xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision 5334d983)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 }
85 
86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 	return !pfn_valid(pfn);
89 }
90 
91 static void *stage2_memcache_zalloc_page(void *arg)
92 {
93 	struct kvm_mmu_memory_cache *mc = arg;
94 
95 	/* Allocated with __GFP_ZERO, so no need to zero */
96 	return kvm_mmu_memory_cache_alloc(mc);
97 }
98 
99 static void *kvm_host_zalloc_pages_exact(size_t size)
100 {
101 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
102 }
103 
104 static void kvm_host_get_page(void *addr)
105 {
106 	get_page(virt_to_page(addr));
107 }
108 
109 static void kvm_host_put_page(void *addr)
110 {
111 	put_page(virt_to_page(addr));
112 }
113 
114 static int kvm_host_page_count(void *addr)
115 {
116 	return page_count(virt_to_page(addr));
117 }
118 
119 static phys_addr_t kvm_host_pa(void *addr)
120 {
121 	return __pa(addr);
122 }
123 
124 static void *kvm_host_va(phys_addr_t phys)
125 {
126 	return __va(phys);
127 }
128 
129 /*
130  * Unmapping vs dcache management:
131  *
132  * If a guest maps certain memory pages as uncached, all writes will
133  * bypass the data cache and go directly to RAM.  However, the CPUs
134  * can still speculate reads (not writes) and fill cache lines with
135  * data.
136  *
137  * Those cache lines will be *clean* cache lines though, so a
138  * clean+invalidate operation is equivalent to an invalidate
139  * operation, because no cache lines are marked dirty.
140  *
141  * Those clean cache lines could be filled prior to an uncached write
142  * by the guest, and the cache coherent IO subsystem would therefore
143  * end up writing old data to disk.
144  *
145  * This is why right after unmapping a page/section and invalidating
146  * the corresponding TLBs, we flush to make sure the IO subsystem will
147  * never hit in the cache.
148  *
149  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
150  * we then fully enforce cacheability of RAM, no matter what the guest
151  * does.
152  */
153 /**
154  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
155  * @mmu:   The KVM stage-2 MMU pointer
156  * @start: The intermediate physical base address of the range to unmap
157  * @size:  The size of the area to unmap
158  * @may_block: Whether or not we are permitted to block
159  *
160  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
161  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
162  * destroying the VM), otherwise another faulting VCPU may come in and mess
163  * with things behind our backs.
164  */
165 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
166 				 bool may_block)
167 {
168 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
169 	phys_addr_t end = start + size;
170 
171 	assert_spin_locked(&kvm->mmu_lock);
172 	WARN_ON(size & ~PAGE_MASK);
173 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
174 				   may_block));
175 }
176 
177 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
178 {
179 	__unmap_stage2_range(mmu, start, size, true);
180 }
181 
182 static void stage2_flush_memslot(struct kvm *kvm,
183 				 struct kvm_memory_slot *memslot)
184 {
185 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
186 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
187 
188 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
189 }
190 
191 /**
192  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
193  * @kvm: The struct kvm pointer
194  *
195  * Go through the stage 2 page tables and invalidate any cache lines
196  * backing memory already mapped to the VM.
197  */
198 static void stage2_flush_vm(struct kvm *kvm)
199 {
200 	struct kvm_memslots *slots;
201 	struct kvm_memory_slot *memslot;
202 	int idx;
203 
204 	idx = srcu_read_lock(&kvm->srcu);
205 	spin_lock(&kvm->mmu_lock);
206 
207 	slots = kvm_memslots(kvm);
208 	kvm_for_each_memslot(memslot, slots)
209 		stage2_flush_memslot(kvm, memslot);
210 
211 	spin_unlock(&kvm->mmu_lock);
212 	srcu_read_unlock(&kvm->srcu, idx);
213 }
214 
215 /**
216  * free_hyp_pgds - free Hyp-mode page tables
217  */
218 void free_hyp_pgds(void)
219 {
220 	mutex_lock(&kvm_hyp_pgd_mutex);
221 	if (hyp_pgtable) {
222 		kvm_pgtable_hyp_destroy(hyp_pgtable);
223 		kfree(hyp_pgtable);
224 		hyp_pgtable = NULL;
225 	}
226 	mutex_unlock(&kvm_hyp_pgd_mutex);
227 }
228 
229 static bool kvm_host_owns_hyp_mappings(void)
230 {
231 	if (static_branch_likely(&kvm_protected_mode_initialized))
232 		return false;
233 
234 	/*
235 	 * This can happen at boot time when __create_hyp_mappings() is called
236 	 * after the hyp protection has been enabled, but the static key has
237 	 * not been flipped yet.
238 	 */
239 	if (!hyp_pgtable && is_protected_kvm_enabled())
240 		return false;
241 
242 	WARN_ON(!hyp_pgtable);
243 
244 	return true;
245 }
246 
247 static int __create_hyp_mappings(unsigned long start, unsigned long size,
248 				 unsigned long phys, enum kvm_pgtable_prot prot)
249 {
250 	int err;
251 
252 	if (!kvm_host_owns_hyp_mappings()) {
253 		return kvm_call_hyp_nvhe(__pkvm_create_mappings,
254 					 start, size, phys, prot);
255 	}
256 
257 	mutex_lock(&kvm_hyp_pgd_mutex);
258 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
259 	mutex_unlock(&kvm_hyp_pgd_mutex);
260 
261 	return err;
262 }
263 
264 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
265 {
266 	if (!is_vmalloc_addr(kaddr)) {
267 		BUG_ON(!virt_addr_valid(kaddr));
268 		return __pa(kaddr);
269 	} else {
270 		return page_to_phys(vmalloc_to_page(kaddr)) +
271 		       offset_in_page(kaddr);
272 	}
273 }
274 
275 /**
276  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
277  * @from:	The virtual kernel start address of the range
278  * @to:		The virtual kernel end address of the range (exclusive)
279  * @prot:	The protection to be applied to this range
280  *
281  * The same virtual address as the kernel virtual address is also used
282  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
283  * physical pages.
