINVAL; 148 149 next = __stage2_range_addr_end(addr, end, chunk_size); 150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); 151 if (ret) 152 break; 153 } while (addr = next, addr != end); 154 155 return ret; 156 } 157 158 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 159 { 160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 161 } 162 163 /** 164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8 165 * @kvm: pointer to kvm structure. 166 * 167 * Interface to HYP function to flush all VM TLB entries 168 */ 169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 170 { 171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 172 return 0; 173 } 174 175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 176 gfn_t gfn, u64 nr_pages) 177 { 178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, 179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); 180 return 0; 181 } 182 183 static bool kvm_is_device_pfn(unsigned long pfn) 184 { 185 return !pfn_is_map_memory(pfn); 186 } 187 188 static void *stage2_memcache_zalloc_page(void *arg) 189 { 190 struct kvm_mmu_memory_cache *mc = arg; 191 void *virt; 192 193 /* Allocated with __GFP_ZERO, so no need to zero */ 194 virt = kvm_mmu_memory_cache_alloc(mc); 195 if (virt) 196 kvm_account_pgtable_pages(virt, 1); 197 return virt; 198 } 199 200 static void *kvm_host_zalloc_pages_exact(size_t size) 201 { 202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 203 } 204 205 static void *kvm_s2_zalloc_pages_exact(size_t size) 206 { 207 void *virt = kvm_host_zalloc_pages_exact(size); 208 209 if (virt) 210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 211 return virt; 212 } 213 214 static void kvm_s2_free_pages_exact(void *virt, size_t size) 215 { 216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 217 free_pages_exact(virt, size); 218 } 219 220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 221 222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head) 223 { 224 struct page *page = container_of(head, struct page, rcu_head); 225 void *pgtable = page_to_virt(page); 226 u32 level = page_private(page); 227 228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level); 229 } 230 231 static void stage2_free_unlinked_table(void *addr, u32 level) 232 { 233 struct page *page = virt_to_page(addr); 234 235 set_page_private(page, (unsigned long)level); 236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb); 237 } 238 239 static void kvm_host_get_page(void *addr) 240 { 241 get_page(virt_to_page(addr)); 242 } 243 244 static void kvm_host_put_page(void *addr) 245 { 246 put_page(virt_to_page(addr)); 247 } 248 249 static void kvm_s2_put_page(void *addr) 250 { 251 struct page *p = virt_to_page(addr); 252 /* Dropping last refcount, the page will be freed */ 253 if (page_count(p) == 1) 254 kvm_account_pgtable_pages(addr, -1); 255 put_page(p); 256 } 257 258 static int kvm_host_page_count(void *addr) 259 { 260 return page_count(virt_to_page(addr)); 261 } 262 263 static phys_addr_t kvm_host_pa(void *addr) 264 { 265 return __pa(addr); 266 } 267 268 static void *kvm_host_va(phys_addr_t phys) 269 { 270 return __va(phys); 271 } 272 273 static void clean_dcache_guest_page(void *va, size_t size) 274 { 275 __clean_dcache_guest_page(va, size); 276 } 277 278 static void invalidate_icache_guest_page(void *va, size_t size) 279 { 280 __invalidate_icache_guest_page(va, size); 281 } 282 283 /* 284 * Unmapping vs dcache management: 285 * 286 * If a guest maps certain memory pages as uncached, all writes will 287 * bypass the data cache and go directly to RAM. However, the CPUs 288 * can still speculate reads (not writes) and fill cache lines with 289 * data. 290 * 291 * Those cache lines will be *clean* cache lines though, so a 292 * clean+invalidate operation is equivalent to an invalidate 293 * operation, because no cache lines are marked dirty. 294 * 295 * Those clean cache lines could be filled prior to an uncached write 296 * by the guest, and the cache coherent IO subsystem would therefore 297 * end up writing old data to disk. 298 * 299 * This is why right after unmapping a page/section and invalidating 300 * the corresponding TLBs, we flush to make sure the IO subsystem will 301 * never hit in the cache. 302 * 303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 304 * we then fully enforce cacheability of RAM, no matter what the guest 305 * does. 306 */ 307 /** 308 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 309 * @mmu: The KVM stage-2 MMU pointer 310 * @start: The intermediate physical base address of the range to unmap 311 * @size: The size of the area to unmap 312 * @may_block: Whether or not we are permitted to block 313 * 314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 316 * destroying the VM), otherwise another faulting VCPU may come in and mess 317 * with things behind our backs. 318 */ 319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 320 bool may_block) 321 { 322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 323 phys_addr_t end = start + size; 324 325 lockdep_assert_held_write(&kvm->mmu_lock); 326 WARN_ON(size & ~PAGE_MASK); 327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 328 may_block)); 329 } 330 331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 332 { 333 __unmap_stage2_range(mmu, start, size, true); 334 } 335 336 static void stage2_flush_memslot(struct kvm *kvm, 337 struct kvm_memory_slot *memslot) 338 { 339 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 340 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 341 342 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); 343 } 344 345 /** 346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 347 * @kvm: The struct kvm pointer 348 * 349 * Go through the stage 2 page tables and invalidate any cache lines 350 * backing memory already mapped to the VM. 351 */ 352 static void stage2_flush_vm(struct kvm *kvm) 353 { 354 struct kvm_memslots *slots; 355 struct kvm_memory_slot *memslot; 356 int idx, bkt; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 write_lock(&kvm->mmu_lock); 360 361 slots = kvm_memslots(kvm); 362 kvm_for_each_memslot(memslot, bkt, slots) 363 stage2_flush_memslot(kvm, memslot); 364 365 write_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 /** 370 * free_hyp_pgds - free Hyp-mode page tables 371 */ 372 void __init free_hyp_pgds(void) 373 { 374 mutex_lock(&kvm_hyp_pgd_mutex); 375 if (hyp_pgtable) { 376 kvm_pgtable_hyp_destroy(hyp_pgtable); 377 kfree(hyp_pgtable); 378 hyp_pgtable = NULL; 379 } 380 mutex_unlock(&kvm_hyp_pgd_mutex); 381 } 382 383 static bool kvm_host_owns_hyp_mappings(void) 384 { 385 if (is_kernel_in_hyp_mode()) 386 return false; 387 388 if (static_branch_likely(&kvm_protected_mode_initialized)) 389 return false; 390 391 /* 392 * This can happen at boot time when __create_hyp_mappings() is called 393 * after the hyp protection has been enabled, but the static key has 394 * not been flipped yet. 395 */ 396 if (!hyp_pgtable && is_protected_kvm_enabled()) 397 return false; 398 399 WARN_ON(!hyp_pgtable); 400 401 return true; 402 } 403 404 int __create_hyp_mappings(unsigned long start, unsigned long size, 405 unsigned long phys, enum kvm_pgtable_prot prot) 406 { 407 int err; 408 409 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 410 return -EINVAL; 411 412 mutex_lock(&kvm_hyp_pgd_mutex); 413 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 