1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long __ro_after_init hyp_idmap_start; 29 static unsigned long __ro_after_init hyp_idmap_end; 30 static phys_addr_t __ro_after_init hyp_idmap_vector; 31 32 static unsigned long __ro_after_init io_map_base; 33 34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, 35 phys_addr_t size) 36 { 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 43 { 44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 45 46 return __stage2_range_addr_end(addr, end, size); 47 } 48 49 /* 50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 53 * long will also starve other vCPUs. We have to also make sure that the page 54 * tables are not freed while we released the lock. 55 */ 56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, 57 phys_addr_t end, 58 int (*fn)(struct kvm_pgtable *, u64, u64), 59 bool resched) 60 { 61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 62 int ret; 63 u64 next; 64 65 do { 66 struct kvm_pgtable *pgt = mmu->pgt; 67 if (!pgt) 68 return -EINVAL; 69 70 next = stage2_range_addr_end(addr, end); 71 ret = fn(pgt, addr, next - addr); 72 if (ret) 73 break; 74 75 if (resched && next != end) 76 cond_resched_rwlock_write(&kvm->mmu_lock); 77 } while (addr = next, addr != end); 78 79 return ret; 80 } 81 82 #define stage2_apply_range_resched(mmu, addr, end, fn) \ 83 stage2_apply_range(mmu, addr, end, fn, true) 84 85 /* 86 * Get the maximum number of page-tables pages needed to split a range 87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already 88 * mapped at level 2, or at level 1 if allowed. 89 */ 90 static int kvm_mmu_split_nr_page_tables(u64 range) 91 { 92 int n = 0; 93 94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2) 95 n += DIV_ROUND_UP(range, PUD_SIZE); 96 n += DIV_ROUND_UP(range, PMD_SIZE); 97 return n; 98 } 99 100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm) 101 { 102 struct kvm_mmu_memory_cache *cache; 103 u64 chunk_size, min; 104 105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 106 return true; 107 108 chunk_size = kvm->arch.mmu.split_page_chunk_size; 109 min = kvm_mmu_split_nr_page_tables(chunk_size); 110 cache = &kvm->arch.mmu.split_page_cache; 111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 112 } 113 114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, 115 phys_addr_t end) 116 { 117 struct kvm_mmu_memory_cache *cache; 118 struct kvm_pgtable *pgt; 119 int ret, cache_capacity; 120 u64 next, chunk_size; 121 122 lockdep_assert_held_write(&kvm->mmu_lock); 123 124 chunk_size = kvm->arch.mmu.split_page_chunk_size; 125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size); 126 127 if (chunk_size == 0) 128 return 0; 129 130 cache = &kvm->arch.mmu.split_page_cache; 131 132 do { 133 if (need_split_memcache_topup_or_resched(kvm)) { 134 write_unlock(&kvm->mmu_lock); 135 cond_resched(); 136 /* Eager page splitting is best-effort. */ 137 ret = __kvm_mmu_topup_memory_cache(cache, 138 cache_capacity, 139 cache_capacity); 140 write_lock(&kvm->mmu_lock); 141 if (ret) 142 break; 143 } 144 145 pgt = kvm->arch.mmu.pgt; 146 if (!pgt) 147 return -EINVAL; 148 149 next = __stage2_range_addr_end(addr, end, chunk_size); 150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); 151 if (ret) 152 break; 153 } while (addr = next, addr != end); 154 155 return ret; 156 } 157 158 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 159 { 160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 161 } 162 163 /** 164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8 165 * @kvm: pointer to kvm structure. 166 * 167 * Interface to HYP function to flush all VM TLB entries 168 */ 169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 170 { 171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 172 return 0; 173 } 174 175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 176 gfn_t gfn, u64 nr_pages) 177 { 178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, 179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT); 180 return 0; 181 } 182 183 static bool kvm_is_device_pfn(unsigned long pfn) 184 { 185 return !pfn_is_map_memory(pfn); 186 } 187 188 static void *stage2_memcache_zalloc_page(void *arg) 189 { 190 struct kvm_mmu_memory_cache *mc = arg; 191 void *virt; 192 193 /* Allocated with __GFP_ZERO, so no need to zero */ 194 virt = kvm_mmu_memory_cache_alloc(mc); 195 if (virt) 196 kvm_account_pgtable_pages(virt, 1); 197 return virt; 198 } 199 200 static void *kvm_host_zalloc_pages_exact(size_t size) 201 { 202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 203 } 204 205 static void *kvm_s2_zalloc_pages_exact(size_t size) 206 { 207 void *virt = kvm_host_zalloc_pages_exact(size); 208 209 if (virt) 210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 211 return virt; 212 } 213 214 static void kvm_s2_free_pages_exact(void *virt, size_t size) 215 { 216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 217 free_pages_exact(virt, size); 218 } 219 220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 221 222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head) 223 { 224 struct page *page = container_of(head, struct page, rcu_head); 225 void *pgtable = page_to_virt(page); 226 u32 level = page_private(page); 227 228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level); 229 } 230 231 static void stage2_free_unlinked_table(void *addr, u32 level) 232 { 233 struct page *page = virt_to_page(addr); 234 235 set_page_private(page, (unsigned long)level); 236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb); 237 } 238 239 static void kvm_host_get_page(void *addr) 240 { 241 get_page(virt_to_page(addr)); 242 } 243 244 static void kvm_host_put_page(void *addr) 245 { 246 put_page(virt_to_page(addr)); 247 } 248 249 static void kvm_s2_put_page(void *addr) 250 { 251 struct page *p = virt_to_page(addr); 252 /* Dropping last refcount, the page will be freed */ 253 if (page_count(p) == 1) 254 kvm_account_pgtable_pages(addr, -1); 255 put_page(p); 256 } 257 258 static int kvm_host_page_count(void *addr) 259 { 260 return page_count(virt_to_page(addr)); 261 } 262 263 static phys_addr_t kvm_host_pa(void *addr) 264 { 265 return __pa(addr); 266 } 267 268 static void *kvm_host_va(phys_addr_t phys) 269 { 270 return __va(phys); 271 } 272 273 static void clean_dcache_guest_page(void *va, size_t size) 274 { 275 __clean_dcache_guest_page(va, size); 276 } 277 278 static void invalidate_icache_guest_page(void *va, size_t size) 279 { 280 __invalidate_icache_guest_page(va, size); 281 } 282 283 /* 284 * Unmapping vs dcache management: 285 * 286 * If a guest maps certain memory pages as uncached, all writes will 287 * bypass the data cache and go directly to RAM. However, the CPUs 288 * can still speculate reads (not writes) and fill cache lines with 289 * data. 290 * 291 * Those cache lines will be *clean* cache lines though, so a 292 * clean+invalidate operation is equivalent to an invalidate 293 * operation, because no cache lines are marked dirty. 294 * 295 * Those clean cache lines could be filled prior to an uncached write 296 * by the guest, and the cache coherent IO subsystem would therefore 297 * end up writing old data to disk. 298 * 299 * This is why right after unmapping a page/section and invalidating 300 * the corresponding TLBs, we flush to make sure the IO subsystem will 301 * never hit in the cache. 302 * 303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 304 * we then fully enforce cacheability of RAM, no matter what the guest 305 * does. 306 */ 307 /** 308 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 309 * @mmu: The KVM stage-2 MMU pointer 310 * @start: The intermediate physical base address of the range to unmap 311 * @size: The size of the area to unmap 312 * @may_block: Whether or not we are permitted to block 313 * 314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 316 * destroying the VM), otherwise another faulting VCPU may come in and mess 317 * with things behind our backs. 