xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31 
32 static unsigned long __ro_after_init io_map_base;
33 
34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
35 {
36 	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
37 	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38 
39 	return (boundary - 1 < end - 1) ? boundary : end;
40 }
41 
42 /*
43  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
44  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
45  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
46  * long will also starve other vCPUs. We have to also make sure that the page
47  * tables are not freed while we released the lock.
48  */
49 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
50 			      phys_addr_t end,
51 			      int (*fn)(struct kvm_pgtable *, u64, u64),
52 			      bool resched)
53 {
54 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
55 	int ret;
56 	u64 next;
57 
58 	do {
59 		struct kvm_pgtable *pgt = mmu->pgt;
60 		if (!pgt)
61 			return -EINVAL;
62 
63 		next = stage2_range_addr_end(addr, end);
64 		ret = fn(pgt, addr, next - addr);
65 		if (ret)
66 			break;
67 
68 		if (resched && next != end)
69 			cond_resched_rwlock_write(&kvm->mmu_lock);
70 	} while (addr = next, addr != end);
71 
72 	return ret;
73 }
74 
75 #define stage2_apply_range_resched(mmu, addr, end, fn)			\
76 	stage2_apply_range(mmu, addr, end, fn, true)
77 
78 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
79 {
80 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
81 }
82 
83 /**
84  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
85  * @kvm:	pointer to kvm structure.
86  *
87  * Interface to HYP function to flush all VM TLB entries
88  */
89 void kvm_flush_remote_tlbs(struct kvm *kvm)
90 {
91 	++kvm->stat.generic.remote_tlb_flush_requests;
92 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
93 }
94 
95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97 	return !pfn_is_map_memory(pfn);
98 }
99 
100 static void *stage2_memcache_zalloc_page(void *arg)
101 {
102 	struct kvm_mmu_memory_cache *mc = arg;
103 	void *virt;
104 
105 	/* Allocated with __GFP_ZERO, so no need to zero */
106 	virt = kvm_mmu_memory_cache_alloc(mc);
107 	if (virt)
108 		kvm_account_pgtable_pages(virt, 1);
109 	return virt;
110 }
111 
112 static void *kvm_host_zalloc_pages_exact(size_t size)
113 {
114 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
115 }
116 
117 static void *kvm_s2_zalloc_pages_exact(size_t size)
118 {
119 	void *virt = kvm_host_zalloc_pages_exact(size);
120 
121 	if (virt)
122 		kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
123 	return virt;
124 }
125 
126 static void kvm_s2_free_pages_exact(void *virt, size_t size)
127 {
128 	kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
129 	free_pages_exact(virt, size);
130 }
131 
132 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
133 
134 static void stage2_free_removed_table_rcu_cb(struct rcu_head *head)
135 {
136 	struct page *page = container_of(head, struct page, rcu_head);
137 	void *pgtable = page_to_virt(page);
138 	u32 level = page_private(page);
139 
140 	kvm_pgtable_stage2_free_removed(&kvm_s2_mm_ops, pgtable, level);
141 }
142 
143 static void stage2_free_removed_table(void *addr, u32 level)
144 {
145 	struct page *page = virt_to_page(addr);
146 
147 	set_page_private(page, (unsigned long)level);
148 	call_rcu(&page->rcu_head, stage2_free_removed_table_rcu_cb);
149 }
150 
151 static void kvm_host_get_page(void *addr)
152 {
153 	get_page(virt_to_page(addr));
154 }
155 
156 static void kvm_host_put_page(void *addr)
157 {
158 	put_page(virt_to_page(addr));
159 }
160 
161 static void kvm_s2_put_page(void *addr)
162 {
163 	struct page *p = virt_to_page(addr);
164 	/* Dropping last refcount, the page will be freed */
165 	if (page_count(p) == 1)
166 		kvm_account_pgtable_pages(addr, -1);
167 	put_page(p);
168 }
169 
170 static int kvm_host_page_count(void *addr)
171 {
172 	return page_count(virt_to_page(addr));
173 }
174 
175 static phys_addr_t kvm_host_pa(void *addr)
176 {
177 	return __pa(addr);
178 }
179 
180 static void *kvm_host_va(phys_addr_t phys)
181 {
182 	return __va(phys);
183 }
184 
185 static void clean_dcache_guest_page(void *va, size_t size)
186 {
187 	__clean_dcache_guest_page(va, size);
188 }
189 
190 static void invalidate_icache_guest_page(void *va, size_t size)
191 {
192 	__invalidate_icache_guest_page(va, size);
193 }
194 
195 /*
196  * Unmapping vs dcache management:
197  *
198  * If a guest maps certain memory pages as uncached, all writes will
199  * bypass the data cache and go directly to RAM.  However, the CPUs
200  * can still speculate reads (not writes) and fill cache lines with
201  * data.
202  *
203  * Those cache lines will be *clean* cache lines though, so a
204  * clean+invalidate operation is equivalent to an invalidate
205  * operation, because no cache lines are marked dirty.
206  *
207  * Those clean cache lines could be filled prior to an uncached write
208  * by the guest, and the cache coherent IO subsystem would therefore
209  * end up writing old data to disk.
210  *
211  * This is why right after unmapping a page/section and invalidating
212  * the corresponding TLBs, we flush to make sure the IO subsystem will
213  * never hit in the cache.
214  *
215  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
216  * we then fully enforce cacheability of RAM, no matter what the guest
217  * does.
218  */
219 /**
220  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
221  * @mmu:   The KVM stage-2 MMU pointer
222  * @start: The intermediate physical base address of the range to unmap
223  * @size:  The size of the area to unmap
224  * @may_block: Whether or not we are permitted to block
225  *
226  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
227  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
228  * destroying the VM), otherwise another faulting VCPU may come in and mess
229  * with things behind our backs.
230  */
231 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
232 				 bool may_block)
233 {
234 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
235 	phys_addr_t end = start + size;
236 
237 	lockdep_assert_held_write(&kvm->mmu_lock);
238 	WARN_ON(size & ~PAGE_MASK);
239 	WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
240 				   may_block));
241 }
242 
243 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
244 {
245 	__unmap_stage2_range(mmu, start, size, true);
246 }
247 
248 static void stage2_flush_memslot(struct kvm *kvm,
249 				 struct kvm_memory_slot *memslot)
250 {
251 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
252 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
253 
254 	stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
255 }
256 
257 /**
258  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
259  * @kvm: The struct kvm pointer
260  *
261  * Go through the stage 2 page tables and invalidate any cache lines
262  * backing memory already mapped to the VM.
