1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 35 /* 36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 39 * long will also starve other vCPUs. We have to also make sure that the page 40 * tables are not freed while we released the lock. 41 */ 42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 43 phys_addr_t end, 44 int (*fn)(struct kvm_pgtable *, u64, u64), 45 bool resched) 46 { 47 int ret; 48 u64 next; 49 50 do { 51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 52 if (!pgt) 53 return -EINVAL; 54 55 next = stage2_pgd_addr_end(kvm, addr, end); 56 ret = fn(pgt, addr, next - addr); 57 if (ret) 58 break; 59 60 if (resched && next != end) 61 cond_resched_lock(&kvm->mmu_lock); 62 } while (addr = next, addr != end); 63 64 return ret; 65 } 66 67 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 68 stage2_apply_range(kvm, addr, end, fn, true) 69 70 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 71 { 72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 73 } 74 75 /** 76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 77 * @kvm: pointer to kvm structure. 78 * 79 * Interface to HYP function to flush all VM TLB entries 80 */ 81 void kvm_flush_remote_tlbs(struct kvm *kvm) 82 { 83 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 84 } 85 86 static bool kvm_is_device_pfn(unsigned long pfn) 87 { 88 return !pfn_valid(pfn); 89 } 90 91 /* 92 * Unmapping vs dcache management: 93 * 94 * If a guest maps certain memory pages as uncached, all writes will 95 * bypass the data cache and go directly to RAM. However, the CPUs 96 * can still speculate reads (not writes) and fill cache lines with 97 * data. 98 * 99 * Those cache lines will be *clean* cache lines though, so a 100 * clean+invalidate operation is equivalent to an invalidate 101 * operation, because no cache lines are marked dirty. 102 * 103 * Those clean cache lines could be filled prior to an uncached write 104 * by the guest, and the cache coherent IO subsystem would therefore 105 * end up writing old data to disk. 106 * 107 * This is why right after unmapping a page/section and invalidating 108 * the corresponding TLBs, we flush to make sure the IO subsystem will 109 * never hit in the cache. 110 * 111 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 112 * we then fully enforce cacheability of RAM, no matter what the guest 113 * does. 114 */ 115 /** 116 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 117 * @mmu: The KVM stage-2 MMU pointer 118 * @start: The intermediate physical base address of the range to unmap 119 * @size: The size of the area to unmap 120 * @may_block: Whether or not we are permitted to block 121 * 122 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 123 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 124 * destroying the VM), otherwise another faulting VCPU may come in and mess 125 * with things behind our backs. 126 */ 127 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 128 bool may_block) 129 { 130 struct kvm *kvm = mmu->kvm; 131 phys_addr_t end = start + size; 132 133 assert_spin_locked(&kvm->mmu_lock); 134 WARN_ON(size & ~PAGE_MASK); 135 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 136 may_block)); 137 } 138 139 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 140 { 141 __unmap_stage2_range(mmu, start, size, true); 142 } 143 144 static void stage2_flush_memslot(struct kvm *kvm, 145 struct kvm_memory_slot *memslot) 146 { 147 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 148 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 149 150 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 151 } 152 153 /** 154 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 155 * @kvm: The struct kvm pointer 156 * 157 * Go through the stage 2 page tables and invalidate any cache lines 158 * backing memory already mapped to the VM. 159 */ 160 static void stage2_flush_vm(struct kvm *kvm) 161 { 162 struct kvm_memslots *slots; 163 struct kvm_memory_slot *memslot; 164 int idx; 165 166 idx = srcu_read_lock(&kvm->srcu); 167 spin_lock(&kvm->mmu_lock); 168 169 slots = kvm_memslots(kvm); 170 kvm_for_each_memslot(memslot, slots) 171 stage2_flush_memslot(kvm, memslot); 172 173 spin_unlock(&kvm->mmu_lock); 174 srcu_read_unlock(&kvm->srcu, idx); 175 } 176 177 /** 178 * free_hyp_pgds - free Hyp-mode page tables 179 */ 180 void free_hyp_pgds(void) 181 { 182 mutex_lock(&kvm_hyp_pgd_mutex); 183 if (hyp_pgtable) { 184 kvm_pgtable_hyp_destroy(hyp_pgtable); 185 kfree(hyp_pgtable); 186 } 187 mutex_unlock(&kvm_hyp_pgd_mutex); 188 } 189 190 static int __create_hyp_mappings(unsigned long start, unsigned long size, 191 unsigned long phys, enum kvm_pgtable_prot prot) 192 { 193 int err; 194 195 mutex_lock(&kvm_hyp_pgd_mutex); 196 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 197 mutex_unlock(&kvm_hyp_pgd_mutex); 198 199 return err; 200 } 201 202 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 203 { 204 if (!is_vmalloc_addr(kaddr)) { 205 BUG_ON(!virt_addr_valid(kaddr)); 206 return __pa(kaddr); 207 } else { 208 return page_to_phys(vmalloc_to_page(kaddr)) + 209 offset_in_page(kaddr); 210 } 211 } 212 213 /** 214 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 215 * @from: The virtual kernel start address of the range 216 * @to: The virtual kernel end address of the range (exclusive) 217 * @prot: The protection to be applied to this range 218 * 219 * The same virtual address as the kernel virtual address is also used 220 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 221 * physical pages. 