1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 35 { 36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 /* 43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 46 * long will also starve other vCPUs. We have to also make sure that the page 47 * tables are not freed while we released the lock. 48 */ 49 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 50 phys_addr_t end, 51 int (*fn)(struct kvm_pgtable *, u64, u64), 52 bool resched) 53 { 54 int ret; 55 u64 next; 56 57 do { 58 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 59 if (!pgt) 60 return -EINVAL; 61 62 next = stage2_range_addr_end(addr, end); 63 ret = fn(pgt, addr, next - addr); 64 if (ret) 65 break; 66 67 if (resched && next != end) 68 cond_resched_rwlock_write(&kvm->mmu_lock); 69 } while (addr = next, addr != end); 70 71 return ret; 72 } 73 74 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 75 stage2_apply_range(kvm, addr, end, fn, true) 76 77 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 78 { 79 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 80 } 81 82 /** 83 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 84 * @kvm: pointer to kvm structure. 85 * 86 * Interface to HYP function to flush all VM TLB entries 87 */ 88 void kvm_flush_remote_tlbs(struct kvm *kvm) 89 { 90 ++kvm->stat.generic.remote_tlb_flush_requests; 91 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 92 } 93 94 static bool kvm_is_device_pfn(unsigned long pfn) 95 { 96 return !pfn_is_map_memory(pfn); 97 } 98 99 static void *stage2_memcache_zalloc_page(void *arg) 100 { 101 struct kvm_mmu_memory_cache *mc = arg; 102 void *virt; 103 104 /* Allocated with __GFP_ZERO, so no need to zero */ 105 virt = kvm_mmu_memory_cache_alloc(mc); 106 if (virt) 107 kvm_account_pgtable_pages(virt, 1); 108 return virt; 109 } 110 111 static void *kvm_host_zalloc_pages_exact(size_t size) 112 { 113 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 114 } 115 116 static void *kvm_s2_zalloc_pages_exact(size_t size) 117 { 118 void *virt = kvm_host_zalloc_pages_exact(size); 119 120 if (virt) 121 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 122 return virt; 123 } 124 125 static void kvm_s2_free_pages_exact(void *virt, size_t size) 126 { 127 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 128 free_pages_exact(virt, size); 129 } 130 131 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops; 132 133 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head) 134 { 135 struct page *page = container_of(head, struct page, rcu_head); 136 void *pgtable = page_to_virt(page); 137 u32 level = page_private(page); 138 139 kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level); 140 } 141 142 static void stage2_free_removed_table(void *addr, u32 level) 143 { 144 struct page *page = virt_to_page(addr); 145 146 set_page_private(page, (unsigned long)level); 147 call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb); 148 } 149 150 static void kvm_host_get_page(void *addr) 151 { 152 get_page(virt_to_page(addr)); 153 } 154 155 static void kvm_host_put_page(void *addr) 156 { 157 put_page(virt_to_page(addr)); 158 } 159 160 static void kvm_s2_put_page(void *addr) 161 { 162 struct page *p = virt_to_page(addr); 163 /* Dropping last refcount, the page will be freed */ 164 if (page_count(p) == 1) 165 kvm_account_pgtable_pages(addr, -1); 166 put_page(p); 167 } 168 169 static int kvm_host_page_count(void *addr) 170 { 171 return page_count(virt_to_page(addr)); 172 } 173 174 static phys_addr_t kvm_host_pa(void *addr) 175 { 176 return __pa(addr); 177 } 178 179 static void *kvm_host_va(phys_addr_t phys) 180 { 181 return __va(phys); 182 } 183 184 static void clean_dcache_guest_page(void *va, size_t size) 185 { 186 __clean_dcache_guest_page(va, size); 187 } 188 189 static void invalidate_icache_guest_page(void *va, size_t size) 190 { 191 __invalidate_icache_guest_page(va, size); 192 } 193 194 /* 195 * Unmapping vs dcache management: 196 * 197 * If a guest maps certain memory pages as uncached, all writes will 198 * bypass the data cache and go directly to RAM. However, the CPUs 199 * can still speculate reads (not writes) and fill cache lines with 200 * data. 201 * 202 * Those cache lines will be *clean* cache lines though, so a 203 * clean+invalidate operation is equivalent to an invalidate 204 * operation, because no cache lines are marked dirty. 205 * 206 * Those clean cache lines could be filled prior to an uncached write 207 * by the guest, and the cache coherent IO subsystem would therefore 208 * end up writing old data to disk. 209 * 210 * This is why right after unmapping a page/section and invalidating 211 * the corresponding TLBs, we flush to make sure the IO subsystem will 212 * never hit in the cache. 213 * 214 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 215 * we then fully enforce cacheability of RAM, no matter what the guest 216 * does. 217 */ 218 /** 219 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 220 * @mmu: The KVM stage-2 MMU pointer 221 * @start: The intermediate physical base address of the range to unmap 222 * @size: The size of the area to unmap 223 * @may_block: Whether or not we are permitted to block 224 * 225 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 226 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 227 * destroying the VM), otherwise another faulting VCPU may come in and mess 228 * with things behind our backs. 229 */ 230 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 231 bool may_block) 232 { 233 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 234 phys_addr_t end = start + size; 235 236 lockdep_assert_held_write(&kvm->mmu_lock); 237 WARN_ON(size & ~PAGE_MASK); 238 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 239 may_block)); 240 } 241 242 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 243 { 244 __unmap_stage2_range(mmu, start, size, true); 245 } 246 247 static void stage2_flush_memslot(struct kvm *kvm, 248 struct kvm_memory_slot *memslot) 249 { 250 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 251 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 252 253 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 254 } 255 256 /** 257 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 258 * @kvm: The struct kvm pointer 259 * 260 * Go through the stage 2 page tables and invalidate any cache lines 261 * backing memory already mapped to the VM. 262 */ 263 static void stage2_flush_vm(struct kvm *kvm) 264 { 265 struct kvm_memslots *slots; 266 struct kvm_memory_slot *memslot; 267 int idx, bkt; 268 269 idx = srcu_read_lock(&kvm->srcu); 270 write_lock(&kvm->mmu_lock); 271 272 slots = kvm_memslots(kvm); 273 kvm_for_each_memslot(memslot, bkt, slots) 274 stage2_flush_memslot(kvm, memslot); 275 276 write_unlock(&kvm->mmu_lock); 277 srcu_read_unlock(&kvm->srcu, idx); 278 } 279 280 /** 281 * free_hyp_pgds - free Hyp-mode page tables 282 */ 283 void free_hyp_pgds(void) 284 { 285 mutex_lock(&kvm_hyp_pgd_mutex); 286 if (hyp_pgtable) { 287 