318 */ 319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 320 bool may_block) 321 { 322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 323 phys_addr_t end = start + size; 324 325 lockdep_assert_held_write(&kvm->mmu_lock); 326 WARN_ON(size & ~PAGE_MASK); 327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap, 328 may_block)); 329 } 330 331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 332 { 333 __unmap_stage2_range(mmu, start, size, true); 334 } 335 336 static void stage2_flush_memslot(struct kvm *kvm, 337 struct kvm_memory_slot *memslot) 338 { 339 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 340 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 341 342 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush); 343 } 344 345 /** 346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 347 * @kvm: The struct kvm pointer 348 * 349 * Go through the stage 2 page tables and invalidate any cache lines 350 * backing memory already mapped to the VM. 351 */ 352 static void stage2_flush_vm(struct kvm *kvm) 353 { 354 struct kvm_memslots *slots; 355 struct kvm_memory_slot *memslot; 356 int idx, bkt; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 write_lock(&kvm->mmu_lock); 360 361 slots = kvm_memslots(kvm); 362 kvm_for_each_memslot(memslot, bkt, slots) 363 stage2_flush_memslot(kvm, memslot); 364 365 write_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 /** 370 * free_hyp_pgds - free Hyp-mode page tables 371 */ 372 void __init free_hyp_pgds(void) 373 { 374 mutex_lock(&kvm_hyp_pgd_mutex); 375 if (hyp_pgtable) { 376 kvm_pgtable_hyp_destroy(hyp_pgtable); 377 kfree(hyp_pgtable); 378 hyp_pgtable = NULL; 379 } 380 mutex_unlock(&kvm_hyp_pgd_mutex); 381 } 382 383 static bool kvm_host_owns_hyp_mappings(void) 384 { 385 if (is_kernel_in_hyp_mode()) 386 return false; 387 388 if (static_branch_likely(&kvm_protected_mode_initialized)) 389 return false; 390 391 /* 392 * This can happen at boot time when __create_hyp_mappings() is called 393 * after the hyp protection has been enabled, but the static key has 394 * not been flipped yet. 395 */ 396 if (!hyp_pgtable && is_protected_kvm_enabled()) 397 return false; 398 399 WARN_ON(!hyp_pgtable); 400 401 return true; 402 } 403 404 int __create_hyp_mappings(unsigned long start, unsigned long size, 405 unsigned long phys, enum kvm_pgtable_prot prot) 406 { 407 int err; 408 409 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 410 return -EINVAL; 411 412 mutex_lock(&kvm_hyp_pgd_mutex); 413 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 414 mutex_unlock(&kvm_hyp_pgd_mutex); 415 416 return err; 417 } 418 419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 420 { 421 if (!is_vmalloc_addr(kaddr)) { 422 BUG_ON(!virt_addr_valid(kaddr)); 423 return __pa(kaddr); 424 } else { 425 return page_to_phys(vmalloc_to_page(kaddr)) + 426 offset_in_page(kaddr); 427 } 428 } 429 430 struct hyp_shared_pfn { 431 u64 pfn; 432 int count; 433 struct rb_node node; 434 }; 435 436 static DEFINE_MUTEX(hyp_shared_pfns_lock); 437 static struct rb_root hyp_shared_pfns = RB_ROOT; 438 439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 440 struct rb_node **parent) 441 { 442 struct hyp_shared_pfn *this; 443 444 *node = &hyp_shared_pfns.rb_node; 445 *parent = NULL; 446 while (**node) { 447 this = container_of(**node, struct hyp_shared_pfn, node); 448 *parent = **node; 449 if (this->pfn < pfn) 450 *node = &((**node)->rb_left); 451 else if (this->pfn > pfn) 452 *node = &((**node)->rb_right); 453 else 454 return this; 455 } 456 457 return NULL; 458 } 459 460 static int share_pfn_hyp(u64 pfn) 461 { 462 struct rb_node **node, *parent; 463 struct hyp_shared_pfn *this; 464 int ret = 0; 465 466 mutex_lock(&hyp_shared_pfns_lock); 467 this = find_shared_pfn(pfn, &node, &parent); 468 if (this) { 469 this->count++; 470 goto unlock; 471 } 472 473 this = kzalloc(sizeof(*this), GFP_KERNEL); 474 if (!this) { 475 ret = -ENOMEM; 476 goto unlock; 477 } 478 479 this->pfn = pfn; 480 this->count = 1; 481 rb_link_node(&this->node, parent, node); 482 rb_insert_color(&this->node, &hyp_shared_pfns); 483 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 484 unlock: 485 mutex_unlock(&hyp_shared_pfns_lock); 486 487 return ret; 488 } 489 490 static int unshare_pfn_hyp(u64 pfn) 491 { 492 struct rb_node **node, *parent; 493 struct hyp_shared_pfn *this; 494 int ret = 0; 495 496 mutex_lock(&hyp_shared_pfns_lock); 497 this = find_shared_pfn(pfn, &node, &parent); 498 if (WARN_ON(!this)) { 499 ret = -ENOENT; 500 goto unlock; 501 } 502 503 this->count--; 504 if (this->count) 505 goto unlock; 506 507 rb_erase(&this->node, &hyp_shared_pfns); 508 kfree(this); 509 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 510 unlock: 511 mutex_unlock(&hyp_shared_pfns_lock); 512 513 return ret; 514 } 515 516 int kvm_share_hyp(void *from, void *to) 517 { 518 phys_addr_t start, end, cur; 519 u64 pfn; 520 int ret; 521 522 if (is_kernel_in_hyp_mode()) 523 return 0; 524 525 /* 526 * The share hcall maps things in the 'fixed-offset' region of the hyp 527 * VA space, so we can only share physically contiguous data-structures 528 * for now. 529 */ 530 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 531 return -EINVAL; 532 533 if (kvm_host_owns_hyp_mappings()) 534 return create_hyp_mappings(from, to, PAGE_HYP); 535 536 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 537 end = PAGE_ALIGN(__pa(to)); 538 for (cur = start; cur < end; cur += PAGE_SIZE) { 539 pfn = __phys_to_pfn(cur); 540 ret = share_pfn_hyp(pfn); 541 if (ret) 542 return ret; 543 } 544 545 return 0; 546 } 547 548 void kvm_unshare_hyp(void *from, void *to) 549 { 550 phys_addr_t start, end, cur; 551 u64 pfn; 552 553 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 554 return; 555 556 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 557 end = PAGE_ALIGN(__pa(to)); 558 for (cur = start; cur < end; cur += PAGE_SIZE) { 559 pfn = __phys_to_pfn(cur); 560 WARN_ON(unshare_pfn_hyp(pfn)); 561 } 562 } 563 564 /** 565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 566 * @from: The virtual kernel start address of the range 567 * @to: The virtual kernel end address of the range (exclusive) 568 * @prot: The protection to be applied to this range 569 * 570 * The same virtual address as the kernel virtual address is also used 571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 572 * physical pages. 573 */ 574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 575 { 576 phys_addr_t phys_addr; 577 unsigned long virt_addr; 578 unsigned long start = kern_hyp_va((unsigned long)from); 579 unsigned long end = kern_hyp_va((unsigned long)to); 580 581 if (is_kernel_in_hyp_mode()) 582 return 0; 583 584 if (!kvm_host_owns_hyp_mappings()) 585 return -EPERM; 586 587 start = start & PAGE_MASK; 588 end = PAGE_ALIGN(end); 589 590 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 591 int err; 592 593 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 594 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 595 prot); 596 if (err) 597 return err; 598 } 599 600 return 0; 601 } 602 603 static int __hyp_alloc_private_va_range(unsigned long base) 604 { 605 lockdep_assert_held(&kvm_hyp_pgd_mutex); 606 607 if (!PAGE_ALIGNED(base)) 608 return -EINVAL; 609 610 /* 611 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 612 * allocating the new area, as it would indicate we've 613 * overflowed the idmap/IO address range. 614 */ 615 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 616 return -ENOMEM; 617 618 io_map_base = base; 619 620 return 0; 621 } 622 623 /** 624 * hyp_alloc_private_va_range - Allocates a private VA range. 