284  */
285 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
286 {
287 	phys_addr_t phys_addr;
288 	unsigned long virt_addr;
289 	unsigned long start = kern_hyp_va((unsigned long)from);
290 	unsigned long end = kern_hyp_va((unsigned long)to);
291 
292 	if (is_kernel_in_hyp_mode())
293 		return 0;
294 
295 	start = start & PAGE_MASK;
296 	end = PAGE_ALIGN(end);
297 
298 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
299 		int err;
300 
301 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
302 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
303 					    prot);
304 		if (err)
305 			return err;
306 	}
307 
308 	return 0;
309 }
310 
311 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
312 					unsigned long *haddr,
313 					enum kvm_pgtable_prot prot)
314 {
315 	unsigned long base;
316 	int ret = 0;
317 
318 	if (!kvm_host_owns_hyp_mappings()) {
319 		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
320 					 phys_addr, size, prot);
321 		if (IS_ERR_OR_NULL((void *)base))
322 			return PTR_ERR((void *)base);
323 		*haddr = base;
324 
325 		return 0;
326 	}
327 
328 	mutex_lock(&kvm_hyp_pgd_mutex);
329 
330 	/*
331 	 * This assumes that we have enough space below the idmap
332 	 * page to allocate our VAs. If not, the check below will
333 	 * kick. A potential alternative would be to detect that
334 	 * overflow and switch to an allocation above the idmap.
335 	 *
336 	 * The allocated size is always a multiple of PAGE_SIZE.
337 	 */
338 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
339 	base = io_map_base - size;
340 
341 	/*
342 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
343 	 * allocating the new area, as it would indicate we've
344 	 * overflowed the idmap/IO address range.
345 	 */
346 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
347 		ret = -ENOMEM;
348 	else
349 		io_map_base = base;
350 
351 	mutex_unlock(&kvm_hyp_pgd_mutex);
352 
353 	if (ret)
354 		goto out;
355 
356 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
357 	if (ret)
358 		goto out;
359 
360 	*haddr = base + offset_in_page(phys_addr);
361 out:
362 	return ret;
363 }
364 
365 /**
366  * create_hyp_io_mappings - Map IO into both kernel and HYP
367  * @phys_addr:	The physical start address which gets mapped
368  * @size:	Size of the region being mapped
369  * @kaddr:	Kernel VA for this mapping
370  * @haddr:	HYP VA for this mapping
371  */
372 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
373 			   void __iomem **kaddr,
374 			   void __iomem **haddr)
375 {
376 	unsigned long addr;
377 	int ret;
378 
379 	*kaddr = ioremap(phys_addr, size);
380 	if (!*kaddr)
381 		return -ENOMEM;
382 
383 	if (is_kernel_in_hyp_mode()) {
384 		*haddr = *kaddr;
385 		return 0;
386 	}
387 
388 	ret = __create_hyp_private_mapping(phys_addr, size,
389 					   &addr, PAGE_HYP_DEVICE);
390 	if (ret) {
391 		iounmap(*kaddr);
392 		*kaddr = NULL;
393 		*haddr = NULL;
394 		return ret;
395 	}
396 
397 	*haddr = (void __iomem *)addr;
398 	return 0;
399 }
400 
401 /**
402  * create_hyp_exec_mappings - Map an executable range into HYP
403  * @phys_addr:	The physical start address which gets mapped
404  * @size:	Size of the region being mapped
405  * @haddr:	HYP VA for this mapping
406  */
407 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
408 			     void **haddr)
409 {
410 	unsigned long addr;
411 	int ret;
412 
413 	BUG_ON(is_kernel_in_hyp_mode());
414 
415 	ret = __create_hyp_private_mapping(phys_addr, size,
416 					   &addr, PAGE_HYP_EXEC);
417 	if (ret) {
418 		*haddr = NULL;
419 		return ret;
420 	}
421 
422 	*haddr = (void *)addr;
423 	return 0;
424 }
425 
426 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
427 	.zalloc_page		= stage2_memcache_zalloc_page,
428 	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
429 	.free_pages_exact	= free_pages_exact,
430 	.get_page		= kvm_host_get_page,
431 	.put_page		= kvm_host_put_page,
432 	.page_count		= kvm_host_page_count,
433 	.phys_to_virt		= kvm_host_va,
434 	.virt_to_phys		= kvm_host_pa,
435 };
436 
437 /**
438  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
439  * @kvm:	The pointer to the KVM structure
440  * @mmu:	The pointer to the s2 MMU structure
441  *
442  * Allocates only the stage-2 HW PGD level table(s).
443  * Note we don't need locking here as this is only called when the VM is
444  * created, which can only be done once.