kvm_pgtable_hyp_destroy(hyp_pgtable); 288 kfree(hyp_pgtable); 289 hyp_pgtable = NULL; 290 } 291 mutex_unlock(&kvm_hyp_pgd_mutex); 292 } 293 294 static bool kvm_host_owns_hyp_mappings(void) 295 { 296 if (is_kernel_in_hyp_mode()) 297 return false; 298 299 if (static_branch_likely(&kvm_protected_mode_initialized)) 300 return false; 301 302 /* 303 * This can happen at boot time when __create_hyp_mappings() is called 304 * after the hyp protection has been enabled, but the static key has 305 * not been flipped yet. 306 */ 307 if (!hyp_pgtable && is_protected_kvm_enabled()) 308 return false; 309 310 WARN_ON(!hyp_pgtable); 311 312 return true; 313 } 314 315 int __create_hyp_mappings(unsigned long start, unsigned long size, 316 unsigned long phys, enum kvm_pgtable_prot prot) 317 { 318 int err; 319 320 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 321 return -EINVAL; 322 323 mutex_lock(&kvm_hyp_pgd_mutex); 324 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 325 mutex_unlock(&kvm_hyp_pgd_mutex); 326 327 return err; 328 } 329 330 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 331 { 332 if (!is_vmalloc_addr(kaddr)) { 333 BUG_ON(!virt_addr_valid(kaddr)); 334 return __pa(kaddr); 335 } else { 336 return page_to_phys(vmalloc_to_page(kaddr)) + 337 offset_in_page(kaddr); 338 } 339 } 340 341 struct hyp_shared_pfn { 342 u64 pfn; 343 int count; 344 struct rb_node node; 345 }; 346 347 static DEFINE_MUTEX(hyp_shared_pfns_lock); 348 static struct rb_root hyp_shared_pfns = RB_ROOT; 349 350 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 351 struct rb_node **parent) 352 { 353 struct hyp_shared_pfn *this; 354 355 *node = &hyp_shared_pfns.rb_node; 356 *parent = NULL; 357 while (**node) { 358 this = container_of(**node, struct hyp_shared_pfn, node); 359 *parent = **node; 360 if (this->pfn < pfn) 361 *node = &((**node)->rb_left); 362 else if (this->pfn > pfn) 363 *node = &((**node)->rb_right); 364 else 365 return this; 366 } 367 368 return NULL; 369 } 370 371 static int share_pfn_hyp(u64 pfn) 372 { 373 struct rb_node **node, *parent; 374 struct hyp_shared_pfn *this; 375 int ret = 0; 376 377 mutex_lock(&hyp_shared_pfns_lock); 378 this = find_shared_pfn(pfn, &node, &parent); 379 if (this) { 380 this->count++; 381 goto unlock; 382 } 383 384 this = kzalloc(sizeof(*this), GFP_KERNEL); 385 if (!this) { 386 ret = -ENOMEM; 387 goto unlock; 388 } 389 390 this->pfn = pfn; 391 this->count = 1; 392 rb_link_node(&this->node, parent, node); 393 rb_insert_color(&this->node, &hyp_shared_pfns); 394 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 395 unlock: 396 mutex_unlock(&hyp_shared_pfns_lock); 397 398 return ret; 399 } 400 401 static int unshare_pfn_hyp(u64 pfn) 402 { 403 struct rb_node **node, *parent; 404 struct hyp_shared_pfn *this; 405 int ret = 0; 406 407 mutex_lock(&hyp_shared_pfns_lock); 408 this = find_shared_pfn(pfn, &node, &parent); 409 if (WARN_ON(!this)) { 410 ret = -ENOENT; 411 goto unlock; 412 } 413 414 this->count--; 415 if (this->count) 416 goto unlock; 417 418 rb_erase(&this->node, &hyp_shared_pfns); 419 kfree(this); 420 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 421 unlock: 422 mutex_unlock(&hyp_shared_pfns_lock); 423 424 return ret; 425 } 426 427 int kvm_share_hyp(void *from, void *to) 428 { 429 phys_addr_t start, end, cur; 430 u64 pfn; 431 int ret; 432 433 if (is_kernel_in_hyp_mode()) 434 return 0; 435 436 /* 437 * The share hcall maps things in the 'fixed-offset' region of the hyp 438 * VA space, so we can only share physically contiguous data-structures 439 * for now. 440 */ 441 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 442 return -EINVAL; 443 444 if (kvm_host_owns_hyp_mappings()) 445 return create_hyp_mappings(from, to, PAGE_HYP); 446 447 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 448 end = PAGE_ALIGN(__pa(to)); 449 for (cur = start; cur < end; cur += PAGE_SIZE) { 450 pfn = __phys_to_pfn(cur); 451 ret = share_pfn_hyp(pfn); 452 if (ret) 453 return ret; 454 } 455 456 return 0; 457 } 458 459 void kvm_unshare_hyp(void *from, void *to) 460 { 461 phys_addr_t start, end, cur; 462 u64 pfn; 463 464 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 465 return; 466 467 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 468 end = PAGE_ALIGN(__pa(to)); 469 for (cur = start; cur < end; cur += PAGE_SIZE) { 470 pfn = __phys_to_pfn(cur); 471 WARN_ON(unshare_pfn_hyp(pfn)); 472 } 473 } 474 475 /** 476 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 477 * @from: The virtual kernel start address of the range 478 * @to: The virtual kernel end address of the range (exclusive) 479 * @prot: The protection to be applied to this range 480 * 481 * The same virtual address as the kernel virtual address is also used 482 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 483 * physical pages. 484 */ 485 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 486 { 487 phys_addr_t phys_addr; 488 unsigned long virt_addr; 489 unsigned long start = kern_hyp_va((unsigned long)from); 490 unsigned long end = kern_hyp_va((unsigned long)to); 491 492 if (is_kernel_in_hyp_mode()) 493 return 0; 494 495 if (!kvm_host_owns_hyp_mappings()) 496 return -EPERM; 497 498 start = start & PAGE_MASK; 499 end = PAGE_ALIGN(end); 500 501 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 502 int err; 503 504 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 505 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 506 prot); 507 if (err) 508 return err; 509 } 510 511 return 0; 512 } 513 514 515 /** 516 * hyp_alloc_private_va_range - Allocates a private VA range. 517 * @size: The size of the VA range to reserve. 518 * @haddr: The hypervisor virtual start address of the allocation. 519 * 520 * The private virtual address (VA) range is allocated below io_map_base 521 * and aligned based on the order of @size. 522 * 523 * Return: 0 on success or negative error code on failure. 524 */ 525 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 526 { 527 unsigned long base; 528 int ret = 0; 529 530 mutex_lock(&kvm_hyp_pgd_mutex); 531 532 /* 533 * This assumes that we have enough space below the idmap 534 * page to allocate our VAs. If not, the check below will 535 * kick. A potential alternative would be to detect that 536 * overflow and switch to an allocation above the idmap. 537 * 538 * The allocated size is always a multiple of PAGE_SIZE. 539 */ 540 base = io_map_base - PAGE_ALIGN(size); 541 542 /* Align the allocation based on the order of its size */ 543 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 544 545 /* 546 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 547 * allocating the new area, as it would indicate we've 548 * overflowed the idmap/IO address range. 