263  */
264 static void stage2_flush_vm(struct kvm *kvm)
265 {
266 	struct kvm_memslots *slots;
267 	struct kvm_memory_slot *memslot;
268 	int idx, bkt;
269 
270 	idx = srcu_read_lock(&kvm->srcu);
271 	write_lock(&kvm->mmu_lock);
272 
273 	slots = kvm_memslots(kvm);
274 	kvm_for_each_memslot(memslot, bkt, slots)
275 		stage2_flush_memslot(kvm, memslot);
276 
277 	write_unlock(&kvm->mmu_lock);
278 	srcu_read_unlock(&kvm->srcu, idx);
279 }
280 
281 /**
282  * free_hyp_pgds - free Hyp-mode page tables
283  */
284 void __init free_hyp_pgds(void)
285 {
286 	mutex_lock(&kvm_hyp_pgd_mutex);
287 	if (hyp_pgtable) {
288 		kvm_pgtable_hyp_destroy(hyp_pgtable);
289 		kfree(hyp_pgtable);
290 		hyp_pgtable = NULL;
291 	}
292 	mutex_unlock(&kvm_hyp_pgd_mutex);
293 }
294 
295 static bool kvm_host_owns_hyp_mappings(void)
296 {
297 	if (is_kernel_in_hyp_mode())
298 		return false;
299 
300 	if (static_branch_likely(&kvm_protected_mode_initialized))
301 		return false;
302 
303 	/*
304 	 * This can happen at boot time when __create_hyp_mappings() is called
305 	 * after the hyp protection has been enabled, but the static key has
306 	 * not been flipped yet.
307 	 */
308 	if (!hyp_pgtable && is_protected_kvm_enabled())
309 		return false;
310 
311 	WARN_ON(!hyp_pgtable);
312 
313 	return true;
314 }
315 
316 int __create_hyp_mappings(unsigned long start, unsigned long size,
317 			  unsigned long phys, enum kvm_pgtable_prot prot)
318 {
319 	int err;
320 
321 	if (WARN_ON(!kvm_host_owns_hyp_mappings()))
322 		return -EINVAL;
323 
324 	mutex_lock(&kvm_hyp_pgd_mutex);
325 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
326 	mutex_unlock(&kvm_hyp_pgd_mutex);
327 
328 	return err;
329 }
330 
331 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
332 {
333 	if (!is_vmalloc_addr(kaddr)) {
334 		BUG_ON(!virt_addr_valid(kaddr));
335 		return __pa(kaddr);
336 	} else {
337 		return page_to_phys(vmalloc_to_page(kaddr)) +
338 		       offset_in_page(kaddr);
339 	}
340 }
341 
342 struct hyp_shared_pfn {
343 	u64 pfn;
344 	int count;
345 	struct rb_node node;
346 };
347 
348 static DEFINE_MUTEX(hyp_shared_pfns_lock);
349 static struct rb_root hyp_shared_pfns = RB_ROOT;
350 
351 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
352 					      struct rb_node **parent)
353 {
354 	struct hyp_shared_pfn *this;
355 
356 	*node = &hyp_shared_pfns.rb_node;
357 	*parent = NULL;
358 	while (**node) {
359 		this = container_of(**node, struct hyp_shared_pfn, node);
360 		*parent = **node;
361 		if (this->pfn < pfn)
362 			*node = &((**node)->rb_left);
363 		else if (this->pfn > pfn)
364 			*node = &((**node)->rb_right);
365 		else
366 			return this;
367 	}
368 
369 	return NULL;
370 }
371 
372 static int share_pfn_hyp(u64 pfn)
373 {
374 	struct rb_node **node, *parent;
375 	struct hyp_shared_pfn *this;
376 	int ret = 0;
377 
378 	mutex_lock(&hyp_shared_pfns_lock);
379 	this = find_shared_pfn(pfn, &node, &parent);
380 	if (this) {
381 		this->count++;
382 		goto unlock;
383 	}
384 
385 	this = kzalloc(sizeof(*this), GFP_KERNEL);
386 	if (!this) {
387 		ret = -ENOMEM;
388 		goto unlock;
389 	}
390 
391 	this->pfn = pfn;
392 	this->count = 1;
393 	rb_link_node(&this->node, parent, node);
394 	rb_insert_color(&this->node, &hyp_shared_pfns);
395 	ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
396 unlock:
397 	mutex_unlock(&hyp_shared_pfns_lock);
398 
399 	return ret;
400 }
401 
402 static int unshare_pfn_hyp(u64 pfn)
403 {
404 	struct rb_node **node, *parent;
405 	struct hyp_shared_pfn *this;
406 	int ret = 0;
407 
408 	mutex_lock(&hyp_shared_pfns_lock);
409 	this = find_shared_pfn(pfn, &node, &parent);
410 	if (WARN_ON(!this)) {
411 		ret = -ENOENT;
412 		goto unlock;
413 	}
414 
415 	this->count--;
416 	if (this->count)
417 		goto unlock;
418 
419 	rb_erase(&this->node, &hyp_shared_pfns);
420 	kfree(this);
421 	ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
422 unlock:
423 	mutex_unlock(&hyp_shared_pfns_lock);
424 
425 	return ret;
426 }
427 
428 int kvm_share_hyp(void *from, void *to)
429 {
430 	phys_addr_t start, end, cur;
431 	u64 pfn;
432 	int ret;
433 
434 	if (is_kernel_in_hyp_mode())
435 		return 0;
436 
437 	/*
438 	 * The share hcall maps things in the 'fixed-offset' region of the hyp
439 	 * VA space, so we can only share physically contiguous data-structures
440 	 * for now.
441 	 */
442 	if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
443 		return -EINVAL;
444 
445 	if (kvm_host_owns_hyp_mappings())
446 		return create_hyp_mappings(from, to, PAGE_HYP);
447 
448 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
449 	end = PAGE_ALIGN(__pa(to));
450 	for (cur = start; cur < end; cur += PAGE_SIZE) {
451 		pfn = __phys_to_pfn(cur);
452 		ret = share_pfn_hyp(pfn);
453 		if (ret)
454 			return ret;
455 	}
456 
457 	return 0;
458 }
459 
460 void kvm_unshare_hyp(void *from, void *to)
461 {
462 	phys_addr_t start, end, cur;
463 	u64 pfn;
464 
465 	if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
466 		return;
467 
468 	start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
469 	end = PAGE_ALIGN(__pa(to));
470 	for (cur = start; cur < end; cur += PAGE_SIZE) {
471 		pfn = __phys_to_pfn(cur);
472 		WARN_ON(unshare_pfn_hyp(pfn));
473 	}
474 }
475 
476 /**
477  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
478  * @from:	The virtual kernel start address of the range
479  * @to:		The virtual kernel end address of the range (exclusive)
480  * @prot:	The protection to be applied to this range
481  *
482  * The same virtual address as the kernel virtual address is also used
483  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
484  * physical pages.
485  */
486 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
487 {
488 	phys_addr_t phys_addr;
489 	unsigned long virt_addr;
490 	unsigned long start = kern_hyp_va((unsigned long)from);
491 	unsigned long end = kern_hyp_va((unsigned long)to);
492 
493 	if (is_kernel_in_hyp_mode())
494 		return 0;
495 
496 	if (!kvm_host_owns_hyp_mappings())
497 		return -EPERM;
498 
499 	start = start & PAGE_MASK;
500 	end = PAGE_ALIGN(end);
501 
502 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
503 		int err;
504 
505 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
506 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
507 					    prot);
508 		if (err)
509 			return err;
510 	}
511 
512 	return 0;
513 }
514 
515 
516 /**
517  * hyp_alloc_private_va_range - Allocates a private VA range.
518  * @size:	The size of the VA range to reserve.
519  * @haddr:	The hypervisor virtual start address of the allocation.
520  *
521  * The private virtual address (VA) range is allocated below io_map_base
522  * and aligned based on the order of @size.
523  *
524  * Return: 0 on success or negative error code on failure.
