1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_lock(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 ++kvm->stat.generic.remote_tlb_flush_requests; 84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 85 } 86 87 static bool kvm_is_device_pfn(unsigned long pfn) 88 { 89 return !pfn_is_map_memory(pfn); 90 } 91 92 static void *stage2_memcache_zalloc_page(void *arg) 93 { 94 struct kvm_mmu_memory_cache *mc = arg; 95 96 /* Allocated with __GFP_ZERO, so no need to zero */ 97 return kvm_mmu_memory_cache_alloc(mc); 98 } 99 100 static void *kvm_host_zalloc_pages_exact(size_t size) 101 { 102 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 103 } 104 105 static void kvm_host_get_page(void *addr) 106 { 107 get_page(virt_to_page(addr)); 108 } 109 110 static void kvm_host_put_page(void *addr) 111 { 112 put_page(virt_to_page(addr)); 113 } 114 115 static int kvm_host_page_count(void *addr) 116 { 117 return page_count(virt_to_page(addr)); 118 } 119 120 static phys_addr_t kvm_host_pa(void *addr) 121 { 122 return __pa(addr); 123 } 124 125 static void *kvm_host_va(phys_addr_t phys) 126 { 127 return __va(phys); 128 } 129 130 static void clean_dcache_guest_page(void *va, size_t size) 131 { 132 __clean_dcache_guest_page(va, size); 133 } 134 135 static void invalidate_icache_guest_page(void *va, size_t size) 136 { 137 __invalidate_icache_guest_page(va, size); 138 } 139 140 /* 141 * Unmapping vs dcache management: 142 * 143 * If a guest maps certain memory pages as uncached, all writes will 144 * bypass the data cache and go directly to RAM. However, the CPUs 145 * can still speculate reads (not writes) and fill cache lines with 146 * data. 147 * 148 * Those cache lines will be *clean* cache lines though, so a 149 * clean+invalidate operation is equivalent to an invalidate 150 * operation, because no cache lines are marked dirty. 151 * 152 * Those clean cache lines could be filled prior to an uncached write 153 * by the guest, and the cache coherent IO subsystem would therefore 154 * end up writing old data to disk. 155 * 156 * This is why right after unmapping a page/section and invalidating 157 * the corresponding TLBs, we flush to make sure the IO subsystem will 158 * never hit in the cache. 159 * 160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 161 * we then fully enforce cacheability of RAM, no matter what the guest 162 * does. 163 */ 164 /** 165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 166 * @mmu: The KVM stage-2 MMU pointer 167 * @start: The intermediate physical base address of the range to unmap 168 * @size: The size of the area to unmap 169 * @may_block: Whether or not we are permitted to block 170 * 171 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 173 * destroying the VM), otherwise another faulting VCPU may come in and mess 174 * with things behind our backs. 175 */ 176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 177 bool may_block) 178 { 179 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 180 phys_addr_t end = start + size; 181 182 assert_spin_locked(&kvm->mmu_lock); 183 WARN_ON(size & ~PAGE_MASK); 184 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 185 may_block)); 186 } 187 188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 189 { 190 __unmap_stage2_range(mmu, start, size, true); 191 } 192 193 static void stage2_flush_memslot(struct kvm *kvm, 194 struct kvm_memory_slot *memslot) 195 { 196 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 197 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 198 199 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 200 } 201 202 /** 203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 204 * @kvm: The struct kvm pointer 205 * 206 * Go through the stage 2 page tables and invalidate any cache lines 207 * backing memory already mapped to the VM. 208 */ 209 static void stage2_flush_vm(struct kvm *kvm) 210 { 211 struct kvm_memslots *slots; 212 struct kvm_memory_slot *memslot; 213 int idx; 214 215 idx = srcu_read_lock(&kvm->srcu); 216 spin_lock(&kvm->mmu_lock); 217 218 slots = kvm_memslots(kvm); 219 kvm_for_each_memslot(memslot, slots) 220 stage2_flush_memslot(kvm, memslot); 221 222 spin_unlock(&kvm->mmu_lock); 223 srcu_read_unlock(&kvm->srcu, idx); 224 } 225 226 /** 227 * free_hyp_pgds - free Hyp-mode page tables 228 */ 229 void free_hyp_pgds(void) 230 { 231 mutex_lock(&kvm_hyp_pgd_mutex); 232 if (hyp_pgtable) { 233 kvm_pgtable_hyp_destroy(hyp_pgtable); 234 kfree(hyp_pgtable); 235 hyp_pgtable = NULL; 236 } 237 mutex_unlock(&kvm_hyp_pgd_mutex); 238 } 239 240 static bool kvm_host_owns_hyp_mappings(void) 241 { 242 if (static_branch_likely(&kvm_protected_mode_initialized)) 243 return false; 244 245 /* 246 * This can happen at boot time when __create_hyp_mappings() is called 247 * after the hyp protection has been enabled, but the static key has 248 * not been flipped yet. 249 */ 250 if (!hyp_pgtable && is_protected_kvm_enabled()) 251 return false; 252 253 WARN_ON(!hyp_pgtable); 254 255 return true; 256 } 257 258 static int __create_hyp_mappings(unsigned long start, unsigned long size, 259 unsigned long phys, enum kvm_pgtable_prot prot) 260 { 261 int err; 262 263 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 264 return -EINVAL; 265 266 mutex_lock(&kvm_hyp_pgd_mutex); 267 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 268 mutex_unlock(&kvm_hyp_pgd_mutex); 269 270 return err; 271 } 272 273 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 274 { 275 if (!is_vmalloc_addr(kaddr)) { 276 BUG_ON(!virt_addr_valid(kaddr)); 277 return __pa(kaddr); 278 } else { 279 return page_to_phys(vmalloc_to_page(kaddr)) + 280 offset_in_page(kaddr); 281 } 282 } 283 284 static int pkvm_share_hyp(phys_addr_t start, phys_addr_t end) 285 { 286 phys_addr_t addr; 287 int ret; 288 289 for (addr = ALIGN_DOWN(start, PAGE_SIZE); addr < end; addr += PAGE_SIZE) { 290 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, 291 __phys_to_pfn(addr)); 292 if (ret) 293 return ret; 294 } 295 296 return 0; 297 } 298 299 /** 300 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 301 * @from: The virtual kernel start address of the range 302 * @to: The virtual kernel end address of the range (exclusive) 303 * @prot: The protection to be applied to this range 304 * 305 * The same virtual address as the kernel virtual address is also used 306 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 307 * physical pages. 