1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_lock(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 84 } 85 86 static bool kvm_is_device_pfn(unsigned long pfn) 87 { 88 return !pfn_valid(pfn); 89 } 90 91 /* 92 * Unmapping vs dcache management: 93 * 94 * If a guest maps certain memory pages as uncached, all writes will 95 * bypass the data cache and go directly to RAM. However, the CPUs 96 * can still speculate reads (not writes) and fill cache lines with 97 * data. 98 * 99 * Those cache lines will be *clean* cache lines though, so a 100 * clean+invalidate operation is equivalent to an invalidate 101 * operation, because no cache lines are marked dirty. 102 * 103 * Those clean cache lines could be filled prior to an uncached write 104 * by the guest, and the cache coherent IO subsystem would therefore 105 * end up writing old data to disk. 106 * 107 * This is why right after unmapping a page/section and invalidating 108 * the corresponding TLBs, we flush to make sure the IO subsystem will 109 * never hit in the cache. 110 * 111 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 112 * we then fully enforce cacheability of RAM, no matter what the guest 113 * does. 114 */ 115 /** 116 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 117 * @mmu: The KVM stage-2 MMU pointer 118 * @start: The intermediate physical base address of the range to unmap 119 * @size: The size of the area to unmap 120 * @may_block: Whether or not we are permitted to block 121 * 122 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 123 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 124 * destroying the VM), otherwise another faulting VCPU may come in and mess 125 * with things behind our backs. 126 */ 127 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 128 bool may_block) 129 { 130 struct kvm *kvm = mmu->kvm; 131 phys_addr_t end = start + size; 132 133 assert_spin_locked(&kvm->mmu_lock); 134 WARN_ON(size & ~PAGE_MASK); 135 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 136 may_block)); 137 } 138 139 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 140 { 141 __unmap_stage2_range(mmu, start, size, true); 142 } 143 144 static void stage2_flush_memslot(struct kvm *kvm, 145 struct kvm_memory_slot *memslot) 146 { 147 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 148 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 149 150 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 151 } 152 153 /** 154 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 155 * @kvm: The struct kvm pointer 156 * 157 * Go through the stage 2 page tables and invalidate any cache lines 158 * backing memory already mapped to the VM. 159 */ 160 static void stage2_flush_vm(struct kvm *kvm) 161 { 162 struct kvm_memslots *slots; 163 struct kvm_memory_slot *memslot; 164 int idx; 165 166 idx = srcu_read_lock(&kvm->srcu); 167 spin_lock(&kvm->mmu_lock); 168 169 slots = kvm_memslots(kvm); 170 kvm_for_each_memslot(memslot, slots) 171 stage2_flush_memslot(kvm, memslot); 172 173 spin_unlock(&kvm->mmu_lock); 174 srcu_read_unlock(&kvm->srcu, idx); 175 } 176 177 /** 178 * free_hyp_pgds - free Hyp-mode page tables 179 */ 180 void free_hyp_pgds(void) 181 { 182 mutex_lock(&kvm_hyp_pgd_mutex); 183 if (hyp_pgtable) { 184 kvm_pgtable_hyp_destroy(hyp_pgtable); 185 kfree(hyp_pgtable); 186 } 187 mutex_unlock(&kvm_hyp_pgd_mutex); 188 } 189 190 static int __create_hyp_mappings(unsigned long start, unsigned long size, 191 unsigned long phys, enum kvm_pgtable_prot prot) 192 { 193 int err; 194 195 mutex_lock(&kvm_hyp_pgd_mutex); 196 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 197 mutex_unlock(&kvm_hyp_pgd_mutex); 198 199 return err; 200 } 201 202 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 203 { 204 if (!is_vmalloc_addr(kaddr)) { 205 BUG_ON(!virt_addr_valid(kaddr)); 206 return __pa(kaddr); 207 } else { 208 return page_to_phys(vmalloc_to_page(kaddr)) + 209 offset_in_page(kaddr); 210 } 211 } 212 213 /** 214 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 215 * @from: The virtual kernel start address of the range 216 * @to: The virtual kernel end address of the range (exclusive) 217 * @prot: The protection to be applied to this range 218 * 219 * The same virtual address as the kernel virtual address is also used 220 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 221 * physical pages. 222 */ 223 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 224 { 225 phys_addr_t phys_addr; 226 unsigned long virt_addr; 227 unsigned long start = kern_hyp_va((unsigned long)from); 228 unsigned long end = kern_hyp_va((unsigned long)to); 229 230 if (is_kernel_in_hyp_mode()) 231 return 0; 232 233 start = start & PAGE_MASK; 234 end = PAGE_ALIGN(end); 235 236 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 237 int err; 238 239 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 240 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 241 prot); 242 if (err) 243 return err; 244 } 245 246 return 0; 247 } 248 249 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 250 unsigned long *haddr, 251 enum kvm_pgtable_prot prot) 252 { 253 unsigned long base; 254 int ret = 0; 255 256 mutex_lock(&kvm_hyp_pgd_mutex); 257 258 /* 259 * This assumes that we have enough space below the idmap 260 * page to allocate our VAs. If not, the check below will 261 * kick. A potential alternative would be to detect that 262 * overflow and switch to an allocation above the idmap. 