525  */
526 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
527 {
528 	unsigned long base;
529 	int ret = 0;
530 
531 	mutex_lock(&kvm_hyp_pgd_mutex);
532 
533 	/*
534 	 * This assumes that we have enough space below the idmap
535 	 * page to allocate our VAs. If not, the check below will
536 	 * kick. A potential alternative would be to detect that
537 	 * overflow and switch to an allocation above the idmap.
538 	 *
539 	 * The allocated size is always a multiple of PAGE_SIZE.
540 	 */
541 	base = io_map_base - PAGE_ALIGN(size);
542 
543 	/* Align the allocation based on the order of its size */
544 	base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
545 
546 	/*
547 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
548 	 * allocating the new area, as it would indicate we've
549 	 * overflowed the idmap/IO address range.
550 	 */
551 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
552 		ret = -ENOMEM;
553 	else
554 		*haddr = io_map_base = base;
555 
556 	mutex_unlock(&kvm_hyp_pgd_mutex);
557 
558 	return ret;
559 }
560 
561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
562 					unsigned long *haddr,
563 					enum kvm_pgtable_prot prot)
564 {
565 	unsigned long addr;
566 	int ret = 0;
567 
568 	if (!kvm_host_owns_hyp_mappings()) {
569 		addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
570 					 phys_addr, size, prot);
571 		if (IS_ERR_VALUE(addr))
572 			return addr;
573 		*haddr = addr;
574 
575 		return 0;
576 	}
577 
578 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
579 	ret = hyp_alloc_private_va_range(size, &addr);
580 	if (ret)
581 		return ret;
582 
583 	ret = __create_hyp_mappings(addr, size, phys_addr, prot);
584 	if (ret)
585 		return ret;
586 
587 	*haddr = addr + offset_in_page(phys_addr);
588 	return ret;
589 }
590 
591 /**
592  * create_hyp_io_mappings - Map IO into both kernel and HYP
593  * @phys_addr:	The physical start address which gets mapped
594  * @size:	Size of the region being mapped
595  * @kaddr:	Kernel VA for this mapping
596  * @haddr:	HYP VA for this mapping
597  */
598 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
599 			   void __iomem **kaddr,
600 			   void __iomem **haddr)
601 {
602 	unsigned long addr;
603 	int ret;
604 
605 	if (is_protected_kvm_enabled())
606 		return -EPERM;
607 
608 	*kaddr = ioremap(phys_addr, size);
609 	if (!*kaddr)
610 		return -ENOMEM;
611 
612 	if (is_kernel_in_hyp_mode()) {
613 		*haddr = *kaddr;
614 		return 0;
615 	}
616 
617 	ret = __create_hyp_private_mapping(phys_addr, size,
618 					   &addr, PAGE_HYP_DEVICE);
619 	if (ret) {
620 		iounmap(*kaddr);
621 		*kaddr = NULL;
622 		*haddr = NULL;
623 		return ret;
624 	}
625 
626 	*haddr = (void __iomem *)addr;
627 	return 0;
628 }
629 
630 /**
631  * create_hyp_exec_mappings - Map an executable range into HYP
632  * @phys_addr:	The physical start address which gets mapped
633  * @size:	Size of the region being mapped
634  * @haddr:	HYP VA for this mapping
635  */
636 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
637 			     void **haddr)
638 {
639 	unsigned long addr;
640 	int ret;
641 
642 	BUG_ON(is_kernel_in_hyp_mode());
643 
644 	ret = __create_hyp_private_mapping(phys_addr, size,
645 					   &addr, PAGE_HYP_EXEC);
646 	if (ret) {
647 		*haddr = NULL;
648 		return ret;
649 	}
650 
651 	*haddr = (void *)addr;
652 	return 0;
653 }
654 
655 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
656 	/* We shouldn't need any other callback to walk the PT */
657 	.phys_to_virt		= kvm_host_va,
658 };
659 
660 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
661 {
662 	struct kvm_pgtable pgt = {
663 		.pgd		= (kvm_pteref_t)kvm->mm->pgd,
664 		.ia_bits	= vabits_actual,
665 		.start_level	= (KVM_PGTABLE_MAX_LEVELS -
666 				   CONFIG_PGTABLE_LEVELS),
667 		.mm_ops		= &kvm_user_mm_ops,
668 	};
669 	kvm_pte_t pte = 0;	/* Keep GCC quiet... */
670 	u32 level = ~0;
671 	int ret;
672 
673 	ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
674 	VM_BUG_ON(ret);
675 	VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
676 	VM_BUG_ON(!(pte & PTE_VALID));
677 
678 	return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
679 }
680 
681 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
682 	.zalloc_page		= stage2_memcache_zalloc_page,
683 	.zalloc_pages_exact	= kvm_s2_zalloc_pages_exact,
684 	.free_pages_exact	= kvm_s2_free_pages_exact,
685 	.free_removed_table	= stage2_free_removed_table,
686 	.get_page		= kvm_host_get_page,
687 	.put_page		= kvm_s2_put_page,
688 	.page_count		= kvm_host_page_count,
689 	.phys_to_virt		= kvm_host_va,
690 	.virt_to_phys		= kvm_host_pa,
691 	.dcache_clean_inval_poc	= clean_dcache_guest_page,
692 	.icache_inval_pou	= invalidate_icache_guest_page,
693 };
694 
695 /**
696  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
697  * @kvm:	The pointer to the KVM structure
698  * @mmu:	The pointer to the s2 MMU structure
699  * @type:	The machine type of the virtual machine
700  *
701  * Allocates only the stage-2 HW PGD level table(s).
702  * Note we don't need locking here as this is only called when the VM is
703  * created, which can only be done once.
704  */
705 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
706 {
707 	u32 kvm_ipa_limit = get_kvm_ipa_limit();
708 	int cpu, err;
709 	struct kvm_pgtable *pgt;
710 	u64 mmfr0, mmfr1;
711 	u32 phys_shift;
712 
713 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
714 		return -EINVAL;
715 
716 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
717 	if (is_protected_kvm_enabled()) {
718 		phys_shift = kvm_ipa_limit;
719 	} else if (phys_shift) {
720 		if (phys_shift > kvm_ipa_limit ||
721 		    phys_shift < ARM64_MIN_PARANGE_BITS)
722 			return -EINVAL;
723 	} else {
724 		phys_shift = KVM_PHYS_SHIFT;
725 		if (phys_shift > kvm_ipa_limit) {
726 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
727 				     current->comm);
728 			return -EINVAL;
729 		}
730 	}
731 
732 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
733 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
734 	kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
735 
736 	if (mmu->pgt != NULL) {
737 		kvm_err("kvm_arch already initialized?\n");
738 		return -EINVAL;
739 	}
740 
741 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
742 	if (!pgt)
743 		return -ENOMEM;
744 
745 	mmu->arch = &kvm->arch;
746 	err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
747 	if (err)
748 		goto out_free_pgtable;
749 
750 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
751 	if (!mmu->last_vcpu_ran) {
752 		err = -ENOMEM;
753 		goto out_destroy_pgtable;
754 	}
755 
756 	for_each_possible_cpu(cpu)
757 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
758 
759 	mmu->pgt = pgt;
760 	mmu->pgd_phys = __pa(pgt->pgd);
761 	return 0;
762 
763 out_destroy_pgtable:
764 	kvm_pgtable_stage2_destroy(pgt);
765 out_free_pgtable:
766 	kfree(pgt);
767 	return err;
768 }
769 
770 static void stage2_unmap_memslot(struct kvm *kvm,
771 				 struct kvm_memory_slot *memslot)
772 {
773 	hva_t hva = memslot->userspace_addr;
774 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
775 	phys_addr_t size = PAGE_SIZE * memslot->npages;
776 	hva_t reg_end = hva + size;
777 
778 	/*
779 	 * A memory region could potentially cover multiple VMAs, and any holes
780 	 * between them, so iterate over all of them to find out if we should
781 	 * unmap any of them.