549 */ 550 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 551 ret = -ENOMEM; 552 else 553 *haddr = io_map_base = base; 554 555 mutex_unlock(&kvm_hyp_pgd_mutex); 556 557 return ret; 558 } 559 560 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 561 unsigned long *haddr, 562 enum kvm_pgtable_prot prot) 563 { 564 unsigned long addr; 565 int ret = 0; 566 567 if (!kvm_host_owns_hyp_mappings()) { 568 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 569 phys_addr, size, prot); 570 if (IS_ERR_VALUE(addr)) 571 return addr; 572 *haddr = addr; 573 574 return 0; 575 } 576 577 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 578 ret = hyp_alloc_private_va_range(size, &addr); 579 if (ret) 580 return ret; 581 582 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 583 if (ret) 584 return ret; 585 586 *haddr = addr + offset_in_page(phys_addr); 587 return ret; 588 } 589 590 /** 591 * create_hyp_io_mappings - Map IO into both kernel and HYP 592 * @phys_addr: The physical start address which gets mapped 593 * @size: Size of the region being mapped 594 * @kaddr: Kernel VA for this mapping 595 * @haddr: HYP VA for this mapping 596 */ 597 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 598 void __iomem **kaddr, 599 void __iomem **haddr) 600 { 601 unsigned long addr; 602 int ret; 603 604 if (is_protected_kvm_enabled()) 605 return -EPERM; 606 607 *kaddr = ioremap(phys_addr, size); 608 if (!*kaddr) 609 return -ENOMEM; 610 611 if (is_kernel_in_hyp_mode()) { 612 *haddr = *kaddr; 613 return 0; 614 } 615 616 ret = __create_hyp_private_mapping(phys_addr, size, 617 &addr, PAGE_HYP_DEVICE); 618 if (ret) { 619 iounmap(*kaddr); 620 *kaddr = NULL; 621 *haddr = NULL; 622 return ret; 623 } 624 625 *haddr = (void __iomem *)addr; 626 return 0; 627 } 628 629 /** 630 * create_hyp_exec_mappings - Map an executable range into HYP 631 * @phys_addr: The physical start address which gets mapped 632 * @size: Size of the region being mapped 633 * @haddr: HYP VA for this mapping 634 */ 635 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 636 void **haddr) 637 { 638 unsigned long addr; 639 int ret; 640 641 BUG_ON(is_kernel_in_hyp_mode()); 642 643 ret = __create_hyp_private_mapping(phys_addr, size, 644 &addr, PAGE_HYP_EXEC); 645 if (ret) { 646 *haddr = NULL; 647 return ret; 648 } 649 650 *haddr = (void *)addr; 651 return 0; 652 } 653 654 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 655 /* We shouldn't need any other callback to walk the PT */ 656 .phys_to_virt = kvm_host_va, 657 }; 658 659 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 660 { 661 struct kvm_pgtable pgt = { 662 .pgd = (kvm_pteref_t)kvm->mm->pgd, 663 .ia_bits = vabits_actual, 664 .start_level = (KVM_PGTABLE_MAX_LEVELS - 665 CONFIG_PGTABLE_LEVELS), 666 .mm_ops = &kvm_user_mm_ops, 667 }; 668 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 669 u32 level = ~0; 670 int ret; 671 672 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 673 VM_BUG_ON(ret); 674 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 675 VM_BUG_ON(!(pte & PTE_VALID)); 676 677 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 678 } 679 680 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 681 .zalloc_page = stage2_memcache_zalloc_page, 682 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 683 .free_pages_exact = kvm_s2_free_pages_exact, 684 .free_removed_table = stage2_free_removed_table, 685 .get_page = kvm_host_get_page, 686 .put_page = kvm_s2_put_page, 687 .page_count = kvm_host_page_count, 688 .phys_to_virt = kvm_host_va, 689 .virt_to_phys = kvm_host_pa, 690 .dcache_clean_inval_poc = clean_dcache_guest_page, 691 .icache_inval_pou = invalidate_icache_guest_page, 692 }; 693 694 /** 695 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 696 * @kvm: The pointer to the KVM structure 697 * @mmu: The pointer to the s2 MMU structure 698 * @type: The machine type of the virtual machine 699 * 700 * Allocates only the stage-2 HW PGD level table(s). 701 * Note we don't need locking here as this is only called when the VM is 702 * created, which can only be done once. 703 */ 704 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type) 705 { 706 u32 kvm_ipa_limit = get_kvm_ipa_limit(); 707 int cpu, err; 708 struct kvm_pgtable *pgt; 709 u64 mmfr0, mmfr1; 710 u32 phys_shift; 711 712 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 713 return -EINVAL; 714 715 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 716 if (is_protected_kvm_enabled()) { 717 phys_shift = kvm_ipa_limit; 718 } else if (phys_shift) { 719 if (phys_shift > kvm_ipa_limit || 720 phys_shift < ARM64_MIN_PARANGE_BITS) 721 return -EINVAL; 722 } else { 723 phys_shift = KVM_PHYS_SHIFT; 724 if (phys_shift > kvm_ipa_limit) { 725 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 726 current->comm); 727 return -EINVAL; 728 } 729 } 730 731 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 732 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 733 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 734 735 if (mmu->pgt != NULL) { 736 kvm_err("kvm_arch already initialized?\n"); 737 return -EINVAL; 738 } 739 740 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 741 if (!pgt) 742 return -ENOMEM; 743 744 mmu->arch = &kvm->arch; 745 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 746 if (err) 747 goto out_free_pgtable; 748 749 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 750 if (!mmu->last_vcpu_ran) { 751 err = -ENOMEM; 752 goto out_destroy_pgtable; 753 } 754 755 for_each_possible_cpu(cpu) 756 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 757 758 mmu->pgt = pgt; 759 mmu->pgd_phys = __pa(pgt->pgd); 760 return 0; 761 762 out_destroy_pgtable: 763 kvm_pgtable_stage2_destroy(pgt); 764 out_free_pgtable: 765 kfree(pgt); 766 return err; 767 } 768 769 static void stage2_unmap_memslot(struct kvm *kvm, 770 struct kvm_memory_slot *memslot) 771 { 772 hva_t hva = memslot->userspace_addr; 773 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 774 phys_addr_t size = PAGE_SIZE * memslot->npages; 775 hva_t reg_end = hva + size; 776 777 /* 778 * A memory region could potentially cover multiple VMAs, and any holes 779 * between them, so iterate over all of them to find out if we should 780 * unmap any of them. 781 * 782 * +--------------------------------------------+ 783 * +---------------+----------------+ +----------------+ 784 * | : VMA 1 | VMA 2 | | VMA 3 : | 785 * +---------------+----------------+ +----------------+ 786 * | memory region | 787 * +--------------------------------------------+ 788 */ 789 do { 790 struct vm_area_struct *vma; 791 hva_t vm_start, vm_end; 792 793 vma = find_vma_intersection(current->mm, hva, reg_end); 794 if (!vma) 795 break; 796 797 /* 798 * Take the intersection of this VMA with the memory region 799 */ 800 vm_start = max(hva, vma->vm_start); 801 vm_end = min(reg_end, vma->vm_end); 802 803 if (!