222 */ 223 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 224 { 225 phys_addr_t phys_addr; 226 unsigned long virt_addr; 227 unsigned long start = kern_hyp_va((unsigned long)from); 228 unsigned long end = kern_hyp_va((unsigned long)to); 229 230 if (is_kernel_in_hyp_mode()) 231 return 0; 232 233 start = start & PAGE_MASK; 234 end = PAGE_ALIGN(end); 235 236 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 237 int err; 238 239 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 240 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 241 prot); 242 if (err) 243 return err; 244 } 245 246 return 0; 247 } 248 249 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 250 unsigned long *haddr, 251 enum kvm_pgtable_prot prot) 252 { 253 unsigned long base; 254 int ret = 0; 255 256 mutex_lock(&kvm_hyp_pgd_mutex); 257 258 /* 259 * This assumes that we have enough space below the idmap 260 * page to allocate our VAs. If not, the check below will 261 * kick. A potential alternative would be to detect that 262 * overflow and switch to an allocation above the idmap. 263 * 264 * The allocated size is always a multiple of PAGE_SIZE. 265 */ 266 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 267 base = io_map_base - size; 268 269 /* 270 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 271 * allocating the new area, as it would indicate we've 272 * overflowed the idmap/IO address range. 273 */ 274 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 275 ret = -ENOMEM; 276 else 277 io_map_base = base; 278 279 mutex_unlock(&kvm_hyp_pgd_mutex); 280 281 if (ret) 282 goto out; 283 284 ret = __create_hyp_mappings(base, size, phys_addr, prot); 285 if (ret) 286 goto out; 287 288 *haddr = base + offset_in_page(phys_addr); 289 out: 290 return ret; 291 } 292 293 /** 294 * create_hyp_io_mappings - Map IO into both kernel and HYP 295 * @phys_addr: The physical start address which gets mapped 296 * @size: Size of the region being mapped 297 * @kaddr: Kernel VA for this mapping 298 * @haddr: HYP VA for this mapping 299 */ 300 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 301 void __iomem **kaddr, 302 void __iomem **haddr) 303 { 304 unsigned long addr; 305 int ret; 306 307 *kaddr = ioremap(phys_addr, size); 308 if (!*kaddr) 309 return -ENOMEM; 310 311 if (is_kernel_in_hyp_mode()) { 312 *haddr = *kaddr; 313 return 0; 314 } 315 316 ret = __create_hyp_private_mapping(phys_addr, size, 317 &addr, PAGE_HYP_DEVICE); 318 if (ret) { 319 iounmap(*kaddr); 320 *kaddr = NULL; 321 *haddr = NULL; 322 return ret; 323 } 324 325 *haddr = (void __iomem *)addr; 326 return 0; 327 } 328 329 /** 330 * create_hyp_exec_mappings - Map an executable range into HYP 331 * @phys_addr: The physical start address which gets mapped 332 * @size: Size of the region being mapped 333 * @haddr: HYP VA for this mapping 334 */ 335 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 336 void **haddr) 337 { 338 unsigned long addr; 339 int ret; 340 341 BUG_ON(is_kernel_in_hyp_mode()); 342 343 ret = __create_hyp_private_mapping(phys_addr, size, 344 &addr, PAGE_HYP_EXEC); 345 if (ret) { 346 *haddr = NULL; 347 return ret; 348 } 349 350 *haddr = (void *)addr; 351 return 0; 352 } 353 354 /** 355 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure 356 * @kvm: The pointer to the KVM structure 357 * @mmu: The pointer to the s2 MMU structure 358 * 359 * Allocates only the stage-2 HW PGD level table(s). 360 * Note we don't need locking here as this is only called when the VM is 361 * created, which can only be done once. 362 */ 363 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 364 { 365 int cpu, err; 366 struct kvm_pgtable *pgt; 367 368 if (mmu->pgt != NULL) { 369 kvm_err("kvm_arch already initialized?\n"); 370 return -EINVAL; 371 } 372 373 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL); 374 if (!pgt) 375 return -ENOMEM; 376 377 err = kvm_pgtable_stage2_init(pgt, kvm); 378 if (err) 379 goto out_free_pgtable; 380 381 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 382 if (!mmu->last_vcpu_ran) { 383 err = -ENOMEM; 384 goto out_destroy_pgtable; 385 } 386 387 for_each_possible_cpu(cpu) 388 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 389 390 mmu->kvm = kvm; 391 mmu->pgt = pgt; 392 mmu->pgd_phys = __pa(pgt->pgd); 393 mmu->vmid.vmid_gen = 0; 394 return 0; 395 396 out_destroy_pgtable: 397 kvm_pgtable_stage2_destroy(pgt); 398 out_free_pgtable: 399 kfree(pgt); 400 return err; 401 } 402 403 static void stage2_unmap_memslot(struct kvm *kvm, 404 struct kvm_memory_slot *memslot) 405 { 406 hva_t hva = memslot->userspace_addr; 407 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 408 phys_addr_t size = PAGE_SIZE * memslot->npages; 409 hva_t reg_end = hva + size; 410 411 /* 412 * A memory region could potentially cover multiple VMAs, and any holes 413 * between them, so iterate over all of them to find out if we should 414 * unmap any of them. 415 * 416 * +--------------------------------------------+ 417 * +---------------+----------------+ +----------------+ 418 * | : VMA 1 | VMA 2 | | VMA 3 : | 419 * +---------------+----------------+ +----------------+ 420 * | memory region | 421 * +--------------------------------------------+ 422 */ 423 do { 424 struct vm_area_struct *vma = find_vma(current->mm, hva); 425 hva_t vm_start, vm_end; 426 427 if (!vma || vma->vm_start >= reg_end) 428 break; 429 430 /* 431 * Take the intersection of this VMA with the memory region 432 */ 433 vm_start = max(hva, vma->vm_start); 434 vm_end = min(reg_end, vma->vm_end); 435 436 if (!