308 */ 309 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 310 { 311 phys_addr_t phys_addr; 312 unsigned long virt_addr; 313 unsigned long start = kern_hyp_va((unsigned long)from); 314 unsigned long end = kern_hyp_va((unsigned long)to); 315 316 if (is_kernel_in_hyp_mode()) 317 return 0; 318 319 if (!kvm_host_owns_hyp_mappings()) { 320 if (WARN_ON(prot != PAGE_HYP)) 321 return -EPERM; 322 return pkvm_share_hyp(kvm_kaddr_to_phys(from), 323 kvm_kaddr_to_phys(to)); 324 } 325 326 start = start & PAGE_MASK; 327 end = PAGE_ALIGN(end); 328 329 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 330 int err; 331 332 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 333 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 334 prot); 335 if (err) 336 return err; 337 } 338 339 return 0; 340 } 341 342 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 343 unsigned long *haddr, 344 enum kvm_pgtable_prot prot) 345 { 346 unsigned long base; 347 int ret = 0; 348 349 if (!kvm_host_owns_hyp_mappings()) { 350 base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 351 phys_addr, size, prot); 352 if (IS_ERR_OR_NULL((void *)base)) 353 return PTR_ERR((void *)base); 354 *haddr = base; 355 356 return 0; 357 } 358 359 mutex_lock(&kvm_hyp_pgd_mutex); 360 361 /* 362 * This assumes that we have enough space below the idmap 363 * page to allocate our VAs. If not, the check below will 364 * kick. A potential alternative would be to detect that 365 * overflow and switch to an allocation above the idmap. 366 * 367 * The allocated size is always a multiple of PAGE_SIZE. 368 */ 369 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 370 base = io_map_base - size; 371 372 /* 373 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 374 * allocating the new area, as it would indicate we've 375 * overflowed the idmap/IO address range. 376 */ 377 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 378 ret = -ENOMEM; 379 else 380 io_map_base = base; 381 382 mutex_unlock(&kvm_hyp_pgd_mutex); 383 384 if (ret) 385 goto out; 386 387 ret = __create_hyp_mappings(base, size, phys_addr, prot); 388 if (ret) 389 goto out; 390 391 *haddr = base + offset_in_page(phys_addr); 392 out: 393 return ret; 394 } 395 396 /** 397 * create_hyp_io_mappings - Map IO into both kernel and HYP 398 * @phys_addr: The physical start address which gets mapped 399 * @size: Size of the region being mapped 400 * @kaddr: Kernel VA for this mapping 401 * @haddr: HYP VA for this mapping 402 */ 403 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 404 void __iomem **kaddr, 405 void __iomem **haddr) 406 { 407 unsigned long addr; 408 int ret; 409 410 *kaddr = ioremap(phys_addr, size); 411 if (!*kaddr) 412 return -ENOMEM; 413 414 if (is_kernel_in_hyp_mode()) { 415 *haddr = *kaddr; 416 return 0; 417 } 418 419 ret = __create_hyp_private_mapping(phys_addr, size, 420 &addr, PAGE_HYP_DEVICE); 421 if (ret) { 422 iounmap(*kaddr); 423 *kaddr = NULL; 424 *haddr = NULL; 425 return ret; 426 } 427 428 *haddr = (void __iomem *)addr; 429 return 0; 430 } 431 432 /** 433 * create_hyp_exec_mappings - Map an executable range into HYP 434 * @phys_addr: The physical start address which gets mapped 435 * @size: Size of the region being mapped 436 * @haddr: HYP VA for this mapping 437 */ 438 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 439 void **haddr) 440 { 441 unsigned long addr; 442 int ret; 443 444 BUG_ON(is_kernel_in_hyp_mode()); 445 446 ret = __create_hyp_private_mapping(phys_addr, size, 447 &addr, PAGE_HYP_EXEC); 448 if (ret) { 449 *haddr = NULL; 450 return ret; 451 } 452 453 *haddr = (void *)addr; 454 return 0; 455 } 456 457 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 458 /* We shouldn't need any other callback to walk the PT */ 459 .phys_to_virt = kvm_host_va, 460 }; 461 462 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 463 { 464 struct kvm_pgtable pgt = { 465 .pgd = (kvm_pte_t *)kvm->mm->pgd, 466 .ia_bits = VA_BITS, 467 .start_level = (KVM_PGTABLE_MAX_LEVELS - 468 CONFIG_PGTABLE_LEVELS), 469 .mm_ops = &kvm_user_mm_ops, 470 }; 471 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 472 u32 level = ~0; 473 int ret; 474 475 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 476 VM_BUG_ON(ret); 477 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 478 VM_BUG_ON(!(pte & PTE_VALID)); 479 480 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 481 } 482 483 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 484 .zalloc_page = stage2_memcache_zalloc_page, 485 .zalloc_pages_exact = kvm_host_zalloc_pages_exact, 486 .free_pages_exact = free_pages_exact, 487 .get_page = kvm_host_get_page, 488 .put_page = kvm_host_put_page, 489 .page_count = kvm_host_page_count, 490 .phys_to_virt = kvm_host_va, 491 .virt_to_phys = kvm_host_pa, 492 .dcache_clean_inval_poc = clean_dcache_guest_page, 493 .icache_inval_pou = invalidate_icache_guest_page, 494 }; 495 496 /** 497 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 498 * @kvm: The pointer to the KVM structure 499 * @mmu: The pointer to the s2 MMU structure 500 * 501 * Allocates only the stage-2 HW PGD level table(s). 