(vma->vm_flags & VM_PFNMAP)) { 804 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 805 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 806 } 807 hva = vm_end; 808 } while (hva < reg_end); 809 } 810 811 /** 812 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 813 * @kvm: The struct kvm pointer 814 * 815 * Go through the memregions and unmap any regular RAM 816 * backing memory already mapped to the VM. 817 */ 818 void stage2_unmap_vm(struct kvm *kvm) 819 { 820 struct kvm_memslots *slots; 821 struct kvm_memory_slot *memslot; 822 int idx, bkt; 823 824 idx = srcu_read_lock(&kvm->srcu); 825 mmap_read_lock(current->mm); 826 write_lock(&kvm->mmu_lock); 827 828 slots = kvm_memslots(kvm); 829 kvm_for_each_memslot(memslot, bkt, slots) 830 stage2_unmap_memslot(kvm, memslot); 831 832 write_unlock(&kvm->mmu_lock); 833 mmap_read_unlock(current->mm); 834 srcu_read_unlock(&kvm->srcu, idx); 835 } 836 837 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 838 { 839 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 840 struct kvm_pgtable *pgt = NULL; 841 842 write_lock(&kvm->mmu_lock); 843 pgt = mmu->pgt; 844 if (pgt) { 845 mmu->pgd_phys = 0; 846 mmu->pgt = NULL; 847 free_percpu(mmu->last_vcpu_ran); 848 } 849 write_unlock(&kvm->mmu_lock); 850 851 if (pgt) { 852 kvm_pgtable_stage2_destroy(pgt); 853 kfree(pgt); 854 } 855 } 856 857 static void hyp_mc_free_fn(void *addr, void *unused) 858 { 859 free_page((unsigned long)addr); 860 } 861 862 static void *hyp_mc_alloc_fn(void *unused) 863 { 864 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT); 865 } 866 867 void free_hyp_memcache(struct kvm_hyp_memcache *mc) 868 { 869 if (is_protected_kvm_enabled()) 870 __free_hyp_memcache(mc, hyp_mc_free_fn, 871 kvm_host_va, NULL); 872 } 873 874 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages) 875 { 876 if (!is_protected_kvm_enabled()) 877 return 0; 878 879 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn, 880 kvm_host_pa, NULL); 881 } 882 883 /** 884 * kvm_phys_addr_ioremap - map a device range to guest IPA 885 * 886 * @kvm: The KVM pointer 887 * @guest_ipa: The IPA at which to insert the mapping 888 * @pa: The physical address of the device 889 * @size: The size of the mapping 890 * @writable: Whether or not to create a writable mapping 891 */ 892 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 893 phys_addr_t pa, unsigned long size, bool writable) 894 { 895 phys_addr_t addr; 896 int ret = 0; 897 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 898 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 899 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 900 KVM_PGTABLE_PROT_R | 901 (writable ? KVM_PGTABLE_PROT_W : 0); 902 903 if (is_protected_kvm_enabled()) 904 return -EPERM; 905 906 size += offset_in_page(guest_ipa); 907 guest_ipa &= PAGE_MASK; 908 909 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 910 ret = kvm_mmu_topup_memory_cache(&cache, 911 kvm_mmu_cache_min_pages(kvm)); 912 if (ret) 913 break; 914 915 write_lock(&kvm->mmu_lock); 916 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 917 &cache, 0); 918 write_unlock(&kvm->mmu_lock); 919 if (ret) 920 break; 921 922 pa += PAGE_SIZE; 923 } 924 925 kvm_mmu_free_memory_cache(&cache); 926 return ret; 927 } 928 929 /** 930 * stage2_wp_range() - write protect stage2 memory region range 931 * @mmu: The KVM stage-2 MMU pointer 932 * @addr: Start address of range 933 * @end: End address of range 934 */ 935 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 936 { 937 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 938 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 939 } 940 941 /** 942 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 943 * @kvm: The KVM pointer 944 * @slot: The memory slot to write protect 945 * 946 * Called to start logging dirty pages after memory region 947 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 948 * all present PUD, PMD and PTEs are write protected in the memory region. 949 * Afterwards read of dirty page log can be called. 950 * 951 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 952 * serializing operations for VM memory regions. 953 */ 954 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 955 { 956 struct kvm_memslots *slots = kvm_memslots(kvm); 957 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 958 phys_addr_t start, end; 959 960 if (WARN_ON_ONCE(!memslot)) 961 return; 962 963 start = memslot->base_gfn << PAGE_SHIFT; 964 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 965 966 write_lock(&kvm->mmu_lock); 967 stage2_wp_range(&kvm->arch.mmu, start, end); 968 write_unlock(&kvm->mmu_lock); 969 kvm_flush_remote_tlbs(kvm); 970 } 971 972 /** 973 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 974 * @kvm: The KVM pointer 975 * @slot: The memory slot associated with mask 976 * @gfn_offset: The gfn offset in memory slot 977 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 978 * slot to be write protected 979 * 980 * Walks bits set in mask write protects the associated pte's. Caller must 981 * acquire kvm_mmu_lock. 982 */ 983 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 984 struct kvm_memory_slot *slot, 985 gfn_t gfn_offset, unsigned long mask) 986 { 987 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 988 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 989 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 990 991 stage2_wp_range(&kvm->arch.mmu, start, end); 992 } 993 994 /* 995 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 996 * dirty pages. 997 * 998 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 999 * enable dirty logging for them. 1000 */ 1001 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1002 struct kvm_memory_slot *slot, 1003 gfn_t gfn_offset, unsigned long mask) 1004 { 1005 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1006 } 1007 1008 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 1009 { 1010 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 1011 } 1012 1013 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 1014 unsigned long hva, 1015 unsigned long map_size) 1016 { 1017 gpa_t gpa_start; 1018 hva_t uaddr_start, uaddr_end; 1019 size_t size; 1020 1021 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 1022 if (map_size == PAGE_SIZE) 1023 return true; 1024 1025 size = memslot->npages * PAGE_SIZE; 1026 1027 gpa_start = memslot->base_gfn << PAGE_SHIFT; 1028 1029 uaddr_start = memslot->userspace_addr; 1030 uaddr_end = uaddr_start + size; 1031 1032 /* 1033 * Pages belonging to memslots that don't have the same alignment 1034 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 1035 * PMD/PUD entries, because we'll end up mapping the wrong pages. 1036 * 1037 * Consider a layout like the following: 1038 * 1039 * memslot->userspace_addr: 1040 * +-----+--------------------+--------------------+---+ 1041 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 1042 * +-----+--------------------+--------------------+---+ 1043 * 1044 * memslot->base_gfn << PAGE_SHIFT: 1045 * +---+--------------------+--------------------+-----+ 1046 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 1047 * +---+--------------------+--------------------+-----+ 1048 * 1049 * If we create those stage-2 blocks, we'll end up with this incorrect 1050 * mapping: 1051 * d -> f 1052 * e -> g 1053 * f -> h 1054 */ 1055 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 1056 return false; 1057 1058 /* 1059 * Next, let's make sure we're not trying to map anything not covered 1060 * by the memslot. This means we have to prohibit block size mappings 1061 * for the beginning and end of a non-block aligned and non-block sized 1062 * memory slot (illustrated by the head and tail parts of the 1063 * userspace view above containing pages 'abcde' and 'xyz', 1064 * respectively). 