782 	 *
783 	 *     +--------------------------------------------+
784 	 * +---------------+----------------+   +----------------+
785 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
786 	 * +---------------+----------------+   +----------------+
787 	 *     |               memory region                |
788 	 *     +--------------------------------------------+
789 	 */
790 	do {
791 		struct vm_area_struct *vma;
792 		hva_t vm_start, vm_end;
793 
794 		vma = find_vma_intersection(current->mm, hva, reg_end);
795 		if (!vma)
796 			break;
797 
798 		/*
799 		 * Take the intersection of this VMA with the memory region
800 		 */
801 		vm_start = max(hva, vma->vm_start);
802 		vm_end = min(reg_end, vma->vm_end);
803 
804 		if (!(vma->vm_flags & VM_PFNMAP)) {
805 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
806 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
807 		}
808 		hva = vm_end;
809 	} while (hva < reg_end);
810 }
811 
812 /**
813  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
814  * @kvm: The struct kvm pointer
815  *
816  * Go through the memregions and unmap any regular RAM
817  * backing memory already mapped to the VM.
818  */
819 void stage2_unmap_vm(struct kvm *kvm)
820 {
821 	struct kvm_memslots *slots;
822 	struct kvm_memory_slot *memslot;
823 	int idx, bkt;
824 
825 	idx = srcu_read_lock(&kvm->srcu);
826 	mmap_read_lock(current->mm);
827 	write_lock(&kvm->mmu_lock);
828 
829 	slots = kvm_memslots(kvm);
830 	kvm_for_each_memslot(memslot, bkt, slots)
831 		stage2_unmap_memslot(kvm, memslot);
832 
833 	write_unlock(&kvm->mmu_lock);
834 	mmap_read_unlock(current->mm);
835 	srcu_read_unlock(&kvm->srcu, idx);
836 }
837 
838 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
839 {
840 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
841 	struct kvm_pgtable *pgt = NULL;
842 
843 	write_lock(&kvm->mmu_lock);
844 	pgt = mmu->pgt;
845 	if (pgt) {
846 		mmu->pgd_phys = 0;
847 		mmu->pgt = NULL;
848 		free_percpu(mmu->last_vcpu_ran);
849 	}
850 	write_unlock(&kvm->mmu_lock);
851 
852 	if (pgt) {
853 		kvm_pgtable_stage2_destroy(pgt);
854 		kfree(pgt);
855 	}
856 }
857 
858 static void hyp_mc_free_fn(void *addr, void *unused)
859 {
860 	free_page((unsigned long)addr);
861 }
862 
863 static void *hyp_mc_alloc_fn(void *unused)
864 {
865 	return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
866 }
867 
868 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
869 {
870 	if (is_protected_kvm_enabled())
871 		__free_hyp_memcache(mc, hyp_mc_free_fn,
872 				    kvm_host_va, NULL);
873 }
874 
875 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
876 {
877 	if (!is_protected_kvm_enabled())
878 		return 0;
879 
880 	return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
881 				    kvm_host_pa, NULL);
882 }
883 
884 /**
885  * kvm_phys_addr_ioremap - map a device range to guest IPA
886  *
887  * @kvm:	The KVM pointer
888  * @guest_ipa:	The IPA at which to insert the mapping
889  * @pa:		The physical address of the device
890  * @size:	The size of the mapping
891  * @writable:   Whether or not to create a writable mapping
892  */
893 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
894 			  phys_addr_t pa, unsigned long size, bool writable)
895 {
896 	phys_addr_t addr;
897 	int ret = 0;
898 	struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
899 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
900 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
901 				     KVM_PGTABLE_PROT_R |
902 				     (writable ? KVM_PGTABLE_PROT_W : 0);
903 
904 	if (is_protected_kvm_enabled())
905 		return -EPERM;
906 
907 	size += offset_in_page(guest_ipa);
908 	guest_ipa &= PAGE_MASK;
909 
910 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
911 		ret = kvm_mmu_topup_memory_cache(&cache,
912 						 kvm_mmu_cache_min_pages(kvm));
913 		if (ret)
914 			break;
915 
916 		write_lock(&kvm->mmu_lock);
917 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
918 					     &cache, 0);
919 		write_unlock(&kvm->mmu_lock);
920 		if (ret)
921 			break;
922 
923 		pa += PAGE_SIZE;
924 	}
925 
926 	kvm_mmu_free_memory_cache(&cache);
927 	return ret;
928 }
929 
930 /**
931  * stage2_wp_range() - write protect stage2 memory region range
932  * @mmu:        The KVM stage-2 MMU pointer
933  * @addr:	Start address of range
934  * @end:	End address of range
935  */
936 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
937 {
938 	stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
939 }
940 
941 /**
942  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
943  * @kvm:	The KVM pointer
944  * @slot:	The memory slot to write protect
945  *
946  * Called to start logging dirty pages after memory region
947  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
948  * all present PUD, PMD and PTEs are write protected in the memory region.
949  * Afterwards read of dirty page log can be called.
950  *
951  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
952  * serializing operations for VM memory regions.
953  */
954 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
955 {
956 	struct kvm_memslots *slots = kvm_memslots(kvm);
957 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
958 	phys_addr_t start, end;
959 
960 	if (WARN_ON_ONCE(!memslot))
961 		return;
962 
963 	start = memslot->base_gfn << PAGE_SHIFT;
964 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
965 
966 	write_lock(&kvm->mmu_lock);
967 	stage2_wp_range(&kvm->arch.mmu, start, end);
968 	write_unlock(&kvm->mmu_lock);
969 	kvm_flush_remote_tlbs(kvm);
970 }
971 
972 /**
973  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
974  * @kvm:	The KVM pointer
975  * @slot:	The memory slot associated with mask
976  * @gfn_offset:	The gfn offset in memory slot
977  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
978  *		slot to be write protected
979  *
980  * Walks bits set in mask write protects the associated pte's. Caller must
981  * acquire kvm_mmu_lock.
982  */
983 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
984 		struct kvm_memory_slot *slot,
985 		gfn_t gfn_offset, unsigned long mask)
986 {
987 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
988 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
989 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
990 
991 	stage2_wp_range(&kvm->arch.mmu, start, end);
992 }
993 
994 /*
995  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
996  * dirty pages.
997  *
998  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
999  * enable dirty logging for them.