414 mutex_unlock(&kvm_hyp_pgd_mutex); 415 416 return err; 417 } 418 419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 420 { 421 if (!is_vmalloc_addr(kaddr)) { 422 BUG_ON(!virt_addr_valid(kaddr)); 423 return __pa(kaddr); 424 } else { 425 return page_to_phys(vmalloc_to_page(kaddr)) + 426 offset_in_page(kaddr); 427 } 428 } 429 430 struct hyp_shared_pfn { 431 u64 pfn; 432 int count; 433 struct rb_node node; 434 }; 435 436 static DEFINE_MUTEX(hyp_shared_pfns_lock); 437 static struct rb_root hyp_shared_pfns = RB_ROOT; 438 439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 440 struct rb_node **parent) 441 { 442 struct hyp_shared_pfn *this; 443 444 *node = &hyp_shared_pfns.rb_node; 445 *parent = NULL; 446 while (**node) { 447 this = container_of(**node, struct hyp_shared_pfn, node); 448 *parent = **node; 449 if (this->pfn < pfn) 450 *node = &((**node)->rb_left); 451 else if (this->pfn > pfn) 452 *node = &((**node)->rb_right); 453 else 454 return this; 455 } 456 457 return NULL; 458 } 459 460 static int share_pfn_hyp(u64 pfn) 461 { 462 struct rb_node **node, *parent; 463 struct hyp_shared_pfn *this; 464 int ret = 0; 465 466 mutex_lock(&hyp_shared_pfns_lock); 467 this = find_shared_pfn(pfn, &node, &parent); 468 if (this) { 469 this->count++; 470 goto unlock; 471 } 472 473 this = kzalloc(sizeof(*this), GFP_KERNEL); 474 if (!this) { 475 ret = -ENOMEM; 476 goto unlock; 477 } 478 479 this->pfn = pfn; 480 this->count = 1; 481 rb_link_node(&this->node, parent, node); 482 rb_insert_color(&this->node, &hyp_shared_pfns); 483 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 484 unlock: 485 mutex_unlock(&hyp_shared_pfns_lock); 486 487 return ret; 488 } 489 490 static int unshare_pfn_hyp(u64 pfn) 491 { 492 struct rb_node **node, *parent; 493 struct hyp_shared_pfn *this; 494 int ret = 0; 495 496 mutex_lock(&hyp_shared_pfns_lock); 497 this = find_shared_pfn(pfn, &node, &parent); 498 if (WARN_ON(!this)) { 499 ret = -ENOENT; 500 goto unlock; 501 } 502 503 this->count--; 504 if (this->count) 505 goto unlock; 506 507 rb_erase(&this->node, &hyp_shared_pfns); 508 kfree(this); 509 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 510 unlock: 511 mutex_unlock(&hyp_shared_pfns_lock); 512 513 return ret; 514 } 515 516 int kvm_share_hyp(void *from, void *to) 517 { 518 phys_addr_t start, end, cur; 519 u64 pfn; 520 int ret; 521 522 if (is_kernel_in_hyp_mode()) 523 return 0; 524 525 /* 526 * The share hcall maps things in the 'fixed-offset' region of the hyp 527 * VA space, so we can only share physically contiguous data-structures 528 * for now. 529 */ 530 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 531 return -EINVAL; 532 533 if (kvm_host_owns_hyp_mappings()) 534 return create_hyp_mappings(from, to, PAGE_HYP); 535 536 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 537 end = PAGE_ALIGN(__pa(to)); 538 for (cur = start; cur < end; cur += PAGE_SIZE) { 539 pfn = __phys_to_pfn(cur); 540 ret = share_pfn_hyp(pfn); 541 if (ret) 542 return ret; 543 } 544 545 return 0; 546 } 547 548 void kvm_unshare_hyp(void *from, void *to) 549 { 550 phys_addr_t start, end, cur; 551 u64 pfn; 552 553 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 554 return; 555 556 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 557 end = PAGE_ALIGN(__pa(to)); 558 for (cur = start; cur < end; cur += PAGE_SIZE) { 559 pfn = __phys_to_pfn(cur); 560 WARN_ON(unshare_pfn_hyp(pfn)); 561 } 562 } 563 564 /** 565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 566 * @from: The virtual kernel start address of the range 567 * @to: The virtual kernel end address of the range (exclusive) 568 * @prot: The protection to be applied to this range 569 * 570 * The same virtual address as the kernel virtual address is also used 571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 572 * physical pages. 573 */ 574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 575 { 576 phys_addr_t phys_addr; 577 unsigned long virt_addr; 578 unsigned long start = kern_hyp_va((unsigned long)from); 579 unsigned long end = kern_hyp_va((unsigned long)to); 580 581 if (is_kernel_in_hyp_mode()) 582 return 0; 583 584 if (!kvm_host_owns_hyp_mappings()) 585 return -EPERM; 586 587 start = start & PAGE_MASK; 588 end = PAGE_ALIGN(end); 589 590 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 591 int err; 592 593 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 594 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 595 prot); 596 if (err) 597 return err; 598 } 599 600 return 0; 601 } 602 603 static int __hyp_alloc_private_va_range(unsigned long base) 604 { 605 lockdep_assert_held(&kvm_hyp_pgd_mutex); 606 607 if (!PAGE_ALIGNED(base)) 608 return -EINVAL; 609 610 /* 611 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 612 * allocating the new area, as it would indicate we've 613 * overflowed the idmap/IO address range. 614 */ 615 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 616 return -ENOMEM; 617 618 io_map_base = base; 619 620 return 0; 621 } 622 623 /** 624 * hyp_alloc_private_va_range - Allocates a private VA range. 625 * @size: The size of the VA range to reserve. 626 * @haddr: The hypervisor virtual start address of the allocation. 627 * 628 * The private virtual address (VA) range is allocated below io_map_base 629 * and aligned based on the order of @size. 630 * 631 * Return: 0 on success or negative error code on failure. 632 */ 633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 634 { 635 unsigned long base; 636 int ret = 0; 637 638 mutex_lock(&kvm_hyp_pgd_mutex); 639 640 /* 641 * This assumes that we have enough space below the idmap 642 * page to allocate our VAs. If not, the check in 643 * __hyp_alloc_private_va_range() will kick. A potential 644 * alternative would be to detect that overflow and switch 645 * to an allocation above the idmap. 646 * 647 * The allocated size is always a multiple of PAGE_SIZE. 648 */ 649 size = PAGE_ALIGN(size); 650 base = io_map_base - size; 651 ret = __hyp_alloc_private_va_range(base); 652 653 mutex_unlock(&kvm_hyp_pgd_mutex); 654 655 return ret; 656 } 657 658 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 659 unsigned long *haddr, 660 enum kvm_pgtable_prot prot) 661 { 662 unsigned long addr; 663 int ret = 0; 664 665 if (!kvm_host_owns_hyp_mappings()) { 666 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 667 phys_addr, size, prot); 668 if (IS_ERR_VALUE(addr)) 669 return addr; 670 *haddr = addr; 671 672 return 0; 673 } 674 675 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 676 ret = hyp_alloc_private_va_range(size, &addr); 677 if (ret) 678 return ret; 679 680 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 681 if (ret) 682 return ret; 683 684 *haddr = addr + offset_in_page(phys_addr); 685 return ret; 686 } 687 688 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr) 689 { 690 unsigned long base; 691 size_t size; 692 int ret; 693 694 mutex_lock(&kvm_hyp_pgd_mutex); 695 /* 696 * Efficient stack verification using the PAGE_SHIFT bit implies 697 * an alignment of our allocation on the order of the size. 698 */ 699 size = PAGE_SIZE * 2; 700 base = ALIGN_DOWN(io_map_base - size, size); 701 702 ret = __hyp_alloc_private_va_range(base); 703 704 mutex_unlock(&kvm_hyp_pgd_mutex); 705 706 if (ret) { 707 kvm_err("Cannot allocate hyp stack guard page\n"); 708 return ret; 709 } 710 711 /* 712 * Since the stack grows downwards, map the stack to the page 713 * at the higher address and leave the lower guard page 714 * unbacked. 