263 * 264 * The allocated size is always a multiple of PAGE_SIZE. 265 */ 266 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 267 base = io_map_base - size; 268 269 /* 270 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 271 * allocating the new area, as it would indicate we've 272 * overflowed the idmap/IO address range. 273 */ 274 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 275 ret = -ENOMEM; 276 else 277 io_map_base = base; 278 279 mutex_unlock(&kvm_hyp_pgd_mutex); 280 281 if (ret) 282 goto out; 283 284 ret = __create_hyp_mappings(base, size, phys_addr, prot); 285 if (ret) 286 goto out; 287 288 *haddr = base + offset_in_page(phys_addr); 289 out: 290 return ret; 291 } 292 293 /** 294 * create_hyp_io_mappings - Map IO into both kernel and HYP 295 * @phys_addr: The physical start address which gets mapped 296 * @size: Size of the region being mapped 297 * @kaddr: Kernel VA for this mapping 298 * @haddr: HYP VA for this mapping 299 */ 300 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 301 void __iomem **kaddr, 302 void __iomem **haddr) 303 { 304 unsigned long addr; 305 int ret; 306 307 *kaddr = ioremap(phys_addr, size); 308 if (!*kaddr) 309 return -ENOMEM; 310 311 if (is_kernel_in_hyp_mode()) { 312 *haddr = *kaddr; 313 return 0; 314 } 315 316 ret = __create_hyp_private_mapping(phys_addr, size, 317 &addr, PAGE_HYP_DEVICE); 318 if (ret) { 319 iounmap(*kaddr); 320 *kaddr = NULL; 321 *haddr = NULL; 322 return ret; 323 } 324 325 *haddr = (void __iomem *)addr; 326 return 0; 327 } 328 329 /** 330 * create_hyp_exec_mappings - Map an executable range into HYP 331 * @phys_addr: The physical start address which gets mapped 332 * @size: Size of the region being mapped 333 * @haddr: HYP VA for this mapping 334 */ 335 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 336 void **haddr) 337 { 338 unsigned long addr; 339 int ret; 340 341 BUG_ON(is_kernel_in_hyp_mode()); 342 343 ret = __create_hyp_private_mapping(phys_addr, size, 344 &addr, PAGE_HYP_EXEC); 345 if (ret) { 346 *haddr = NULL; 347 return ret; 348 } 349 350 *haddr = (void *)addr; 351 return 0; 352 } 353 354 /** 355 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 356 * @kvm: The pointer to the KVM structure 357 * @mmu: The pointer to the s2 MMU structure 358 * 359 * Allocates only the stage-2 HW PGD level table(s). 360 * Note we don't need locking here as this is only called when the VM is 361 * created, which can only be done once. 362 */ 363 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 364 { 365 int cpu, err; 366 struct kvm_pgtable *pgt; 367 368 if (mmu->pgt != NULL) { 369 kvm_err("kvm_arch already initialized?\n"); 370 return -EINVAL; 371 } 372 373 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL); 374 if (!pgt) 375 return -ENOMEM; 376 377 err = kvm_pgtable_stage2_init(pgt, kvm); 378 if (err) 379 goto out_free_pgtable; 380 381 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 382 if (!mmu->last_vcpu_ran) { 383 err = -ENOMEM; 384 goto out_destroy_pgtable; 385 } 386 387 for_each_possible_cpu(cpu) 388 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 389 390 mmu->kvm = kvm; 391 mmu->pgt = pgt; 392 mmu->pgd_phys = __pa(pgt->pgd); 393 mmu->vmid.vmid_gen = 0; 394 return 0; 395 396 out_destroy_pgtable: 397 kvm_pgtable_stage2_destroy(pgt); 398 out_free_pgtable: 399 kfree(pgt); 400 return err; 401 } 402 403 static void stage2_unmap_memslot(struct kvm *kvm, 404 struct kvm_memory_slot *memslot) 405 { 406 hva_t hva = memslot->userspace_addr; 407 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 408 phys_addr_t size = PAGE_SIZE * memslot->npages; 409 hva_t reg_end = hva + size; 410 411 /* 412 * A memory region could potentially cover multiple VMAs, and any holes 413 * between them, so iterate over all of them to find out if we should 414 * unmap any of them. 415 * 416 * +--------------------------------------------+ 417 * +---------------+----------------+ +----------------+ 418 * | : VMA 1 | VMA 2 | | VMA 3 : | 419 * +---------------+----------------+ +----------------+ 420 * | memory region | 421 * +--------------------------------------------+ 422 */ 423 do { 424 struct vm_area_struct *vma = find_vma(current->mm, hva); 425 hva_t vm_start, vm_end; 426 427 if (!vma || vma->vm_start >= reg_end) 428 break; 429 430 /* 431 * Take the intersection of this VMA with the memory region 432 */ 433 vm_start = max(hva, vma->vm_start); 434 vm_end = min(reg_end, vma->vm_end); 435 436 if (!