625 * @size: The size of the VA range to reserve. 626 * @haddr: The hypervisor virtual start address of the allocation. 627 * 628 * The private virtual address (VA) range is allocated below io_map_base 629 * and aligned based on the order of @size. 630 * 631 * Return: 0 on success or negative error code on failure. 632 */ 633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 634 { 635 unsigned long base; 636 int ret = 0; 637 638 mutex_lock(&kvm_hyp_pgd_mutex); 639 640 /* 641 * This assumes that we have enough space below the idmap 642 * page to allocate our VAs. If not, the check in 643 * __hyp_alloc_private_va_range() will kick. A potential 644 * alternative would be to detect that overflow and switch 645 * to an allocation above the idmap. 646 * 647 * The allocated size is always a multiple of PAGE_SIZE. 648 */ 649 size = PAGE_ALIGN(size); 650 base = io_map_base - size; 651 ret = __hyp_alloc_private_va_range(base); 652 653 mutex_unlock(&kvm_hyp_pgd_mutex); 654 655 if (!ret) 656 *haddr = base; 657 658 return ret; 659 } 660 661 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 662 unsigned long *haddr, 663 enum kvm_pgtable_prot prot) 664 { 665 unsigned long addr; 666 int ret = 0; 667 668 if (!kvm_host_owns_hyp_mappings()) { 669 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 670 phys_addr, size, prot); 671 if (IS_ERR_VALUE(addr)) 672 return addr; 673 *haddr = addr; 674 675 return 0; 676 } 677 678 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 679 ret = hyp_alloc_private_va_range(size, &addr); 680 if (ret) 681 return ret; 682 683 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 684 if (ret) 685 return ret; 686 687 *haddr = addr + offset_in_page(phys_addr); 688 return ret; 689 } 690 691 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr) 692 { 693 unsigned long base; 694 size_t size; 695 int ret; 696 697 mutex_lock(&kvm_hyp_pgd_mutex); 698 /* 699 * Efficient stack verification using the PAGE_SHIFT bit implies 700 * an alignment of our allocation on the order of the size. 701 */ 702 size = PAGE_SIZE * 2; 703 base = ALIGN_DOWN(io_map_base - size, size); 704 705 ret = __hyp_alloc_private_va_range(base); 706 707 mutex_unlock(&kvm_hyp_pgd_mutex); 708 709 if (ret) { 710 kvm_err("Cannot allocate hyp stack guard page\n"); 711 return ret; 712 } 713 714 /* 715 * Since the stack grows downwards, map the stack to the page 716 * at the higher address and leave the lower guard page 717 * unbacked. 718 * 719 * Any valid stack address now has the PAGE_SHIFT bit as 1 720 * and addresses corresponding to the guard page have the 721 * PAGE_SHIFT bit as 0 - this is used for overflow detection. 722 */ 723 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr, 724 PAGE_HYP); 725 if (ret) 726 kvm_err("Cannot map hyp stack\n"); 727 728 *haddr = base + size; 729 730 return ret; 731 } 732 733 /** 734 * create_hyp_io_mappings - Map IO into both kernel and HYP 735 * @phys_addr: The physical start address which gets mapped 736 * @size: Size of the region being mapped 737 * @kaddr: Kernel VA for this mapping 738 * @haddr: HYP VA for this mapping 739 */ 740 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 741 void __iomem **kaddr, 742 void __iomem **haddr) 743 { 744 unsigned long addr; 745 int ret; 746 747 if (is_protected_kvm_enabled()) 748 return -EPERM; 749 750 *kaddr = ioremap(phys_addr, size); 751 if (!*kaddr) 752 return -ENOMEM; 753 754 if (is_kernel_in_hyp_mode()) { 755 *haddr = *kaddr; 756 return 0; 757 } 758 759 ret = __create_hyp_private_mapping(phys_addr, size, 760 &addr, PAGE_HYP_DEVICE); 761 if (ret) { 762 iounmap(*kaddr); 763 *kaddr = NULL; 764 *haddr = NULL; 765 return ret; 766 } 767 768 *haddr = (void __iomem *)addr; 769 return 0; 770 } 771 772 /** 773 * create_hyp_exec_mappings - Map an executable range into HYP 774 * @phys_addr: The physical start address which gets mapped 775 * @size: Size of the region being mapped 776 * @haddr: HYP VA for this mapping 777 */ 778 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 779 void **haddr) 780 { 781 unsigned long addr; 782 int ret; 783 784 BUG_ON(is_kernel_in_hyp_mode()); 785 786 ret = __create_hyp_private_mapping(phys_addr, size, 787 &addr, PAGE_HYP_EXEC); 788 if (ret) { 789 *haddr = NULL; 790 return ret; 791 } 792 793 *haddr = (void *)addr; 794 return 0; 795 } 796 797 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 798 /* We shouldn't need any other callback to walk the PT */ 799 .phys_to_virt = kvm_host_va, 800 }; 801 802 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 803 { 804 struct kvm_pgtable pgt = { 805 .pgd = (kvm_pteref_t)kvm->mm->pgd, 806 .ia_bits = vabits_actual, 807 .start_level = (KVM_PGTABLE_MAX_LEVELS - 808 CONFIG_PGTABLE_LEVELS), 809 .mm_ops = &kvm_user_mm_ops, 810 }; 811 unsigned long flags; 812 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 813 u32 level = ~0; 814 int ret; 815 816 /* 817 * Disable IRQs so that we hazard against a concurrent 818 * teardown of the userspace page tables (which relies on 819 * IPI-ing threads). 820 */ 821 local_irq_save(flags); 822 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 823 local_irq_restore(flags); 824 825 if (ret) 826 return ret; 827 828 /* 829 * Not seeing an error, but not updating level? Something went 830 * deeply wrong... 831 */ 832 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS)) 833 return -EFAULT; 834 835 /* Oops, the userspace PTs are gone... Replay the fault */ 836 if (!kvm_pte_valid(pte)) 837 return -EAGAIN; 838 839 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 840 } 841 842 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 843 .zalloc_page = stage2_memcache_zalloc_page, 844 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 845 .free_pages_exact = kvm_s2_free_pages_exact, 846 .free_unlinked_table = stage2_free_unlinked_table, 847 .get_page = kvm_host_get_page, 848 .put_page = kvm_s2_put_page, 849 .page_count = kvm_host_page_count, 850 .phys_to_virt = kvm_host_va, 851 .virt_to_phys = kvm_host_pa, 852 .dcache_clean_inval_poc = clean_dcache_guest_page, 853 .icache_inval_pou = invalidate_icache_guest_page, 854 }; 855 856 /** 857 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 858 * @kvm: The pointer to the KVM structure 859 * @mmu: The pointer to the s2 MMU structure 860 * @type: The machine type of the virtual machine 861 * 862 * Allocates only the stage-2 HW PGD level table(s). 863 * Note we don't need locking here as this is only called when the VM is 864 * created, which can only be done once. 865 */ 866 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 867 { 868 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 869 int cpu, err; 870 struct kvm_pgtable *pgt; 871 u64 mmfr0, mmfr1; 872 u32 phys_shift; 873 874 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 875 return -EINVAL; 876 877 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 878 if (is_protected_kvm_enabled()) { 879 phys_shift = kvm_ipa_limit; 880 } else if (phys_shift) { 881 if (phys_shift > kvm_ipa_limit || 882 phys_shift < ARM64_MIN_PARANGE_BITS) 883 return -EINVAL; 884 } else { 885 phys_shift = KVM_PHYS_SHIFT; 886 if (phys_shift > kvm_ipa_limit) { 887 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 888 current->comm); 889 return -EINVAL; 890 } 891 } 892 893 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 894 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 895 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 896 897 if (mmu->pgt != NULL) { 898 kvm_err("kvm_arch already initialized?