1000  */
1001 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1002 		struct kvm_memory_slot *slot,
1003 		gfn_t gfn_offset, unsigned long mask)
1004 {
1005 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1006 }
1007 
1008 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1009 {
1010 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1011 }
1012 
1013 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1014 					       unsigned long hva,
1015 					       unsigned long map_size)
1016 {
1017 	gpa_t gpa_start;
1018 	hva_t uaddr_start, uaddr_end;
1019 	size_t size;
1020 
1021 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1022 	if (map_size == PAGE_SIZE)
1023 		return true;
1024 
1025 	size = memslot->npages * PAGE_SIZE;
1026 
1027 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1028 
1029 	uaddr_start = memslot->userspace_addr;
1030 	uaddr_end = uaddr_start + size;
1031 
1032 	/*
1033 	 * Pages belonging to memslots that don't have the same alignment
1034 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1035 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1036 	 *
1037 	 * Consider a layout like the following:
1038 	 *
1039 	 *    memslot->userspace_addr:
1040 	 *    +-----+--------------------+--------------------+---+
1041 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1042 	 *    +-----+--------------------+--------------------+---+
1043 	 *
1044 	 *    memslot->base_gfn << PAGE_SHIFT:
1045 	 *      +---+--------------------+--------------------+-----+
1046 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1047 	 *      +---+--------------------+--------------------+-----+
1048 	 *
1049 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1050 	 * mapping:
1051 	 *   d -> f
1052 	 *   e -> g
1053 	 *   f -> h
1054 	 */
1055 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1056 		return false;
1057 
1058 	/*
1059 	 * Next, let's make sure we're not trying to map anything not covered
1060 	 * by the memslot. This means we have to prohibit block size mappings
1061 	 * for the beginning and end of a non-block aligned and non-block sized
1062 	 * memory slot (illustrated by the head and tail parts of the
1063 	 * userspace view above containing pages 'abcde' and 'xyz',
1064 	 * respectively).
1065 	 *
1066 	 * Note that it doesn't matter if we do the check using the
1067 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1068 	 * the check above) and equally sized.
1069 	 */
1070 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1071 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1072 }
1073 
1074 /*
1075  * Check if the given hva is backed by a transparent huge page (THP) and
1076  * whether it can be mapped using block mapping in stage2. If so, adjust
1077  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1078  * supported. This will need to be updated to support other THP sizes.
1079  *
1080  * Returns the size of the mapping.
1081  */
1082 static unsigned long
1083 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1084 			    unsigned long hva, kvm_pfn_t *pfnp,
1085 			    phys_addr_t *ipap)
1086 {
1087 	kvm_pfn_t pfn = *pfnp;
1088 
1089 	/*
1090 	 * Make sure the adjustment is done only for THP pages. Also make
1091 	 * sure that the HVA and IPA are sufficiently aligned and that the
1092 	 * block map is contained within the memslot.
1093 	 */
1094 	if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1095 	    get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
1096 		/*
1097 		 * The address we faulted on is backed by a transparent huge
1098 		 * page.  However, because we map the compound huge page and
1099 		 * not the individual tail page, we need to transfer the
1100 		 * refcount to the head page.  We have to be careful that the
1101 		 * THP doesn't start to split while we are adjusting the
1102 		 * refcounts.
1103 		 *
1104 		 * We are sure this doesn't happen, because mmu_invalidate_retry
1105 		 * was successful and we are holding the mmu_lock, so if this
1106 		 * THP is trying to split, it will be blocked in the mmu
1107 		 * notifier before touching any of the pages, specifically
1108 		 * before being able to call __split_huge_page_refcount().
1109 		 *
1110 		 * We can therefore safely transfer the refcount from PG_tail
1111 		 * to PG_head and switch the pfn from a tail page to the head
1112 		 * page accordingly.
1113 		 */
1114 		*ipap &= PMD_MASK;
1115 		kvm_release_pfn_clean(pfn);
1116 		pfn &= ~(PTRS_PER_PMD - 1);
1117 		get_page(pfn_to_page(pfn));
1118 		*pfnp = pfn;
1119 
1120 		return PMD_SIZE;
1121 	}
1122 
1123 	/* Use page mapping if we cannot use block mapping. */
1124 	return PAGE_SIZE;
1125 }
1126 
1127 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1128 {
1129 	unsigned long pa;
1130 
1131 	if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1132 		return huge_page_shift(hstate_vma(vma));
1133 
1134 	if (!(vma->vm_flags & VM_PFNMAP))
1135 		return PAGE_SHIFT;
1136 
1137 	VM_BUG_ON(is_vm_hugetlb_page(vma));
1138 
1139 	pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1140 
1141 #ifndef __PAGETABLE_PMD_FOLDED
1142 	if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1143 	    ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1144 	    ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1145 		return PUD_SHIFT;
1146 #endif
1147 
1148 	if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1149 	    ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1150 	    ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1151 		return PMD_SHIFT;
1152 
1153 	return PAGE_SHIFT;
1154 }
1155 
1156 /*
1157  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1158  * able to see the page's tags and therefore they must be initialised first. If
1159  * PG_mte_tagged is set, tags have already been initialised.
1160  *
1161  * The race in the test/set of the PG_mte_tagged flag is handled by:
1162  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1163  *   racing to santise the same page
1164  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1165  *   an mprotect() to add VM_MTE
1166  */
1167 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1168 			      unsigned long size)
1169 {
1170 	unsigned long i, nr_pages = size >> PAGE_SHIFT;
1171 	struct page *page = pfn_to_page(pfn);
1172 
1173 	if (!kvm_has_mte(kvm))
1174 		return;
1175 
1176 	for (i = 0; i < nr_pages; i++, page++) {
1177 		if (try_page_mte_tagging(page)) {
1178 			mte_clear_page_tags(page_address(page));
1179 			set_page_mte_tagged(page);
1180 		}
1181 	}
1182 }
1183 
1184 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1185 {
1186 	return vma->vm_flags & VM_MTE_ALLOWED;
1187 }
1188 
1189 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1190 			  struct kvm_memory_slot *memslot, unsigned long hva,
1191 			  unsigned long fault_status)
1192 {
1193 	int ret = 0;
1194 	bool write_fault, writable, force_pte = false;
1195 	bool exec_fault;
1196 	bool device = false;
1197 	unsigned long mmu_seq;
1198 	struct kvm *kvm = vcpu->kvm;
1199 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1200 	struct vm_area_struct *vma;
1201 	short vma_shift;
1202 	gfn_t gfn;
1203 	kvm_pfn_t pfn;
1204 	bool logging_active = memslot_is_logging(memslot);
1205 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1206 	unsigned long vma_pagesize, fault_granule;
1207 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1208 	struct kvm_pgtable *pgt;
1209 
1210 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1211 	write_fault = kvm_is_write_fault(vcpu);
1212 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1213 	VM_BUG_ON(write_fault && exec_fault);
1214 
1215 	if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1216 		kvm_err("Unexpected L2 read permission error\n");
1217 		return -EFAULT;
1218 	}
1219 
1220 	/*
1221 	 * Let's check if we will get back a huge page backed by hugetlbfs, or
1222 	 * get block mapping for device MMIO region.
1223 	 */
1224 	mmap_read_lock(current->mm);
1225 	vma = vma_lookup(current->mm, hva);
1226 	if (unlikely(!vma)) {
1227 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1228 		mmap_read_unlock(current->mm);
1229 		return -EFAULT;
1230 	}
1231 
1232 	/*
1233 	 * logging_active is guaranteed to never be true for VM_PFNMAP
1234 	 * memslots.