(vma->vm_flags & VM_PFNMAP)) { 437 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 438 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 439 } 440 hva = vm_end; 441 } while (hva < reg_end); 442 } 443 444 /** 445 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 446 * @kvm: The struct kvm pointer 447 * 448 * Go through the memregions and unmap any regular RAM 449 * backing memory already mapped to the VM. 450 */ 451 void stage2_unmap_vm(struct kvm *kvm) 452 { 453 struct kvm_memslots *slots; 454 struct kvm_memory_slot *memslot; 455 int idx; 456 457 idx = srcu_read_lock(&kvm->srcu); 458 mmap_read_lock(current->mm); 459 spin_lock(&kvm->mmu_lock); 460 461 slots = kvm_memslots(kvm); 462 kvm_for_each_memslot(memslot, slots) 463 stage2_unmap_memslot(kvm, memslot); 464 465 spin_unlock(&kvm->mmu_lock); 466 mmap_read_unlock(current->mm); 467 srcu_read_unlock(&kvm->srcu, idx); 468 } 469 470 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 471 { 472 struct kvm *kvm = mmu->kvm; 473 struct kvm_pgtable *pgt = NULL; 474 475 spin_lock(&kvm->mmu_lock); 476 pgt = mmu->pgt; 477 if (pgt) { 478 mmu->pgd_phys = 0; 479 mmu->pgt = NULL; 480 free_percpu(mmu->last_vcpu_ran); 481 } 482 spin_unlock(&kvm->mmu_lock); 483 484 if (pgt) { 485 kvm_pgtable_stage2_destroy(pgt); 486 kfree(pgt); 487 } 488 } 489 490 /** 491 * kvm_phys_addr_ioremap - map a device range to guest IPA 492 * 493 * @kvm: The KVM pointer 494 * @guest_ipa: The IPA at which to insert the mapping 495 * @pa: The physical address of the device 496 * @size: The size of the mapping 497 * @writable: Whether or not to create a writable mapping 498 */ 499 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 500 phys_addr_t pa, unsigned long size, bool writable) 501 { 502 phys_addr_t addr; 503 int ret = 0; 504 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 505 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 506 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 507 KVM_PGTABLE_PROT_R | 508 (writable ? KVM_PGTABLE_PROT_W : 0); 509 510 size += offset_in_page(guest_ipa); 511 guest_ipa &= PAGE_MASK; 512 513 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 514 ret = kvm_mmu_topup_memory_cache(&cache, 515 kvm_mmu_cache_min_pages(kvm)); 516 if (ret) 517 break; 518 519 spin_lock(&kvm->mmu_lock); 520 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 521 &cache); 522 spin_unlock(&kvm->mmu_lock); 523 if (ret) 524 break; 525 526 pa += PAGE_SIZE; 527 } 528 529 kvm_mmu_free_memory_cache(&cache); 530 return ret; 531 } 532 533 /** 534 * stage2_wp_range() - write protect stage2 memory region range 535 * @mmu: The KVM stage-2 MMU pointer 536 * @addr: Start address of range 537 * @end: End address of range 538 */ 539 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 540 { 541 struct kvm *kvm = mmu->kvm; 542 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 543 } 544 545 /** 546 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 547 * @kvm: The KVM pointer 548 * @slot: The memory slot to write protect 549 * 550 * Called to start logging dirty pages after memory region 551 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 552 * all present PUD, PMD and PTEs are write protected in the memory region. 553 * Afterwards read of dirty page log can be called. 554 * 555 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 556 * serializing operations for VM memory regions. 557 */ 558 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 559 { 560 struct kvm_memslots *slots = kvm_memslots(kvm); 561 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 562 phys_addr_t start, end; 563 564 if (WARN_ON_ONCE(!memslot)) 565 return; 566 567 start = memslot->base_gfn << PAGE_SHIFT; 568 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 569 570 spin_lock(&kvm->mmu_lock); 571 stage2_wp_range(&kvm->arch.mmu, start, end); 572 spin_unlock(&kvm->mmu_lock); 573 kvm_flush_remote_tlbs(kvm); 574 } 575 576 /** 577 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 578 * @kvm: The KVM pointer 579 * @slot: The memory slot associated with mask 580 * @gfn_offset: The gfn offset in memory slot 581 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 582 * slot to be write protected 583 * 584 * Walks bits set in mask write protects the associated pte's. Caller must 585 * acquire kvm_mmu_lock. 586 */ 587 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 588 struct kvm_memory_slot *slot, 589 gfn_t gfn_offset, unsigned long mask) 590 { 591 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 592 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 593 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 594 595 stage2_wp_range(&kvm->arch.mmu, start, end); 596 } 597 598 /* 599 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 600 * dirty pages. 601 * 602 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 603 * enable dirty logging for them. 604 */ 605 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 606 struct kvm_memory_slot *slot, 607 gfn_t gfn_offset, unsigned long mask) 608 { 609 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 610 } 611 612 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 613 { 614 __clean_dcache_guest_page(pfn, size); 615 } 616 617 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 618 { 619 __invalidate_icache_guest_page(pfn, size); 620 } 621 622 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 623 { 624 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 625 } 626 627 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 628 unsigned long hva, 629 unsigned long map_size) 630 { 631 gpa_t gpa_start; 632 hva_t uaddr_start, uaddr_end; 633 size_t size; 634 635 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 636 if (map_size == PAGE_SIZE) 637 return true; 638 639 size = memslot->npages * PAGE_SIZE; 640 641 gpa_start = memslot->base_gfn << PAGE_SHIFT; 642 643 uaddr_start = memslot->userspace_addr; 644 uaddr_end = uaddr_start + size; 645 646 /* 647 * Pages belonging to memslots that don't have the same alignment 648 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 649 * PMD/PUD entries, because we'll end up mapping the wrong pages. 