1065 * 1066 * Note that it doesn't matter if we do the check using the 1067 * userspace_addr or the base_gfn, as both are equally aligned (per 1068 * the check above) and equally sized. 1069 */ 1070 return (hva & ~(map_size - 1)) >= uaddr_start && 1071 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 1072 } 1073 1074 /* 1075 * Check if the given hva is backed by a transparent huge page (THP) and 1076 * whether it can be mapped using block mapping in stage2. If so, adjust 1077 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1078 * supported. This will need to be updated to support other THP sizes. 1079 * 1080 * Returns the size of the mapping. 1081 */ 1082 static unsigned long 1083 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1084 unsigned long hva, kvm_pfn_t *pfnp, 1085 phys_addr_t *ipap) 1086 { 1087 kvm_pfn_t pfn = *pfnp; 1088 1089 /* 1090 * Make sure the adjustment is done only for THP pages. Also make 1091 * sure that the HVA and IPA are sufficiently aligned and that the 1092 * block map is contained within the memslot. 1093 */ 1094 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 1095 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 1096 /* 1097 * The address we faulted on is backed by a transparent huge 1098 * page. However, because we map the compound huge page and 1099 * not the individual tail page, we need to transfer the 1100 * refcount to the head page. We have to be careful that the 1101 * THP doesn't start to split while we are adjusting the 1102 * refcounts. 1103 * 1104 * We are sure this doesn't happen, because mmu_invalidate_retry 1105 * was successful and we are holding the mmu_lock, so if this 1106 * THP is trying to split, it will be blocked in the mmu 1107 * notifier before touching any of the pages, specifically 1108 * before being able to call __split_huge_page_refcount(). 1109 * 1110 * We can therefore safely transfer the refcount from PG_tail 1111 * to PG_head and switch the pfn from a tail page to the head 1112 * page accordingly. 1113 */ 1114 *ipap &= PMD_MASK; 1115 kvm_release_pfn_clean(pfn); 1116 pfn &= ~(PTRS_PER_PMD - 1); 1117 get_page(pfn_to_page(pfn)); 1118 *pfnp = pfn; 1119 1120 return PMD_SIZE; 1121 } 1122 1123 /* Use page mapping if we cannot use block mapping. */ 1124 return PAGE_SIZE; 1125 } 1126 1127 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1128 { 1129 unsigned long pa; 1130 1131 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1132 return huge_page_shift(hstate_vma(vma)); 1133 1134 if (!(vma->vm_flags & VM_PFNMAP)) 1135 return PAGE_SHIFT; 1136 1137 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1138 1139 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1140 1141 #ifndef __PAGETABLE_PMD_FOLDED 1142 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1143 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1144 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1145 return PUD_SHIFT; 1146 #endif 1147 1148 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1149 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1150 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1151 return PMD_SHIFT; 1152 1153 return PAGE_SHIFT; 1154 } 1155 1156 /* 1157 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1158 * able to see the page's tags and therefore they must be initialised first. If 1159 * PG_mte_tagged is set, tags have already been initialised. 1160 * 1161 * The race in the test/set of the PG_mte_tagged flag is handled by: 1162 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1163 * racing to santise the same page 1164 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1165 * an mprotect() to add VM_MTE 1166 */ 1167 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1168 unsigned long size) 1169 { 1170 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1171 struct page *page = pfn_to_page(pfn); 1172 1173 if (!kvm_has_mte(kvm)) 1174 return; 1175 1176 for (i = 0; i < nr_pages; i++, page++) { 1177 if (try_page_mte_tagging(page)) { 1178 mte_clear_page_tags(page_address(page)); 1179 set_page_mte_tagged(page); 1180 } 1181 } 1182 } 1183 1184 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma) 1185 { 1186 return vma->vm_flags & VM_MTE_ALLOWED; 1187 } 1188 1189 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1190 struct kvm_memory_slot *memslot, unsigned long hva, 1191 unsigned long fault_status) 1192 { 1193 int ret = 0; 1194 bool write_fault, writable, force_pte = false; 1195 bool exec_fault; 1196 bool device = false; 1197 unsigned long mmu_seq; 1198 struct kvm *kvm = vcpu->kvm; 1199 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1200 struct vm_area_struct *vma; 1201 short vma_shift; 1202 gfn_t gfn; 1203 kvm_pfn_t pfn; 1204 bool logging_active = memslot_is_logging(memslot); 1205 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1206 unsigned long vma_pagesize, fault_granule; 1207 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1208 struct kvm_pgtable *pgt; 1209 1210 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1211 write_fault = kvm_is_write_fault(vcpu); 1212 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1213 VM_BUG_ON(write_fault && exec_fault); 1214 1215 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1216 kvm_err("Unexpected L2 read permission error\n"); 1217 return -EFAULT; 1218 } 1219 1220 /* 1221 * Let's check if we will get back a huge page backed by hugetlbfs, or 1222 * get block mapping for device MMIO region. 1223 */ 1224 mmap_read_lock(current->mm); 1225 vma = vma_lookup(current->mm, hva); 1226 if (unlikely(!vma)) { 1227 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1228 mmap_read_unlock(current->mm); 1229 return -EFAULT; 1230 } 1231 1232 /* 1233 * logging_active is guaranteed to never be true for VM_PFNMAP 1234 * memslots. 1235 */ 1236 if (logging_active) { 1237 force_pte = true; 1238 vma_shift = PAGE_SHIFT; 1239 } else { 1240 vma_shift = get_vma_page_shift(vma, hva); 1241 } 1242 1243 switch (vma_shift) { 1244 #ifndef __PAGETABLE_PMD_FOLDED 1245 case PUD_SHIFT: 1246 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1247 break; 1248 fallthrough; 1249 #endif 1250 case CONT_PMD_SHIFT: 1251 vma_shift = PMD_SHIFT; 1252 fallthrough; 1253 case PMD_SHIFT: 1254 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1255 break; 1256 fallthrough; 1257 case CONT_PTE_SHIFT: 1258 vma_shift = PAGE_SHIFT; 1259 force_pte = true; 1260 fallthrough; 1261 case PAGE_SHIFT: 1262 break; 1263 default: 1264 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1265 } 1266 1267 vma_pagesize = 1UL << vma_shift; 1268 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1269 fault_ipa &= ~(vma_pagesize - 1); 1270 1271 gfn = fault_ipa >> PAGE_SHIFT; 1272 mmap_read_unlock(current->mm); 1273 1274 /* 1275 * Permission faults just need to update the existing leaf entry, 1276 * and so normally don't require allocations from the memcache. The 1277 * only exception to this is when dirty logging is enabled at runtime 1278 * and a write fault needs to collapse a block entry into a table. 