\n"); 899 return -EINVAL; 900 } 901 902 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 903 if (!pgt) 904 return -ENOMEM; 905 906 mmu->arch = &kvm->arch; 907 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 908 if (err) 909 goto out_free_pgtable; 910 911 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 912 if (!mmu->last_vcpu_ran) { 913 err = -ENOMEM; 914 goto out_destroy_pgtable; 915 } 916 917 for_each_possible_cpu(cpu) 918 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 919 920 /* The eager page splitting is disabled by default */ 921 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT; 922 mmu->split_page_cache.gfp_zero = __GFP_ZERO; 923 924 mmu->pgt = pgt; 925 mmu->pgd_phys = __pa(pgt->pgd); 926 return 0; 927 928 out_destroy_pgtable: 929 kvm_pgtable_stage2_destroy(pgt); 930 out_free_pgtable: 931 kfree(pgt); 932 return err; 933 } 934 935 void kvm_uninit_stage2_mmu(struct kvm *kvm) 936 { 937 kvm_free_stage2_pgd(&kvm->arch.mmu); 938 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 939 } 940 941 static void stage2_unmap_memslot(struct kvm *kvm, 942 struct kvm_memory_slot *memslot) 943 { 944 hva_t hva = memslot->userspace_addr; 945 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 946 phys_addr_t size = PAGE_SIZE * memslot->npages; 947 hva_t reg_end = hva + size; 948 949 /* 950 * A memory region could potentially cover multiple VMAs, and any holes 951 * between them, so iterate over all of them to find out if we should 952 * unmap any of them. 953 * 954 * +--------------------------------------------+ 955 * +---------------+----------------+ +----------------+ 956 * | : VMA 1 | VMA 2 | | VMA 3 : | 957 * +---------------+----------------+ +----------------+ 958 * | memory region | 959 * +--------------------------------------------+ 960 */ 961 do { 962 struct vm_area_struct *vma; 963 hva_t vm_start, vm_end; 964 965 vma = find_vma_intersection(current->mm, hva, reg_end); 966 if (!vma) 967 break; 968 969 /* 970 * Take the intersection of this VMA with the memory region 971 */ 972 vm_start = max(hva, vma->vm_start); 973 vm_end = min(reg_end, vma->vm_end); 974 975 if (!(vma->vm_flags & VM_PFNMAP)) { 976 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 977 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 978 } 979 hva = vm_end; 980 } while (hva < reg_end); 981 } 982 983 /** 984 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 985 * @kvm: The struct kvm pointer 986 * 987 * Go through the memregions and unmap any regular RAM 988 * backing memory already mapped to the VM. 989 */ 990 void stage2_unmap_vm(struct kvm *kvm) 991 { 992 struct kvm_memslots *slots; 993 struct kvm_memory_slot *memslot; 994 int idx, bkt; 995 996 idx = srcu_read_lock(&kvm->srcu); 997 mmap_read_lock(current->mm); 998 write_lock(&kvm->mmu_lock); 999 1000 slots = kvm_memslots(kvm); 1001 kvm_for_each_memslot(memslot, bkt, slots) 1002 stage2_unmap_memslot(kvm, memslot); 1003 1004 write_unlock(&kvm->mmu_lock); 1005 mmap_read_unlock(current->mm); 1006 srcu_read_unlock(&kvm->srcu, idx); 1007 } 1008 1009 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 1010 { 1011 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 1012 struct kvm_pgtable *pgt = NULL; 1013 1014 write_lock(&kvm->mmu_lock); 1015 pgt = mmu->pgt; 1016 if (pgt) { 1017 mmu->pgd_phys = 0; 1018 mmu->pgt = NULL; 1019 free_percpu(mmu->last_vcpu_ran); 1020 } 1021 write_unlock(&kvm->mmu_lock); 1022 1023 if (pgt) { 1024 kvm_pgtable_stage2_destroy(pgt); 1025 kfree(pgt); 1026 } 1027 } 1028 1029 static void hyp_mc_free_fn(void *addr, void *unused) 1030 { 1031 free_page((unsigned long)addr); 1032 } 1033 1034 static void *hyp_mc_alloc_fn(void *unused) 1035 { 1036 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 1037 } 1038 1039 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 1040 { 1041 if (is_protected_kvm_enabled()) 1042 __free_hyp_memcache(mc, hyp_mc_free_fn, 1043 kvm_host_va, NULL); 1044 } 1045 1046 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 1047 { 1048 if (!is_protected_kvm_enabled()) 1049 return 0; 1050 1051 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 1052 kvm_host_pa, NULL); 1053 } 1054 1055 /** 1056 * kvm_phys_addr_ioremap - map a device range to guest IPA 1057 * 1058 * @kvm: The KVM pointer 1059 * @guest_ipa: The IPA at which to insert the mapping 1060 * @pa: The physical address of the device 1061 * @size: The size of the mapping 1062 * @writable: Whether or not to create a writable mapping 1063 */ 1064 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 1065 phys_addr_t pa, unsigned long size, bool writable) 1066 { 1067 phys_addr_t addr; 1068 int ret = 0; 1069 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 1070 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 1071 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 1072 KVM_PGTABLE_PROT_R | 1073 (writable ? KVM_PGTABLE_PROT_W : 0); 1074 1075 if (is_protected_kvm_enabled()) 1076 return -EPERM; 1077 1078 size += offset_in_page(guest_ipa); 1079 guest_ipa &= PAGE_MASK; 1080 1081 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 1082 ret = kvm_mmu_topup_memory_cache(&cache, 1083 kvm_mmu_cache_min_pages(kvm)); 1084 if (ret) 1085 break; 1086 1087 write_lock(&kvm->mmu_lock); 1088 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 1089 &cache, 0); 1090 write_unlock(&kvm->mmu_lock); 1091 if (ret) 1092 break; 1093 1094 pa += PAGE_SIZE; 1095 } 1096 1097 kvm_mmu_free_memory_cache(&cache); 1098 return ret; 1099 } 1100 1101 /** 1102 * stage2_wp_range() - write protect stage2 memory region range 1103 * @mmu: The KVM stage-2 MMU pointer 1104 * @addr: Start address of range 1105 * @end: End address of range 1106 */ 1107 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 1108 { 1109 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect); 1110 } 1111 1112 /** 1113 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 1114 * @kvm: The KVM pointer 1115 * @slot: The memory slot to write protect 1116 * 1117 * Called to start logging dirty pages after memory region 1118 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 1119 * all present PUD, PMD and PTEs are write protected in the memory region. 1120 * Afterwards read of dirty page log can be called. 1121 * 1122 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 1123 * serializing operations for VM memory regions. 1124 */ 1125 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 1126 { 1127 struct kvm_memslots *slots = kvm_memslots(kvm); 1128 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 1129 phys_addr_t start, end; 1130 1131 if (WARN_ON_ONCE(!memslot)) 1132 return; 1133 1134 start = memslot->base_gfn << PAGE_SHIFT; 1135 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1136 1137 write_lock(&kvm->mmu_lock); 1138 stage2_wp_range(&kvm->arch.mmu, start, end); 1139 write_unlock(&kvm->mmu_lock); 1140 kvm_flush_remote_tlbs_memslot(kvm, memslot); 1141 } 1142 1143 /** 1144 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE 1145 * pages for memory slot 1146 * @kvm: The KVM pointer 1147 * @slot: The memory slot to split 1148 * 1149 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, 1150 * serializing operations for VM memory regions. 1151 */ 1152 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) 1153 { 1154 struct kvm_memslots *slots; 1155 struct kvm_memory_slot *memslot; 1156 phys_addr_t start, end; 1157 1158 lockdep_assert_held(&kvm->slots_lock); 1159 1160 slots = kvm_memslots(kvm); 1161 memslot = id_to_memslot(slots, slot); 1162 1163 start = memslot->base_gfn << PAGE_SHIFT; 1164 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 1165 1166 write_lock(&kvm->mmu_lock); 1167 kvm_mmu_split_huge_pages(kvm, start, end); 1168 write_unlock(&kvm->mmu_lock); 1169 } 1170 1171 /* 1172 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages. 1173 * @kvm: The KVM pointer 1174 * @slot: The memory slot associated with mask 1175 * @gfn_offset: The gfn offset in memory slot 1176 * @mask: The mask of pages at offset 'gfn_offset' in this memory 1177 * slot to enable dirty logging on 1178 * 1179 * Writes protect selected pages to enable dirty logging, and then 1180 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock. 1181 */ 1182 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1183 struct kvm_memory_slot *slot, 1184 gfn_t gfn_offset, unsigned long mask) 1185 { 1186 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 1187 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 1188 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 1189 1190 lockdep_assert_held_write(&kvm->mmu_lock); 1191 1192 stage2_wp_range(&kvm->arch.mmu, start, end); 1193 1194 /* 1195 * Eager-splitting is done when manual-protect is set. We 1196 * also check for initially-all-set because we can avoid 1197 * eager-splitting if initially-all-set is false. 