445  */
446 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
447 {
448 	int cpu, err;
449 	struct kvm_pgtable *pgt;
450 
451 	if (mmu->pgt != NULL) {
452 		kvm_err("kvm_arch already initialized?\n");
453 		return -EINVAL;
454 	}
455 
456 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
457 	if (!pgt)
458 		return -ENOMEM;
459 
460 	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
461 	if (err)
462 		goto out_free_pgtable;
463 
464 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
465 	if (!mmu->last_vcpu_ran) {
466 		err = -ENOMEM;
467 		goto out_destroy_pgtable;
468 	}
469 
470 	for_each_possible_cpu(cpu)
471 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
472 
473 	mmu->arch = &kvm->arch;
474 	mmu->pgt = pgt;
475 	mmu->pgd_phys = __pa(pgt->pgd);
476 	mmu->vmid.vmid_gen = 0;
477 	return 0;
478 
479 out_destroy_pgtable:
480 	kvm_pgtable_stage2_destroy(pgt);
481 out_free_pgtable:
482 	kfree(pgt);
483 	return err;
484 }
485 
486 static void stage2_unmap_memslot(struct kvm *kvm,
487 				 struct kvm_memory_slot *memslot)
488 {
489 	hva_t hva = memslot->userspace_addr;
490 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
491 	phys_addr_t size = PAGE_SIZE * memslot->npages;
492 	hva_t reg_end = hva + size;
493 
494 	/*
495 	 * A memory region could potentially cover multiple VMAs, and any holes
496 	 * between them, so iterate over all of them to find out if we should
497 	 * unmap any of them.
498 	 *
499 	 *     +--------------------------------------------+
500 	 * +---------------+----------------+   +----------------+
501 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
502 	 * +---------------+----------------+   +----------------+
503 	 *     |               memory region                |
504 	 *     +--------------------------------------------+
505 	 */
506 	do {
507 		struct vm_area_struct *vma;
508 		hva_t vm_start, vm_end;
509 
510 		vma = find_vma_intersection(current->mm, hva, reg_end);
511 		if (!vma)
512 			break;
513 
514 		/*
515 		 * Take the intersection of this VMA with the memory region
516 		 */
517 		vm_start = max(hva, vma->vm_start);
518 		vm_end = min(reg_end, vma->vm_end);
519 
520 		if (!(vma->vm_flags & VM_PFNMAP)) {
521 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
522 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
523 		}
524 		hva = vm_end;
525 	} while (hva < reg_end);
526 }
527 
528 /**
529  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
530  * @kvm: The struct kvm pointer
531  *
532  * Go through the memregions and unmap any regular RAM
533  * backing memory already mapped to the VM.
534  */
535 void stage2_unmap_vm(struct kvm *kvm)
536 {
537 	struct kvm_memslots *slots;
538 	struct kvm_memory_slot *memslot;
539 	int idx;
540 
541 	idx = srcu_read_lock(&kvm->srcu);
542 	mmap_read_lock(current->mm);
543 	spin_lock(&kvm->mmu_lock);
544 
545 	slots = kvm_memslots(kvm);
546 	kvm_for_each_memslot(memslot, slots)
547 		stage2_unmap_memslot(kvm, memslot);
548 
549 	spin_unlock(&kvm->mmu_lock);
550 	mmap_read_unlock(current->mm);
551 	srcu_read_unlock(&kvm->srcu, idx);
552 }
553 
554 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
555 {
556 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
557 	struct kvm_pgtable *pgt = NULL;
558 
559 	spin_lock(&kvm->mmu_lock);
560 	pgt = mmu->pgt;
561 	if (pgt) {
562 		mmu->pgd_phys = 0;
563 		mmu->pgt = NULL;
564 		free_percpu(mmu->last_vcpu_ran);
565 	}
566 	spin_unlock(&kvm->mmu_lock);
567 
568 	if (pgt) {
569 		kvm_pgtable_stage2_destroy(pgt);
570 		kfree(pgt);
571 	}
572 }
573 
574 /**
575  * kvm_phys_addr_ioremap - map a device range to guest IPA
576  *
577  * @kvm:	The KVM pointer
578  * @guest_ipa:	The IPA at which to insert the mapping
579  * @pa:		The physical address of the device
580  * @size:	The size of the mapping
581  * @writable:   Whether or not to create a writable mapping
582  */
583 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
584 			  phys_addr_t pa, unsigned long size, bool writable)
585 {
586 	phys_addr_t addr;
587 	int ret = 0;
588 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
589 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
590 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
591 				     KVM_PGTABLE_PROT_R |
592 				     (writable ? KVM_PGTABLE_PROT_W : 0);
593 
594 	size += offset_in_page(guest_ipa);
595 	guest_ipa &= PAGE_MASK;
596 
597 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
598 		ret = kvm_mmu_topup_memory_cache(&cache,
599 						 kvm_mmu_cache_min_pages(kvm));
600 		if (ret)
601 			break;
602 
603 		spin_lock(&kvm->mmu_lock);
604 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
605 					     &cache);
606 		spin_unlock(&kvm->mmu_lock);
607 		if (ret)
608 			break;
609 
610 		pa += PAGE_SIZE;
611 	}
612 
613 	kvm_mmu_free_memory_cache(&cache);
614 	return ret;
615 }
616 
617 /**
618  * stage2_wp_range() - write protect stage2 memory region range
619  * @mmu:        The KVM stage-2 MMU pointer
620  * @addr:	Start address of range
621  * @end:	End address of range
622  */
623 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
624 {
625 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
626 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
627 }
628 
629 /**
630  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
631  * @kvm:	The KVM pointer
632  * @slot:	The memory slot to write protect
633  *
634  * Called to start logging dirty pages after memory region
635  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
636  * all present PUD, PMD and PTEs are write protected in the memory region.