1279 */ 1280 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 1281 ret = kvm_mmu_topup_memory_cache(memcache, 1282 kvm_mmu_cache_min_pages(kvm)); 1283 if (ret) 1284 return ret; 1285 } 1286 1287 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1288 /* 1289 * Ensure the read of mmu_invalidate_seq happens before we call 1290 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1291 * the page we just got a reference to gets unmapped before we have a 1292 * chance to grab the mmu_lock, which ensure that if the page gets 1293 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1294 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1295 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1296 * 1297 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1298 * used to avoid unnecessary overhead introduced to locate the memory 1299 * slot because it's always fixed even @gfn is adjusted for huge pages. 1300 */ 1301 smp_rmb(); 1302 1303 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, 1304 write_fault, &writable, NULL); 1305 if (pfn == KVM_PFN_ERR_HWPOISON) { 1306 kvm_send_hwpoison_signal(hva, vma_shift); 1307 return 0; 1308 } 1309 if (is_error_noslot_pfn(pfn)) 1310 return -EFAULT; 1311 1312 if (kvm_is_device_pfn(pfn)) { 1313 /* 1314 * If the page was identified as device early by looking at 1315 * the VMA flags, vma_pagesize is already representing the 1316 * largest quantity we can map. If instead it was mapped 1317 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1318 * and must not be upgraded. 1319 * 1320 * In both cases, we don't let transparent_hugepage_adjust() 1321 * change things at the last minute. 1322 */ 1323 device = true; 1324 } else if (logging_active && !write_fault) { 1325 /* 1326 * Only actually map the page as writable if this was a write 1327 * fault. 1328 */ 1329 writable = false; 1330 } 1331 1332 if (exec_fault && device) 1333 return -ENOEXEC; 1334 1335 read_lock(&kvm->mmu_lock); 1336 pgt = vcpu->arch.hw_mmu->pgt; 1337 if (mmu_invalidate_retry(kvm, mmu_seq)) 1338 goto out_unlock; 1339 1340 /* 1341 * If we are not forced to use page mapping, check if we are 1342 * backed by a THP and thus use block mapping if possible. 1343 */ 1344 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1345 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE) 1346 vma_pagesize = fault_granule; 1347 else 1348 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1349 hva, &pfn, 1350 &fault_ipa); 1351 } 1352 1353 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) { 1354 /* Check the VMM hasn't introduced a new disallowed VMA */ 1355 if (kvm_vma_mte_allowed(vma)) { 1356 sanitise_mte_tags(kvm, pfn, vma_pagesize); 1357 } else { 1358 ret = -EFAULT; 1359 goto out_unlock; 1360 } 1361 } 1362 1363 if (writable) 1364 prot |= KVM_PGTABLE_PROT_W; 1365 1366 if (exec_fault) 1367 prot |= KVM_PGTABLE_PROT_X; 1368 1369 if (device) 1370 prot |= KVM_PGTABLE_PROT_DEVICE; 1371 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1372 prot |= KVM_PGTABLE_PROT_X; 1373 1374 /* 1375 * Under the premise of getting a FSC_PERM fault, we just need to relax 1376 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1377 * kvm_pgtable_stage2_map() should be called to change block size. 1378 */ 1379 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) 1380 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1381 else 1382 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1383 __pfn_to_phys(pfn), prot, 1384 memcache, KVM_PGTABLE_WALK_SHARED); 1385 1386 /* Mark the page dirty only if the fault is handled successfully */ 1387 if (writable && !ret) { 1388 kvm_set_pfn_dirty(pfn); 1389 mark_page_dirty_in_slot(kvm, memslot, gfn); 1390 } 1391 1392 out_unlock: 1393 read_unlock(&kvm->mmu_lock); 1394 kvm_set_pfn_accessed(pfn); 1395 kvm_release_pfn_clean(pfn); 1396 return ret != -EAGAIN ? ret : 0; 1397 } 1398 1399 /* Resolve the access fault by making the page young again. */ 1400 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1401 { 1402 pte_t pte; 1403 kvm_pte_t kpte; 1404 struct kvm_s2_mmu *mmu; 1405 1406 trace_kvm_access_fault(fault_ipa); 1407 1408 write_lock(&vcpu->kvm->mmu_lock); 1409 mmu = vcpu->arch.hw_mmu; 1410 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1411 write_unlock(&vcpu->kvm->mmu_lock); 1412 1413 pte = __pte(kpte); 1414 if (pte_valid(pte)) 1415 kvm_set_pfn_accessed(pte_pfn(pte)); 1416 } 1417 1418 /** 1419 * kvm_handle_guest_abort - handles all 2nd stage aborts 1420 * @vcpu: the VCPU pointer 1421 * 1422 * Any abort that gets to the host is almost guaranteed to be caused by a 1423 * missing second stage translation table entry, which can mean that either the 1424 * guest simply needs more memory and we must allocate an appropriate page or it 1425 * can mean that the guest tried to access I/O memory, which is emulated by user 1426 * space. The distinction is based on the IPA causing the fault and whether this 1427 * memory region has been registered as standard RAM by user space. 1428 */ 1429 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1430 { 1431 unsigned long fault_status; 1432 phys_addr_t fault_ipa; 1433 struct kvm_memory_slot *memslot; 1434 unsigned long hva; 1435 bool is_iabt, write_fault, writable; 1436 gfn_t gfn; 1437 int ret, idx; 1438 1439 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1440 1441 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1442 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1443 1444 if (fault_status == FSC_FAULT) { 1445 /* Beyond sanitised PARange (which is the IPA limit) */ 1446 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1447 kvm_inject_size_fault(vcpu); 1448 return 1; 1449 } 1450 1451 /* Falls between the IPA range and the PARange? */ 1452 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1453 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1454 1455 if (is_iabt) 1456 kvm_inject_pabt(vcpu, fault_ipa); 1457 else 1458 kvm_inject_dabt(vcpu, fault_ipa); 1459 return 1; 1460 } 1461 } 1462 1463 /* Synchronous External Abort? */ 1464 if (kvm_vcpu_abt_issea(vcpu)) { 1465 /* 1466 * For RAS the host kernel may handle this abort. 1467 * There is no need to pass the error into the guest. 