1198 * Initially-all-set equal false implies that huge-pages were 1199 * already split when enabling dirty logging: no need to do it 1200 * again. 1201 */ 1202 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1203 kvm_mmu_split_huge_pages(kvm, start, end); 1204 } 1205 1206 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1207 { 1208 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1209 } 1210 1211 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1212 unsigned long hva, 1213 unsigned long map_size) 1214 { 1215 gpa_t gpa_start; 1216 hva_t uaddr_start, uaddr_end; 1217 size_t size; 1218 1219 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1220 if (map_size == PAGE_SIZE) 1221 return true; 1222 1223 size = memslot->npages * PAGE_SIZE; 1224 1225 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1226 1227 uaddr_start = memslot->userspace_addr; 1228 uaddr_end = uaddr_start + size; 1229 1230 /* 1231 * Pages belonging to memslots that don't have the same alignment 1232 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1233 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1234 * 1235 * Consider a layout like the following: 1236 * 1237 * memslot->userspace_addr: 1238 * +-----+--------------------+--------------------+---+ 1239 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1240 * +-----+--------------------+--------------------+---+ 1241 * 1242 * memslot->base_gfn << PAGE_SHIFT: 1243 * +---+--------------------+--------------------+-----+ 1244 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1245 * +---+--------------------+--------------------+-----+ 1246 * 1247 * If we create those stage-2 blocks, we'll end up with this incorrect 1248 * mapping: 1249 * d -> f 1250 * e -> g 1251 * f -> h 1252 */ 1253 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1254 return false; 1255 1256 /* 1257 * Next, let's make sure we're not trying to map anything not covered 1258 * by the memslot. This means we have to prohibit block size mappings 1259 * for the beginning and end of a non-block aligned and non-block sized 1260 * memory slot (illustrated by the head and tail parts of the 1261 * userspace view above containing pages 'abcde' and 'xyz', 1262 * respectively). 1263 * 1264 * Note that it doesn't matter if we do the check using the 1265 * userspace_addr or the base_gfn, as both are equally aligned (per 1266 * the check above) and equally sized. 1267 */ 1268 return (hva & ~(map_size - 1)) >= uaddr_start && 1269 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1270 } 1271 1272 /* 1273 * Check if the given hva is backed by a transparent huge page (THP) and 1274 * whether it can be mapped using block mapping in stage2. If so, adjust 1275 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1276 * supported. This will need to be updated to support other THP sizes. 1277 * 1278 * Returns the size of the mapping. 1279 */ 1280 static long 1281 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1282 unsigned long hva, kvm_pfn_t *pfnp, 1283 phys_addr_t *ipap) 1284 { 1285 kvm_pfn_t pfn = *pfnp; 1286 1287 /* 1288 * Make sure the adjustment is done only for THP pages. Also make 1289 * sure that the HVA and IPA are sufficiently aligned and that the 1290 * block map is contained within the memslot. 1291 */ 1292 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 1293 int sz = get_user_mapping_size(kvm, hva); 1294 1295 if (sz < 0) 1296 return sz; 1297 1298 if (sz < PMD_SIZE) 1299 return PAGE_SIZE; 1300 1301 /* 1302 * The address we faulted on is backed by a transparent huge 1303 * page. However, because we map the compound huge page and 1304 * not the individual tail page, we need to transfer the 1305 * refcount to the head page. We have to be careful that the 1306 * THP doesn't start to split while we are adjusting the 1307 * refcounts. 1308 * 1309 * We are sure this doesn't happen, because mmu_invalidate_retry 1310 * was successful and we are holding the mmu_lock, so if this 1311 * THP is trying to split, it will be blocked in the mmu 1312 * notifier before touching any of the pages, specifically 1313 * before being able to call __split_huge_page_refcount(). 1314 * 1315 * We can therefore safely transfer the refcount from PG_tail 1316 * to PG_head and switch the pfn from a tail page to the head 1317 * page accordingly. 1318 */ 1319 *ipap &= PMD_MASK; 1320 kvm_release_pfn_clean(pfn); 1321 pfn &= ~(PTRS_PER_PMD - 1); 1322 get_page(pfn_to_page(pfn)); 1323 *pfnp = pfn; 1324 1325 return PMD_SIZE; 1326 } 1327 1328 /* Use page mapping if we cannot use block mapping. */ 1329 return PAGE_SIZE; 1330 } 1331 1332 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1333 { 1334 unsigned long pa; 1335 1336 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1337 return huge_page_shift(hstate_vma(vma)); 1338 1339 if (!(vma->vm_flags & VM_PFNMAP)) 1340 return PAGE_SHIFT; 1341 1342 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1343 1344 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1345 1346 #ifndef __PAGETABLE_PMD_FOLDED 1347 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1348 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1349 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1350 return PUD_SHIFT; 1351 #endif 1352 1353 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1354 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1355 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1356 return PMD_SHIFT; 1357 1358 return PAGE_SHIFT; 1359 } 1360 1361 /* 1362 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1363 * able to see the page's tags and therefore they must be initialised first. If 1364 * PG_mte_tagged is set, tags have already been initialised. 1365 * 1366 * The race in the test/set of the PG_mte_tagged flag is handled by: 1367 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1368 * racing to santise the same page 1369 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1370 * an mprotect() to add VM_MTE 1371 */ 1372 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1373 unsigned long size) 1374 { 1375 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1376 struct page *page = pfn_to_page(pfn); 1377 1378 if (!kvm_has_mte(kvm)) 1379 return; 1380 1381 for (i = 0; i < nr_pages; i++, page++) { 1382 if (try_page_mte_tagging(page)) { 1383 mte_clear_page_tags(page_address(page)); 1384 set_page_mte_tagged(page); 1385 } 1386 } 1387 } 1388 1389 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1390 { 1391 return vma->vm_flags & VM_MTE_ALLOWED; 1392 } 1393 1394 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1395 struct kvm_memory_slot *memslot, unsigned long hva, 1396 unsigned long fault_status) 1397 { 1398 int ret = 0; 1399 bool write_fault, writable, force_pte = false; 1400 bool exec_fault, mte_allowed; 1401 bool device = false; 1402 unsigned long mmu_seq; 1403 struct kvm *kvm = vcpu->kvm; 1404 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1405 struct vm_area_struct *vma; 1406 short vma_shift; 1407 gfn_t gfn; 1408 kvm_pfn_t pfn; 1409 bool logging_active = memslot_is_logging(memslot); 1410 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1411 long vma_pagesize, fault_granule; 1412 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1413 struct kvm_pgtable *pgt; 1414 1415 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1416 write_fault = kvm_is_write_fault(vcpu); 1417 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1418 VM_BUG_ON(write_fault && exec_fault); 1419 1420 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) { 1421 kvm_err("Unexpected L2 read permission error\n"); 1422 return -EFAULT; 1423 } 1424 1425 /* 1426 * Permission faults just need to update the existing leaf entry, 1427 * and so normally don't require allocations from the memcache. The 1428 * only exception to this is when dirty logging is enabled at runtime 1429 * and a write fault needs to collapse a block entry into a table. 