715 * 716 * Any valid stack address now has the PAGE_SHIFT bit as 1 717 * and addresses corresponding to the guard page have the 718 * PAGE_SHIFT bit as 0 - this is used for overflow detection. 719 */ 720 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr, 721 PAGE_HYP); 722 if (ret) 723 kvm_err("Cannot map hyp stack\n"); 724 725 *haddr = base + size; 726 727 return ret; 728 } 729 730 /** 731 * create_hyp_io_mappings - Map IO into both kernel and HYP 732 * @phys_addr: The physical start address which gets mapped 733 * @size: Size of the region being mapped 734 * @kaddr: Kernel VA for this mapping 735 * @haddr: HYP VA for this mapping 736 */ 737 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 738 void __iomem **kaddr, 739 void __iomem **haddr) 740 { 741 unsigned long addr; 742 int ret; 743 744 if (is_protected_kvm_enabled()) 745 return -EPERM; 746 747 *kaddr = ioremap(phys_addr, size); 748 if (!*kaddr) 749 return -ENOMEM; 750 751 if (is_kernel_in_hyp_mode()) { 752 *haddr = *kaddr; 753 return 0; 754 } 755 756 ret = __create_hyp_private_mapping(phys_addr, size, 757 &addr, PAGE_HYP_DEVICE); 758 if (ret) { 759 iounmap(*kaddr); 760 *kaddr = NULL; 761 *haddr = NULL; 762 return ret; 763 } 764 765 *haddr = (void __iomem *)addr; 766 return 0; 767 } 768 769 /** 770 * create_hyp_exec_mappings - Map an executable range into HYP 771 * @phys_addr: The physical start address which gets mapped 772 * @size: Size of the region being mapped 773 * @haddr: HYP VA for this mapping 774 */ 775 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 776 void **haddr) 777 { 778 unsigned long addr; 779 int ret; 780 781 BUG_ON(is_kernel_in_hyp_mode()); 782 783 ret = __create_hyp_private_mapping(phys_addr, size, 784 &addr, PAGE_HYP_EXEC); 785 if (ret) { 786 *haddr = NULL; 787 return ret; 788 } 789 790 *haddr = (void *)addr; 791 return 0; 792 } 793 794 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 795 /* We shouldn't need any other callback to walk the PT */ 796 .phys_to_virt = kvm_host_va, 797 }; 798 799 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 800 { 801 struct kvm_pgtable pgt = { 802 .pgd = (kvm_pteref_t)kvm->mm->pgd, 803 .ia_bits = vabits_actual, 804 .start_level = (KVM_PGTABLE_MAX_LEVELS - 805 CONFIG_PGTABLE_LEVELS), 806 .mm_ops = &kvm_user_mm_ops, 807 }; 808 unsigned long flags; 809 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 810 u32 level = ~0; 811 int ret; 812 813 /* 814 * Disable IRQs so that we hazard against a concurrent 815 * teardown of the userspace page tables (which relies on 816 * IPI-ing threads). 817 */ 818 local_irq_save(flags); 819 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 820 local_irq_restore(flags); 821 822 if (ret) 823 return ret; 824 825 /* 826 * Not seeing an error, but not updating level? Something went 827 * deeply wrong... 828 */ 829 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS)) 830 return -EFAULT; 831 832 /* Oops, the userspace PTs are gone... Replay the fault */ 833 if (!kvm_pte_valid(pte)) 834 return -EAGAIN; 835 836 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 837 } 838 839 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 840 .zalloc_page = stage2_memcache_zalloc_page, 841 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 842 .free_pages_exact = kvm_s2_free_pages_exact, 843 .free_unlinked_table = stage2_free_unlinked_table, 844 .get_page = kvm_host_get_page, 845 .put_page = kvm_s2_put_page, 846 .page_count = kvm_host_page_count, 847 .phys_to_virt = kvm_host_va, 848 .virt_to_phys = kvm_host_pa, 849 .dcache_clean_inval_poc = clean_dcache_guest_page, 850 .icache_inval_pou = invalidate_icache_guest_page, 851 }; 852 853 /** 854 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 855 * @kvm: The pointer to the KVM structure 856 * @mmu: The pointer to the s2 MMU structure 857 * @type: The machine type of the virtual machine 858 * 859 * Allocates only the stage-2 HW PGD level table(s). 860 * Note we don't need locking here as this is only called when the VM is 861 * created, which can only be done once. 862 */ 863 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 864 { 865 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 866 int cpu, err; 867 struct kvm_pgtable *pgt; 868 u64 mmfr0, mmfr1; 869 u32 phys_shift; 870 871 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 872 return -EINVAL; 873 874 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 875 if (is_protected_kvm_enabled()) { 876 phys_shift = kvm_ipa_limit; 877 } else if (phys_shift) { 878 if (phys_shift > kvm_ipa_limit || 879 phys_shift < ARM64_MIN_PARANGE_BITS) 880 return -EINVAL; 881 } else { 882 phys_shift = KVM_PHYS_SHIFT; 883 if (phys_shift > kvm_ipa_limit) { 884 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 885 current->comm); 886 return -EINVAL; 887 } 888 } 889 890 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 891 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 892 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 893 894 if (mmu->pgt != NULL) { 895 kvm_err("kvm_arch already initialized?\n"); 896 return -EINVAL; 897 } 898 899 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 900 if (!pgt) 901 return -ENOMEM; 902 903 mmu->arch = &kvm->arch; 904 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 905 if (err) 906 goto out_free_pgtable; 907 908 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 909 if (!mmu->last_vcpu_ran) { 910 err = -ENOMEM; 911 goto out_destroy_pgtable; 912 } 913 914 for_each_possible_cpu(cpu) 915 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 916 917 /* The eager page splitting is disabled by default */ 918 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 919 mmu->split_page_cache.gfp_zero = __GFP_ZERO; 920 921 mmu->pgt = pgt; 922 mmu->pgd_phys = __pa(pgt->pgd); 923 return 0; 924 925 out_destroy_pgtable: 926 kvm_pgtable_stage2_destroy(pgt); 927 out_free_pgtable: 928 kfree(pgt); 929 return err; 930 } 931 932 void kvm_uninit_stage2_mmu(struct kvm *kvm) 933 { 934 kvm_free_stage2_pgd(&kvm->arch.mmu); 935 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 936 } 937 938 static void stage2_unmap_memslot(struct kvm *kvm, 939 struct kvm_memory_slot *memslot) 940 { 941 hva_t hva = memslot->userspace_addr; 942 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 943 phys_addr_t size = PAGE_SIZE * memslot->npages; 944 hva_t reg_end = hva + size; 945 946 /* 947 * A memory region could potentially cover multiple VMAs, and any holes 948 * between them, so iterate over all of them to find out if we should 949 * unmap any of them. 950 * 951 * +--------------------------------------------+ 952 * +---------------+----------------+ +----------------+ 953 * | : VMA 1 | VMA 2 | | VMA 3 : | 954 * +---------------+----------------+ +----------------+ 955 * | memory region | 956 * +--------------------------------------------+ 957 */ 958 do { 959 struct vm_area_struct *vma; 960 hva_t vm_start, vm_end; 961 962 vma = find_vma_intersection(current->mm, hva, reg_end); 963 if (!vma) 964 break; 965 966 /* 967 * Take the intersection of this VMA with the memory region 968 */ 969 vm_start = max(hva, vma->vm_start); 970 vm_end = min(reg_end, vma->vm_end); 971 972 if (!