502 * Note we don't need locking here as this is only called when the VM is 503 * created, which can only be done once. 504 */ 505 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 506 { 507 int cpu, err; 508 struct kvm_pgtable *pgt; 509 510 if (mmu->pgt != NULL) { 511 kvm_err("kvm_arch already initialized?\n"); 512 return -EINVAL; 513 } 514 515 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 516 if (!pgt) 517 return -ENOMEM; 518 519 err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops); 520 if (err) 521 goto out_free_pgtable; 522 523 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 524 if (!mmu->last_vcpu_ran) { 525 err = -ENOMEM; 526 goto out_destroy_pgtable; 527 } 528 529 for_each_possible_cpu(cpu) 530 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 531 532 mmu->arch = &kvm->arch; 533 mmu->pgt = pgt; 534 mmu->pgd_phys = __pa(pgt->pgd); 535 WRITE_ONCE(mmu->vmid.vmid_gen, 0); 536 return 0; 537 538 out_destroy_pgtable: 539 kvm_pgtable_stage2_destroy(pgt); 540 out_free_pgtable: 541 kfree(pgt); 542 return err; 543 } 544 545 static void stage2_unmap_memslot(struct kvm *kvm, 546 struct kvm_memory_slot *memslot) 547 { 548 hva_t hva = memslot->userspace_addr; 549 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 550 phys_addr_t size = PAGE_SIZE * memslot->npages; 551 hva_t reg_end = hva + size; 552 553 /* 554 * A memory region could potentially cover multiple VMAs, and any holes 555 * between them, so iterate over all of them to find out if we should 556 * unmap any of them. 557 * 558 * +--------------------------------------------+ 559 * +---------------+----------------+ +----------------+ 560 * | : VMA 1 | VMA 2 | | VMA 3 : | 561 * +---------------+----------------+ +----------------+ 562 * | memory region | 563 * +--------------------------------------------+ 564 */ 565 do { 566 struct vm_area_struct *vma; 567 hva_t vm_start, vm_end; 568 569 vma = find_vma_intersection(current->mm, hva, reg_end); 570 if (!vma) 571 break; 572 573 /* 574 * Take the intersection of this VMA with the memory region 575 */ 576 vm_start = max(hva, vma->vm_start); 577 vm_end = min(reg_end, vma->vm_end); 578 579 if (!(vma->vm_flags & VM_PFNMAP)) { 580 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 581 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 582 } 583 hva = vm_end; 584 } while (hva < reg_end); 585 } 586 587 /** 588 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 589 * @kvm: The struct kvm pointer 590 * 591 * Go through the memregions and unmap any regular RAM 592 * backing memory already mapped to the VM. 593 */ 594 void stage2_unmap_vm(struct kvm *kvm) 595 { 596 struct kvm_memslots *slots; 597 struct kvm_memory_slot *memslot; 598 int idx; 599 600 idx = srcu_read_lock(&kvm->srcu); 601 mmap_read_lock(current->mm); 602 spin_lock(&kvm->mmu_lock); 603 604 slots = kvm_memslots(kvm); 605 kvm_for_each_memslot(memslot, slots) 606 stage2_unmap_memslot(kvm, memslot); 607 608 spin_unlock(&kvm->mmu_lock); 609 mmap_read_unlock(current->mm); 610 srcu_read_unlock(&kvm->srcu, idx); 611 } 612 613 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 614 { 615 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 616 struct kvm_pgtable *pgt = NULL; 617 618 spin_lock(&kvm->mmu_lock); 619 pgt = mmu->pgt; 620 if (pgt) { 621 mmu->pgd_phys = 0; 622 mmu->pgt = NULL; 623 free_percpu(mmu->last_vcpu_ran); 624 } 625 spin_unlock(&kvm->mmu_lock); 626 627 if (pgt) { 628 kvm_pgtable_stage2_destroy(pgt); 629 kfree(pgt); 630 } 631 } 632 633 /** 634 * kvm_phys_addr_ioremap - map a device range to guest IPA 635 * 636 * @kvm: The KVM pointer 637 * @guest_ipa: The IPA at which to insert the mapping 638 * @pa: The physical address of the device 639 * @size: The size of the mapping 640 * @writable: Whether or not to create a writable mapping 641 */ 642 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 643 phys_addr_t pa, unsigned long size, bool writable) 644 { 645 phys_addr_t addr; 646 int ret = 0; 647 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 648 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 649 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 650 KVM_PGTABLE_PROT_R | 651 (writable ? KVM_PGTABLE_PROT_W : 0); 652 653 size += offset_in_page(guest_ipa); 654 guest_ipa &= PAGE_MASK; 655 656 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 657 ret = kvm_mmu_topup_memory_cache(&cache, 658 kvm_mmu_cache_min_pages(kvm)); 659 if (ret) 660 break; 661 662 spin_lock(&kvm->mmu_lock); 663 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 664 &cache); 665 spin_unlock(&kvm->mmu_lock); 666 if (ret) 667 break; 668 669 pa += PAGE_SIZE; 670 } 671 672 kvm_mmu_free_memory_cache(&cache); 673 return ret; 674 } 675 676 /** 677 * stage2_wp_range() - write protect stage2 memory region range 678 * @mmu: The KVM stage-2 MMU pointer 679 * @addr: Start address of range 680 * @end: End address of range 681 */ 682 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 683 { 684 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 685 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 686 } 687 688 /** 689 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 690 * @kvm: The KVM pointer 691 * @slot: The memory slot to write protect 692 * 693 * Called to start logging dirty pages after memory region 694 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 695 * all present PUD, PMD and PTEs are write protected in the memory region. 696 * Afterwards read of dirty page log can be called. 697 * 698 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 699 * serializing operations for VM memory regions. 