1430 */ 1431 if (fault_status != ESR_ELx_FSC_PERM || 1432 (logging_active && write_fault)) { 1433 ret = kvm_mmu_topup_memory_cache(memcache, 1434 kvm_mmu_cache_min_pages(kvm)); 1435 if (ret) 1436 return ret; 1437 } 1438 1439 /* 1440 * Let's check if we will get back a huge page backed by hugetlbfs, or 1441 * get block mapping for device MMIO region. 1442 */ 1443 mmap_read_lock(current->mm); 1444 vma = vma_lookup(current->mm, hva); 1445 if (unlikely(!vma)) { 1446 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1447 mmap_read_unlock(current->mm); 1448 return -EFAULT; 1449 } 1450 1451 /* 1452 * logging_active is guaranteed to never be true for VM_PFNMAP 1453 * memslots. 1454 */ 1455 if (logging_active) { 1456 force_pte = true; 1457 vma_shift = PAGE_SHIFT; 1458 } else { 1459 vma_shift = get_vma_page_shift(vma, hva); 1460 } 1461 1462 switch (vma_shift) { 1463 #ifndef __PAGETABLE_PMD_FOLDED 1464 case PUD_SHIFT: 1465 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1466 break; 1467 fallthrough; 1468 #endif 1469 case CONT_PMD_SHIFT: 1470 vma_shift = PMD_SHIFT; 1471 fallthrough; 1472 case PMD_SHIFT: 1473 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1474 break; 1475 fallthrough; 1476 case CONT_PTE_SHIFT: 1477 vma_shift = PAGE_SHIFT; 1478 force_pte = true; 1479 fallthrough; 1480 case PAGE_SHIFT: 1481 break; 1482 default: 1483 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1484 } 1485 1486 vma_pagesize = 1UL << vma_shift; 1487 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1488 fault_ipa &= ~(vma_pagesize - 1); 1489 1490 gfn = fault_ipa >> PAGE_SHIFT; 1491 mte_allowed = kvm_vma_mte_allowed(vma); 1492 1493 /* Don't use the VMA after the unlock -- it may have vanished */ 1494 vma = NULL; 1495 1496 /* 1497 * Read mmu_invalidate_seq so that KVM can detect if the results of 1498 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to 1499 * acquiring kvm->mmu_lock. 1500 * 1501 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs 1502 * with the smp_wmb() in kvm_mmu_invalidate_end(). 1503 */ 1504 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1505 mmap_read_unlock(current->mm); 1506 1507 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1508 write_fault, &writable, NULL); 1509 if (pfn == KVM_PFN_ERR_HWPOISON) { 1510 kvm_send_hwpoison_signal(hva, vma_shift); 1511 return 0; 1512 } 1513 if (is_error_noslot_pfn(pfn)) 1514 return -EFAULT; 1515 1516 if (kvm_is_device_pfn(pfn)) { 1517 /* 1518 * If the page was identified as device early by looking at 1519 * the VMA flags, vma_pagesize is already representing the 1520 * largest quantity we can map. If instead it was mapped 1521 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1522 * and must not be upgraded. 1523 * 1524 * In both cases, we don't let transparent_hugepage_adjust() 1525 * change things at the last minute. 1526 */ 1527 device = true; 1528 } else if (logging_active && !write_fault) { 1529 /* 1530 * Only actually map the page as writable if this was a write 1531 * fault. 1532 */ 1533 writable = false; 1534 } 1535 1536 if (exec_fault && device) 1537 return -ENOEXEC; 1538 1539 read_lock(&kvm->mmu_lock); 1540 pgt = vcpu->arch.hw_mmu->pgt; 1541 if (mmu_invalidate_retry(kvm, mmu_seq)) 1542 goto out_unlock; 1543 1544 /* 1545 * If we are not forced to use page mapping, check if we are 1546 * backed by a THP and thus use block mapping if possible. 1547 */ 1548 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1549 if (fault_status == ESR_ELx_FSC_PERM && 1550 fault_granule > PAGE_SIZE) 1551 vma_pagesize = fault_granule; 1552 else 1553 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1554 hva, &pfn, 1555 &fault_ipa); 1556 1557 if (vma_pagesize < 0) { 1558 ret = vma_pagesize; 1559 goto out_unlock; 1560 } 1561 } 1562 1563 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) { 1564 /* Check the VMM hasn't introduced a new disallowed VMA */ 1565 if (mte_allowed) { 1566 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1567 } else { 1568 ret = -EFAULT; 1569 goto out_unlock; 1570 } 1571 } 1572 1573 if (writable) 1574 prot |= KVM_PGTABLE_PROT_W; 1575 1576 if (exec_fault) 1577 prot |= KVM_PGTABLE_PROT_X; 1578 1579 if (device) 1580 prot |= KVM_PGTABLE_PROT_DEVICE; 1581 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1582 prot |= KVM_PGTABLE_PROT_X; 1583 1584 /* 1585 * Under the premise of getting a FSC_PERM fault, we just need to relax 1586 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1587 * kvm_pgtable_stage2_map() should be called to change block size. 1588 */ 1589 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule) 1590 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1591 else 1592 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1593 __pfn_to_phys(pfn), prot, 1594 memcache, 1595 KVM_PGTABLE_WALK_HANDLE_FAULT | 1596 KVM_PGTABLE_WALK_SHARED); 1597 1598 /* Mark the page dirty only if the fault is handled successfully */ 1599 if (writable && !ret) { 1600 kvm_set_pfn_dirty(pfn); 1601 mark_page_dirty_in_slot(kvm, memslot, gfn); 1602 } 1603 1604 out_unlock: 1605 read_unlock(&kvm->mmu_lock); 1606 kvm_release_pfn_clean(pfn); 1607 return ret != -EAGAIN ? ret : 0; 1608 } 1609 1610 /* Resolve the access fault by making the page young again. */ 1611 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1612 { 1613 kvm_pte_t pte; 1614 struct kvm_s2_mmu *mmu; 1615 1616 trace_kvm_access_fault(fault_ipa); 1617 1618 read_lock(&vcpu->kvm->mmu_lock); 1619 mmu = vcpu->arch.hw_mmu; 1620 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1621 read_unlock(&vcpu->kvm->mmu_lock); 1622 1623 if (kvm_pte_valid(pte)) 1624 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte)); 1625 } 1626 1627 /** 1628 * kvm_handle_guest_abort - handles all 2nd stage aborts 1629 * @vcpu: the VCPU pointer 1630 * 1631 * Any abort that gets to the host is almost guaranteed to be caused by a 1632 * missing second stage translation table entry, which can mean that either the 1633 * guest simply needs more memory and we must allocate an appropriate page or it 1634 * can mean that the guest tried to access I/O memory, which is emulated by user 1635 * space. The distinction is based on the IPA causing the fault and whether this 1636 * memory region has been registered as standard RAM by user space. 1637 */ 1638 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1639 { 1640 unsigned long fault_status; 1641 phys_addr_t fault_ipa; 1642 struct kvm_memory_slot *memslot; 1643 unsigned long hva; 1644 bool is_iabt, write_fault, writable; 1645 gfn_t gfn; 1646 int ret, idx; 1647 1648 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1649 1650 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1651 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1652 1653 if (fault_status == ESR_ELx_FSC_FAULT) { 1654 /* Beyond sanitised PARange (which is the IPA limit) */ 1655 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1656 kvm_inject_size_fault(vcpu); 1657 return 1; 1658 } 1659 1660 /* Falls between the IPA range and the PARange? */ 1661 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1662 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1663 1664 if (is_iabt) 1665 kvm_inject_pabt(vcpu, fault_ipa); 1666 else 1667 kvm_inject_dabt(vcpu, fault_ipa); 1668 return 1; 1669 } 1670 } 1671 1672 /* Synchronous External Abort? */ 1673 if (kvm_vcpu_abt_issea(vcpu)) { 1674 /* 1675 * For RAS the host kernel may handle this abort. 