(vma->vm_flags & VM_PFNMAP)) { 973 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 974 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 975 } 976 hva = vm_end; 977 } while (hva < reg_end); 978 } 979 980 /** 981 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 982 * @kvm: The struct kvm pointer 983 * 984 * Go through the memregions and unmap any regular RAM 985 * backing memory already mapped to the VM. 986 */ 987 void stage2_unmap_vm(struct kvm *kvm) 988 { 989 struct kvm_memslots *slots; 990 struct kvm_memory_slot *memslot; 991 int idx, bkt; 992 993 idx = srcu_read_lock(&kvm->srcu); 994 mmap_read_lock(current->mm); 995 write_lock(&kvm->mmu_lock); 996 997 slots = kvm_memslots(kvm); 998 kvm_for_each_memslot(memslot, bkt, slots) 999 stage2_unmap_memslot(kvm, memslot); 1000 1001 write_unlock(&kvm->mmu_lock); 1002 mmap_read_unlock(current->mm); 1003 srcu_read_unlock(&kvm->srcu, idx); 1004 } 1005 1006 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1007 { 1008 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 1009 struct kvm_pgtable *pgt = NULL; 1010 1011 write_lock(&kvm->mmu_lock); 1012 pgt = mmu->pgt; 1013 if (pgt) { 1014 mmu->pgd_phys = 0; 1015 mmu->pgt = NULL; 1016 free_percpu(mmu->last_vcpu_ran); 1017 } 1018 write_unlock(&kvm->mmu_lock); 1019 1020 if (pgt) { 1021 kvm_pgtable_stage2_destroy(pgt); 1022 kfree(pgt); 1023 } 1024 } 1025 1026 static void hyp_mc_free_fn(void *addr, void *unused) 1027 { 1028 free_page((unsigned long)addr); 1029 } 1030 1031 static void *hyp_mc_alloc_fn(void *unused) 1032 { 1033 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1034 } 1035 1036 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 1037 { 1038 if (is_protected_kvm_enabled()) 1039 __free_hyp_memcache(mc, hyp_mc_free_fn, 1040 kvm_host_va, NULL); 1041 } 1042 1043 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 1044 { 1045 if (!is_protected_kvm_enabled()) 1046 return 0; 1047 1048 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 1049 kvm_host_pa, NULL); 1050 } 1051 1052 /** 1053 * kvm_phys_addr_ioremap - map a device range to guest IPA 1054 * 1055 * @kvm: The KVM pointer 1056 * @guest_ipa: The IPA at which to insert the mapping 1057 * @pa: The physical address of the device 1058 * @size: The size of the mapping 1059 * @writable: Whether or not to create a writable mapping 1060 */ 1061 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1062 phys_addr_t pa, unsigned long size, bool writable) 1063 { 1064 phys_addr_t addr; 1065 int ret = 0; 1066 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 1067 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 1068 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 1069 KVM_PGTABLE_PROT_R | 1070 (writable ? KVM_PGTABLE_PROT_W : 0); 1071 1072 if (is_protected_kvm_enabled()) 1073 return -EPERM; 1074 1075 size += offset_in_page(guest_ipa); 1076 guest_ipa &= PAGE_MASK; 1077 1078 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 1079 ret = kvm_mmu_topup_memory_cache(&cache, 1080 kvm_mmu_cache_min_pages(kvm)); 1081 if (ret) 1082 break; 1083 1084 write_lock(&kvm->mmu_lock); 1085 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 1086 &cache, 0); 1087 write_unlock(&kvm->mmu_lock); 1088 if (ret) 1089 break; 1090 1091 pa += PAGE_SIZE; 1092 } 1093 1094 kvm_mmu_free_memory_cache(&cache); 1095 return ret; 1096 } 1097 1098 /** 1099 * stage2_wp_range() - write protect stage2 memory region range 1100 * @mmu: The KVM stage-2 MMU pointer 1101 * @addr: Start address of range 1102 * @end: End address of range 1103 */ 1104 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1105 { 1106 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 1107 } 1108 1109 /** 1110 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1111 * @kvm: The KVM pointer 1112 * @slot: The memory slot to write protect 1113 * 1114 * Called to start logging dirty pages after memory region 1115 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1116 * all present PUD, PMD and PTEs are write protected in the memory region. 1117 * Afterwards read of dirty page log can be called. 1118 * 1119 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1120 * serializing operations for VM memory regions. 1121 */ 1122 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1123 { 1124 struct kvm_memslots *slots = kvm_memslots(kvm); 1125 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1126 phys_addr_t start, end; 1127 1128 if (WARN_ON_ONCE(!memslot)) 1129 return; 1130 1131 start = memslot->base_gfn << PAGE_SHIFT; 1132 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1133 1134 write_lock(&kvm->mmu_lock); 1135 stage2_wp_range(&kvm->arch.mmu, start, end); 1136 write_unlock(&kvm->mmu_lock); 1137 kvm_flush_remote_tlbs_memslot(kvm, memslot); 1138 } 1139 1140 /** 1141 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE 1142 * pages for memory slot 1143 * @kvm: The KVM pointer 1144 * @slot: The memory slot to split 1145 * 1146 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, 1147 * serializing operations for VM memory regions. 1148 */ 1149 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) 1150 { 1151 struct kvm_memslots *slots; 1152 struct kvm_memory_slot *memslot; 1153 phys_addr_t start, end; 1154 1155 lockdep_assert_held(&kvm->slots_lock); 1156 1157 slots = kvm_memslots(kvm); 1158 memslot = id_to_memslot(slots, slot); 1159 1160 start = memslot->base_gfn << PAGE_SHIFT; 1161 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1162 1163 write_lock(&kvm->mmu_lock); 1164 kvm_mmu_split_huge_pages(kvm, start, end); 1165 write_unlock(&kvm->mmu_lock); 1166 } 1167 1168 /* 1169 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages. 1170 * @kvm: The KVM pointer 1171 * @slot: The memory slot associated with mask 1172 * @gfn_offset: The gfn offset in memory slot 1173 * @mask: The mask of pages at offset 'gfn_offset' in this memory 1174 * slot to enable dirty logging on 1175 * 1176 * Writes protect selected pages to enable dirty logging, and then 1177 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock. 1178 */ 1179 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1180 struct kvm_memory_slot *slot, 1181 gfn_t gfn_offset, unsigned long mask) 1182 { 1183 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1184 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1185 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1186 1187 lockdep_assert_held_write(&kvm->mmu_lock); 1188 1189 stage2_wp_range(&kvm->arch.mmu, start, end); 1190 1191 /* 1192 * Eager-splitting is done when manual-protect is set. We 1193 * also check for initially-all-set because we can avoid 1194 * eager-splitting if initially-all-set is false. 1195 * Initially-all-set equal false implies that huge-pages were 1196 * already split when enabling dirty logging: no need to do it 1197 * again. 