xref: /openbmc/linux/arch/arm64/kvm/mmu.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_ras.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/virt.h>
21 
22 #include "trace.h"
23 
24 static pgd_t *boot_hyp_pgd;
25 static pgd_t *hyp_pgd;
26 static pgd_t *merged_hyp_pgd;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28 
29 static unsigned long hyp_idmap_start;
30 static unsigned long hyp_idmap_end;
31 static phys_addr_t hyp_idmap_vector;
32 
33 static unsigned long io_map_base;
34 
35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36 
37 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
38 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
39 
40 static bool is_iomap(unsigned long flags)
41 {
42 	return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43 }
44 
45 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46 {
47 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 }
49 
50 /**
51  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52  * @kvm:	pointer to kvm structure.
53  *
54  * Interface to HYP function to flush all VM TLB entries
55  */
56 void kvm_flush_remote_tlbs(struct kvm *kvm)
57 {
58 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
59 }
60 
61 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
62 				   int level)
63 {
64 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
65 }
66 
67 /*
68  * D-Cache management functions. They take the page table entries by
69  * value, as they are flushing the cache using the kernel mapping (or
70  * kmap on 32bit).
71  */
72 static void kvm_flush_dcache_pte(pte_t pte)
73 {
74 	__kvm_flush_dcache_pte(pte);
75 }
76 
77 static void kvm_flush_dcache_pmd(pmd_t pmd)
78 {
79 	__kvm_flush_dcache_pmd(pmd);
80 }
81 
82 static void kvm_flush_dcache_pud(pud_t pud)
83 {
84 	__kvm_flush_dcache_pud(pud);
85 }
86 
87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 	return !pfn_valid(pfn);
90 }
91 
92 /**
93  * stage2_dissolve_pmd() - clear and flush huge PMD entry
94  * @mmu:	pointer to mmu structure to operate on
95  * @addr:	IPA
96  * @pmd:	pmd pointer for IPA
97  *
98  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
99  */
100 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
101 {
102 	if (!pmd_thp_or_huge(*pmd))
103 		return;
104 
105 	pmd_clear(pmd);
106 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
107 	put_page(virt_to_page(pmd));
108 }
109 
110 /**
111  * stage2_dissolve_pud() - clear and flush huge PUD entry
112  * @mmu:	pointer to mmu structure to operate on
113  * @addr:	IPA
114  * @pud:	pud pointer for IPA
115  *
116  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
117  */
118 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
119 {
120 	struct kvm *kvm = mmu->kvm;
121 
122 	if (!stage2_pud_huge(kvm, *pudp))
123 		return;
124 
125 	stage2_pud_clear(kvm, pudp);
126 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
127 	put_page(virt_to_page(pudp));
128 }
129 
130 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
131 {
132 	struct kvm *kvm = mmu->kvm;
133 	p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
134 	stage2_pgd_clear(kvm, pgd);
135 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
136 	stage2_p4d_free(kvm, p4d_table);
137 	put_page(virt_to_page(pgd));
138 }
139 
140 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
141 {
142 	struct kvm *kvm = mmu->kvm;
143 	pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
144 	stage2_p4d_clear(kvm, p4d);
145 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
146 	stage2_pud_free(kvm, pud_table);
147 	put_page(virt_to_page(p4d));
148 }
149 
150 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
151 {
152 	struct kvm *kvm = mmu->kvm;
153 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
154 
155 	VM_BUG_ON(stage2_pud_huge(kvm, *pud));
156 	stage2_pud_clear(kvm, pud);
157 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
158 	stage2_pmd_free(kvm, pmd_table);
159 	put_page(virt_to_page(pud));
160 }
161 
162 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
163 {
164 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
165 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
166 	pmd_clear(pmd);
167 	kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
168 	free_page((unsigned long)pte_table);
169 	put_page(virt_to_page(pmd));
170 }
171 
172 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
173 {
174 	WRITE_ONCE(*ptep, new_pte);
175 	dsb(ishst);
176 }
177 
178 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
179 {
180 	WRITE_ONCE(*pmdp, new_pmd);
181 	dsb(ishst);
182 }
183 
184 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
185 {
186 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
187 }
188 
189 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
190 {
191 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
192 	dsb(ishst);
193 }
194 
195 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
196 {
197 	WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
198 	dsb(ishst);
199 }
200 
201 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
202 {
203 #ifndef __PAGETABLE_P4D_FOLDED
204 	WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
205 	dsb(ishst);
206 #endif
207 }
208 
209 /*
210  * Unmapping vs dcache management:
211  *
212  * If a guest maps certain memory pages as uncached, all writes will
213  * bypass the data cache and go directly to RAM.  However, the CPUs
214  * can still speculate reads (not writes) and fill cache lines with
215  * data.