1676 * There is no need to pass the error into the guest. 1677 */ 1678 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1679 kvm_inject_vabt(vcpu); 1680 1681 return 1; 1682 } 1683 1684 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1685 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1686 1687 /* Check the stage-2 fault is trans. fault or write fault */ 1688 if (fault_status != ESR_ELx_FSC_FAULT && 1689 fault_status != ESR_ELx_FSC_PERM && 1690 fault_status != ESR_ELx_FSC_ACCESS) { 1691 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1692 kvm_vcpu_trap_get_class(vcpu), 1693 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1694 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1695 return -EFAULT; 1696 } 1697 1698 idx = srcu_read_lock(&vcpu->kvm->srcu); 1699 1700 gfn = fault_ipa >> PAGE_SHIFT; 1701 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1702 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1703 write_fault = kvm_is_write_fault(vcpu); 1704 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1705 /* 1706 * The guest has put either its instructions or its page-tables 1707 * somewhere it shouldn't have. Userspace won't be able to do 1708 * anything about this (there's no syndrome for a start), so 1709 * re-inject the abort back into the guest. 1710 */ 1711 if (is_iabt) { 1712 ret = -ENOEXEC; 1713 goto out; 1714 } 1715 1716 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1717 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1718 ret = 1; 1719 goto out_unlock; 1720 } 1721 1722 /* 1723 * Check for a cache maintenance operation. Since we 1724 * ended-up here, we know it is outside of any memory 1725 * slot. But we can't find out if that is for a device, 1726 * or if the guest is just being stupid. The only thing 1727 * we know for sure is that this range cannot be cached. 1728 * 1729 * So let's assume that the guest is just being 1730 * cautious, and skip the instruction. 1731 */ 1732 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1733 kvm_incr_pc(vcpu); 1734 ret = 1; 1735 goto out_unlock; 1736 } 1737 1738 /* 1739 * The IPA is reported as [MAX:12], so we need to 1740 * complement it with the bottom 12 bits from the 1741 * faulting VA. This is always 12 bits, irrespective 1742 * of the page size. 1743 */ 1744 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1745 ret = io_mem_abort(vcpu, fault_ipa); 1746 goto out_unlock; 1747 } 1748 1749 /* Userspace should not be able to register out-of-bounds IPAs */ 1750 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1751 1752 if (fault_status == ESR_ELx_FSC_ACCESS) { 1753 handle_access_fault(vcpu, fault_ipa); 1754 ret = 1; 1755 goto out_unlock; 1756 } 1757 1758 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1759 if (ret == 0) 1760 ret = 1; 1761 out: 1762 if (ret == -ENOEXEC) { 1763 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1764 ret = 1; 1765 } 1766 out_unlock: 1767 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1768 return ret; 1769 } 1770 1771 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1772 { 1773 if (!kvm->arch.mmu.pgt) 1774 return false; 1775 1776 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1777 (range->end - range->start) << PAGE_SHIFT, 1778 range->may_block); 1779 1780 return false; 1781 } 1782 1783 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1784 { 1785 kvm_pfn_t pfn = pte_pfn(range->arg.pte); 1786 1787 if (!kvm->arch.mmu.pgt) 1788 return false; 1789 1790 WARN_ON(range->end - range->start != 1); 1791 1792 /* 1793 * If the page isn't tagged, defer to user_mem_abort() for sanitising 1794 * the MTE tags. The S2 pte should have been unmapped by 1795 * mmu_notifier_invalidate_range_end(). 1796 */ 1797 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) 1798 return false; 1799 1800 /* 1801 * We've moved a page around, probably through CoW, so let's treat 1802 * it just like a translation fault and the map handler will clean 1803 * the cache to the PoC. 1804 * 1805 * The MMU notifiers will have unmapped a huge PMD before calling 1806 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1807 * therefore we never need to clear out a huge PMD through this 1808 * calling path and a memcache is not required. 1809 */ 1810 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1811 PAGE_SIZE, __pfn_to_phys(pfn), 1812 KVM_PGTABLE_PROT_R, NULL, 0); 1813 1814 return false; 1815 } 1816 1817 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1818 { 1819 u64 size = (range->end - range->start) << PAGE_SHIFT; 1820 1821 if (!kvm->arch.mmu.pgt) 1822 return false; 1823 1824 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1825 range->start << PAGE_SHIFT, 1826 size, true); 1827 } 1828 1829 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1830 { 1831 u64 size = (range->end - range->start) << PAGE_SHIFT; 1832 1833 if (!kvm->arch.mmu.pgt) 1834 return false; 1835 1836 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt, 1837 range->start << PAGE_SHIFT, 1838 size, false); 1839 } 1840 1841 phys_addr_t kvm_mmu_get_httbr(void) 1842 { 1843 return __pa(hyp_pgtable->pgd); 1844 } 1845 1846 phys_addr_t kvm_get_idmap_vector(void) 1847 { 1848 return hyp_idmap_vector; 1849 } 1850 1851 static int kvm_map_idmap_text(void) 1852 { 1853 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1854 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1855 PAGE_HYP_EXEC); 1856 if (err) 1857 kvm_err("Failed to idmap %lx-%lx\n", 1858 hyp_idmap_start, hyp_idmap_end); 1859 1860 return err; 1861 } 1862 1863 static void *kvm_hyp_zalloc_page(void *arg) 1864 { 1865 return (void *)get_zeroed_page(GFP_KERNEL); 1866 } 1867 1868 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1869 .zalloc_page = kvm_hyp_zalloc_page, 1870 .get_page = kvm_host_get_page, 1871 .put_page = kvm_host_put_page, 1872 .phys_to_virt = kvm_host_va, 1873 .virt_to_phys = kvm_host_pa, 1874 }; 1875 1876 int __init kvm_mmu_init(u32 *hyp_va_bits) 1877 { 1878 int err; 1879 u32 idmap_bits; 1880 u32 kernel_bits; 1881 1882 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1883 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1884 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1885 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1886 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1887 1888 /* 1889 * We rely on the linker script to ensure at build time that the HYP 1890 * init code does not cross a page boundary. 1891 */ 1892 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1893 1894 /* 1895 * The ID map may be configured to use an extended virtual address 1896 * range. This is only the case if system RAM is out of range for the 1897 * currently configured page size and VA_BITS_MIN, in which case we will 1898 * also need the extended virtual range for the HYP ID map, or we won't 1899 * be able to enable the EL2 MMU. 1900 * 1901 * However, in some cases the ID map may be configured for fewer than 1902 * the number of VA bits used by the regular kernel stage 1. This 1903 * happens when VA_BITS=52 and the kernel image is placed in PA space 1904 * below 48 bits. 1905 * 1906 * At EL2, there is only one TTBR register, and we can't switch between 1907 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1908 * line: we need to use the extended range with *both* our translation 1909 * tables. 