700 */ 701 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 702 { 703 struct kvm_memslots *slots = kvm_memslots(kvm); 704 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 705 phys_addr_t start, end; 706 707 if (WARN_ON_ONCE(!memslot)) 708 return; 709 710 start = memslot->base_gfn << PAGE_SHIFT; 711 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 712 713 spin_lock(&kvm->mmu_lock); 714 stage2_wp_range(&kvm->arch.mmu, start, end); 715 spin_unlock(&kvm->mmu_lock); 716 kvm_flush_remote_tlbs(kvm); 717 } 718 719 /** 720 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 721 * @kvm: The KVM pointer 722 * @slot: The memory slot associated with mask 723 * @gfn_offset: The gfn offset in memory slot 724 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 725 * slot to be write protected 726 * 727 * Walks bits set in mask write protects the associated pte's. Caller must 728 * acquire kvm_mmu_lock. 729 */ 730 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 731 struct kvm_memory_slot *slot, 732 gfn_t gfn_offset, unsigned long mask) 733 { 734 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 735 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 736 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 737 738 stage2_wp_range(&kvm->arch.mmu, start, end); 739 } 740 741 /* 742 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 743 * dirty pages. 744 * 745 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 746 * enable dirty logging for them. 747 */ 748 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 749 struct kvm_memory_slot *slot, 750 gfn_t gfn_offset, unsigned long mask) 751 { 752 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 753 } 754 755 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 756 { 757 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 758 } 759 760 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 761 unsigned long hva, 762 unsigned long map_size) 763 { 764 gpa_t gpa_start; 765 hva_t uaddr_start, uaddr_end; 766 size_t size; 767 768 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 769 if (map_size == PAGE_SIZE) 770 return true; 771 772 size = memslot->npages * PAGE_SIZE; 773 774 gpa_start = memslot->base_gfn << PAGE_SHIFT; 775 776 uaddr_start = memslot->userspace_addr; 777 uaddr_end = uaddr_start + size; 778 779 /* 780 * Pages belonging to memslots that don't have the same alignment 781 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 782 * PMD/PUD entries, because we'll end up mapping the wrong pages. 783 * 784 * Consider a layout like the following: 785 * 786 * memslot->userspace_addr: 787 * +-----+--------------------+--------------------+---+ 788 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 789 * +-----+--------------------+--------------------+---+ 790 * 791 * memslot->base_gfn << PAGE_SHIFT: 792 * +---+--------------------+--------------------+-----+ 793 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 794 * +---+--------------------+--------------------+-----+ 795 * 796 * If we create those stage-2 blocks, we'll end up with this incorrect 797 * mapping: 798 * d -> f 799 * e -> g 800 * f -> h 801 */ 802 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 803 return false; 804 805 /* 806 * Next, let's make sure we're not trying to map anything not covered 807 * by the memslot. This means we have to prohibit block size mappings 808 * for the beginning and end of a non-block aligned and non-block sized 809 * memory slot (illustrated by the head and tail parts of the 810 * userspace view above containing pages 'abcde' and 'xyz', 811 * respectively). 812 * 813 * Note that it doesn't matter if we do the check using the 814 * userspace_addr or the base_gfn, as both are equally aligned (per 815 * the check above) and equally sized. 816 */ 817 return (hva & ~(map_size - 1)) >= uaddr_start && 818 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 819 } 820 821 /* 822 * Check if the given hva is backed by a transparent huge page (THP) and 823 * whether it can be mapped using block mapping in stage2. If so, adjust 824 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 825 * supported. This will need to be updated to support other THP sizes. 826 * 827 * Returns the size of the mapping. 828 */ 829 static unsigned long 830 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 831 unsigned long hva, kvm_pfn_t *pfnp, 832 phys_addr_t *ipap) 833 { 834 kvm_pfn_t pfn = *pfnp; 835 836 /* 837 * Make sure the adjustment is done only for THP pages. Also make 838 * sure that the HVA and IPA are sufficiently aligned and that the 839 * block map is contained within the memslot. 840 */ 841 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 842 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 843 /* 844 * The address we faulted on is backed by a transparent huge 845 * page. However, because we map the compound huge page and 846 * not the individual tail page, we need to transfer the 847 * refcount to the head page. We have to be careful that the 848 * THP doesn't start to split while we are adjusting the 849 * refcounts. 850 * 851 * We are sure this doesn't happen, because mmu_notifier_retry 852 * was successful and we are holding the mmu_lock, so if this 853 * THP is trying to split, it will be blocked in the mmu 854 * notifier before touching any of the pages, specifically 855 * before being able to call __split_huge_page_refcount(). 856 * 857 * We can therefore safely transfer the refcount from PG_tail 858 * to PG_head and switch the pfn from a tail page to the head 859 * page accordingly. 860 */ 861 *ipap &= PMD_MASK; 862 kvm_release_pfn_clean(pfn); 863 pfn &= ~(PTRS_PER_PMD - 1); 864 get_page(pfn_to_page(pfn)); 865 *pfnp = pfn; 866 867 return PMD_SIZE; 868 } 869 870 /* Use page mapping if we cannot use block mapping. */ 871 return PAGE_SIZE; 872 } 873 874 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 875 { 876 unsigned long pa; 877 878 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 879 return huge_page_shift(hstate_vma(vma)); 880 881 if (!