650 * 651 * Consider a layout like the following: 652 * 653 * memslot->userspace_addr: 654 * +-----+--------------------+--------------------+---+ 655 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 656 * +-----+--------------------+--------------------+---+ 657 * 658 * memslot->base_gfn << PAGE_SHIFT: 659 * +---+--------------------+--------------------+-----+ 660 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 661 * +---+--------------------+--------------------+-----+ 662 * 663 * If we create those stage-2 blocks, we'll end up with this incorrect 664 * mapping: 665 * d -> f 666 * e -> g 667 * f -> h 668 */ 669 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 670 return false; 671 672 /* 673 * Next, let's make sure we're not trying to map anything not covered 674 * by the memslot. This means we have to prohibit block size mappings 675 * for the beginning and end of a non-block aligned and non-block sized 676 * memory slot (illustrated by the head and tail parts of the 677 * userspace view above containing pages 'abcde' and 'xyz', 678 * respectively). 679 * 680 * Note that it doesn't matter if we do the check using the 681 * userspace_addr or the base_gfn, as both are equally aligned (per 682 * the check above) and equally sized. 683 */ 684 return (hva & ~(map_size - 1)) >= uaddr_start && 685 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 686 } 687 688 /* 689 * Check if the given hva is backed by a transparent huge page (THP) and 690 * whether it can be mapped using block mapping in stage2. If so, adjust 691 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 692 * supported. This will need to be updated to support other THP sizes. 693 * 694 * Returns the size of the mapping. 695 */ 696 static unsigned long 697 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 698 unsigned long hva, kvm_pfn_t *pfnp, 699 phys_addr_t *ipap) 700 { 701 kvm_pfn_t pfn = *pfnp; 702 703 /* 704 * Make sure the adjustment is done only for THP pages. Also make 705 * sure that the HVA and IPA are sufficiently aligned and that the 706 * block map is contained within the memslot. 707 */ 708 if (kvm_is_transparent_hugepage(pfn) && 709 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 710 /* 711 * The address we faulted on is backed by a transparent huge 712 * page. However, because we map the compound huge page and 713 * not the individual tail page, we need to transfer the 714 * refcount to the head page. We have to be careful that the 715 * THP doesn't start to split while we are adjusting the 716 * refcounts. 717 * 718 * We are sure this doesn't happen, because mmu_notifier_retry 719 * was successful and we are holding the mmu_lock, so if this 720 * THP is trying to split, it will be blocked in the mmu 721 * notifier before touching any of the pages, specifically 722 * before being able to call __split_huge_page_refcount(). 723 * 724 * We can therefore safely transfer the refcount from PG_tail 725 * to PG_head and switch the pfn from a tail page to the head 726 * page accordingly. 727 */ 728 *ipap &= PMD_MASK; 729 kvm_release_pfn_clean(pfn); 730 pfn &= ~(PTRS_PER_PMD - 1); 731 kvm_get_pfn(pfn); 732 *pfnp = pfn; 733 734 return PMD_SIZE; 735 } 736 737 /* Use page mapping if we cannot use block mapping. */ 738 return PAGE_SIZE; 739 } 740 741 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 742 struct kvm_memory_slot *memslot, unsigned long hva, 743 unsigned long fault_status) 744 { 745 int ret = 0; 746 bool write_fault, writable, force_pte = false; 747 bool exec_fault; 748 bool device = false; 749 unsigned long mmu_seq; 750 struct kvm *kvm = vcpu->kvm; 751 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 752 struct vm_area_struct *vma; 753 short vma_shift; 754 gfn_t gfn; 755 kvm_pfn_t pfn; 756 bool logging_active = memslot_is_logging(memslot); 757 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 758 unsigned long vma_pagesize, fault_granule; 759 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 760 struct kvm_pgtable *pgt; 761 762 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 763 write_fault = kvm_is_write_fault(vcpu); 764 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 765 VM_BUG_ON(write_fault && exec_fault); 766 767 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 768 kvm_err("Unexpected L2 read permission error\n"); 769 return -EFAULT; 770 } 771 772 /* Let's check if we will get back a huge page backed by hugetlbfs */ 773 mmap_read_lock(current->mm); 774 vma = find_vma_intersection(current->mm, hva, hva + 1); 775 if (unlikely(!vma)) { 776 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 777 mmap_read_unlock(current->mm); 778 return -EFAULT; 779 } 780 781 if (is_vm_hugetlb_page(vma)) 782 vma_shift = huge_page_shift(hstate_vma(vma)); 783 else 784 vma_shift = PAGE_SHIFT; 785 786 if (logging_active || 787 (vma->vm_flags & VM_PFNMAP)) { 