(vma->vm_flags & VM_PFNMAP)) { 437 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 438 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 439 } 440 hva = vm_end; 441 } while (hva < reg_end); 442 } 443 444 /** 445 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 446 * @kvm: The struct kvm pointer 447 * 448 * Go through the memregions and unmap any regular RAM 449 * backing memory already mapped to the VM. 450 */ 451 void stage2_unmap_vm(struct kvm *kvm) 452 { 453 struct kvm_memslots *slots; 454 struct kvm_memory_slot *memslot; 455 int idx; 456 457 idx = srcu_read_lock(&kvm->srcu); 458 mmap_read_lock(current->mm); 459 spin_lock(&kvm->mmu_lock); 460 461 slots = kvm_memslots(kvm); 462 kvm_for_each_memslot(memslot, slots) 463 stage2_unmap_memslot(kvm, memslot); 464 465 spin_unlock(&kvm->mmu_lock); 466 mmap_read_unlock(current->mm); 467 srcu_read_unlock(&kvm->srcu, idx); 468 } 469 470 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 471 { 472 struct kvm *kvm = mmu->kvm; 473 struct kvm_pgtable *pgt = NULL; 474 475 spin_lock(&kvm->mmu_lock); 476 pgt = mmu->pgt; 477 if (pgt) { 478 mmu->pgd_phys = 0; 479 mmu->pgt = NULL; 480 free_percpu(mmu->last_vcpu_ran); 481 } 482 spin_unlock(&kvm->mmu_lock); 483 484 if (pgt) { 485 kvm_pgtable_stage2_destroy(pgt); 486 kfree(pgt); 487 } 488 } 489 490 /** 491 * kvm_phys_addr_ioremap - map a device range to guest IPA 492 * 493 * @kvm: The KVM pointer 494 * @guest_ipa: The IPA at which to insert the mapping 495 * @pa: The physical address of the device 496 * @size: The size of the mapping 497 * @writable: Whether or not to create a writable mapping 498 */ 499 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 500 phys_addr_t pa, unsigned long size, bool writable) 501 { 502 phys_addr_t addr; 503 int ret = 0; 504 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; 505 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 506 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 507 KVM_PGTABLE_PROT_R | 508 (writable ? KVM_PGTABLE_PROT_W : 0); 509 510 size += offset_in_page(guest_ipa); 511 guest_ipa &= PAGE_MASK; 512 513 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 514 ret = kvm_mmu_topup_memory_cache(&cache, 515 kvm_mmu_cache_min_pages(kvm)); 516 if (ret) 517 break; 518 519 spin_lock(&kvm->mmu_lock); 520 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 521 &cache); 522 spin_unlock(&kvm->mmu_lock); 523 if (ret) 524 break; 525 526 pa += PAGE_SIZE; 527 } 528 529 kvm_mmu_free_memory_cache(&cache); 530 return ret; 531 } 532 533 /** 534 * stage2_wp_range() - write protect stage2 memory region range 535 * @mmu: The KVM stage-2 MMU pointer 536 * @addr: Start address of range 537 * @end: End address of range 538 */ 539 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 540 { 541 struct kvm *kvm = mmu->kvm; 542 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 543 } 544 545 /** 546 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 547 * @kvm: The KVM pointer 548 * @slot: The memory slot to write protect 549 * 550 * Called to start logging dirty pages after memory region 551 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 552 * all present PUD, PMD and PTEs are write protected in the memory region. 553 * Afterwards read of dirty page log can be called. 554 * 555 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 556 * serializing operations for VM memory regions. 557 */ 558 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 559 { 560 struct kvm_memslots *slots = kvm_memslots(kvm); 561 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 562 phys_addr_t start, end; 563 564 if (WARN_ON_ONCE(!memslot)) 565 return; 566 567 start = memslot->base_gfn << PAGE_SHIFT; 568 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 569 570 spin_lock(&kvm->mmu_lock); 571 stage2_wp_range(&kvm->arch.mmu, start, end); 572 spin_unlock(&kvm->mmu_lock); 573 kvm_flush_remote_tlbs(kvm); 574 } 575 576 /** 577 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 578 * @kvm: The KVM pointer 579 * @slot: The memory slot associated with mask 580 * @gfn_offset: The gfn offset in memory slot 581 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 582 * slot to be write protected 583 * 584 * Walks bits set in mask write protects the associated pte's. Caller must 585 * acquire kvm_mmu_lock. 586 */ 587 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 588 struct kvm_memory_slot *slot, 589 gfn_t gfn_offset, unsigned long mask) 590 { 591 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 592 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 593 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 594 595 stage2_wp_range(&kvm->arch.mmu, start, end); 596 } 597 598 /* 599 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 600 * dirty pages. 