1910 * 1911 * So use the maximum of the idmap VA bits and the regular kernel stage 1912 * 1 VA bits to assure that the hypervisor can both ID map its code page 1913 * and map any kernel memory. 1914 */ 1915 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1916 kernel_bits = vabits_actual; 1917 *hyp_va_bits = max(idmap_bits, kernel_bits); 1918 1919 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1920 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1921 kvm_debug("HYP VA range: %lx:%lx\n", 1922 kern_hyp_va(PAGE_OFFSET), 1923 kern_hyp_va((unsigned long)high_memory - 1)); 1924 1925 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1926 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1927 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1928 /* 1929 * The idmap page is intersecting with the VA space, 1930 * it is not safe to continue further. 1931 */ 1932 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1933 err = -EINVAL; 1934 goto out; 1935 } 1936 1937 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1938 if (!hyp_pgtable) { 1939 kvm_err("Hyp mode page-table not allocated\n"); 1940 err = -ENOMEM; 1941 goto out; 1942 } 1943 1944 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1945 if (err) 1946 goto out_free_pgtable; 1947 1948 err = kvm_map_idmap_text(); 1949 if (err) 1950 goto out_destroy_pgtable; 1951 1952 io_map_base = hyp_idmap_start; 1953 return 0; 1954 1955 out_destroy_pgtable: 1956 kvm_pgtable_hyp_destroy(hyp_pgtable); 1957 out_free_pgtable: 1958 kfree(hyp_pgtable); 1959 hyp_pgtable = NULL; 1960 out: 1961 return err; 1962 } 1963 1964 void kvm_arch_commit_memory_region(struct kvm *kvm, 1965 struct kvm_memory_slot *old, 1966 const struct kvm_memory_slot *new, 1967 enum kvm_mr_change change) 1968 { 1969 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES; 1970 1971 /* 1972 * At this point memslot has been committed and there is an 1973 * allocated dirty_bitmap[], dirty pages will be tracked while the 1974 * memory slot is write protected. 1975 */ 1976 if (log_dirty_pages) { 1977 1978 if (change == KVM_MR_DELETE) 1979 return; 1980 1981 /* 1982 * Huge and normal pages are write-protected and split 1983 * on either of these two cases: 1984 * 1985 * 1. with initial-all-set: gradually with CLEAR ioctls, 1986 */ 1987 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1988 return; 1989 /* 1990 * or 1991 * 2. without initial-all-set: all in one shot when 1992 * enabling dirty logging. 1993 */ 1994 kvm_mmu_wp_memory_region(kvm, new->id); 1995 kvm_mmu_split_memory_region(kvm, new->id); 1996 } else { 1997 /* 1998 * Free any leftovers from the eager page splitting cache. Do 1999 * this when deleting, moving, disabling dirty logging, or 2000 * creating the memslot (a nop). Doing it for deletes makes 2001 * sure we don't leak memory, and there's no need to keep the 2002 * cache around for any of the other cases. 2003 */ 2004 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); 2005 } 2006 } 2007 2008 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2009 const struct kvm_memory_slot *old, 2010 struct kvm_memory_slot *new, 2011 enum kvm_mr_change change) 2012 { 2013 hva_t hva, reg_end; 2014 int ret = 0; 2015 2016 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 2017 change != KVM_MR_FLAGS_ONLY) 2018 return 0; 2019 2020 /* 2021 * Prevent userspace from creating a memory region outside of the IPA 2022 * space addressable by the KVM guest IPA space. 2023 */ 2024 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 2025 return -EFAULT; 2026 2027 hva = new->userspace_addr; 2028 reg_end = hva + (new->npages << PAGE_SHIFT); 2029 2030 mmap_read_lock(current->mm); 2031 /* 2032 * A memory region could potentially cover multiple VMAs, and any holes 2033 * between them, so iterate over all of them. 2034 * 2035 * +--------------------------------------------+ 2036 * +---------------+----------------+ +----------------+ 2037 * | : VMA 1 | VMA 2 | | VMA 3 : | 2038 * +---------------+----------------+ +----------------+ 2039 * | memory region | 2040 * +--------------------------------------------+ 2041 */ 2042 do { 2043 struct vm_area_struct *vma; 2044 2045 vma = find_vma_intersection(current->mm, hva, reg_end); 2046 if (!vma) 2047 break; 2048 2049 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 2050 ret = -EINVAL; 2051 break; 2052 } 2053 2054 if (vma->vm_flags & VM_PFNMAP) { 2055 /* IO region dirty page logging not allowed */ 2056 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 2057 ret = -EINVAL; 2058 break; 2059 } 2060 } 2061 hva = min(reg_end, vma->vm_end); 2062 } while (hva < reg_end); 2063 2064 mmap_read_unlock(current->mm); 2065 return ret; 2066 } 2067 2068 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 2069 { 2070 } 2071 2072 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 2073 { 2074 } 2075 2076 void kvm_arch_flush_shadow_all(struct kvm *kvm) 2077 { 2078 kvm_uninit_stage2_mmu(kvm); 2079 } 2080 2081 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 2082 struct kvm_memory_slot *slot) 2083 { 2084 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 2085 phys_addr_t size = slot->npages << PAGE_SHIFT; 2086 2087 write_lock(&kvm->mmu_lock); 2088 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 2089 write_unlock(&kvm->mmu_lock); 2090 } 2091 2092 /* 2093 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 2094 * 2095 * Main problems: 2096 * - S/W ops are local to a CPU (not broadcast) 2097 * - We have line migration behind our back (speculation) 2098 * - System caches don't support S/W at all (damn!) 2099 * 2100 * In the face of the above, the best we can do is to try and convert 2101 * S/W ops to VA ops. Because the guest is not allowed to infer the 2102 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 2103 * which is a rather good thing for us. 2104 * 2105 * Also, it is only used when turning caches on/off ("The expected 2106 * usage of the cache maintenance instructions that operate by set/way 2107 * is associated with the cache maintenance instructions associated 2108 * with the powerdown and powerup of caches, if this is required by 2109 * the implementation."). 2110 * 2111 * We use the following policy: 2112 * 2113 * - If we trap a S/W operation, we enable VM trapping to detect 2114 * caches being turned on/off, and do a full clean. 2115 * 2116 * - We flush the caches on both caches being turned on and off. 2117 * 2118 * - Once the caches are enabled, we stop trapping VM ops. 2119 */ 2120 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 2121 { 2122 unsigned long hcr = *vcpu_hcr(vcpu); 2123 2124 /* 2125 * If this is the first time we do a S/W operation 2126 * (i.e. HCR_TVM not set) flush the whole memory, and set the 2127 * VM trapping. 2128 * 2129 * Otherwise, rely on the VM trapping to wait for the MMU + 2130 * Caches to be turned off. At that point, we'll be able to 2131 * clean the caches again. 2132 */ 2133 if (!(hcr & HCR_TVM)) { 2134 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 2135 vcpu_has_cache_enabled(vcpu)); 2136 stage2_flush_vm(vcpu->kvm); 2137 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 2138 } 2139 } 2140 2141 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 2142 { 2143 bool now_enabled = vcpu_has_cache_enabled(vcpu); 2144 2145 /* 2146 * If switching the MMU+caches on, need to invalidate the caches. 2147 * If switching it off, need to clean the caches. 2148 * Clean + invalidate does the trick always. 2149 */ 2150 if (now_enabled != was_enabled) 2151 stage2_flush_vm(vcpu->kvm); 2152 2153 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 2154 if (now_enabled) 2155 *vcpu_hcr(vcpu) &= ~HCR_TVM; 2156 2157 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 2158 } 2159