637  * Afterwards read of dirty page log can be called.
638  *
639  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
640  * serializing operations for VM memory regions.
641  */
642 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
643 {
644 	struct kvm_memslots *slots = kvm_memslots(kvm);
645 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
646 	phys_addr_t start, end;
647 
648 	if (WARN_ON_ONCE(!memslot))
649 		return;
650 
651 	start = memslot->base_gfn << PAGE_SHIFT;
652 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
653 
654 	spin_lock(&kvm->mmu_lock);
655 	stage2_wp_range(&kvm->arch.mmu, start, end);
656 	spin_unlock(&kvm->mmu_lock);
657 	kvm_flush_remote_tlbs(kvm);
658 }
659 
660 /**
661  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
662  * @kvm:	The KVM pointer
663  * @slot:	The memory slot associated with mask
664  * @gfn_offset:	The gfn offset in memory slot
665  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
666  *		slot to be write protected
667  *
668  * Walks bits set in mask write protects the associated pte's. Caller must
669  * acquire kvm_mmu_lock.
670  */
671 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
672 		struct kvm_memory_slot *slot,
673 		gfn_t gfn_offset, unsigned long mask)
674 {
675 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
676 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
677 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
678 
679 	stage2_wp_range(&kvm->arch.mmu, start, end);
680 }
681 
682 /*
683  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
684  * dirty pages.
685  *
686  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
687  * enable dirty logging for them.
688  */
689 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
690 		struct kvm_memory_slot *slot,
691 		gfn_t gfn_offset, unsigned long mask)
692 {
693 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
694 }
695 
696 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
697 {
698 	__clean_dcache_guest_page(pfn, size);
699 }
700 
701 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
702 {
703 	__invalidate_icache_guest_page(pfn, size);
704 }
705 
706 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
707 {
708 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
709 }
710 
711 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
712 					       unsigned long hva,
713 					       unsigned long map_size)
714 {
715 	gpa_t gpa_start;
716 	hva_t uaddr_start, uaddr_end;
717 	size_t size;
718 
719 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
720 	if (map_size == PAGE_SIZE)
721 		return true;
722 
723 	size = memslot->npages * PAGE_SIZE;
724 
725 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
726 
727 	uaddr_start = memslot->userspace_addr;
728 	uaddr_end = uaddr_start + size;
729 
730 	/*
731 	 * Pages belonging to memslots that don't have the same alignment
732 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
733 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
734 	 *
735 	 * Consider a layout like the following:
736 	 *
737 	 *    memslot->userspace_addr:
738 	 *    +-----+--------------------+--------------------+---+
739 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
740 	 *    +-----+--------------------+--------------------+---+
741 	 *
742 	 *    memslot->base_gfn << PAGE_SHIFT:
743 	 *      +---+--------------------+--------------------+-----+
744 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
745 	 *      +---+--------------------+--------------------+-----+
746 	 *
747 	 * If we create those stage-2 blocks, we'll end up with this incorrect
748 	 * mapping:
749 	 *   d -> f
750 	 *   e -> g
751 	 *   f -> h
752 	 */
753 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
754 		return false;
755 
756 	/*
757 	 * Next, let's make sure we're not trying to map anything not covered
758 	 * by the memslot. This means we have to prohibit block size mappings
759 	 * for the beginning and end of a non-block aligned and non-block sized
760 	 * memory slot (illustrated by the head and tail parts of the
761 	 * userspace view above containing pages 'abcde' and 'xyz',
762 	 * respectively).
763 	 *
764 	 * Note that it doesn't matter if we do the check using the
765 	 * userspace_addr or the base_gfn, as both are equally aligned (per
766 	 * the check above) and equally sized.
767 	 */
768 	return (hva & ~(map_size - 1)) >= uaddr_start &&
769 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
770 }
771 
772 /*
773  * Check if the given hva is backed by a transparent huge page (THP) and
774  * whether it can be mapped using block mapping in stage2. If so, adjust
775  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
776  * supported. This will need to be updated to support other THP sizes.
777  *
778  * Returns the size of the mapping.
779  */
780 static unsigned long
781 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
782 			    unsigned long hva, kvm_pfn_t *pfnp,
783 			    phys_addr_t *ipap)
784 {
785 	kvm_pfn_t pfn = *pfnp;
786 
787 	/*
788 	 * Make sure the adjustment is done only for THP pages. Also make
789 	 * sure that the HVA and IPA are sufficiently aligned and that the
790 	 * block map is contained within the memslot.
791 	 */
792 	if (kvm_is_transparent_hugepage(pfn) &&
793 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
794 		/*
795 		 * The address we faulted on is backed by a transparent huge
796 		 * page.  However, because we map the compound huge page and
797 		 * not the individual tail page, we need to transfer the
798 		 * refcount to the head page.  We have to be careful that the
799 		 * THP doesn't start to split while we are adjusting the
800 		 * refcounts.
801 		 *
802 		 * We are sure this doesn't happen, because mmu_notifier_retry
803 		 * was successful and we are holding the mmu_lock, so if this
804 		 * THP is trying to split, it will be blocked in the mmu
805 		 * notifier before touching any of the pages, specifically
806 		 * before being able to call __split_huge_page_refcount().