(vma->vm_flags & VM_PFNMAP)) 882 return PAGE_SHIFT; 883 884 VM_BUG_ON(is_vm_hugetlb_page(vma)); 885 886 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 887 888 #ifndef __PAGETABLE_PMD_FOLDED 889 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 890 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 891 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 892 return PUD_SHIFT; 893 #endif 894 895 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 896 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 897 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 898 return PMD_SHIFT; 899 900 return PAGE_SHIFT; 901 } 902 903 /* 904 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 905 * able to see the page's tags and therefore they must be initialised first. If 906 * PG_mte_tagged is set, tags have already been initialised. 907 * 908 * The race in the test/set of the PG_mte_tagged flag is handled by: 909 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 910 * racing to santise the same page 911 * - mmap_lock protects between a VM faulting a page in and the VMM performing 912 * an mprotect() to add VM_MTE 913 */ 914 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 915 unsigned long size) 916 { 917 unsigned long i, nr_pages = size >> PAGE_SHIFT; 918 struct page *page; 919 920 if (!kvm_has_mte(kvm)) 921 return 0; 922 923 /* 924 * pfn_to_online_page() is used to reject ZONE_DEVICE pages 925 * that may not support tags. 926 */ 927 page = pfn_to_online_page(pfn); 928 929 if (!page) 930 return -EFAULT; 931 932 for (i = 0; i < nr_pages; i++, page++) { 933 if (!test_bit(PG_mte_tagged, &page->flags)) { 934 mte_clear_page_tags(page_address(page)); 935 set_bit(PG_mte_tagged, &page->flags); 936 } 937 } 938 939 return 0; 940 } 941 942 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 943 struct kvm_memory_slot *memslot, unsigned long hva, 944 unsigned long fault_status) 945 { 946 int ret = 0; 947 bool write_fault, writable, force_pte = false; 948 bool exec_fault; 949 bool device = false; 950 bool shared; 951 unsigned long mmu_seq; 952 struct kvm *kvm = vcpu->kvm; 953 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 954 struct vm_area_struct *vma; 955 short vma_shift; 956 gfn_t gfn; 957 kvm_pfn_t pfn; 958 bool logging_active = memslot_is_logging(memslot); 959 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 960 unsigned long vma_pagesize, fault_granule; 961 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 962 struct kvm_pgtable *pgt; 963 964 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 965 write_fault = kvm_is_write_fault(vcpu); 966 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 967 VM_BUG_ON(write_fault && exec_fault); 968 969 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 970 kvm_err("Unexpected L2 read permission error\n"); 971 return -EFAULT; 972 } 973 974 /* 975 * Let's check if we will get back a huge page backed by hugetlbfs, or 976 * get block mapping for device MMIO region. 977 */ 978 mmap_read_lock(current->mm); 979 vma = vma_lookup(current->mm, hva); 980 if (unlikely(!vma)) { 981 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 982 mmap_read_unlock(current->mm); 983 return -EFAULT; 984 } 985 986 /* 987 * logging_active is guaranteed to never be true for VM_PFNMAP 988 * memslots. 989 */ 990 if (logging_active) { 991 force_pte = true; 992 vma_shift = PAGE_SHIFT; 993 } else { 994 vma_shift = get_vma_page_shift(vma, hva); 995 } 996 997 shared = (vma->vm_flags & VM_SHARED); 998 999 switch (vma_shift) { 1000 #ifndef __PAGETABLE_PMD_FOLDED 1001 case PUD_SHIFT: 1002 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1003 break; 1004 fallthrough; 1005 #endif 1006 case CONT_PMD_SHIFT: 1007 vma_shift = PMD_SHIFT; 1008 fallthrough; 1009 case PMD_SHIFT: 1010 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1011 break; 1012 fallthrough; 1013 case CONT_PTE_SHIFT: 1014 vma_shift = PAGE_SHIFT; 1015 force_pte = true; 1016 fallthrough; 1017 case PAGE_SHIFT: 1018 break; 1019 default: 1020 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1021 } 1022 1023 vma_pagesize = 1UL << vma_shift; 1024 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1025 fault_ipa &= ~(vma_pagesize - 1); 1026 1027 gfn = fault_ipa >> PAGE_SHIFT; 1028 mmap_read_unlock(current->mm); 1029 1030 /* 1031 * Permission faults just need to update the existing leaf entry, 1032 * and so normally don't require allocations from the memcache. The 1033 * only exception to this is when dirty logging is enabled at runtime 1034 * and a write fault needs to collapse a block entry into a table. 1035 */ 1036 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 1037 ret = kvm_mmu_topup_memory_cache(memcache, 1038 kvm_mmu_cache_min_pages(kvm)); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 mmu_seq = vcpu->kvm->mmu_notifier_seq; 1044 /* 1045 * Ensure the read of mmu_notifier_seq happens before we call 1046 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1047 * the page we just got a reference to gets unmapped before we have a 1048 * chance to grab the mmu_lock, which ensure that if the page gets 1049 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1050 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1051 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1052 * 1053 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1054 * used to avoid unnecessary overhead introduced to locate the memory 1055 * slot because it's always fixed even @gfn is adjusted for huge pages. 1056 */ 1057 smp_rmb(); 1058 1059 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 1060 write_fault, &writable, NULL); 1061 if (pfn == KVM_PFN_ERR_HWPOISON) { 1062 kvm_send_hwpoison_signal(hva, vma_shift); 1063 return 0; 1064 } 1065 if (is_error_noslot_pfn(pfn)) 1066 return -EFAULT; 1067 1068 if (kvm_is_device_pfn(pfn)) { 1069 /* 1070 * If the page was identified as device early by looking at 1071 * the VMA flags, vma_pagesize is already representing the 1072 * largest quantity we can map. If instead it was mapped 1073 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1074 * and must not be upgraded. 