1235 	 */
1236 	if (logging_active) {
1237 		force_pte = true;
1238 		vma_shift = PAGE_SHIFT;
1239 	} else {
1240 		vma_shift = get_vma_page_shift(vma, hva);
1241 	}
1242 
1243 	switch (vma_shift) {
1244 #ifndef __PAGETABLE_PMD_FOLDED
1245 	case PUD_SHIFT:
1246 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1247 			break;
1248 		fallthrough;
1249 #endif
1250 	case CONT_PMD_SHIFT:
1251 		vma_shift = PMD_SHIFT;
1252 		fallthrough;
1253 	case PMD_SHIFT:
1254 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1255 			break;
1256 		fallthrough;
1257 	case CONT_PTE_SHIFT:
1258 		vma_shift = PAGE_SHIFT;
1259 		force_pte = true;
1260 		fallthrough;
1261 	case PAGE_SHIFT:
1262 		break;
1263 	default:
1264 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1265 	}
1266 
1267 	vma_pagesize = 1UL << vma_shift;
1268 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1269 		fault_ipa &= ~(vma_pagesize - 1);
1270 
1271 	gfn = fault_ipa >> PAGE_SHIFT;
1272 	mmap_read_unlock(current->mm);
1273 
1274 	/*
1275 	 * Permission faults just need to update the existing leaf entry,
1276 	 * and so normally don't require allocations from the memcache. The
1277 	 * only exception to this is when dirty logging is enabled at runtime
1278 	 * and a write fault needs to collapse a block entry into a table.
1279 	 */
1280 	if (fault_status != ESR_ELx_FSC_PERM ||
1281 	    (logging_active && write_fault)) {
1282 		ret = kvm_mmu_topup_memory_cache(memcache,
1283 						 kvm_mmu_cache_min_pages(kvm));
1284 		if (ret)
1285 			return ret;
1286 	}
1287 
1288 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1289 	/*
1290 	 * Ensure the read of mmu_invalidate_seq happens before we call
1291 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1292 	 * the page we just got a reference to gets unmapped before we have a
1293 	 * chance to grab the mmu_lock, which ensure that if the page gets
1294 	 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1295 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1296 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1297 	 *
1298 	 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1299 	 * used to avoid unnecessary overhead introduced to locate the memory
1300 	 * slot because it's always fixed even @gfn is adjusted for huge pages.
1301 	 */
1302 	smp_rmb();
1303 
1304 	pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1305 				   write_fault, &writable, NULL);
1306 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1307 		kvm_send_hwpoison_signal(hva, vma_shift);
1308 		return 0;
1309 	}
1310 	if (is_error_noslot_pfn(pfn))
1311 		return -EFAULT;
1312 
1313 	if (kvm_is_device_pfn(pfn)) {
1314 		/*
1315 		 * If the page was identified as device early by looking at
1316 		 * the VMA flags, vma_pagesize is already representing the
1317 		 * largest quantity we can map.  If instead it was mapped
1318 		 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1319 		 * and must not be upgraded.
1320 		 *
1321 		 * In both cases, we don't let transparent_hugepage_adjust()
1322 		 * change things at the last minute.
1323 		 */
1324 		device = true;
1325 	} else if (logging_active && !write_fault) {
1326 		/*
1327 		 * Only actually map the page as writable if this was a write
1328 		 * fault.
1329 		 */
1330 		writable = false;
1331 	}
1332 
1333 	if (exec_fault && device)
1334 		return -ENOEXEC;
1335 
1336 	read_lock(&kvm->mmu_lock);
1337 	pgt = vcpu->arch.hw_mmu->pgt;
1338 	if (mmu_invalidate_retry(kvm, mmu_seq))
1339 		goto out_unlock;
1340 
1341 	/*
1342 	 * If we are not forced to use page mapping, check if we are
1343 	 * backed by a THP and thus use block mapping if possible.
1344 	 */
1345 	if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1346 		if (fault_status ==  ESR_ELx_FSC_PERM &&
1347 		    fault_granule > PAGE_SIZE)
1348 			vma_pagesize = fault_granule;
1349 		else
1350 			vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1351 								   hva, &pfn,
1352 								   &fault_ipa);
1353 	}
1354 
1355 	if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1356 		/* Check the VMM hasn't introduced a new disallowed VMA */
1357 		if (kvm_vma_mte_allowed(vma)) {
1358 			sanitise_mte_tags(kvm, pfn, vma_pagesize);
1359 		} else {
1360 			ret = -EFAULT;
1361 			goto out_unlock;
1362 		}
1363 	}
1364 
1365 	if (writable)
1366 		prot |= KVM_PGTABLE_PROT_W;
1367 
1368 	if (exec_fault)
1369 		prot |= KVM_PGTABLE_PROT_X;
1370 
1371 	if (device)
1372 		prot |= KVM_PGTABLE_PROT_DEVICE;
1373 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1374 		prot |= KVM_PGTABLE_PROT_X;
1375 
1376 	/*
1377 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
1378 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1379 	 * kvm_pgtable_stage2_map() should be called to change block size.
1380 	 */
1381 	if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1382 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1383 	else
1384 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1385 					     __pfn_to_phys(pfn), prot,
1386 					     memcache,
1387 					     KVM_PGTABLE_WALK_HANDLE_FAULT |
1388 					     KVM_PGTABLE_WALK_SHARED);
1389 
1390 	/* Mark the page dirty only if the fault is handled successfully */
1391 	if (writable && !ret) {
1392 		kvm_set_pfn_dirty(pfn);
1393 		mark_page_dirty_in_slot(kvm, memslot, gfn);
1394 	}
1395 
1396 out_unlock:
1397 	read_unlock(&kvm->mmu_lock);
1398 	kvm_set_pfn_accessed(pfn);
1399 	kvm_release_pfn_clean(pfn);
1400 	return ret != -EAGAIN ? ret : 0;
1401 }
1402 
1403 /* Resolve the access fault by making the page young again. */
1404 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1405 {
1406 	kvm_pte_t pte;
1407 	struct kvm_s2_mmu *mmu;
1408 
1409 	trace_kvm_access_fault(fault_ipa);
1410 
1411 	read_lock(&vcpu->kvm->mmu_lock);
1412 	mmu = vcpu->arch.hw_mmu;
1413 	pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1414 	read_unlock(&vcpu->kvm->mmu_lock);
1415 
1416 	if (kvm_pte_valid(pte))
1417 		kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1418 }
1419 
1420 /**
1421  * kvm_handle_guest_abort - handles all 2nd stage aborts
1422  * @vcpu:	the VCPU pointer
1423  *
1424  * Any abort that gets to the host is almost guaranteed to be caused by a
1425  * missing second stage translation table entry, which can mean that either the
1426  * guest simply needs more memory and we must allocate an appropriate page or it
1427  * can mean that the guest tried to access I/O memory, which is emulated by user
1428  * space. The distinction is based on the IPA causing the fault and whether this
1429  * memory region has been registered as standard RAM by user space.