807 		 *
808 		 * We can therefore safely transfer the refcount from PG_tail
809 		 * to PG_head and switch the pfn from a tail page to the head
810 		 * page accordingly.
811 		 */
812 		*ipap &= PMD_MASK;
813 		kvm_release_pfn_clean(pfn);
814 		pfn &= ~(PTRS_PER_PMD - 1);
815 		kvm_get_pfn(pfn);
816 		*pfnp = pfn;
817 
818 		return PMD_SIZE;
819 	}
820 
821 	/* Use page mapping if we cannot use block mapping. */
822 	return PAGE_SIZE;
823 }
824 
825 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
826 			  struct kvm_memory_slot *memslot, unsigned long hva,
827 			  unsigned long fault_status)
828 {
829 	int ret = 0;
830 	bool write_fault, writable, force_pte = false;
831 	bool exec_fault;
832 	bool device = false;
833 	unsigned long mmu_seq;
834 	struct kvm *kvm = vcpu->kvm;
835 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
836 	struct vm_area_struct *vma;
837 	short vma_shift;
838 	gfn_t gfn;
839 	kvm_pfn_t pfn;
840 	bool logging_active = memslot_is_logging(memslot);
841 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
842 	unsigned long vma_pagesize, fault_granule;
843 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
844 	struct kvm_pgtable *pgt;
845 
846 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
847 	write_fault = kvm_is_write_fault(vcpu);
848 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
849 	VM_BUG_ON(write_fault && exec_fault);
850 
851 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
852 		kvm_err("Unexpected L2 read permission error\n");
853 		return -EFAULT;
854 	}
855 
856 	/* Let's check if we will get back a huge page backed by hugetlbfs */
857 	mmap_read_lock(current->mm);
858 	vma = find_vma_intersection(current->mm, hva, hva + 1);
859 	if (unlikely(!vma)) {
860 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
861 		mmap_read_unlock(current->mm);
862 		return -EFAULT;
863 	}
864 
865 	if (is_vm_hugetlb_page(vma))
866 		vma_shift = huge_page_shift(hstate_vma(vma));
867 	else
868 		vma_shift = PAGE_SHIFT;
869 
870 	if (logging_active ||
871 	    (vma->vm_flags & VM_PFNMAP)) {
872 		force_pte = true;
873 		vma_shift = PAGE_SHIFT;
874 	}
875 
876 	switch (vma_shift) {
877 #ifndef __PAGETABLE_PMD_FOLDED
878 	case PUD_SHIFT:
879 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
880 			break;
881 		fallthrough;
882 #endif
883 	case CONT_PMD_SHIFT:
884 		vma_shift = PMD_SHIFT;
885 		fallthrough;
886 	case PMD_SHIFT:
887 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
888 			break;
889 		fallthrough;
890 	case CONT_PTE_SHIFT:
891 		vma_shift = PAGE_SHIFT;
892 		force_pte = true;
893 		fallthrough;
894 	case PAGE_SHIFT:
895 		break;
896 	default:
897 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
898 	}
899 
900 	vma_pagesize = 1UL << vma_shift;
901 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
902 		fault_ipa &= ~(vma_pagesize - 1);
903 
904 	gfn = fault_ipa >> PAGE_SHIFT;
905 	mmap_read_unlock(current->mm);
906 
907 	/*
908 	 * Permission faults just need to update the existing leaf entry,
909 	 * and so normally don't require allocations from the memcache. The
910 	 * only exception to this is when dirty logging is enabled at runtime
911 	 * and a write fault needs to collapse a block entry into a table.
912 	 */
913 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
914 		ret = kvm_mmu_topup_memory_cache(memcache,
915 						 kvm_mmu_cache_min_pages(kvm));
916 		if (ret)
917 			return ret;
918 	}
919 
920 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
921 	/*
922 	 * Ensure the read of mmu_notifier_seq happens before we call
923 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
924 	 * the page we just got a reference to gets unmapped before we have a
925 	 * chance to grab the mmu_lock, which ensure that if the page gets
926 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
927 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
928 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
929 	 *
930 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
931 	 * used to avoid unnecessary overhead introduced to locate the memory
932 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
933 	 */
934 	smp_rmb();
935 
936 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
937 				   write_fault, &writable, NULL);
938 	if (pfn == KVM_PFN_ERR_HWPOISON) {
939 		kvm_send_hwpoison_signal(hva, vma_shift);
940 		return 0;
941 	}
942 	if (is_error_noslot_pfn(pfn))
943 		return -EFAULT;
944 
945 	if (kvm_is_device_pfn(pfn)) {
946 		device = true;
947 		force_pte = true;
948 	} else if (logging_active && !write_fault) {
949 		/*
950 		 * Only actually map the page as writable if this was a write
951 		 * fault.
952 		 */
953 		writable = false;
954 	}
955 
956 	if (exec_fault && device)
957 		return -ENOEXEC;
958 
959 	spin_lock(&kvm->mmu_lock);
960 	pgt = vcpu->arch.hw_mmu->pgt;
961 	if (mmu_notifier_retry(kvm, mmu_seq))
962 		goto out_unlock;
963 
964 	/*
965 	 * If we are not forced to use page mapping, check if we are
966 	 * backed by a THP and thus use block mapping if possible.