1075 * 1076 * In both cases, we don't let transparent_hugepage_adjust() 1077 * change things at the last minute. 1078 */ 1079 device = true; 1080 } else if (logging_active && !write_fault) { 1081 /* 1082 * Only actually map the page as writable if this was a write 1083 * fault. 1084 */ 1085 writable = false; 1086 } 1087 1088 if (exec_fault && device) 1089 return -ENOEXEC; 1090 1091 spin_lock(&kvm->mmu_lock); 1092 pgt = vcpu->arch.hw_mmu->pgt; 1093 if (mmu_notifier_retry(kvm, mmu_seq)) 1094 goto out_unlock; 1095 1096 /* 1097 * If we are not forced to use page mapping, check if we are 1098 * backed by a THP and thus use block mapping if possible. 1099 */ 1100 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1101 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE) 1102 vma_pagesize = fault_granule; 1103 else 1104 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1105 hva, &pfn, 1106 &fault_ipa); 1107 } 1108 1109 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) { 1110 /* Check the VMM hasn't introduced a new VM_SHARED VMA */ 1111 if (!shared) 1112 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize); 1113 else 1114 ret = -EFAULT; 1115 if (ret) 1116 goto out_unlock; 1117 } 1118 1119 if (writable) 1120 prot |= KVM_PGTABLE_PROT_W; 1121 1122 if (exec_fault) 1123 prot |= KVM_PGTABLE_PROT_X; 1124 1125 if (device) 1126 prot |= KVM_PGTABLE_PROT_DEVICE; 1127 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1128 prot |= KVM_PGTABLE_PROT_X; 1129 1130 /* 1131 * Under the premise of getting a FSC_PERM fault, we just need to relax 1132 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1133 * kvm_pgtable_stage2_map() should be called to change block size. 1134 */ 1135 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 1136 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1137 } else { 1138 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1139 __pfn_to_phys(pfn), prot, 1140 memcache); 1141 } 1142 1143 /* Mark the page dirty only if the fault is handled successfully */ 1144 if (writable && !ret) { 1145 kvm_set_pfn_dirty(pfn); 1146 mark_page_dirty_in_slot(kvm, memslot, gfn); 1147 } 1148 1149 out_unlock: 1150 spin_unlock(&kvm->mmu_lock); 1151 kvm_set_pfn_accessed(pfn); 1152 kvm_release_pfn_clean(pfn); 1153 return ret != -EAGAIN ? ret : 0; 1154 } 1155 1156 /* Resolve the access fault by making the page young again. */ 1157 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1158 { 1159 pte_t pte; 1160 kvm_pte_t kpte; 1161 struct kvm_s2_mmu *mmu; 1162 1163 trace_kvm_access_fault(fault_ipa); 1164 1165 spin_lock(&vcpu->kvm->mmu_lock); 1166 mmu = vcpu->arch.hw_mmu; 1167 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1168 spin_unlock(&vcpu->kvm->mmu_lock); 1169 1170 pte = __pte(kpte); 1171 if (pte_valid(pte)) 1172 kvm_set_pfn_accessed(pte_pfn(pte)); 1173 } 1174 1175 /** 1176 * kvm_handle_guest_abort - handles all 2nd stage aborts 1177 * @vcpu: the VCPU pointer 1178 * 1179 * Any abort that gets to the host is almost guaranteed to be caused by a 1180 * missing second stage translation table entry, which can mean that either the 1181 * guest simply needs more memory and we must allocate an appropriate page or it 1182 * can mean that the guest tried to access I/O memory, which is emulated by user 1183 * space. The distinction is based on the IPA causing the fault and whether this 1184 * memory region has been registered as standard RAM by user space. 1185 */ 1186 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1187 { 1188 unsigned long fault_status; 1189 phys_addr_t fault_ipa; 1190 struct kvm_memory_slot *memslot; 1191 unsigned long hva; 1192 bool is_iabt, write_fault, writable; 1193 gfn_t gfn; 1194 int ret, idx; 1195 1196 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1197 1198 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1199 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1200 1201 /* Synchronous External Abort? */ 1202 if (kvm_vcpu_abt_issea(vcpu)) { 1203 /* 1204 * For RAS the host kernel may handle this abort. 1205 * There is no need to pass the error into the guest. 1206 */ 1207 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1208 kvm_inject_vabt(vcpu); 1209 1210 return 1; 1211 } 1212 1213 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1214 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1215 1216 /* Check the stage-2 fault is trans. fault or write fault */ 1217 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1218 fault_status != FSC_ACCESS) { 1219 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1220 kvm_vcpu_trap_get_class(vcpu), 1221 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1222 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1223 return -EFAULT; 1224 } 1225 1226 idx = srcu_read_lock(&vcpu->kvm->srcu); 1227 1228 gfn = fault_ipa >> PAGE_SHIFT; 1229 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1230 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1231 write_fault = kvm_is_write_fault(vcpu); 1232 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1233 /* 1234 * The guest has put either its instructions or its page-tables 1235 * somewhere it shouldn't have. Userspace won't be able to do 1236 * anything about this (there's no syndrome for a start), so 1237 * re-inject the abort back into the guest. 1238 */ 1239 if (is_iabt) { 1240 ret = -ENOEXEC; 1241 goto out; 1242 } 1243 1244 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1245 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1246 ret = 1; 1247 goto out_unlock; 1248 } 1249 1250 /* 1251 * Check for a cache maintenance operation. Since we 1252 * ended-up here, we know it is outside of any memory 1253 * slot. But we can't find out if that is for a device, 1254 * or if the guest is just being stupid. The only thing 1255 * we know for sure is that this range cannot be cached. 