1198 */ 1199 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1200 kvm_mmu_split_huge_pages(kvm, start, end); 1201 } 1202 1203 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1204 { 1205 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1206 } 1207 1208 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1209 unsigned long hva, 1210 unsigned long map_size) 1211 { 1212 gpa_t gpa_start; 1213 hva_t uaddr_start, uaddr_end; 1214 size_t size; 1215 1216 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1217 if (map_size == PAGE_SIZE) 1218 return true; 1219 1220 size = memslot->npages * PAGE_SIZE; 1221 1222 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1223 1224 uaddr_start = memslot->userspace_addr; 1225 uaddr_end = uaddr_start + size; 1226 1227 /* 1228 * Pages belonging to memslots that don't have the same alignment 1229 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1230 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1231 * 1232 * Consider a layout like the following: 1233 * 1234 * memslot->userspace_addr: 1235 * +-----+--------------------+--------------------+---+ 1236 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1237 * +-----+--------------------+--------------------+---+ 1238 * 1239 * memslot->base_gfn << PAGE_SHIFT: 1240 * +---+--------------------+--------------------+-----+ 1241 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1242 * +---+--------------------+--------------------+-----+ 1243 * 1244 * If we create those stage-2 blocks, we'll end up with this incorrect 1245 * mapping: 1246 * d -> f 1247 * e -> g 1248 * f -> h 1249 */ 1250 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1251 return false; 1252 1253 /* 1254 * Next, let's make sure we're not trying to map anything not covered 1255 * by the memslot. This means we have to prohibit block size mappings 1256 * for the beginning and end of a non-block aligned and non-block sized 1257 * memory slot (illustrated by the head and tail parts of the 1258 * userspace view above containing pages 'abcde' and 'xyz', 1259 * respectively). 1260 * 1261 * Note that it doesn't matter if we do the check using the 1262 * userspace_addr or the base_gfn, as both are equally aligned (per 1263 * the check above) and equally sized. 1264 */ 1265 return (hva & ~(map_size - 1)) >= uaddr_start && 1266 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1267 } 1268 1269 /* 1270 * Check if the given hva is backed by a transparent huge page (THP) and 1271 * whether it can be mapped using block mapping in stage2. If so, adjust 1272 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1273 * supported. This will need to be updated to support other THP sizes. 1274 * 1275 * Returns the size of the mapping. 1276 */ 1277 static long 1278 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1279 unsigned long hva, kvm_pfn_t *pfnp, 1280 phys_addr_t *ipap) 1281 { 1282 kvm_pfn_t pfn = *pfnp; 1283 1284 /* 1285 * Make sure the adjustment is done only for THP pages. Also make 1286 * sure that the HVA and IPA are sufficiently aligned and that the 1287 * block map is contained within the memslot. 1288 */ 1289 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1290 int sz = get_user_mapping_size(kvm, hva); 1291 1292 if (sz < 0) 1293 return sz; 1294 1295 if (sz < PMD_SIZE) 1296 return PAGE_SIZE; 1297 1298 /* 1299 * The address we faulted on is backed by a transparent huge 1300 * page. However, because we map the compound huge page and 1301 * not the individual tail page, we need to transfer the 1302 * refcount to the head page. We have to be careful that the 1303 * THP doesn't start to split while we are adjusting the 1304 * refcounts. 1305 * 1306 * We are sure this doesn't happen, because mmu_invalidate_retry 1307 * was successful and we are holding the mmu_lock, so if this 1308 * THP is trying to split, it will be blocked in the mmu 1309 * notifier before touching any of the pages, specifically 1310 * before being able to call __split_huge_page_refcount(). 1311 * 1312 * We can therefore safely transfer the refcount from PG_tail 1313 * to PG_head and switch the pfn from a tail page to the head 1314 * page accordingly. 1315 */ 1316 *ipap &= PMD_MASK; 1317 kvm_release_pfn_clean(pfn); 1318 pfn &= ~(PTRS_PER_PMD - 1); 1319 get_page(pfn_to_page(pfn)); 1320 *pfnp = pfn; 1321 1322 return PMD_SIZE; 1323 } 1324 1325 /* Use page mapping if we cannot use block mapping. */ 1326 return PAGE_SIZE; 1327 } 1328 1329 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1330 { 1331 unsigned long pa; 1332 1333 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1334 return huge_page_shift(hstate_vma(vma)); 1335 1336 if (!(vma->vm_flags & VM_PFNMAP)) 1337 return PAGE_SHIFT; 1338 1339 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1340 1341 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1342 1343 #ifndef __PAGETABLE_PMD_FOLDED 1344 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1345 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1346 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1347 return PUD_SHIFT; 1348 #endif 1349 1350 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1351 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1352 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1353 return PMD_SHIFT; 1354 1355 return PAGE_SHIFT; 1356 } 1357 1358 /* 1359 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1360 * able to see the page's tags and therefore they must be initialised first. If 1361 * PG_mte_tagged is set, tags have already been initialised. 1362 * 1363 * The race in the test/set of the PG_mte_tagged flag is handled by: 1364 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1365 * racing to santise the same page 1366 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1367 * an mprotect() to add VM_MTE 1368 */ 1369 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1370 unsigned long size) 1371 { 1372 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1373 struct page *page = pfn_to_page(pfn); 1374 1375 if (!kvm_has_mte(kvm)) 1376 return; 1377 1378 for (i = 0; i < nr_pages; i++, page++) { 1379 if (try_page_mte_tagging(page)) { 1380 mte_clear_page_tags(page_address(page)); 1381 set_page_mte_tagged(page); 1382 } 1383 } 1384 } 1385 1386 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1387 { 1388 return vma->vm_flags & VM_MTE_ALLOWED; 1389 } 1390 1391 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1392 struct kvm_memory_slot *memslot, unsigned long hva, 1393 unsigned long fault_status) 1394 { 1395 int ret = 0; 1396 bool write_fault, writable, force_pte = false; 1397 bool exec_fault, mte_allowed; 1398 bool device = false; 1399 unsigned long mmu_seq; 1400 struct kvm *kvm = vcpu->kvm; 1401 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1402 struct vm_area_struct *vma; 1403 short vma_shift; 1404 gfn_t gfn; 1405 kvm_pfn_t pfn; 1406 bool logging_active = memslot_is_logging(memslot); 1407 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1408 long vma_pagesize, fault_granule; 1409 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1410 struct kvm_pgtable *pgt; 1411 1412 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1413 write_fault = kvm_is_write_fault(vcpu); 1414 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1415 VM_BUG_ON(write_fault && exec_fault); 1416 1417 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) { 1418 kvm_err("Unexpected L2 read permission error\n"); 1419 return -EFAULT; 1420 } 1421 1422 /* 1423 * Permission faults just need to update the existing leaf entry, 1424 * and so normally don't require allocations from the memcache. The 1425 * only exception to this is when dirty logging is enabled at runtime 1426 * and a write fault needs to collapse a block entry into a table. 1427 */ 1428 if (fault_status != ESR_ELx_FSC_PERM || 1429 (logging_active && write_fault)) { 1430 ret = kvm_mmu_topup_memory_cache(memcache, 1431 kvm_mmu_cache_min_pages(kvm)); 1432 if (ret) 1433 return ret; 1434 } 1435 1436 /* 1437 * Let's check if we will get back a huge page backed by hugetlbfs, or 1438 * get block mapping for device MMIO region. 