788 force_pte = true; 789 vma_shift = PAGE_SHIFT; 790 } 791 792 switch (vma_shift) { 793 #ifndef __PAGETABLE_PMD_FOLDED 794 case PUD_SHIFT: 795 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 796 break; 797 fallthrough; 798 #endif 799 case CONT_PMD_SHIFT: 800 vma_shift = PMD_SHIFT; 801 fallthrough; 802 case PMD_SHIFT: 803 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 804 break; 805 fallthrough; 806 case CONT_PTE_SHIFT: 807 vma_shift = PAGE_SHIFT; 808 force_pte = true; 809 fallthrough; 810 case PAGE_SHIFT: 811 break; 812 default: 813 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 814 } 815 816 vma_pagesize = 1UL << vma_shift; 817 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 818 fault_ipa &= ~(vma_pagesize - 1); 819 820 gfn = fault_ipa >> PAGE_SHIFT; 821 mmap_read_unlock(current->mm); 822 823 /* 824 * Permission faults just need to update the existing leaf entry, 825 * and so normally don't require allocations from the memcache. The 826 * only exception to this is when dirty logging is enabled at runtime 827 * and a write fault needs to collapse a block entry into a table. 828 */ 829 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 830 ret = kvm_mmu_topup_memory_cache(memcache, 831 kvm_mmu_cache_min_pages(kvm)); 832 if (ret) 833 return ret; 834 } 835 836 mmu_seq = vcpu->kvm->mmu_notifier_seq; 837 /* 838 * Ensure the read of mmu_notifier_seq happens before we call 839 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 840 * the page we just got a reference to gets unmapped before we have a 841 * chance to grab the mmu_lock, which ensure that if the page gets 842 * unmapped afterwards, the call to kvm_unmap_hva will take it away 843 * from us again properly. This smp_rmb() interacts with the smp_wmb() 844 * in kvm_mmu_notifier_invalidate_<page|range_end>. 845 */ 846 smp_rmb(); 847 848 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); 849 if (pfn == KVM_PFN_ERR_HWPOISON) { 850 kvm_send_hwpoison_signal(hva, vma_shift); 851 return 0; 852 } 853 if (is_error_noslot_pfn(pfn)) 854 return -EFAULT; 855 856 if (kvm_is_device_pfn(pfn)) { 857 device = true; 858 force_pte = true; 859 } else if (logging_active && !write_fault) { 860 /* 861 * Only actually map the page as writable if this was a write 862 * fault. 863 */ 864 writable = false; 865 } 866 867 if (exec_fault && device) 868 return -ENOEXEC; 869 870 spin_lock(&kvm->mmu_lock); 871 pgt = vcpu->arch.hw_mmu->pgt; 872 if (mmu_notifier_retry(kvm, mmu_seq)) 873 goto out_unlock; 874 875 /* 876 * If we are not forced to use page mapping, check if we are 877 * backed by a THP and thus use block mapping if possible. 878 */ 879 if (vma_pagesize == PAGE_SIZE && !force_pte) 880 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 881 &pfn, &fault_ipa); 882 if (writable) 883 prot |= KVM_PGTABLE_PROT_W; 884 885 if (fault_status != FSC_PERM && !device) 886 clean_dcache_guest_page(pfn, vma_pagesize); 887 888 if (exec_fault) { 889 prot |= KVM_PGTABLE_PROT_X; 890 invalidate_icache_guest_page(pfn, vma_pagesize); 891 } 892 893 if (device) 894 prot |= KVM_PGTABLE_PROT_DEVICE; 895 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 896 prot |= KVM_PGTABLE_PROT_X; 897 898 /* 899 * Under the premise of getting a FSC_PERM fault, we just need to relax 900 * permissions only if vma_pagesize equals fault_granule. Otherwise, 901 * kvm_pgtable_stage2_map() should be called to change block size. 902 */ 903 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 904 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 905 } else { 906 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 907 __pfn_to_phys(pfn), prot, 908 memcache); 909 } 910 911 /* Mark the page dirty only if the fault is handled successfully */ 912 if (writable && !ret) { 913 kvm_set_pfn_dirty(pfn); 914 mark_page_dirty(kvm, gfn); 915 } 916 917 out_unlock: 918 spin_unlock(&kvm->mmu_lock); 919 kvm_set_pfn_accessed(pfn); 920 kvm_release_pfn_clean(pfn); 921 return ret != -EAGAIN ? ret : 0; 922 } 923 924 /* Resolve the access fault by making the page young again. */ 925 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 926 { 927 pte_t pte; 928 kvm_pte_t kpte; 929 struct kvm_s2_mmu *mmu; 930 931 trace_kvm_access_fault(fault_ipa); 932 933 spin_lock(&vcpu->kvm->mmu_lock); 934 mmu = vcpu->arch.hw_mmu; 935 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 936 spin_unlock(&vcpu->kvm->mmu_lock); 937 938 pte = __pte(kpte); 939 if (pte_valid(pte)) 940 kvm_set_pfn_accessed(pte_pfn(pte)); 941 } 942 943 /** 944 * kvm_handle_guest_abort - handles all 2nd stage aborts 945 * @vcpu: the VCPU pointer 946 * 947 * Any abort that gets to the host is almost guaranteed to be caused by a 948 * missing second stage translation table entry, which can mean that either the 949 * guest simply needs more memory and we must allocate an appropriate page or it 950 * can mean that the guest tried to access I/O memory, which is emulated by user 951 * space. The distinction is based on the IPA causing the fault and whether this 952 * memory region has been registered as standard RAM by user space. 