601 * 602 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 603 * enable dirty logging for them. 604 */ 605 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 606 struct kvm_memory_slot *slot, 607 gfn_t gfn_offset, unsigned long mask) 608 { 609 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 610 } 611 612 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 613 { 614 __clean_dcache_guest_page(pfn, size); 615 } 616 617 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) 618 { 619 __invalidate_icache_guest_page(pfn, size); 620 } 621 622 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 623 { 624 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 625 } 626 627 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 628 unsigned long hva, 629 unsigned long map_size) 630 { 631 gpa_t gpa_start; 632 hva_t uaddr_start, uaddr_end; 633 size_t size; 634 635 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 636 if (map_size == PAGE_SIZE) 637 return true; 638 639 size = memslot->npages * PAGE_SIZE; 640 641 gpa_start = memslot->base_gfn << PAGE_SHIFT; 642 643 uaddr_start = memslot->userspace_addr; 644 uaddr_end = uaddr_start + size; 645 646 /* 647 * Pages belonging to memslots that don't have the same alignment 648 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 649 * PMD/PUD entries, because we'll end up mapping the wrong pages. 650 * 651 * Consider a layout like the following: 652 * 653 * memslot->userspace_addr: 654 * +-----+--------------------+--------------------+---+ 655 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 656 * +-----+--------------------+--------------------+---+ 657 * 658 * memslot->base_gfn << PAGE_SHIFT: 659 * +---+--------------------+--------------------+-----+ 660 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 661 * +---+--------------------+--------------------+-----+ 662 * 663 * If we create those stage-2 blocks, we'll end up with this incorrect 664 * mapping: 665 * d -> f 666 * e -> g 667 * f -> h 668 */ 669 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 670 return false; 671 672 /* 673 * Next, let's make sure we're not trying to map anything not covered 674 * by the memslot. This means we have to prohibit block size mappings 675 * for the beginning and end of a non-block aligned and non-block sized 676 * memory slot (illustrated by the head and tail parts of the 677 * userspace view above containing pages 'abcde' and 'xyz', 678 * respectively). 679 * 680 * Note that it doesn't matter if we do the check using the 681 * userspace_addr or the base_gfn, as both are equally aligned (per 682 * the check above) and equally sized. 683 */ 684 return (hva & ~(map_size - 1)) >= uaddr_start && 685 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 686 } 687 688 /* 689 * Check if the given hva is backed by a transparent huge page (THP) and 690 * whether it can be mapped using block mapping in stage2. If so, adjust 691 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 692 * supported. This will need to be updated to support other THP sizes. 693 * 694 * Returns the size of the mapping. 695 */ 696 static unsigned long 697 transparent_hugepage_adjust(struct kvm_memory_slot *memslot, 698 unsigned long hva, kvm_pfn_t *pfnp, 699 phys_addr_t *ipap) 700 { 701 kvm_pfn_t pfn = *pfnp; 702 703 /* 704 * Make sure the adjustment is done only for THP pages. Also make 705 * sure that the HVA and IPA are sufficiently aligned and that the 706 * block map is contained within the memslot. 707 */ 708 if (kvm_is_transparent_hugepage(pfn) && 709 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { 710 /* 711 * The address we faulted on is backed by a transparent huge 712 * page. However, because we map the compound huge page and 713 * not the individual tail page, we need to transfer the 714 * refcount to the head page. We have to be careful that the 715 * THP doesn't start to split while we are adjusting the 716 * refcounts. 717 * 718 * We are sure this doesn't happen, because mmu_notifier_retry 719 * was successful and we are holding the mmu_lock, so if this 720 * THP is trying to split, it will be blocked in the mmu 721 * notifier before touching any of the pages, specifically 722 * before being able to call __split_huge_page_refcount(). 723 * 724 * We can therefore safely transfer the refcount from PG_tail 725 * to PG_head and switch the pfn from a tail page to the head 726 * page accordingly. 727 */ 728 *ipap &= PMD_MASK; 729 kvm_release_pfn_clean(pfn); 730 pfn &= ~(PTRS_PER_PMD - 1); 731 kvm_get_pfn(pfn); 732 *pfnp = pfn; 733 734 return PMD_SIZE; 735 } 736 737 /* Use page mapping if we cannot use block mapping. */ 738 return PAGE_SIZE; 739 } 740 741 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 742 struct kvm_memory_slot *memslot, unsigned long hva, 743 unsigned long fault_status) 744 { 745 int ret = 0; 746 bool write_fault, writable, force_pte = false; 747 bool exec_fault; 748 bool device = false; 749 unsigned long mmu_seq; 750 struct kvm *kvm = vcpu->kvm; 751 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 752 struct vm_area_struct *vma; 753 short vma_shift; 754 gfn_t gfn; 755 kvm_pfn_t pfn; 756 bool logging_active = memslot_is_logging(memslot); 757 unsigned long vma_pagesize; 758 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 759 struct kvm_pgtable *pgt; 760 761 write_fault = kvm_is_write_fault(vcpu); 762 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 