1439 */ 1440 mmap_read_lock(current->mm); 1441 vma = vma_lookup(current->mm, hva); 1442 if (unlikely(!vma)) { 1443 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1444 mmap_read_unlock(current->mm); 1445 return -EFAULT; 1446 } 1447 1448 /* 1449 * logging_active is guaranteed to never be true for VM_PFNMAP 1450 * memslots. 1451 */ 1452 if (logging_active) { 1453 force_pte = true; 1454 vma_shift = PAGE_SHIFT; 1455 } else { 1456 vma_shift = get_vma_page_shift(vma, hva); 1457 } 1458 1459 switch (vma_shift) { 1460 #ifndef __PAGETABLE_PMD_FOLDED 1461 case PUD_SHIFT: 1462 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1463 break; 1464 fallthrough; 1465 #endif 1466 case CONT_PMD_SHIFT: 1467 vma_shift = PMD_SHIFT; 1468 fallthrough; 1469 case PMD_SHIFT: 1470 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1471 break; 1472 fallthrough; 1473 case CONT_PTE_SHIFT: 1474 vma_shift = PAGE_SHIFT; 1475 force_pte = true; 1476 fallthrough; 1477 case PAGE_SHIFT: 1478 break; 1479 default: 1480 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1481 } 1482 1483 vma_pagesize = 1UL << vma_shift; 1484 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1485 fault_ipa &= ~(vma_pagesize - 1); 1486 1487 gfn = fault_ipa >> PAGE_SHIFT; 1488 mte_allowed = kvm_vma_mte_allowed(vma); 1489 1490 /* Don't use the VMA after the unlock -- it may have vanished */ 1491 vma = NULL; 1492 1493 /* 1494 * Read mmu_invalidate_seq so that KVM can detect if the results of 1495 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to 1496 * acquiring kvm->mmu_lock. 1497 * 1498 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs 1499 * with the smp_wmb() in kvm_mmu_invalidate_end(). 1500 */ 1501 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1502 mmap_read_unlock(current->mm); 1503 1504 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1505 write_fault, &writable, NULL); 1506 if (pfn == KVM_PFN_ERR_HWPOISON) { 1507 kvm_send_hwpoison_signal(hva, vma_shift); 1508 return 0; 1509 } 1510 if (is_error_noslot_pfn(pfn)) 1511 return -EFAULT; 1512 1513 if (kvm_is_device_pfn(pfn)) { 1514 /* 1515 * If the page was identified as device early by looking at 1516 * the VMA flags, vma_pagesize is already representing the 1517 * largest quantity we can map. If instead it was mapped 1518 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1519 * and must not be upgraded. 1520 * 1521 * In both cases, we don't let transparent_hugepage_adjust() 1522 * change things at the last minute. 1523 */ 1524 device = true; 1525 } else if (logging_active && !write_fault) { 1526 /* 1527 * Only actually map the page as writable if this was a write 1528 * fault. 1529 */ 1530 writable = false; 1531 } 1532 1533 if (exec_fault && device) 1534 return -ENOEXEC; 1535 1536 read_lock(&kvm->mmu_lock); 1537 pgt = vcpu->arch.hw_mmu->pgt; 1538 if (mmu_invalidate_retry(kvm, mmu_seq)) 1539 goto out_unlock; 1540 1541 /* 1542 * If we are not forced to use page mapping, check if we are 1543 * backed by a THP and thus use block mapping if possible. 1544 */ 1545 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1546 if (fault_status == ESR_ELx_FSC_PERM && 1547 fault_granule > PAGE_SIZE) 1548 vma_pagesize = fault_granule; 1549 else 1550 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1551 hva, &pfn, 1552 &fault_ipa); 1553 1554 if (vma_pagesize < 0) { 1555 ret = vma_pagesize; 1556 goto out_unlock; 1557 } 1558 } 1559 1560 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) { 1561 /* Check the VMM hasn't introduced a new disallowed VMA */ 1562 if (mte_allowed) { 1563 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1564 } else { 1565 ret = -EFAULT; 1566 goto out_unlock; 1567 } 1568 } 1569 1570 if (writable) 1571 prot |= KVM_PGTABLE_PROT_W; 1572 1573 if (exec_fault) 1574 prot |= KVM_PGTABLE_PROT_X; 1575 1576 if (device) 1577 prot |= KVM_PGTABLE_PROT_DEVICE; 1578 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1579 prot |= KVM_PGTABLE_PROT_X; 1580 1581 /* 1582 * Under the premise of getting a FSC_PERM fault, we just need to relax 1583 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1584 * kvm_pgtable_stage2_map() should be called to change block size. 1585 */ 1586 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule) 1587 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1588 else 1589 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1590 __pfn_to_phys(pfn), prot, 1591 memcache, 1592 KVM_PGTABLE_WALK_HANDLE_FAULT | 1593 KVM_PGTABLE_WALK_SHARED); 1594 1595 /* Mark the page dirty only if the fault is handled successfully */ 1596 if (writable && !ret) { 1597 kvm_set_pfn_dirty(pfn); 1598 mark_page_dirty_in_slot(kvm, memslot, gfn); 1599 } 1600 1601 out_unlock: 1602 read_unlock(&kvm->mmu_lock); 1603 kvm_release_pfn_clean(pfn); 1604 return ret != -EAGAIN ? ret : 0; 1605 } 1606 1607 /* Resolve the access fault by making the page young again. */ 1608 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1609 { 1610 kvm_pte_t pte; 1611 struct kvm_s2_mmu *mmu; 1612 1613 trace_kvm_access_fault(fault_ipa); 1614 1615 read_lock(&vcpu->kvm->mmu_lock); 1616 mmu = vcpu->arch.hw_mmu; 1617 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1618 read_unlock(&vcpu->kvm->mmu_lock); 1619 1620 if (kvm_pte_valid(pte)) 1621 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); 1622 } 1623 1624 /** 1625 * kvm_handle_guest_abort - handles all 2nd stage aborts 1626 * @vcpu: the VCPU pointer 1627 * 1628 * Any abort that gets to the host is almost guaranteed to be caused by a 1629 * missing second stage translation table entry, which can mean that either the 1630 * guest simply needs more memory and we must allocate an appropriate page or it 1631 * can mean that the guest tried to access I/O memory, which is emulated by user 1632 * space. The distinction is based on the IPA causing the fault and whether this 1633 * memory region has been registered as standard RAM by user space. 1634 */ 1635 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1636 { 1637 unsigned long fault_status; 1638 phys_addr_t fault_ipa; 1639 struct kvm_memory_slot *memslot; 1640 unsigned long hva; 1641 bool is_iabt, write_fault, writable; 1642 gfn_t gfn; 1643 int ret, idx; 1644 1645 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1646 1647 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1648 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1649 1650 if (fault_status == ESR_ELx_FSC_FAULT) { 1651 /* Beyond sanitised PARange (which is the IPA limit) */ 1652 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1653 kvm_inject_size_fault(vcpu); 1654 return 1; 1655 } 1656 1657 /* Falls between the IPA range and the PARange? */ 1658 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1659 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1660 1661 if (is_iabt) 1662 kvm_inject_pabt(vcpu, fault_ipa); 1663 else 1664 kvm_inject_dabt(vcpu, fault_ipa); 1665 return 1; 1666 } 1667 } 1668 1669 /* Synchronous External Abort? */ 1670 if (kvm_vcpu_abt_issea(vcpu)) { 1671 /* 1672 * For RAS the host kernel may handle this abort. 1673 * There is no need to pass the error into the guest. 