1430  */
1431 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1432 {
1433 	unsigned long fault_status;
1434 	phys_addr_t fault_ipa;
1435 	struct kvm_memory_slot *memslot;
1436 	unsigned long hva;
1437 	bool is_iabt, write_fault, writable;
1438 	gfn_t gfn;
1439 	int ret, idx;
1440 
1441 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1442 
1443 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1444 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1445 
1446 	if (fault_status == ESR_ELx_FSC_FAULT) {
1447 		/* Beyond sanitised PARange (which is the IPA limit) */
1448 		if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1449 			kvm_inject_size_fault(vcpu);
1450 			return 1;
1451 		}
1452 
1453 		/* Falls between the IPA range and the PARange? */
1454 		if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1455 			fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1456 
1457 			if (is_iabt)
1458 				kvm_inject_pabt(vcpu, fault_ipa);
1459 			else
1460 				kvm_inject_dabt(vcpu, fault_ipa);
1461 			return 1;
1462 		}
1463 	}
1464 
1465 	/* Synchronous External Abort? */
1466 	if (kvm_vcpu_abt_issea(vcpu)) {
1467 		/*
1468 		 * For RAS the host kernel may handle this abort.
1469 		 * There is no need to pass the error into the guest.
1470 		 */
1471 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1472 			kvm_inject_vabt(vcpu);
1473 
1474 		return 1;
1475 	}
1476 
1477 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1478 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1479 
1480 	/* Check the stage-2 fault is trans. fault or write fault */
1481 	if (fault_status != ESR_ELx_FSC_FAULT &&
1482 	    fault_status != ESR_ELx_FSC_PERM &&
1483 	    fault_status != ESR_ELx_FSC_ACCESS) {
1484 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1485 			kvm_vcpu_trap_get_class(vcpu),
1486 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1487 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1488 		return -EFAULT;
1489 	}
1490 
1491 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1492 
1493 	gfn = fault_ipa >> PAGE_SHIFT;
1494 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1495 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1496 	write_fault = kvm_is_write_fault(vcpu);
1497 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1498 		/*
1499 		 * The guest has put either its instructions or its page-tables
1500 		 * somewhere it shouldn't have. Userspace won't be able to do
1501 		 * anything about this (there's no syndrome for a start), so
1502 		 * re-inject the abort back into the guest.
1503 		 */
1504 		if (is_iabt) {
1505 			ret = -ENOEXEC;
1506 			goto out;
1507 		}
1508 
1509 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1510 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1511 			ret = 1;
1512 			goto out_unlock;
1513 		}
1514 
1515 		/*
1516 		 * Check for a cache maintenance operation. Since we
1517 		 * ended-up here, we know it is outside of any memory
1518 		 * slot. But we can't find out if that is for a device,
1519 		 * or if the guest is just being stupid. The only thing
1520 		 * we know for sure is that this range cannot be cached.
1521 		 *
1522 		 * So let's assume that the guest is just being
1523 		 * cautious, and skip the instruction.
1524 		 */
1525 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1526 			kvm_incr_pc(vcpu);
1527 			ret = 1;
1528 			goto out_unlock;
1529 		}
1530 
1531 		/*
1532 		 * The IPA is reported as [MAX:12], so we need to
1533 		 * complement it with the bottom 12 bits from the
1534 		 * faulting VA. This is always 12 bits, irrespective
1535 		 * of the page size.
1536 		 */
1537 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1538 		ret = io_mem_abort(vcpu, fault_ipa);
1539 		goto out_unlock;
1540 	}
1541 
1542 	/* Userspace should not be able to register out-of-bounds IPAs */
1543 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1544 
1545 	if (fault_status == ESR_ELx_FSC_ACCESS) {
1546 		handle_access_fault(vcpu, fault_ipa);
1547 		ret = 1;
1548 		goto out_unlock;
1549 	}
1550 
1551 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1552 	if (ret == 0)
1553 		ret = 1;
1554 out:
1555 	if (ret == -ENOEXEC) {
1556 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1557 		ret = 1;
1558 	}
1559 out_unlock:
1560 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1561 	return ret;
1562 }
1563 
1564 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1565 {
1566 	if (!kvm->arch.mmu.pgt)
1567 		return false;
1568 
1569 	__unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1570 			     (range->end - range->start) << PAGE_SHIFT,
1571 			     range->may_block);
1572 
1573 	return false;
1574 }
1575 
1576 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1577 {
1578 	kvm_pfn_t pfn = pte_pfn(range->pte);
1579 
1580 	if (!kvm->arch.mmu.pgt)
1581 		return false;
1582 
1583 	WARN_ON(range->end - range->start != 1);
1584 
1585 	/*
1586 	 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1587 	 * the MTE tags. The S2 pte should have been unmapped by
1588 	 * mmu_notifier_invalidate_range_end().
1589 	 */
1590 	if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1591 		return false;
1592 
1593 	/*
1594 	 * We've moved a page around, probably through CoW, so let's treat
1595 	 * it just like a translation fault and the map handler will clean
1596 	 * the cache to the PoC.
1597 	 *
1598 	 * The MMU notifiers will have unmapped a huge PMD before calling
1599 	 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1600 	 * therefore we never need to clear out a huge PMD through this
1601 	 * calling path and a memcache is not required.
1602 	 */
1603 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1604 			       PAGE_SIZE, __pfn_to_phys(pfn),
1605 			       KVM_PGTABLE_PROT_R, NULL, 0);
1606 
1607 	return false;
1608 }
1609 
1610 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1611 {
1612 	u64 size = (range->end - range->start) << PAGE_SHIFT;
1613 	kvm_pte_t kpte;
1614 	pte_t pte;
1615 
1616 	if (!kvm->arch.mmu.pgt)
1617 		return false;
1618 
1619 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1620 
1621 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1622 					range->start << PAGE_SHIFT);
1623 	pte = __pte(kpte);
1624 	return pte_valid(pte) && pte_young(pte);
1625 }
1626 
1627 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1628 {
1629 	if (!kvm->arch.mmu.pgt)
1630 		return false;
1631 
1632 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1633 					   range->start << PAGE_SHIFT);
1634 }
1635 
1636 phys_addr_t kvm_mmu_get_httbr(void)
1637 {
1638 	return __pa(hyp_pgtable->pgd);
1639 }
1640 
1641 phys_addr_t kvm_get_idmap_vector(void)
1642 {
1643 	return hyp_idmap_vector;
1644 }
1645 
1646 static int kvm_map_idmap_text(void)
1647 {
1648 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1649 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1650 					PAGE_HYP_EXEC);
1651 	if (err)
1652 		kvm_err("Failed to idmap %lx-%lx\n",
1653 			hyp_idmap_start, hyp_idmap_end);
1654 
1655 	return err;
1656 }
1657 
1658 static void *kvm_hyp_zalloc_page(void *arg)
1659 {
1660 	return (void *)get_zeroed_page(GFP_KERNEL);
1661 }
1662 
1663 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1664 	.zalloc_page		= kvm_hyp_zalloc_page,
1665 	.get_page		= kvm_host_get_page,
1666 	.put_page		= kvm_host_put_page,
1667 	.phys_to_virt		= kvm_host_va,
1668 	.virt_to_phys		= kvm_host_pa,
1669 };
1670 
1671 int __init kvm_mmu_init(u32 *hyp_va_bits)
1672 {
1673 	int err;
1674 	u32 idmap_bits;
1675 	u32 kernel_bits;
1676 
1677 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1678 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1679 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1680 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1681 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1682 
1683 	/*
1684 	 * We rely on the linker script to ensure at build time that the HYP
1685 	 * init code does not cross a page boundary.
1686 	 */
1687 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1688 
1689 	/*
1690 	 * The ID map may be configured to use an extended virtual address
1691 	 * range. This is only the case if system RAM is out of range for the
1692 	 * currently configured page size and VA_BITS_MIN, in which case we will
1693 	 * also need the extended virtual range for the HYP ID map, or we won't
1694 	 * be able to enable the EL2 MMU.