953 */ 954 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 955 { 956 unsigned long fault_status; 957 phys_addr_t fault_ipa; 958 struct kvm_memory_slot *memslot; 959 unsigned long hva; 960 bool is_iabt, write_fault, writable; 961 gfn_t gfn; 962 int ret, idx; 963 964 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 965 966 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 967 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 968 969 /* Synchronous External Abort? */ 970 if (kvm_vcpu_abt_issea(vcpu)) { 971 /* 972 * For RAS the host kernel may handle this abort. 973 * There is no need to pass the error into the guest. 974 */ 975 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 976 kvm_inject_vabt(vcpu); 977 978 return 1; 979 } 980 981 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 982 kvm_vcpu_get_hfar(vcpu), fault_ipa); 983 984 /* Check the stage-2 fault is trans. fault or write fault */ 985 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 986 fault_status != FSC_ACCESS) { 987 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 988 kvm_vcpu_trap_get_class(vcpu), 989 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 990 (unsigned long)kvm_vcpu_get_esr(vcpu)); 991 return -EFAULT; 992 } 993 994 idx = srcu_read_lock(&vcpu->kvm->srcu); 995 996 gfn = fault_ipa >> PAGE_SHIFT; 997 memslot = gfn_to_memslot(vcpu->kvm, gfn); 998 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 999 write_fault = kvm_is_write_fault(vcpu); 1000 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1001 /* 1002 * The guest has put either its instructions or its page-tables 1003 * somewhere it shouldn't have. Userspace won't be able to do 1004 * anything about this (there's no syndrome for a start), so 1005 * re-inject the abort back into the guest. 1006 */ 1007 if (is_iabt) { 1008 ret = -ENOEXEC; 1009 goto out; 1010 } 1011 1012 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1013 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1014 ret = 1; 1015 goto out_unlock; 1016 } 1017 1018 /* 1019 * Check for a cache maintenance operation. Since we 1020 * ended-up here, we know it is outside of any memory 1021 * slot. But we can't find out if that is for a device, 1022 * or if the guest is just being stupid. The only thing 1023 * we know for sure is that this range cannot be cached. 1024 * 1025 * So let's assume that the guest is just being 1026 * cautious, and skip the instruction. 1027 */ 1028 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1029 kvm_incr_pc(vcpu); 1030 ret = 1; 1031 goto out_unlock; 1032 } 1033 1034 /* 1035 * The IPA is reported as [MAX:12], so we need to 1036 * complement it with the bottom 12 bits from the 1037 * faulting VA. This is always 12 bits, irrespective 1038 * of the page size. 1039 */ 1040 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1041 ret = io_mem_abort(vcpu, fault_ipa); 1042 goto out_unlock; 1043 } 1044 1045 /* Userspace should not be able to register out-of-bounds IPAs */ 1046 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1047 1048 if (fault_status == FSC_ACCESS) { 1049 handle_access_fault(vcpu, fault_ipa); 1050 ret = 1; 1051 goto out_unlock; 1052 } 1053 1054 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1055 if (ret == 0) 1056 ret = 1; 1057 out: 1058 if (ret == -ENOEXEC) { 1059 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1060 ret = 1; 1061 } 1062 out_unlock: 1063 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1064 return ret; 1065 } 1066 1067 static int handle_hva_to_gpa(struct kvm *kvm, 1068 unsigned long start, 1069 unsigned long end, 1070 int (*handler)(struct kvm *kvm, 1071 gpa_t gpa, u64 size, 1072 void *data), 1073 void *data) 1074 { 1075 struct kvm_memslots *slots; 1076 struct kvm_memory_slot *memslot; 1077 int ret = 0; 1078 1079 slots = kvm_memslots(kvm); 1080 1081 /* we only care about the pages that the guest sees */ 1082 kvm_for_each_memslot(memslot, slots) { 1083 unsigned long hva_start, hva_end; 1084 gfn_t gpa; 1085 1086 hva_start = max(start, memslot->userspace_addr); 1087 hva_end = min(end, memslot->userspace_addr + 1088 (memslot->npages << PAGE_SHIFT)); 1089 if (hva_start >= hva_end) 1090 continue; 1091 1092 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; 1093 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); 1094 } 1095 1096 return ret; 1097 } 1098 1099 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1100 { 1101 unsigned flags = *(unsigned *)data; 1102 bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE; 1103 1104 __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block); 1105 return 0; 1106 } 1107 1108 int kvm_unmap_hva_range(struct kvm *kvm, 1109 unsigned long start, unsigned long end, unsigned flags) 1110 { 1111 if (!kvm->arch.mmu.pgt) 1112 return 0; 1113 1114 trace_kvm_unmap_hva_range(start, end); 1115 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags); 1116 return 0; 1117 } 1118 1119 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1120 { 1121 kvm_pfn_t *pfn = (kvm_pfn_t *)data; 1122 1123 WARN_ON(size != PAGE_SIZE); 1124 1125 /* 1126 * The MMU notifiers will have unmapped a huge PMD before calling 1127 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and 1128 * therefore we never need to clear out a huge PMD through this 1129 * calling path and a memcache is not required. 