763 VM_BUG_ON(write_fault && exec_fault); 764 765 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 766 kvm_err("Unexpected L2 read permission error\n"); 767 return -EFAULT; 768 } 769 770 /* Let's check if we will get back a huge page backed by hugetlbfs */ 771 mmap_read_lock(current->mm); 772 vma = find_vma_intersection(current->mm, hva, hva + 1); 773 if (unlikely(!vma)) { 774 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 775 mmap_read_unlock(current->mm); 776 return -EFAULT; 777 } 778 779 if (is_vm_hugetlb_page(vma)) 780 vma_shift = huge_page_shift(hstate_vma(vma)); 781 else 782 vma_shift = PAGE_SHIFT; 783 784 if (logging_active || 785 (vma->vm_flags & VM_PFNMAP)) { 786 force_pte = true; 787 vma_shift = PAGE_SHIFT; 788 } 789 790 switch (vma_shift) { 791 #ifndef __PAGETABLE_PMD_FOLDED 792 case PUD_SHIFT: 793 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 794 break; 795 fallthrough; 796 #endif 797 case CONT_PMD_SHIFT: 798 vma_shift = PMD_SHIFT; 799 fallthrough; 800 case PMD_SHIFT: 801 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 802 break; 803 fallthrough; 804 case CONT_PTE_SHIFT: 805 vma_shift = PAGE_SHIFT; 806 force_pte = true; 807 fallthrough; 808 case PAGE_SHIFT: 809 break; 810 default: 811 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 812 } 813 814 vma_pagesize = 1UL << vma_shift; 815 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 816 fault_ipa &= ~(vma_pagesize - 1); 817 818 gfn = fault_ipa >> PAGE_SHIFT; 819 mmap_read_unlock(current->mm); 820 821 /* 822 * Permission faults just need to update the existing leaf entry, 823 * and so normally don't require allocations from the memcache. The 824 * only exception to this is when dirty logging is enabled at runtime 825 * and a write fault needs to collapse a block entry into a table. 826 */ 827 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 828 ret = kvm_mmu_topup_memory_cache(memcache, 829 kvm_mmu_cache_min_pages(kvm)); 830 if (ret) 831 return ret; 832 } 833 834 mmu_seq = vcpu->kvm->mmu_notifier_seq; 835 /* 836 * Ensure the read of mmu_notifier_seq happens before we call 837 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 838 * the page we just got a reference to gets unmapped before we have a 839 * chance to grab the mmu_lock, which ensure that if the page gets 840 * unmapped afterwards, the call to kvm_unmap_hva will take it away 841 * from us again properly. This smp_rmb() interacts with the smp_wmb() 842 * in kvm_mmu_notifier_invalidate_<page|range_end>. 843 */ 844 smp_rmb(); 845 846 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); 847 if (pfn == KVM_PFN_ERR_HWPOISON) { 848 kvm_send_hwpoison_signal(hva, vma_shift); 849 return 0; 850 } 851 if (is_error_noslot_pfn(pfn)) 852 return -EFAULT; 853 854 if (kvm_is_device_pfn(pfn)) { 855 device = true; 856 force_pte = true; 857 } else if (logging_active && !write_fault) { 858 /* 859 * Only actually map the page as writable if this was a write 860 * fault. 861 */ 862 writable = false; 863 } 864 865 if (exec_fault && device) 866 return -ENOEXEC; 867 868 spin_lock(&kvm->mmu_lock); 869 pgt = vcpu->arch.hw_mmu->pgt; 870 if (mmu_notifier_retry(kvm, mmu_seq)) 871 goto out_unlock; 872 873 /* 874 * If we are not forced to use page mapping, check if we are 875 * backed by a THP and thus use block mapping if possible. 876 */ 877 if (vma_pagesize == PAGE_SIZE && !force_pte) 878 vma_pagesize = transparent_hugepage_adjust(memslot, hva, 879 &pfn, &fault_ipa); 880 if (writable) { 881 prot |= KVM_PGTABLE_PROT_W; 882 kvm_set_pfn_dirty(pfn); 883 mark_page_dirty(kvm, gfn); 884 } 885 886 if (fault_status != FSC_PERM && !device) 887 clean_dcache_guest_page(pfn, vma_pagesize); 888 889 if (exec_fault) { 890 prot |= KVM_PGTABLE_PROT_X; 891 invalidate_icache_guest_page(pfn, vma_pagesize); 892 } 893 894 if (device) 895 prot |= KVM_PGTABLE_PROT_DEVICE; 896 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 897 prot |= KVM_PGTABLE_PROT_X; 898 899 if (fault_status == FSC_PERM && !(logging_active && writable)) { 900 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 901 } else { 902 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 903 __pfn_to_phys(pfn), prot, 904 memcache); 905 } 906 907 out_unlock: 908 spin_unlock(&kvm->mmu_lock); 909 kvm_set_pfn_accessed(pfn); 910 kvm_release_pfn_clean(pfn); 911 return ret; 912 } 913 914 /* Resolve the access fault by making the page young again. */ 915 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 916 { 917 pte_t pte; 918 kvm_pte_t kpte; 919 struct kvm_s2_mmu *mmu; 920 921 trace_kvm_access_fault(fault_ipa); 922 923 spin_lock(&vcpu->kvm->mmu_lock); 924 mmu = vcpu->arch.hw_mmu; 925 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 926 spin_unlock(&vcpu->kvm->mmu_lock); 927 928 pte = __pte(kpte); 929 if (pte_valid(pte)) 930 kvm_set_pfn_accessed(pte_pfn(pte)); 931 } 932 933 /** 934 * kvm_handle_guest_abort - handles all 2nd stage aborts 935 * @vcpu: the VCPU pointer 936 * 937 * Any abort that gets to the host is almost guaranteed to be caused by a 938 * missing second stage translation table entry, which can mean that either the 939 * guest simply needs more memory and we must allocate an appropriate page or it 940 * can mean that the guest tried to access I/O memory, which is emulated by user 941 * space. The distinction is based on the IPA causing the fault and whether this 942 * memory region has been registered as standard RAM by user space. 