1695 	 *
1696 	 * However, in some cases the ID map may be configured for fewer than
1697 	 * the number of VA bits used by the regular kernel stage 1. This
1698 	 * happens when VA_BITS=52 and the kernel image is placed in PA space
1699 	 * below 48 bits.
1700 	 *
1701 	 * At EL2, there is only one TTBR register, and we can't switch between
1702 	 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1703 	 * line: we need to use the extended range with *both* our translation
1704 	 * tables.
1705 	 *
1706 	 * So use the maximum of the idmap VA bits and the regular kernel stage
1707 	 * 1 VA bits to assure that the hypervisor can both ID map its code page
1708 	 * and map any kernel memory.
1709 	 */
1710 	idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1711 	kernel_bits = vabits_actual;
1712 	*hyp_va_bits = max(idmap_bits, kernel_bits);
1713 
1714 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1715 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1716 	kvm_debug("HYP VA range: %lx:%lx\n",
1717 		  kern_hyp_va(PAGE_OFFSET),
1718 		  kern_hyp_va((unsigned long)high_memory - 1));
1719 
1720 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1721 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1722 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1723 		/*
1724 		 * The idmap page is intersecting with the VA space,
1725 		 * it is not safe to continue further.
1726 		 */
1727 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1728 		err = -EINVAL;
1729 		goto out;
1730 	}
1731 
1732 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1733 	if (!hyp_pgtable) {
1734 		kvm_err("Hyp mode page-table not allocated\n");
1735 		err = -ENOMEM;
1736 		goto out;
1737 	}
1738 
1739 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1740 	if (err)
1741 		goto out_free_pgtable;
1742 
1743 	err = kvm_map_idmap_text();
1744 	if (err)
1745 		goto out_destroy_pgtable;
1746 
1747 	io_map_base = hyp_idmap_start;
1748 	return 0;
1749 
1750 out_destroy_pgtable:
1751 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1752 out_free_pgtable:
1753 	kfree(hyp_pgtable);
1754 	hyp_pgtable = NULL;
1755 out:
1756 	return err;
1757 }
1758 
1759 void kvm_arch_commit_memory_region(struct kvm *kvm,
1760 				   struct kvm_memory_slot *old,
1761 				   const struct kvm_memory_slot *new,
1762 				   enum kvm_mr_change change)
1763 {
1764 	/*
1765 	 * At this point memslot has been committed and there is an
1766 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1767 	 * memory slot is write protected.
1768 	 */
1769 	if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1770 		/*
1771 		 * If we're with initial-all-set, we don't need to write
1772 		 * protect any pages because they're all reported as dirty.
1773 		 * Huge pages and normal pages will be write protect gradually.
1774 		 */
1775 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1776 			kvm_mmu_wp_memory_region(kvm, new->id);
1777 		}
1778 	}
1779 }
1780 
1781 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1782 				   const struct kvm_memory_slot *old,
1783 				   struct kvm_memory_slot *new,
1784 				   enum kvm_mr_change change)
1785 {
1786 	hva_t hva, reg_end;
1787 	int ret = 0;
1788 
1789 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1790 			change != KVM_MR_FLAGS_ONLY)
1791 		return 0;
1792 
1793 	/*
1794 	 * Prevent userspace from creating a memory region outside of the IPA
1795 	 * space addressable by the KVM guest IPA space.
1796 	 */
1797 	if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1798 		return -EFAULT;
1799 
1800 	hva = new->userspace_addr;
1801 	reg_end = hva + (new->npages << PAGE_SHIFT);
1802 
1803 	mmap_read_lock(current->mm);
1804 	/*
1805 	 * A memory region could potentially cover multiple VMAs, and any holes
1806 	 * between them, so iterate over all of them.
1807 	 *
1808 	 *     +--------------------------------------------+
1809 	 * +---------------+----------------+   +----------------+
1810 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1811 	 * +---------------+----------------+   +----------------+
1812 	 *     |               memory region                |
1813 	 *     +--------------------------------------------+
1814 	 */
1815 	do {
1816 		struct vm_area_struct *vma;
1817 
1818 		vma = find_vma_intersection(current->mm, hva, reg_end);
1819 		if (!vma)
1820 			break;
1821 
1822 		if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
1823 			ret = -EINVAL;
1824 			break;
1825 		}
1826 
1827 		if (vma->vm_flags & VM_PFNMAP) {
1828 			/* IO region dirty page logging not allowed */
1829 			if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1830 				ret = -EINVAL;
1831 				break;
1832 			}
1833 		}
1834 		hva = min(reg_end, vma->vm_end);
1835 	} while (hva < reg_end);
1836 
1837 	mmap_read_unlock(current->mm);
1838 	return ret;
1839 }
1840 
1841 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1842 {
1843 }
1844 
1845 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1846 {
1847 }
1848 
1849 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1850 {
1851 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1852 }
1853 
1854 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1855 				   struct kvm_memory_slot *slot)
1856 {
1857 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1858 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1859 
1860 	write_lock(&kvm->mmu_lock);
1861 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1862 	write_unlock(&kvm->mmu_lock);
1863 }
1864 
1865 /*
1866  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1867  *
1868  * Main problems:
1869  * - S/W ops are local to a CPU (not broadcast)
1870  * - We have line migration behind our back (speculation)
1871  * - System caches don't support S/W at all (damn!)
1872  *
1873  * In the face of the above, the best we can do is to try and convert
1874  * S/W ops to VA ops. Because the guest is not allowed to infer the
1875  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1876  * which is a rather good thing for us.
1877  *
1878  * Also, it is only used when turning caches on/off ("The expected
1879  * usage of the cache maintenance instructions that operate by set/way
1880  * is associated with the cache maintenance instructions associated
1881  * with the powerdown and powerup of caches, if this is required by
1882  * the implementation.").
1883  *
1884  * We use the following policy:
1885  *
1886  * - If we trap a S/W operation, we enable VM trapping to detect
1887  *   caches being turned on/off, and do a full clean.
1888  *
1889  * - We flush the caches on both caches being turned on and off.
1890  *
1891  * - Once the caches are enabled, we stop trapping VM ops.
1892  */
1893 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1894 {
1895 	unsigned long hcr = *vcpu_hcr(vcpu);
1896 
1897 	/*
1898 	 * If this is the first time we do a S/W operation
1899 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1900 	 * VM trapping.
1901 	 *
1902 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1903 	 * Caches to be turned off. At that point, we'll be able to
1904 	 * clean the caches again.
1905 	 */
1906 	if (!(hcr & HCR_TVM)) {
1907 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1908 					vcpu_has_cache_enabled(vcpu));
1909 		stage2_flush_vm(vcpu->kvm);
1910 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1911 	}
1912 }
1913 
1914 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1915 {
1916 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1917 
1918 	/*
1919 	 * If switching the MMU+caches on, need to invalidate the caches.
1920 	 * If switching it off, need to clean the caches.
1921 	 * Clean + invalidate does the trick always.
1922 	 */
1923 	if (now_enabled != was_enabled)
1924 		stage2_flush_vm(vcpu->kvm);
1925 
1926 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1927 	if (now_enabled)
1928 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1929 
1930 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1931 }
1932