967 	 */
968 	if (vma_pagesize == PAGE_SIZE && !force_pte)
969 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
970 							   &pfn, &fault_ipa);
971 	if (writable)
972 		prot |= KVM_PGTABLE_PROT_W;
973 
974 	if (fault_status != FSC_PERM && !device)
975 		clean_dcache_guest_page(pfn, vma_pagesize);
976 
977 	if (exec_fault) {
978 		prot |= KVM_PGTABLE_PROT_X;
979 		invalidate_icache_guest_page(pfn, vma_pagesize);
980 	}
981 
982 	if (device)
983 		prot |= KVM_PGTABLE_PROT_DEVICE;
984 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
985 		prot |= KVM_PGTABLE_PROT_X;
986 
987 	/*
988 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
989 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
990 	 * kvm_pgtable_stage2_map() should be called to change block size.
991 	 */
992 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
993 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
994 	} else {
995 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
996 					     __pfn_to_phys(pfn), prot,
997 					     memcache);
998 	}
999 
1000 	/* Mark the page dirty only if the fault is handled successfully */
1001 	if (writable && !ret) {
1002 		kvm_set_pfn_dirty(pfn);
1003 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1004 	}
1005 
1006 out_unlock:
1007 	spin_unlock(&kvm->mmu_lock);
1008 	kvm_set_pfn_accessed(pfn);
1009 	kvm_release_pfn_clean(pfn);
1010 	return ret != -EAGAIN ? ret : 0;
1011 }
1012 
1013 /* Resolve the access fault by making the page young again. */
1014 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1015 {
1016 	pte_t pte;
1017 	kvm_pte_t kpte;
1018 	struct kvm_s2_mmu *mmu;
1019 
1020 	trace_kvm_access_fault(fault_ipa);
1021 
1022 	spin_lock(&vcpu->kvm->mmu_lock);
1023 	mmu = vcpu->arch.hw_mmu;
1024 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1025 	spin_unlock(&vcpu->kvm->mmu_lock);
1026 
1027 	pte = __pte(kpte);
1028 	if (pte_valid(pte))
1029 		kvm_set_pfn_accessed(pte_pfn(pte));
1030 }
1031 
1032 /**
1033  * kvm_handle_guest_abort - handles all 2nd stage aborts
1034  * @vcpu:	the VCPU pointer
1035  *
1036  * Any abort that gets to the host is almost guaranteed to be caused by a
1037  * missing second stage translation table entry, which can mean that either the
1038  * guest simply needs more memory and we must allocate an appropriate page or it
1039  * can mean that the guest tried to access I/O memory, which is emulated by user
1040  * space. The distinction is based on the IPA causing the fault and whether this
1041  * memory region has been registered as standard RAM by user space.
1042  */
1043 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1044 {
1045 	unsigned long fault_status;
1046 	phys_addr_t fault_ipa;
1047 	struct kvm_memory_slot *memslot;
1048 	unsigned long hva;
1049 	bool is_iabt, write_fault, writable;
1050 	gfn_t gfn;
1051 	int ret, idx;
1052 
1053 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1054 
1055 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1056 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1057 
1058 	/* Synchronous External Abort? */
1059 	if (kvm_vcpu_abt_issea(vcpu)) {
1060 		/*
1061 		 * For RAS the host kernel may handle this abort.
1062 		 * There is no need to pass the error into the guest.
1063 		 */
1064 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1065 			kvm_inject_vabt(vcpu);
1066 
1067 		return 1;
1068 	}
1069 
1070 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1071 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1072 
1073 	/* Check the stage-2 fault is trans. fault or write fault */
1074 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1075 	    fault_status != FSC_ACCESS) {
1076 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1077 			kvm_vcpu_trap_get_class(vcpu),
1078 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1079 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1080 		return -EFAULT;
1081 	}
1082 
1083 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1084 
1085 	gfn = fault_ipa >> PAGE_SHIFT;
1086 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1087 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1088 	write_fault = kvm_is_write_fault(vcpu);
1089 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1090 		/*
1091 		 * The guest has put either its instructions or its page-tables
1092 		 * somewhere it shouldn't have. Userspace won't be able to do
1093 		 * anything about this (there's no syndrome for a start), so
1094 		 * re-inject the abort back into the guest.
1095 		 */
1096 		if (is_iabt) {
1097 			ret = -ENOEXEC;
1098 			goto out;
1099 		}
1100 
1101 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1102 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1103 			ret = 1;
1104 			goto out_unlock;
1105 		}
1106 
1107 		/*
1108 		 * Check for a cache maintenance operation. Since we
1109 		 * ended-up here, we know it is outside of any memory
1110 		 * slot. But we can't find out if that is for a device,
1111 		 * or if the guest is just being stupid. The only thing
1112 		 * we know for sure is that this range cannot be cached.
1113 		 *
1114 		 * So let's assume that the guest is just being
1115 		 * cautious, and skip the instruction.
1116 		 */
1117 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1118 			kvm_incr_pc(vcpu);
1119 			ret = 1;
1120 			goto out_unlock;
1121 		}
1122 
1123 		/*
1124 		 * The IPA is reported as [MAX:12], so we need to
1125 		 * complement it with the bottom 12 bits from the
1126 		 * faulting VA. This is always 12 bits, irrespective
1127 		 * of the page size.