943 */ 944 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 945 { 946 unsigned long fault_status; 947 phys_addr_t fault_ipa; 948 struct kvm_memory_slot *memslot; 949 unsigned long hva; 950 bool is_iabt, write_fault, writable; 951 gfn_t gfn; 952 int ret, idx; 953 954 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 955 956 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 957 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 958 959 /* Synchronous External Abort? */ 960 if (kvm_vcpu_abt_issea(vcpu)) { 961 /* 962 * For RAS the host kernel may handle this abort. 963 * There is no need to pass the error into the guest. 964 */ 965 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 966 kvm_inject_vabt(vcpu); 967 968 return 1; 969 } 970 971 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 972 kvm_vcpu_get_hfar(vcpu), fault_ipa); 973 974 /* Check the stage-2 fault is trans. fault or write fault */ 975 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 976 fault_status != FSC_ACCESS) { 977 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 978 kvm_vcpu_trap_get_class(vcpu), 979 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 980 (unsigned long)kvm_vcpu_get_esr(vcpu)); 981 return -EFAULT; 982 } 983 984 idx = srcu_read_lock(&vcpu->kvm->srcu); 985 986 gfn = fault_ipa >> PAGE_SHIFT; 987 memslot = gfn_to_memslot(vcpu->kvm, gfn); 988 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 989 write_fault = kvm_is_write_fault(vcpu); 990 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 991 /* 992 * The guest has put either its instructions or its page-tables 993 * somewhere it shouldn't have. Userspace won't be able to do 994 * anything about this (there's no syndrome for a start), so 995 * re-inject the abort back into the guest. 996 */ 997 if (is_iabt) { 998 ret = -ENOEXEC; 999 goto out; 1000 } 1001 1002 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1003 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1004 ret = 1; 1005 goto out_unlock; 1006 } 1007 1008 /* 1009 * Check for a cache maintenance operation. Since we 1010 * ended-up here, we know it is outside of any memory 1011 * slot. But we can't find out if that is for a device, 1012 * or if the guest is just being stupid. The only thing 1013 * we know for sure is that this range cannot be cached. 1014 * 1015 * So let's assume that the guest is just being 1016 * cautious, and skip the instruction. 1017 */ 1018 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1019 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); 1020 ret = 1; 1021 goto out_unlock; 1022 } 1023 1024 /* 1025 * The IPA is reported as [MAX:12], so we need to 1026 * complement it with the bottom 12 bits from the 1027 * faulting VA. This is always 12 bits, irrespective 1028 * of the page size. 1029 */ 1030 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1031 ret = io_mem_abort(vcpu, fault_ipa); 1032 goto out_unlock; 1033 } 1034 1035 /* Userspace should not be able to register out-of-bounds IPAs */ 1036 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1037 1038 if (fault_status == FSC_ACCESS) { 1039 handle_access_fault(vcpu, fault_ipa); 1040 ret = 1; 1041 goto out_unlock; 1042 } 1043 1044 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1045 if (ret == 0) 1046 ret = 1; 1047 out: 1048 if (ret == -ENOEXEC) { 1049 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1050 ret = 1; 1051 } 1052 out_unlock: 1053 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1054 return ret; 1055 } 1056 1057 static int handle_hva_to_gpa(struct kvm *kvm, 1058 unsigned long start, 1059 unsigned long end, 1060 int (*handler)(struct kvm *kvm, 1061 gpa_t gpa, u64 size, 1062 void *data), 1063 void *data) 1064 { 1065 struct kvm_memslots *slots; 1066 struct kvm_memory_slot *memslot; 1067 int ret = 0; 1068 1069 slots = kvm_memslots(kvm); 1070 1071 /* we only care about the pages that the guest sees */ 1072 kvm_for_each_memslot(memslot, slots) { 1073 unsigned long hva_start, hva_end; 1074 gfn_t gpa; 1075 1076 hva_start = max(start, memslot->userspace_addr); 1077 hva_end = min(end, memslot->userspace_addr + 1078 (memslot->npages << PAGE_SHIFT)); 1079 if (hva_start >= hva_end) 1080 continue; 1081 1082 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; 1083 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); 1084 } 1085 1086 return ret; 1087 } 1088 1089 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1090 { 1091 unsigned flags = *(unsigned *)data; 1092 bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE; 1093 1094 __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block); 1095 return 0; 1096 } 1097 1098 int kvm_unmap_hva_range(struct kvm *kvm, 1099 unsigned long start, unsigned long end, unsigned flags) 1100 { 1101 if (!kvm->arch.mmu.pgt) 1102 return 0; 1103 1104 trace_kvm_unmap_hva_range(start, end); 1105 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags); 1106 return 0; 1107 } 1108 1109 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1110 { 1111 kvm_pfn_t *pfn = (kvm_pfn_t *)data; 1112 1113 WARN_ON(size != PAGE_SIZE); 1114 1115 /* 1116 * The MMU notifiers will have unmapped a huge PMD before calling 1117 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and 1118 * therefore we never need to clear out a huge PMD through this 1119 * calling path and a memcache is not required. 