1130 */ 1131 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE, 1132 __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL); 1133 return 0; 1134 } 1135 1136 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1137 { 1138 unsigned long end = hva + PAGE_SIZE; 1139 kvm_pfn_t pfn = pte_pfn(pte); 1140 1141 if (!kvm->arch.mmu.pgt) 1142 return 0; 1143 1144 trace_kvm_set_spte_hva(hva); 1145 1146 /* 1147 * We've moved a page around, probably through CoW, so let's treat it 1148 * just like a translation fault and clean the cache to the PoC. 1149 */ 1150 clean_dcache_guest_page(pfn, PAGE_SIZE); 1151 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn); 1152 return 0; 1153 } 1154 1155 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1156 { 1157 pte_t pte; 1158 kvm_pte_t kpte; 1159 1160 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1161 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa); 1162 pte = __pte(kpte); 1163 return pte_valid(pte) && pte_young(pte); 1164 } 1165 1166 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1167 { 1168 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1169 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa); 1170 } 1171 1172 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1173 { 1174 if (!kvm->arch.mmu.pgt) 1175 return 0; 1176 trace_kvm_age_hva(start, end); 1177 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 1178 } 1179 1180 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1181 { 1182 if (!kvm->arch.mmu.pgt) 1183 return 0; 1184 trace_kvm_test_age_hva(hva); 1185 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, 1186 kvm_test_age_hva_handler, NULL); 1187 } 1188 1189 phys_addr_t kvm_mmu_get_httbr(void) 1190 { 1191 return __pa(hyp_pgtable->pgd); 1192 } 1193 1194 phys_addr_t kvm_get_idmap_vector(void) 1195 { 1196 return hyp_idmap_vector; 1197 } 1198 1199 static int kvm_map_idmap_text(void) 1200 { 1201 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1202 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1203 PAGE_HYP_EXEC); 1204 if (err) 1205 kvm_err("Failed to idmap %lx-%lx\n", 1206 hyp_idmap_start, hyp_idmap_end); 1207 1208 return err; 1209 } 1210 1211 int kvm_mmu_init(void) 1212 { 1213 int err; 1214 u32 hyp_va_bits; 1215 1216 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1217 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1218 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1219 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1220 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1221 1222 /* 1223 * We rely on the linker script to ensure at build time that the HYP 1224 * init code does not cross a page boundary. 1225 */ 1226 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1227 1228 hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1229 kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits); 1230 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1231 kvm_debug("HYP VA range: %lx:%lx\n", 1232 kern_hyp_va(PAGE_OFFSET), 1233 kern_hyp_va((unsigned long)high_memory - 1)); 1234 1235 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1236 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1237 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1238 /* 1239 * The idmap page is intersecting with the VA space, 1240 * it is not safe to continue further. 1241 */ 1242 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1243 err = -EINVAL; 1244 goto out; 1245 } 1246 1247 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1248 if (!hyp_pgtable) { 1249 kvm_err("Hyp mode page-table not allocated\n"); 1250 err = -ENOMEM; 1251 goto out; 1252 } 1253 1254 err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits); 1255 if (err) 1256 goto out_free_pgtable; 1257 1258 err = kvm_map_idmap_text(); 1259 if (err) 1260 goto out_destroy_pgtable; 1261 1262 io_map_base = hyp_idmap_start; 1263 return 0; 1264 1265 out_destroy_pgtable: 1266 kvm_pgtable_hyp_destroy(hyp_pgtable); 1267 out_free_pgtable: 1268 kfree(hyp_pgtable); 1269 hyp_pgtable = NULL; 1270 out: 1271 return err; 1272 } 1273 1274 void kvm_arch_commit_memory_region(struct kvm *kvm, 1275 const struct kvm_userspace_memory_region *mem, 1276 struct kvm_memory_slot *old, 1277 const struct kvm_memory_slot *new, 1278 enum kvm_mr_change change) 1279 { 1280 /* 1281 * At this point memslot has been committed and there is an 1282 * allocated dirty_bitmap[], dirty pages will be tracked while the 1283 * memory slot is write protected. 1284 */ 1285 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1286 /* 1287 * If we're with initial-all-set, we don't need to write 1288 * protect any pages because they're all reported as dirty. 1289 * Huge pages and normal pages will be write protect gradually. 1290 */ 1291 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1292 kvm_mmu_wp_memory_region(kvm, mem->slot); 1293 } 1294 } 1295 } 1296 1297 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1298 struct kvm_memory_slot *memslot, 1299 const struct kvm_userspace_memory_region *mem, 1300 enum kvm_mr_change change) 1301 { 1302 hva_t hva = mem->userspace_addr; 1303 hva_t reg_end = hva + mem->memory_size; 1304 bool writable = !