1128 		 */
1129 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1130 		ret = io_mem_abort(vcpu, fault_ipa);
1131 		goto out_unlock;
1132 	}
1133 
1134 	/* Userspace should not be able to register out-of-bounds IPAs */
1135 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1136 
1137 	if (fault_status == FSC_ACCESS) {
1138 		handle_access_fault(vcpu, fault_ipa);
1139 		ret = 1;
1140 		goto out_unlock;
1141 	}
1142 
1143 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1144 	if (ret == 0)
1145 		ret = 1;
1146 out:
1147 	if (ret == -ENOEXEC) {
1148 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1149 		ret = 1;
1150 	}
1151 out_unlock:
1152 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1153 	return ret;
1154 }
1155 
1156 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1157 {
1158 	if (!kvm->arch.mmu.pgt)
1159 		return 0;
1160 
1161 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1162 			     (range->end - range->start) << PAGE_SHIFT,
1163 			     range->may_block);
1164 
1165 	return 0;
1166 }
1167 
1168 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1169 {
1170 	kvm_pfn_t pfn = pte_pfn(range->pte);
1171 
1172 	if (!kvm->arch.mmu.pgt)
1173 		return 0;
1174 
1175 	WARN_ON(range->end - range->start != 1);
1176 
1177 	/*
1178 	 * We've moved a page around, probably through CoW, so let's treat it
1179 	 * just like a translation fault and clean the cache to the PoC.
1180 	 */
1181 	clean_dcache_guest_page(pfn, PAGE_SIZE);
1182 
1183 	/*
1184 	 * The MMU notifiers will have unmapped a huge PMD before calling
1185 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1186 	 * therefore we never need to clear out a huge PMD through this
1187 	 * calling path and a memcache is not required.
1188 	 */
1189 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1190 			       PAGE_SIZE, __pfn_to_phys(pfn),
1191 			       KVM_PGTABLE_PROT_R, NULL);
1192 
1193 	return 0;
1194 }
1195 
1196 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1197 {
1198 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1199 	kvm_pte_t kpte;
1200 	pte_t pte;
1201 
1202 	if (!kvm->arch.mmu.pgt)
1203 		return 0;
1204 
1205 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1206 
1207 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1208 					range->start << PAGE_SHIFT);
1209 	pte = __pte(kpte);
1210 	return pte_valid(pte) && pte_young(pte);
1211 }
1212 
1213 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1214 {
1215 	if (!kvm->arch.mmu.pgt)
1216 		return 0;
1217 
1218 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1219 					   range->start << PAGE_SHIFT);
1220 }
1221 
1222 phys_addr_t kvm_mmu_get_httbr(void)
1223 {
1224 	return __pa(hyp_pgtable->pgd);
1225 }
1226 
1227 phys_addr_t kvm_get_idmap_vector(void)
1228 {
1229 	return hyp_idmap_vector;
1230 }
1231 
1232 static int kvm_map_idmap_text(void)
1233 {
1234 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1235 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1236 					PAGE_HYP_EXEC);
1237 	if (err)
1238 		kvm_err("Failed to idmap %lx-%lx\n",
1239 			hyp_idmap_start, hyp_idmap_end);
1240 
1241 	return err;
1242 }
1243 
1244 static void *kvm_hyp_zalloc_page(void *arg)
1245 {
1246 	return (void *)get_zeroed_page(GFP_KERNEL);
1247 }
1248 
1249 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1250 	.zalloc_page		= kvm_hyp_zalloc_page,
1251 	.get_page		= kvm_host_get_page,
1252 	.put_page		= kvm_host_put_page,
1253 	.phys_to_virt		= kvm_host_va,
1254 	.virt_to_phys		= kvm_host_pa,
1255 };
1256 
1257 int kvm_mmu_init(u32 *hyp_va_bits)
1258 {
1259 	int err;
1260 
1261 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1262 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1263 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1264 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1265 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1266 
1267 	/*
1268 	 * We rely on the linker script to ensure at build time that the HYP
1269 	 * init code does not cross a page boundary.
1270 	 */
1271 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1272 
1273 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1274 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1275 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1276 	kvm_debug("HYP VA range: %lx:%lx\n",
1277 		  kern_hyp_va(PAGE_OFFSET),
1278 		  kern_hyp_va((unsigned long)high_memory - 1));
1279 
1280 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1281 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1282 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1283 		/*
1284 		 * The idmap page is intersecting with the VA space,
1285 		 * it is not safe to continue further.
1286 		 */
1287 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1293 	if (!hyp_pgtable) {
1294 		kvm_err("Hyp mode page-table not allocated\n");
1295 		err = -ENOMEM;
1296 		goto out;
1297 	}
1298 
1299 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1300 	if (err)
1301 		goto out_free_pgtable;
1302 
1303 	err = kvm_map_idmap_text();
1304 	if (err)
1305 		goto out_destroy_pgtable;
1306 
1307 	io_map_base = hyp_idmap_start;
1308 	return 0;
1309 
1310 out_destroy_pgtable:
1311 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1312 out_free_pgtable:
1313 	kfree(hyp_pgtable);
1314 	hyp_pgtable = NULL;
1315 out:
1316 	return err;
1317 }
1318 
1319 void kvm_arch_commit_memory_region(struct kvm *kvm,
1320 				   const struct kvm_userspace_memory_region *mem,
1321 				   struct kvm_memory_slot *old,
1322 				   const struct kvm_memory_slot *new,
1323 				   enum kvm_mr_change change)
1324 {
1325 	/*
1326 	 * At this point memslot has been committed and there is an
1327 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1328 	 * memory slot is write protected.
1329 	 */
1330 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1331 		/*
1332 		 * If we're with initial-all-set, we don't need to write
1333 		 * protect any pages because they're all reported as dirty.
1334 		 * Huge pages and normal pages will be write protect gradually.