1120 */ 1121 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE, 1122 __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL); 1123 return 0; 1124 } 1125 1126 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 1127 { 1128 unsigned long end = hva + PAGE_SIZE; 1129 kvm_pfn_t pfn = pte_pfn(pte); 1130 1131 if (!kvm->arch.mmu.pgt) 1132 return 0; 1133 1134 trace_kvm_set_spte_hva(hva); 1135 1136 /* 1137 * We've moved a page around, probably through CoW, so let's treat it 1138 * just like a translation fault and clean the cache to the PoC. 1139 */ 1140 clean_dcache_guest_page(pfn, PAGE_SIZE); 1141 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn); 1142 return 0; 1143 } 1144 1145 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1146 { 1147 pte_t pte; 1148 kvm_pte_t kpte; 1149 1150 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1151 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa); 1152 pte = __pte(kpte); 1153 return pte_valid(pte) && pte_young(pte); 1154 } 1155 1156 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) 1157 { 1158 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1159 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa); 1160 } 1161 1162 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 1163 { 1164 if (!kvm->arch.mmu.pgt) 1165 return 0; 1166 trace_kvm_age_hva(start, end); 1167 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 1168 } 1169 1170 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 1171 { 1172 if (!kvm->arch.mmu.pgt) 1173 return 0; 1174 trace_kvm_test_age_hva(hva); 1175 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, 1176 kvm_test_age_hva_handler, NULL); 1177 } 1178 1179 phys_addr_t kvm_mmu_get_httbr(void) 1180 { 1181 return __pa(hyp_pgtable->pgd); 1182 } 1183 1184 phys_addr_t kvm_get_idmap_vector(void) 1185 { 1186 return hyp_idmap_vector; 1187 } 1188 1189 static int kvm_map_idmap_text(void) 1190 { 1191 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1192 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1193 PAGE_HYP_EXEC); 1194 if (err) 1195 kvm_err("Failed to idmap %lx-%lx\n", 1196 hyp_idmap_start, hyp_idmap_end); 1197 1198 return err; 1199 } 1200 1201 int kvm_mmu_init(void) 1202 { 1203 int err; 1204 u32 hyp_va_bits; 1205 1206 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1207 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1208 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1209 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1210 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1211 1212 /* 1213 * We rely on the linker script to ensure at build time that the HYP 1214 * init code does not cross a page boundary. 1215 */ 1216 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1217 1218 hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1219 kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits); 1220 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1221 kvm_debug("HYP VA range: %lx:%lx\n", 1222 kern_hyp_va(PAGE_OFFSET), 1223 kern_hyp_va((unsigned long)high_memory - 1)); 1224 1225 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1226 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1227 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1228 /* 1229 * The idmap page is intersecting with the VA space, 1230 * it is not safe to continue further. 1231 */ 1232 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1233 err = -EINVAL; 1234 goto out; 1235 } 1236 1237 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1238 if (!hyp_pgtable) { 1239 kvm_err("Hyp mode page-table not allocated\n"); 1240 err = -ENOMEM; 1241 goto out; 1242 } 1243 1244 err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits); 1245 if (err) 1246 goto out_free_pgtable; 1247 1248 err = kvm_map_idmap_text(); 1249 if (err) 1250 goto out_destroy_pgtable; 1251 1252 io_map_base = hyp_idmap_start; 1253 return 0; 1254 1255 out_destroy_pgtable: 1256 kvm_pgtable_hyp_destroy(hyp_pgtable); 1257 out_free_pgtable: 1258 kfree(hyp_pgtable); 1259 hyp_pgtable = NULL; 1260 out: 1261 return err; 1262 } 1263 1264 void kvm_arch_commit_memory_region(struct kvm *kvm, 1265 const struct kvm_userspace_memory_region *mem, 1266 struct kvm_memory_slot *old, 1267 const struct kvm_memory_slot *new, 1268 enum kvm_mr_change change) 1269 { 1270 /* 1271 * At this point memslot has been committed and there is an 1272 * allocated dirty_bitmap[], dirty pages will be tracked while the 1273 * memory slot is write protected. 1274 */ 1275 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1276 /* 1277 * If we're with initial-all-set, we don't need to write 1278 * protect any pages because they're all reported as dirty. 1279 * Huge pages and normal pages will be write protect gradually. 1280 */ 1281 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1282 kvm_mmu_wp_memory_region(kvm, mem->slot); 1283 } 1284 } 1285 } 1286 1287 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1288 struct kvm_memory_slot *memslot, 1289 const struct kvm_userspace_memory_region *mem, 1290 enum kvm_mr_change change) 1291 { 1292 hva_t hva = mem->userspace_addr; 1293 hva_t reg_end = hva + mem->memory_size; 1294 bool writable = !