1468 */ 1469 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1470 kvm_inject_vabt(vcpu); 1471 1472 return 1; 1473 } 1474 1475 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1476 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1477 1478 /* Check the stage-2 fault is trans. fault or write fault */ 1479 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1480 fault_status != FSC_ACCESS) { 1481 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1482 kvm_vcpu_trap_get_class(vcpu), 1483 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1484 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1485 return -EFAULT; 1486 } 1487 1488 idx = srcu_read_lock(&vcpu->kvm->srcu); 1489 1490 gfn = fault_ipa >> PAGE_SHIFT; 1491 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1492 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1493 write_fault = kvm_is_write_fault(vcpu); 1494 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1495 /* 1496 * The guest has put either its instructions or its page-tables 1497 * somewhere it shouldn't have. Userspace won't be able to do 1498 * anything about this (there's no syndrome for a start), so 1499 * re-inject the abort back into the guest. 1500 */ 1501 if (is_iabt) { 1502 ret = -ENOEXEC; 1503 goto out; 1504 } 1505 1506 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1507 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1508 ret = 1; 1509 goto out_unlock; 1510 } 1511 1512 /* 1513 * Check for a cache maintenance operation. Since we 1514 * ended-up here, we know it is outside of any memory 1515 * slot. But we can't find out if that is for a device, 1516 * or if the guest is just being stupid. The only thing 1517 * we know for sure is that this range cannot be cached. 1518 * 1519 * So let's assume that the guest is just being 1520 * cautious, and skip the instruction. 1521 */ 1522 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1523 kvm_incr_pc(vcpu); 1524 ret = 1; 1525 goto out_unlock; 1526 } 1527 1528 /* 1529 * The IPA is reported as [MAX:12], so we need to 1530 * complement it with the bottom 12 bits from the 1531 * faulting VA. This is always 12 bits, irrespective 1532 * of the page size. 1533 */ 1534 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1535 ret = io_mem_abort(vcpu, fault_ipa); 1536 goto out_unlock; 1537 } 1538 1539 /* Userspace should not be able to register out-of-bounds IPAs */ 1540 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1541 1542 if (fault_status == FSC_ACCESS) { 1543 handle_access_fault(vcpu, fault_ipa); 1544 ret = 1; 1545 goto out_unlock; 1546 } 1547 1548 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1549 if (ret == 0) 1550 ret = 1; 1551 out: 1552 if (ret == -ENOEXEC) { 1553 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1554 ret = 1; 1555 } 1556 out_unlock: 1557 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1558 return ret; 1559 } 1560 1561 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1562 { 1563 if (!kvm->arch.mmu.pgt) 1564 return false; 1565 1566 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1567 (range->end - range->start) << PAGE_SHIFT, 1568 range->may_block); 1569 1570 return false; 1571 } 1572 1573 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1574 { 1575 kvm_pfn_t pfn = pte_pfn(range->pte); 1576 1577 if (!kvm->arch.mmu.pgt) 1578 return false; 1579 1580 WARN_ON(range->end - range->start != 1); 1581 1582 /* 1583 * If the page isn't tagged, defer to user_mem_abort() for sanitising 1584 * the MTE tags. The S2 pte should have been unmapped by 1585 * mmu_notifier_invalidate_range_end(). 1586 */ 1587 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn))) 1588 return false; 1589 1590 /* 1591 * We've moved a page around, probably through CoW, so let's treat 1592 * it just like a translation fault and the map handler will clean 1593 * the cache to the PoC. 1594 * 1595 * The MMU notifiers will have unmapped a huge PMD before calling 1596 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1597 * therefore we never need to clear out a huge PMD through this 1598 * calling path and a memcache is not required. 1599 */ 1600 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1601 PAGE_SIZE, __pfn_to_phys(pfn), 1602 KVM_PGTABLE_PROT_R, NULL, 0); 1603 1604 return false; 1605 } 1606 1607 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1608 { 1609 u64 size = (range->end - range->start) << PAGE_SHIFT; 1610 kvm_pte_t kpte; 1611 pte_t pte; 1612 1613 if (!kvm->arch.mmu.pgt) 1614 return false; 1615 1616 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1617 1618 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1619 range->start << PAGE_SHIFT); 1620 pte = __pte(kpte); 1621 return pte_valid(pte) && pte_young(pte); 1622 } 1623 1624 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1625 { 1626 if (!kvm->arch.mmu.pgt) 1627 return false; 1628 1629 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1630 range->start << PAGE_SHIFT); 1631 } 1632 1633 phys_addr_t kvm_mmu_get_httbr(void) 1634 { 1635 return __pa(hyp_pgtable->pgd); 1636 } 1637 1638 phys_addr_t kvm_get_idmap_vector(void) 1639 { 1640 return hyp_idmap_vector; 1641 } 1642 1643 static int kvm_map_idmap_text(void) 1644 { 1645 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1646 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1647 PAGE_HYP_EXEC); 1648 if (err) 1649 kvm_err("Failed to idmap %lx-%lx\n", 1650 hyp_idmap_start, hyp_idmap_end); 1651 1652 return err; 1653 } 1654 1655 static void *kvm_hyp_zalloc_page(void *arg) 1656 { 1657 return (void *)get_zeroed_page(GFP_KERNEL); 1658 } 1659 1660 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1661 .zalloc_page = kvm_hyp_zalloc_page, 1662 .get_page = kvm_host_get_page, 1663 .put_page = kvm_host_put_page, 1664 .phys_to_virt = kvm_host_va, 1665 .virt_to_phys = kvm_host_pa, 1666 }; 1667 1668 int kvm_mmu_init(u32 *hyp_va_bits) 1669 { 1670 int err; 1671 u32 idmap_bits; 1672 u32 kernel_bits; 1673 1674 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1675 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1676 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1677 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1678 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1679 1680 /* 1681 * We rely on the linker script to ensure at build time that the HYP 1682 * init code does not cross a page boundary. 1683 */ 1684 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1685 1686 /* 1687 * The ID map may be configured to use an extended virtual address 1688 * range. This is only the case if system RAM is out of range for the 1689 * currently configured page size and VA_BITS_MIN, in which case we will 1690 * also need the extended virtual range for the HYP ID map, or we won't 1691 * be able to enable the EL2 MMU. 1692 * 1693 * However, in some cases the ID map may be configured for fewer than 1694 * the number of VA bits used by the regular kernel stage 1. This 1695 * happens when VA_BITS=52 and the kernel image is placed in PA space 1696 * below 48 bits. 1697 * 1698 * At EL2, there is only one TTBR register, and we can't switch between 1699 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom 1700 * line: we need to use the extended range with *both* our translation 1701 * tables. 1702 * 1703 * So use the maximum of the idmap VA bits and the regular kernel stage 1704 * 1 VA bits to assure that the hypervisor can both ID map its code page 1705 * and map any kernel memory. 