1335 		 */
1336 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1337 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1338 		}
1339 	}
1340 }
1341 
1342 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1343 				   struct kvm_memory_slot *memslot,
1344 				   const struct kvm_userspace_memory_region *mem,
1345 				   enum kvm_mr_change change)
1346 {
1347 	hva_t hva = mem->userspace_addr;
1348 	hva_t reg_end = hva + mem->memory_size;
1349 	bool writable = !(mem->flags & KVM_MEM_READONLY);
1350 	int ret = 0;
1351 
1352 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1353 			change != KVM_MR_FLAGS_ONLY)
1354 		return 0;
1355 
1356 	/*
1357 	 * Prevent userspace from creating a memory region outside of the IPA
1358 	 * space addressable by the KVM guest IPA space.
1359 	 */
1360 	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1361 		return -EFAULT;
1362 
1363 	mmap_read_lock(current->mm);
1364 	/*
1365 	 * A memory region could potentially cover multiple VMAs, and any holes
1366 	 * between them, so iterate over all of them to find out if we can map
1367 	 * any of them right now.
1368 	 *
1369 	 *     +--------------------------------------------+
1370 	 * +---------------+----------------+   +----------------+
1371 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1372 	 * +---------------+----------------+   +----------------+
1373 	 *     |               memory region                |
1374 	 *     +--------------------------------------------+
1375 	 */
1376 	do {
1377 		struct vm_area_struct *vma;
1378 		hva_t vm_start, vm_end;
1379 
1380 		vma = find_vma_intersection(current->mm, hva, reg_end);
1381 		if (!vma)
1382 			break;
1383 
1384 		/*
1385 		 * Take the intersection of this VMA with the memory region
1386 		 */
1387 		vm_start = max(hva, vma->vm_start);
1388 		vm_end = min(reg_end, vma->vm_end);
1389 
1390 		if (vma->vm_flags & VM_PFNMAP) {
1391 			gpa_t gpa = mem->guest_phys_addr +
1392 				    (vm_start - mem->userspace_addr);
1393 			phys_addr_t pa;
1394 
1395 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1396 			pa += vm_start - vma->vm_start;
1397 
1398 			/* IO region dirty page logging not allowed */
1399 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1400 				ret = -EINVAL;
1401 				goto out;
1402 			}
1403 
1404 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1405 						    vm_end - vm_start,
1406 						    writable);
1407 			if (ret)
1408 				break;
1409 		}
1410 		hva = vm_end;
1411 	} while (hva < reg_end);
1412 
1413 	if (change == KVM_MR_FLAGS_ONLY)
1414 		goto out;
1415 
1416 	spin_lock(&kvm->mmu_lock);
1417 	if (ret)
1418 		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1419 	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1420 		stage2_flush_memslot(kvm, memslot);
1421 	spin_unlock(&kvm->mmu_lock);
1422 out:
1423 	mmap_read_unlock(current->mm);
1424 	return ret;
1425 }
1426 
1427 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1428 {
1429 }
1430 
1431 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1432 {
1433 }
1434 
1435 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1436 {
1437 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1438 }
1439 
1440 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1441 				   struct kvm_memory_slot *slot)
1442 {
1443 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1444 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1445 
1446 	spin_lock(&kvm->mmu_lock);
1447 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1448 	spin_unlock(&kvm->mmu_lock);
1449 }
1450 
1451 /*
1452  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1453  *
1454  * Main problems:
1455  * - S/W ops are local to a CPU (not broadcast)
1456  * - We have line migration behind our back (speculation)
1457  * - System caches don't support S/W at all (damn!)
1458  *
1459  * In the face of the above, the best we can do is to try and convert
1460  * S/W ops to VA ops. Because the guest is not allowed to infer the
1461  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1462  * which is a rather good thing for us.
1463  *
1464  * Also, it is only used when turning caches on/off ("The expected
1465  * usage of the cache maintenance instructions that operate by set/way
1466  * is associated with the cache maintenance instructions associated
1467  * with the powerdown and powerup of caches, if this is required by
1468  * the implementation.").
1469  *
1470  * We use the following policy:
1471  *
1472  * - If we trap a S/W operation, we enable VM trapping to detect
1473  *   caches being turned on/off, and do a full clean.
1474  *
1475  * - We flush the caches on both caches being turned on and off.
1476  *
1477  * - Once the caches are enabled, we stop trapping VM ops.
1478  */
1479 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1480 {
1481 	unsigned long hcr = *vcpu_hcr(vcpu);
1482 
1483 	/*
1484 	 * If this is the first time we do a S/W operation
1485 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1486 	 * VM trapping.
1487 	 *
1488 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1489 	 * Caches to be turned off. At that point, we'll be able to
1490 	 * clean the caches again.
1491 	 */
1492 	if (!(hcr & HCR_TVM)) {
1493 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1494 					vcpu_has_cache_enabled(vcpu));
1495 		stage2_flush_vm(vcpu->kvm);
1496 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1497 	}
1498 }
1499 
1500 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1501 {
1502 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1503 
1504 	/*
1505 	 * If switching the MMU+caches on, need to invalidate the caches.
1506 	 * If switching it off, need to clean the caches.
1507 	 * Clean + invalidate does the trick always.
1508 	 */
1509 	if (now_enabled != was_enabled)
1510 		stage2_flush_vm(vcpu->kvm);
1511 
1512 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1513 	if (now_enabled)
1514 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1515 
1516 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1517 }
1518