(mem->flags & KVM_MEM_READONLY); 1295 int ret = 0; 1296 1297 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1298 change != KVM_MR_FLAGS_ONLY) 1299 return 0; 1300 1301 /* 1302 * Prevent userspace from creating a memory region outside of the IPA 1303 * space addressable by the KVM guest IPA space. 1304 */ 1305 if (memslot->base_gfn + memslot->npages >= 1306 (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1307 return -EFAULT; 1308 1309 mmap_read_lock(current->mm); 1310 /* 1311 * A memory region could potentially cover multiple VMAs, and any holes 1312 * between them, so iterate over all of them to find out if we can map 1313 * any of them right now. 1314 * 1315 * +--------------------------------------------+ 1316 * +---------------+----------------+ +----------------+ 1317 * | : VMA 1 | VMA 2 | | VMA 3 : | 1318 * +---------------+----------------+ +----------------+ 1319 * | memory region | 1320 * +--------------------------------------------+ 1321 */ 1322 do { 1323 struct vm_area_struct *vma = find_vma(current->mm, hva); 1324 hva_t vm_start, vm_end; 1325 1326 if (!vma || vma->vm_start >= reg_end) 1327 break; 1328 1329 /* 1330 * Take the intersection of this VMA with the memory region 1331 */ 1332 vm_start = max(hva, vma->vm_start); 1333 vm_end = min(reg_end, vma->vm_end); 1334 1335 if (vma->vm_flags & VM_PFNMAP) { 1336 gpa_t gpa = mem->guest_phys_addr + 1337 (vm_start - mem->userspace_addr); 1338 phys_addr_t pa; 1339 1340 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 1341 pa += vm_start - vma->vm_start; 1342 1343 /* IO region dirty page logging not allowed */ 1344 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1345 ret = -EINVAL; 1346 goto out; 1347 } 1348 1349 ret = kvm_phys_addr_ioremap(kvm, gpa, pa, 1350 vm_end - vm_start, 1351 writable); 1352 if (ret) 1353 break; 1354 } 1355 hva = vm_end; 1356 } while (hva < reg_end); 1357 1358 if (change == KVM_MR_FLAGS_ONLY) 1359 goto out; 1360 1361 spin_lock(&kvm->mmu_lock); 1362 if (ret) 1363 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); 1364 else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1365 stage2_flush_memslot(kvm, memslot); 1366 spin_unlock(&kvm->mmu_lock); 1367 out: 1368 mmap_read_unlock(current->mm); 1369 return ret; 1370 } 1371 1372 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1373 { 1374 } 1375 1376 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1377 { 1378 } 1379 1380 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1381 { 1382 kvm_free_stage2_pgd(&kvm->arch.mmu); 1383 } 1384 1385 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1386 struct kvm_memory_slot *slot) 1387 { 1388 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1389 phys_addr_t size = slot->npages << PAGE_SHIFT; 1390 1391 spin_lock(&kvm->mmu_lock); 1392 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1393 spin_unlock(&kvm->mmu_lock); 1394 } 1395 1396 /* 1397 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1398 * 1399 * Main problems: 1400 * - S/W ops are local to a CPU (not broadcast) 1401 * - We have line migration behind our back (speculation) 1402 * - System caches don't support S/W at all (damn!) 1403 * 1404 * In the face of the above, the best we can do is to try and convert 1405 * S/W ops to VA ops. Because the guest is not allowed to infer the 1406 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1407 * which is a rather good thing for us. 1408 * 1409 * Also, it is only used when turning caches on/off ("The expected 1410 * usage of the cache maintenance instructions that operate by set/way 1411 * is associated with the cache maintenance instructions associated 1412 * with the powerdown and powerup of caches, if this is required by 1413 * the implementation."). 1414 * 1415 * We use the following policy: 1416 * 1417 * - If we trap a S/W operation, we enable VM trapping to detect 1418 * caches being turned on/off, and do a full clean. 1419 * 1420 * - We flush the caches on both caches being turned on and off. 1421 * 1422 * - Once the caches are enabled, we stop trapping VM ops. 1423 */ 1424 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1425 { 1426 unsigned long hcr = *vcpu_hcr(vcpu); 1427 1428 /* 1429 * If this is the first time we do a S/W operation 1430 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1431 * VM trapping. 1432 * 1433 * Otherwise, rely on the VM trapping to wait for the MMU + 1434 * Caches to be turned off. At that point, we'll be able to 1435 * clean the caches again. 1436 */ 1437 if (!(hcr & HCR_TVM)) { 1438 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1439 vcpu_has_cache_enabled(vcpu)); 1440 stage2_flush_vm(vcpu->kvm); 1441 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1442 } 1443 } 1444 1445 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1446 { 1447 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1448 1449 /* 1450 * If switching the MMU+caches on, need to invalidate the caches. 1451 * If switching it off, need to clean the caches. 1452 * Clean + invalidate does the trick always. 1453 */ 1454 if (now_enabled != was_enabled) 1455 stage2_flush_vm(vcpu->kvm); 1456 1457 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1458 if (now_enabled) 1459 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1460 1461 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1462 } 1463