(mem->flags & KVM_MEM_READONLY); 1305 int ret = 0; 1306 1307 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1308 change != KVM_MR_FLAGS_ONLY) 1309 return 0; 1310 1311 /* 1312 * Prevent userspace from creating a memory region outside of the IPA 1313 * space addressable by the KVM guest IPA space. 1314 */ 1315 if (memslot->base_gfn + memslot->npages >= 1316 (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1317 return -EFAULT; 1318 1319 mmap_read_lock(current->mm); 1320 /* 1321 * A memory region could potentially cover multiple VMAs, and any holes 1322 * between them, so iterate over all of them to find out if we can map 1323 * any of them right now. 1324 * 1325 * +--------------------------------------------+ 1326 * +---------------+----------------+ +----------------+ 1327 * | : VMA 1 | VMA 2 | | VMA 3 : | 1328 * +---------------+----------------+ +----------------+ 1329 * | memory region | 1330 * +--------------------------------------------+ 1331 */ 1332 do { 1333 struct vm_area_struct *vma = find_vma(current->mm, hva); 1334 hva_t vm_start, vm_end; 1335 1336 if (!vma || vma->vm_start >= reg_end) 1337 break; 1338 1339 /* 1340 * Take the intersection of this VMA with the memory region 1341 */ 1342 vm_start = max(hva, vma->vm_start); 1343 vm_end = min(reg_end, vma->vm_end); 1344 1345 if (vma->vm_flags & VM_PFNMAP) { 1346 gpa_t gpa = mem->guest_phys_addr + 1347 (vm_start - mem->userspace_addr); 1348 phys_addr_t pa; 1349 1350 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 1351 pa += vm_start - vma->vm_start; 1352 1353 /* IO region dirty page logging not allowed */ 1354 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1355 ret = -EINVAL; 1356 goto out; 1357 } 1358 1359 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 1360 vm_end - vm_start, 1361 writable); 1362 if (ret) 1363 break; 1364 } 1365 hva = vm_end; 1366 } while (hva < reg_end); 1367 1368 if (change == KVM_MR_FLAGS_ONLY) 1369 goto out; 1370 1371 spin_lock(&kvm->mmu_lock); 1372 if (ret) 1373 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); 1374 else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1375 stage2_flush_memslot(kvm, memslot); 1376 spin_unlock(&kvm->mmu_lock); 1377 out: 1378 mmap_read_unlock(current->mm); 1379 return ret; 1380 } 1381 1382 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1383 { 1384 } 1385 1386 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1387 { 1388 } 1389 1390 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1391 { 1392 kvm_free_stage2_pgd(&kvm->arch.mmu); 1393 } 1394 1395 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1396 struct kvm_memory_slot *slot) 1397 { 1398 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1399 phys_addr_t size = slot->npages << PAGE_SHIFT; 1400 1401 spin_lock(&kvm->mmu_lock); 1402 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1403 spin_unlock(&kvm->mmu_lock); 1404 } 1405 1406 /* 1407 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1408 * 1409 * Main problems: 1410 * - S/W ops are local to a CPU (not broadcast) 1411 * - We have line migration behind our back (speculation) 1412 * - System caches don't support S/W at all (damn!) 1413 * 1414 * In the face of the above, the best we can do is to try and convert 1415 * S/W ops to VA ops. Because the guest is not allowed to infer the 1416 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1417 * which is a rather good thing for us. 1418 * 1419 * Also, it is only used when turning caches on/off ("The expected 1420 * usage of the cache maintenance instructions that operate by set/way 1421 * is associated with the cache maintenance instructions associated 1422 * with the powerdown and powerup of caches, if this is required by 1423 * the implementation."). 1424 * 1425 * We use the following policy: 1426 * 1427 * - If we trap a S/W operation, we enable VM trapping to detect 1428 * caches being turned on/off, and do a full clean. 1429 * 1430 * - We flush the caches on both caches being turned on and off. 1431 * 1432 * - Once the caches are enabled, we stop trapping VM ops. 1433 */ 1434 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1435 { 1436 unsigned long hcr = *vcpu_hcr(vcpu); 1437 1438 /* 1439 * If this is the first time we do a S/W operation 1440 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1441 * VM trapping. 1442 * 1443 * Otherwise, rely on the VM trapping to wait for the MMU + 1444 * Caches to be turned off. At that point, we'll be able to 1445 * clean the caches again. 1446 */ 1447 if (!(hcr & HCR_TVM)) { 1448 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1449 vcpu_has_cache_enabled(vcpu)); 1450 stage2_flush_vm(vcpu->kvm); 1451 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1452 } 1453 } 1454 1455 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1456 { 1457 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1458 1459 /* 1460 * If switching the MMU+caches on, need to invalidate the caches. 1461 * If switching it off, need to clean the caches. 1462 * Clean + invalidate does the trick always. 1463 */ 1464 if (now_enabled != was_enabled) 1465 stage2_flush_vm(vcpu->kvm); 1466 1467 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1468 if (now_enabled) 1469 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1470 1471 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1472 } 1473