1256 * 1257 * So let's assume that the guest is just being 1258 * cautious, and skip the instruction. 1259 */ 1260 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1261 kvm_incr_pc(vcpu); 1262 ret = 1; 1263 goto out_unlock; 1264 } 1265 1266 /* 1267 * The IPA is reported as [MAX:12], so we need to 1268 * complement it with the bottom 12 bits from the 1269 * faulting VA. This is always 12 bits, irrespective 1270 * of the page size. 1271 */ 1272 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1273 ret = io_mem_abort(vcpu, fault_ipa); 1274 goto out_unlock; 1275 } 1276 1277 /* Userspace should not be able to register out-of-bounds IPAs */ 1278 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1279 1280 if (fault_status == FSC_ACCESS) { 1281 handle_access_fault(vcpu, fault_ipa); 1282 ret = 1; 1283 goto out_unlock; 1284 } 1285 1286 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1287 if (ret == 0) 1288 ret = 1; 1289 out: 1290 if (ret == -ENOEXEC) { 1291 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1292 ret = 1; 1293 } 1294 out_unlock: 1295 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1296 return ret; 1297 } 1298 1299 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1300 { 1301 if (!kvm->arch.mmu.pgt) 1302 return false; 1303 1304 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1305 (range->end - range->start) << PAGE_SHIFT, 1306 range->may_block); 1307 1308 return false; 1309 } 1310 1311 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1312 { 1313 kvm_pfn_t pfn = pte_pfn(range->pte); 1314 int ret; 1315 1316 if (!kvm->arch.mmu.pgt) 1317 return false; 1318 1319 WARN_ON(range->end - range->start != 1); 1320 1321 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE); 1322 if (ret) 1323 return false; 1324 1325 /* 1326 * We've moved a page around, probably through CoW, so let's treat 1327 * it just like a translation fault and the map handler will clean 1328 * the cache to the PoC. 1329 * 1330 * The MMU notifiers will have unmapped a huge PMD before calling 1331 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1332 * therefore we never need to clear out a huge PMD through this 1333 * calling path and a memcache is not required. 1334 */ 1335 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1336 PAGE_SIZE, __pfn_to_phys(pfn), 1337 KVM_PGTABLE_PROT_R, NULL); 1338 1339 return false; 1340 } 1341 1342 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1343 { 1344 u64 size = (range->end - range->start) << PAGE_SHIFT; 1345 kvm_pte_t kpte; 1346 pte_t pte; 1347 1348 if (!kvm->arch.mmu.pgt) 1349 return false; 1350 1351 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1352 1353 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1354 range->start << PAGE_SHIFT); 1355 pte = __pte(kpte); 1356 return pte_valid(pte) && pte_young(pte); 1357 } 1358 1359 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1360 { 1361 if (!kvm->arch.mmu.pgt) 1362 return false; 1363 1364 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1365 range->start << PAGE_SHIFT); 1366 } 1367 1368 phys_addr_t kvm_mmu_get_httbr(void) 1369 { 1370 return __pa(hyp_pgtable->pgd); 1371 } 1372 1373 phys_addr_t kvm_get_idmap_vector(void) 1374 { 1375 return hyp_idmap_vector; 1376 } 1377 1378 static int kvm_map_idmap_text(void) 1379 { 1380 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1381 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1382 PAGE_HYP_EXEC); 1383 if (err) 1384 kvm_err("Failed to idmap %lx-%lx\n", 1385 hyp_idmap_start, hyp_idmap_end); 1386 1387 return err; 1388 } 1389 1390 static void *kvm_hyp_zalloc_page(void *arg) 1391 { 1392 return (void *)get_zeroed_page(GFP_KERNEL); 1393 } 1394 1395 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1396 .zalloc_page = kvm_hyp_zalloc_page, 1397 .get_page = kvm_host_get_page, 1398 .put_page = kvm_host_put_page, 1399 .phys_to_virt = kvm_host_va, 1400 .virt_to_phys = kvm_host_pa, 1401 }; 1402 1403 int kvm_mmu_init(u32 *hyp_va_bits) 1404 { 1405 int err; 1406 1407 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1408 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1409 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1410 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1411 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1412 1413 /* 1414 * We rely on the linker script to ensure at build time that the HYP 1415 * init code does not cross a page boundary. 1416 */ 1417 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1418 1419 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1420 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1421 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1422 kvm_debug("HYP VA range: %lx:%lx\n", 1423 kern_hyp_va(PAGE_OFFSET), 1424 kern_hyp_va((unsigned long)high_memory - 1)); 1425 1426 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1427 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1428 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1429 /* 1430 * The idmap page is intersecting with the VA space, 1431 * it is not safe to continue further. 1432 */ 1433 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1434 err = -EINVAL; 1435 goto out; 1436 } 1437 1438 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1439 if (!hyp_pgtable) { 1440 kvm_err("Hyp mode page-table not allocated\n"); 1441 err = -ENOMEM; 1442 goto out; 1443 } 1444 1445 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1446 if (err) 1447 goto out_free_pgtable; 1448 1449 err = kvm_map_idmap_text(); 1450 if (err) 1451 goto out_destroy_pgtable; 1452 1453 io_map_base = hyp_idmap_start; 1454 return 0; 1455 1456 out_destroy_pgtable: 1457 kvm_pgtable_hyp_destroy(hyp_pgtable); 1458 out_free_pgtable: 1459 kfree(hyp_pgtable); 1460 hyp_pgtable = NULL; 1461 out: 1462 return err; 1463 } 1464 1465 void kvm_arch_commit_memory_region(struct kvm *kvm, 1466 const struct kvm_userspace_memory_region *mem, 1467 struct kvm_memory_slot *old, 1468 const struct kvm_memory_slot *new, 1469 enum kvm_mr_change change) 1470 { 1471 /* 1472 * At this point memslot has been committed and there is an 1473 * allocated dirty_bitmap[], dirty pages will be tracked while the 1474 * memory slot is write protected. 