1706 */ 1707 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1708 kernel_bits = vabits_actual; 1709 *hyp_va_bits = max(idmap_bits, kernel_bits); 1710 1711 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1712 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1713 kvm_debug("HYP VA range: %lx:%lx\n", 1714 kern_hyp_va(PAGE_OFFSET), 1715 kern_hyp_va((unsigned long)high_memory - 1)); 1716 1717 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1718 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1719 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1720 /* 1721 * The idmap page is intersecting with the VA space, 1722 * it is not safe to continue further. 1723 */ 1724 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1725 err = -EINVAL; 1726 goto out; 1727 } 1728 1729 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1730 if (!hyp_pgtable) { 1731 kvm_err("Hyp mode page-table not allocated\n"); 1732 err = -ENOMEM; 1733 goto out; 1734 } 1735 1736 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1737 if (err) 1738 goto out_free_pgtable; 1739 1740 err = kvm_map_idmap_text(); 1741 if (err) 1742 goto out_destroy_pgtable; 1743 1744 io_map_base = hyp_idmap_start; 1745 return 0; 1746 1747 out_destroy_pgtable: 1748 kvm_pgtable_hyp_destroy(hyp_pgtable); 1749 out_free_pgtable: 1750 kfree(hyp_pgtable); 1751 hyp_pgtable = NULL; 1752 out: 1753 return err; 1754 } 1755 1756 void kvm_arch_commit_memory_region(struct kvm *kvm, 1757 struct kvm_memory_slot *old, 1758 const struct kvm_memory_slot *new, 1759 enum kvm_mr_change change) 1760 { 1761 /* 1762 * At this point memslot has been committed and there is an 1763 * allocated dirty_bitmap[], dirty pages will be tracked while the 1764 * memory slot is write protected. 1765 */ 1766 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1767 /* 1768 * If we're with initial-all-set, we don't need to write 1769 * protect any pages because they're all reported as dirty. 1770 * Huge pages and normal pages will be write protect gradually. 1771 */ 1772 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1773 kvm_mmu_wp_memory_region(kvm, new->id); 1774 } 1775 } 1776 } 1777 1778 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1779 const struct kvm_memory_slot *old, 1780 struct kvm_memory_slot *new, 1781 enum kvm_mr_change change) 1782 { 1783 hva_t hva, reg_end; 1784 int ret = 0; 1785 1786 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1787 change != KVM_MR_FLAGS_ONLY) 1788 return 0; 1789 1790 /* 1791 * Prevent userspace from creating a memory region outside of the IPA 1792 * space addressable by the KVM guest IPA space. 1793 */ 1794 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1795 return -EFAULT; 1796 1797 hva = new->userspace_addr; 1798 reg_end = hva + (new->npages << PAGE_SHIFT); 1799 1800 mmap_read_lock(current->mm); 1801 /* 1802 * A memory region could potentially cover multiple VMAs, and any holes 1803 * between them, so iterate over all of them. 1804 * 1805 * +--------------------------------------------+ 1806 * +---------------+----------------+ +----------------+ 1807 * | : VMA 1 | VMA 2 | | VMA 3 : | 1808 * +---------------+----------------+ +----------------+ 1809 * | memory region | 1810 * +--------------------------------------------+ 1811 */ 1812 do { 1813 struct vm_area_struct *vma; 1814 1815 vma = find_vma_intersection(current->mm, hva, reg_end); 1816 if (!vma) 1817 break; 1818 1819 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) { 1820 ret = -EINVAL; 1821 break; 1822 } 1823 1824 if (vma->vm_flags & VM_PFNMAP) { 1825 /* IO region dirty page logging not allowed */ 1826 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1827 ret = -EINVAL; 1828 break; 1829 } 1830 } 1831 hva = min(reg_end, vma->vm_end); 1832 } while (hva < reg_end); 1833 1834 mmap_read_unlock(current->mm); 1835 return ret; 1836 } 1837 1838 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1839 { 1840 } 1841 1842 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1843 { 1844 } 1845 1846 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1847 { 1848 kvm_free_stage2_pgd(&kvm->arch.mmu); 1849 } 1850 1851 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1852 struct kvm_memory_slot *slot) 1853 { 1854 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1855 phys_addr_t size = slot->npages << PAGE_SHIFT; 1856 1857 write_lock(&kvm->mmu_lock); 1858 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1859 write_unlock(&kvm->mmu_lock); 1860 } 1861 1862 /* 1863 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1864 * 1865 * Main problems: 1866 * - S/W ops are local to a CPU (not broadcast) 1867 * - We have line migration behind our back (speculation) 1868 * - System caches don't support S/W at all (damn!) 1869 * 1870 * In the face of the above, the best we can do is to try and convert 1871 * S/W ops to VA ops. Because the guest is not allowed to infer the 1872 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1873 * which is a rather good thing for us. 1874 * 1875 * Also, it is only used when turning caches on/off ("The expected 1876 * usage of the cache maintenance instructions that operate by set/way 1877 * is associated with the cache maintenance instructions associated 1878 * with the powerdown and powerup of caches, if this is required by 1879 * the implementation."). 1880 * 1881 * We use the following policy: 1882 * 1883 * - If we trap a S/W operation, we enable VM trapping to detect 1884 * caches being turned on/off, and do a full clean. 1885 * 1886 * - We flush the caches on both caches being turned on and off. 1887 * 1888 * - Once the caches are enabled, we stop trapping VM ops. 1889 */ 1890 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1891 { 1892 unsigned long hcr = *vcpu_hcr(vcpu); 1893 1894 /* 1895 * If this is the first time we do a S/W operation 1896 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1897 * VM trapping. 1898 * 1899 * Otherwise, rely on the VM trapping to wait for the MMU + 1900 * Caches to be turned off. At that point, we'll be able to 1901 * clean the caches again. 1902 */ 1903 if (!(hcr & HCR_TVM)) { 1904 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1905 vcpu_has_cache_enabled(vcpu)); 1906 stage2_flush_vm(vcpu->kvm); 1907 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1908 } 1909 } 1910 1911 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1912 { 1913 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1914 1915 /* 1916 * If switching the MMU+caches on, need to invalidate the caches. 1917 * If switching it off, need to clean the caches. 1918 * Clean + invalidate does the trick always. 1919 */ 1920 if (now_enabled != was_enabled) 1921 stage2_flush_vm(vcpu->kvm); 1922 1923 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1924 if (now_enabled) 1925 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1926 1927 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1928 } 1929