1674 */ 1675 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1676 kvm_inject_vabt(vcpu); 1677 1678 return 1; 1679 } 1680 1681 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1682 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1683 1684 /* Check the stage-2 fault is trans. fault or write fault */ 1685 if (fault_status != ESR_ELx_FSC_FAULT && 1686 fault_status != ESR_ELx_FSC_PERM && 1687 fault_status != ESR_ELx_FSC_ACCESS) { 1688 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1689 kvm_vcpu_trap_get_class(vcpu), 1690 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1691 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1692 return -EFAULT; 1693 } 1694 1695 idx = srcu_read_lock(&vcpu->kvm->srcu); 1696 1697 gfn = fault_ipa >> PAGE_SHIFT; 1698 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1699 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1700 write_fault = kvm_is_write_fault(vcpu); 1701 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1702 /* 1703 * The guest has put either its instructions or its page-tables 1704 * somewhere it shouldn't have. Userspace won't be able to do 1705 * anything about this (there's no syndrome for a start), so 1706 * re-inject the abort back into the guest. 1707 */ 1708 if (is_iabt) { 1709 ret = -ENOEXEC; 1710 goto out; 1711 } 1712 1713 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1714 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1715 ret = 1; 1716 goto out_unlock; 1717 } 1718 1719 /* 1720 * Check for a cache maintenance operation. Since we 1721 * ended-up here, we know it is outside of any memory 1722 * slot. But we can't find out if that is for a device, 1723 * or if the guest is just being stupid. The only thing 1724 * we know for sure is that this range cannot be cached. 1725 * 1726 * So let's assume that the guest is just being 1727 * cautious, and skip the instruction. 1728 */ 1729 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1730 kvm_incr_pc(vcpu); 1731 ret = 1; 1732 goto out_unlock; 1733 } 1734 1735 /* 1736 * The IPA is reported as [MAX:12], so we need to 1737 * complement it with the bottom 12 bits from the 1738 * faulting VA. This is always 12 bits, irrespective 1739 * of the page size. 1740 */ 1741 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1742 ret = io_mem_abort(vcpu, fault_ipa); 1743 goto out_unlock; 1744 } 1745 1746 /* Userspace should not be able to register out-of-bounds IPAs */ 1747 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1748 1749 if (fault_status == ESR_ELx_FSC_ACCESS) { 1750 handle_access_fault(vcpu, fault_ipa); 1751 ret = 1; 1752 goto out_unlock; 1753 } 1754 1755 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1756 if (ret == 0) 1757 ret = 1; 1758 out: 1759 if (ret == -ENOEXEC) { 1760 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1761 ret = 1; 1762 } 1763 out_unlock: 1764 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1765 return ret; 1766 } 1767 1768 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1769 { 1770 if (!kvm->arch.mmu.pgt) 1771 return false; 1772 1773 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1774 (range->end - range->start) << PAGE_SHIFT, 1775 range->may_block); 1776 1777 return false; 1778 } 1779 1780 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1781 { 1782 kvm_pfn_t pfn = pte_pfn(range->arg.pte); 1783 1784 if (!kvm->arch.mmu.pgt) 1785 return false; 1786 1787 WARN_ON(range->end - range->start != 1); 1788 1789 /* 1790 * If the page isn't tagged, defer to user_mem_abort() for sanitising 1791 * the MTE tags. The S2 pte should have been unmapped by 1792 * mmu_notifier_invalidate_range_end(). 1793 */ 1794 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) 1795 return false; 1796 1797 /* 1798 * We've moved a page around, probably through CoW, so let's treat 1799 * it just like a translation fault and the map handler will clean 1800 * the cache to the PoC. 1801 * 1802 * The MMU notifiers will have unmapped a huge PMD before calling 1803 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1804 * therefore we never need to clear out a huge PMD through this 1805 * calling path and a memcache is not required. 1806 */ 1807 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1808 PAGE_SIZE, __pfn_to_phys(pfn), 1809 KVM_PGTABLE_PROT_R, NULL, 0); 1810 1811 return false; 1812 } 1813 1814 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1815 { 1816 u64 size = (range->end - range->start) << PAGE_SHIFT; 1817 1818 if (!kvm->arch.mmu.pgt) 1819 return false; 1820 1821 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1822 range->start << PAGE_SHIFT, 1823 size, true); 1824 } 1825 1826 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1827 { 1828 u64 size = (range->end - range->start) << PAGE_SHIFT; 1829 1830 if (!kvm->arch.mmu.pgt) 1831 return false; 1832 1833 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1834 range->start << PAGE_SHIFT, 1835 size, false); 1836 } 1837 1838 phys_addr_t kvm_mmu_get_httbr(void) 1839 { 1840 return __pa(hyp_pgtable->pgd); 1841 } 1842 1843 phys_addr_t kvm_get_idmap_vector(void) 1844 { 1845 return hyp_idmap_vector; 1846 } 1847 1848 static int kvm_map_idmap_text(void) 1849 { 1850 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1851 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1852 PAGE_HYP_EXEC); 1853 if (err) 1854 kvm_err("Failed to idmap %lx-%lx\n", 1855 hyp_idmap_start, hyp_idmap_end); 1856 1857 return err; 1858 } 1859 1860 static void *kvm_hyp_zalloc_page(void *arg) 1861 { 1862 return (void *)get_zeroed_page(GFP_KERNEL); 1863 } 1864 1865 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1866 .zalloc_page = kvm_hyp_zalloc_page, 1867 .get_page = kvm_host_get_page, 1868 .put_page = kvm_host_put_page, 1869 .phys_to_virt = kvm_host_va, 1870 .virt_to_phys = kvm_host_pa, 1871 }; 1872 1873 int __init kvm_mmu_init(u32 *hyp_va_bits) 1874 { 1875 int err; 1876 u32 idmap_bits; 1877 u32 kernel_bits; 1878 1879 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1880 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1881 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1882 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1883 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1884 1885 /* 1886 * We rely on the linker script to ensure at build time that the HYP 1887 * init code does not cross a page boundary. 1888 */ 1889 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1890 1891 /* 1892 * The ID map may be configured to use an extended virtual address 1893 * range. This is only the case if system RAM is out of range for the 1894 * currently configured page size and VA_BITS_MIN, in which case we will 1895 * also need the extended virtual range for the HYP ID map, or we won't 1896 * be able to enable the EL2 MMU. 1897 * 1898 * However, in some cases the ID map may be configured for fewer than 1899 * the number of VA bits used by the regular kernel stage 1. This 1900 * happens when VA_BITS=52 and the kernel image is placed in PA space 1901 * below 48 bits. 1902 * 1903 * At EL2, there is only one TTBR register, and we can't switch between 1904 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1905 * line: we need to use the extended range with *both* our translation 1906 * tables. 1907 * 1908 * So use the maximum of the idmap VA bits and the regular kernel stage 1909 * 1 VA bits to assure that the hypervisor can both ID map its code page 1910 * and map any kernel memory. 