1475 */ 1476 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1477 /* 1478 * If we're with initial-all-set, we don't need to write 1479 * protect any pages because they're all reported as dirty. 1480 * Huge pages and normal pages will be write protect gradually. 1481 */ 1482 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1483 kvm_mmu_wp_memory_region(kvm, mem->slot); 1484 } 1485 } 1486 } 1487 1488 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1489 struct kvm_memory_slot *memslot, 1490 const struct kvm_userspace_memory_region *mem, 1491 enum kvm_mr_change change) 1492 { 1493 hva_t hva = mem->userspace_addr; 1494 hva_t reg_end = hva + mem->memory_size; 1495 int ret = 0; 1496 1497 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1498 change != KVM_MR_FLAGS_ONLY) 1499 return 0; 1500 1501 /* 1502 * Prevent userspace from creating a memory region outside of the IPA 1503 * space addressable by the KVM guest IPA space. 1504 */ 1505 if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1506 return -EFAULT; 1507 1508 mmap_read_lock(current->mm); 1509 /* 1510 * A memory region could potentially cover multiple VMAs, and any holes 1511 * between them, so iterate over all of them. 1512 * 1513 * +--------------------------------------------+ 1514 * +---------------+----------------+ +----------------+ 1515 * | : VMA 1 | VMA 2 | | VMA 3 : | 1516 * +---------------+----------------+ +----------------+ 1517 * | memory region | 1518 * +--------------------------------------------+ 1519 */ 1520 do { 1521 struct vm_area_struct *vma; 1522 1523 vma = find_vma_intersection(current->mm, hva, reg_end); 1524 if (!vma) 1525 break; 1526 1527 /* 1528 * VM_SHARED mappings are not allowed with MTE to avoid races 1529 * when updating the PG_mte_tagged page flag, see 1530 * sanitise_mte_tags for more details. 1531 */ 1532 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) { 1533 ret = -EINVAL; 1534 break; 1535 } 1536 1537 if (vma->vm_flags & VM_PFNMAP) { 1538 /* IO region dirty page logging not allowed */ 1539 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1540 ret = -EINVAL; 1541 break; 1542 } 1543 } 1544 hva = min(reg_end, vma->vm_end); 1545 } while (hva < reg_end); 1546 1547 mmap_read_unlock(current->mm); 1548 return ret; 1549 } 1550 1551 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1552 { 1553 } 1554 1555 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1556 { 1557 } 1558 1559 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1560 { 1561 kvm_free_stage2_pgd(&kvm->arch.mmu); 1562 } 1563 1564 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1565 struct kvm_memory_slot *slot) 1566 { 1567 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1568 phys_addr_t size = slot->npages << PAGE_SHIFT; 1569 1570 spin_lock(&kvm->mmu_lock); 1571 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1572 spin_unlock(&kvm->mmu_lock); 1573 } 1574 1575 /* 1576 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1577 * 1578 * Main problems: 1579 * - S/W ops are local to a CPU (not broadcast) 1580 * - We have line migration behind our back (speculation) 1581 * - System caches don't support S/W at all (damn!) 1582 * 1583 * In the face of the above, the best we can do is to try and convert 1584 * S/W ops to VA ops. Because the guest is not allowed to infer the 1585 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1586 * which is a rather good thing for us. 1587 * 1588 * Also, it is only used when turning caches on/off ("The expected 1589 * usage of the cache maintenance instructions that operate by set/way 1590 * is associated with the cache maintenance instructions associated 1591 * with the powerdown and powerup of caches, if this is required by 1592 * the implementation."). 1593 * 1594 * We use the following policy: 1595 * 1596 * - If we trap a S/W operation, we enable VM trapping to detect 1597 * caches being turned on/off, and do a full clean. 1598 * 1599 * - We flush the caches on both caches being turned on and off. 1600 * 1601 * - Once the caches are enabled, we stop trapping VM ops. 1602 */ 1603 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1604 { 1605 unsigned long hcr = *vcpu_hcr(vcpu); 1606 1607 /* 1608 * If this is the first time we do a S/W operation 1609 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1610 * VM trapping. 1611 * 1612 * Otherwise, rely on the VM trapping to wait for the MMU + 1613 * Caches to be turned off. At that point, we'll be able to 1614 * clean the caches again. 1615 */ 1616 if (!(hcr & HCR_TVM)) { 1617 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1618 vcpu_has_cache_enabled(vcpu)); 1619 stage2_flush_vm(vcpu->kvm); 1620 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1621 } 1622 } 1623 1624 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1625 { 1626 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1627 1628 /* 1629 * If switching the MMU+caches on, need to invalidate the caches. 1630 * If switching it off, need to clean the caches. 1631 * Clean + invalidate does the trick always. 1632 */ 1633 if (now_enabled != was_enabled) 1634 stage2_flush_vm(vcpu->kvm); 1635 1636 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1637 if (now_enabled) 1638 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1639 1640 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1641 } 1642