1911 */ 1912 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1913 kernel_bits = vabits_actual; 1914 *hyp_va_bits = max(idmap_bits, kernel_bits); 1915 1916 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1917 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1918 kvm_debug("HYP VA range: %lx:%lx\n", 1919 kern_hyp_va(PAGE_OFFSET), 1920 kern_hyp_va((unsigned long)high_memory - 1)); 1921 1922 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1923 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1924 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1925 /* 1926 * The idmap page is intersecting with the VA space, 1927 * it is not safe to continue further. 1928 */ 1929 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1930 err = -EINVAL; 1931 goto out; 1932 } 1933 1934 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1935 if (!hyp_pgtable) { 1936 kvm_err("Hyp mode page-table not allocated\n"); 1937 err = -ENOMEM; 1938 goto out; 1939 } 1940 1941 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1942 if (err) 1943 goto out_free_pgtable; 1944 1945 err = kvm_map_idmap_text(); 1946 if (err) 1947 goto out_destroy_pgtable; 1948 1949 io_map_base = hyp_idmap_start; 1950 return 0; 1951 1952 out_destroy_pgtable: 1953 kvm_pgtable_hyp_destroy(hyp_pgtable); 1954 out_free_pgtable: 1955 kfree(hyp_pgtable); 1956 hyp_pgtable = NULL; 1957 out: 1958 return err; 1959 } 1960 1961 void kvm_arch_commit_memory_region(struct kvm *kvm, 1962 struct kvm_memory_slot *old, 1963 const struct kvm_memory_slot *new, 1964 enum kvm_mr_change change) 1965 { 1966 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES; 1967 1968 /* 1969 * At this point memslot has been committed and there is an 1970 * allocated dirty_bitmap[], dirty pages will be tracked while the 1971 * memory slot is write protected. 1972 */ 1973 if (log_dirty_pages) { 1974 1975 if (change == KVM_MR_DELETE) 1976 return; 1977 1978 /* 1979 * Huge and normal pages are write-protected and split 1980 * on either of these two cases: 1981 * 1982 * 1. with initial-all-set: gradually with CLEAR ioctls, 1983 */ 1984 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1985 return; 1986 /* 1987 * or 1988 * 2. without initial-all-set: all in one shot when 1989 * enabling dirty logging. 1990 */ 1991 kvm_mmu_wp_memory_region(kvm, new->id); 1992 kvm_mmu_split_memory_region(kvm, new->id); 1993 } else { 1994 /* 1995 * Free any leftovers from the eager page splitting cache. Do 1996 * this when deleting, moving, disabling dirty logging, or 1997 * creating the memslot (a nop). Doing it for deletes makes 1998 * sure we don't leak memory, and there's no need to keep the 1999 * cache around for any of the other cases. 2000 */ 2001 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 2002 } 2003 } 2004 2005 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2006 const struct kvm_memory_slot *old, 2007 struct kvm_memory_slot *new, 2008 enum kvm_mr_change change) 2009 { 2010 hva_t hva, reg_end; 2011 int ret = 0; 2012 2013 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2014 change != KVM_MR_FLAGS_ONLY) 2015 return 0; 2016 2017 /* 2018 * Prevent userspace from creating a memory region outside of the IPA 2019 * space addressable by the KVM guest IPA space. 2020 */ 2021 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 2022 return -EFAULT; 2023 2024 hva = new->userspace_addr; 2025 reg_end = hva + (new->npages << PAGE_SHIFT); 2026 2027 mmap_read_lock(current->mm); 2028 /* 2029 * A memory region could potentially cover multiple VMAs, and any holes 2030 * between them, so iterate over all of them. 2031 * 2032 * +--------------------------------------------+ 2033 * +---------------+----------------+ +----------------+ 2034 * | : VMA 1 | VMA 2 | | VMA 3 : | 2035 * +---------------+----------------+ +----------------+ 2036 * | memory region | 2037 * +--------------------------------------------+ 2038 */ 2039 do { 2040 struct vm_area_struct *vma; 2041 2042 vma = find_vma_intersection(current->mm, hva, reg_end); 2043 if (!vma) 2044 break; 2045 2046 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 2047 ret = -EINVAL; 2048 break; 2049 } 2050 2051 if (vma->vm_flags & VM_PFNMAP) { 2052 /* IO region dirty page logging not allowed */ 2053 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2054 ret = -EINVAL; 2055 break; 2056 } 2057 } 2058 hva = min(reg_end, vma->vm_end); 2059 } while (hva < reg_end); 2060 2061 mmap_read_unlock(current->mm); 2062 return ret; 2063 } 2064 2065 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2066 { 2067 } 2068 2069 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2070 { 2071 } 2072 2073 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2074 { 2075 kvm_uninit_stage2_mmu(kvm); 2076 } 2077 2078 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2079 struct kvm_memory_slot *slot) 2080 { 2081 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2082 phys_addr_t size = slot->npages << PAGE_SHIFT; 2083 2084 write_lock(&kvm->mmu_lock); 2085 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2086 write_unlock(&kvm->mmu_lock); 2087 } 2088 2089 /* 2090 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2091 * 2092 * Main problems: 2093 * - S/W ops are local to a CPU (not broadcast) 2094 * - We have line migration behind our back (speculation) 2095 * - System caches don't support S/W at all (damn!) 2096 * 2097 * In the face of the above, the best we can do is to try and convert 2098 * S/W ops to VA ops. Because the guest is not allowed to infer the 2099 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2100 * which is a rather good thing for us. 2101 * 2102 * Also, it is only used when turning caches on/off ("The expected 2103 * usage of the cache maintenance instructions that operate by set/way 2104 * is associated with the cache maintenance instructions associated 2105 * with the powerdown and powerup of caches, if this is required by 2106 * the implementation."). 2107 * 2108 * We use the following policy: 2109 * 2110 * - If we trap a S/W operation, we enable VM trapping to detect 2111 * caches being turned on/off, and do a full clean. 2112 * 2113 * - We flush the caches on both caches being turned on and off. 2114 * 2115 * - Once the caches are enabled, we stop trapping VM ops. 2116 */ 2117 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2118 { 2119 unsigned long hcr = *vcpu_hcr(vcpu); 2120 2121 /* 2122 * If this is the first time we do a S/W operation 2123 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2124 * VM trapping. 2125 * 2126 * Otherwise, rely on the VM trapping to wait for the MMU + 2127 * Caches to be turned off. At that point, we'll be able to 2128 * clean the caches again. 2129 */ 2130 if (!(hcr & HCR_TVM)) { 2131 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2132 vcpu_has_cache_enabled(vcpu)); 2133 stage2_flush_vm(vcpu->kvm); 2134 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2135 } 2136 } 2137 2138 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2139 { 2140 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2141 2142 /* 2143 * If switching the MMU+caches on, need to invalidate the caches. 2144 * If switching it off, need to clean the caches. 2145 * Clean + invalidate does the trick always. 2146 */ 2147 if (now_enabled != was_enabled) 2148 stage2_flush_vm(vcpu->kvm); 2149 2150 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2151 if (now_enabled) 2152 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2153 2154 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2155 } 2156