216  *
217  * Those cache lines will be *clean* cache lines though, so a
218  * clean+invalidate operation is equivalent to an invalidate
219  * operation, because no cache lines are marked dirty.
220  *
221  * Those clean cache lines could be filled prior to an uncached write
222  * by the guest, and the cache coherent IO subsystem would therefore
223  * end up writing old data to disk.
224  *
225  * This is why right after unmapping a page/section and invalidating
226  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
227  * the IO subsystem will never hit in the cache.
228  *
229  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
230  * we then fully enforce cacheability of RAM, no matter what the guest
231  * does.
232  */
233 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
234 		       phys_addr_t addr, phys_addr_t end)
235 {
236 	phys_addr_t start_addr = addr;
237 	pte_t *pte, *start_pte;
238 
239 	start_pte = pte = pte_offset_kernel(pmd, addr);
240 	do {
241 		if (!pte_none(*pte)) {
242 			pte_t old_pte = *pte;
243 
244 			kvm_set_pte(pte, __pte(0));
245 			kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
246 
247 			/* No need to invalidate the cache for device mappings */
248 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249 				kvm_flush_dcache_pte(old_pte);
250 
251 			put_page(virt_to_page(pte));
252 		}
253 	} while (pte++, addr += PAGE_SIZE, addr != end);
254 
255 	if (stage2_pte_table_empty(mmu->kvm, start_pte))
256 		clear_stage2_pmd_entry(mmu, pmd, start_addr);
257 }
258 
259 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
260 		       phys_addr_t addr, phys_addr_t end)
261 {
262 	struct kvm *kvm = mmu->kvm;
263 	phys_addr_t next, start_addr = addr;
264 	pmd_t *pmd, *start_pmd;
265 
266 	start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
267 	do {
268 		next = stage2_pmd_addr_end(kvm, addr, end);
269 		if (!pmd_none(*pmd)) {
270 			if (pmd_thp_or_huge(*pmd)) {
271 				pmd_t old_pmd = *pmd;
272 
273 				pmd_clear(pmd);
274 				kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
275 
276 				kvm_flush_dcache_pmd(old_pmd);
277 
278 				put_page(virt_to_page(pmd));
279 			} else {
280 				unmap_stage2_ptes(mmu, pmd, addr, next);
281 			}
282 		}
283 	} while (pmd++, addr = next, addr != end);
284 
285 	if (stage2_pmd_table_empty(kvm, start_pmd))
286 		clear_stage2_pud_entry(mmu, pud, start_addr);
287 }
288 
289 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
290 		       phys_addr_t addr, phys_addr_t end)
291 {
292 	struct kvm *kvm = mmu->kvm;
293 	phys_addr_t next, start_addr = addr;
294 	pud_t *pud, *start_pud;
295 
296 	start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
297 	do {
298 		next = stage2_pud_addr_end(kvm, addr, end);
299 		if (!stage2_pud_none(kvm, *pud)) {
300 			if (stage2_pud_huge(kvm, *pud)) {
301 				pud_t old_pud = *pud;
302 
303 				stage2_pud_clear(kvm, pud);
304 				kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
305 				kvm_flush_dcache_pud(old_pud);
306 				put_page(virt_to_page(pud));
307 			} else {
308 				unmap_stage2_pmds(mmu, pud, addr, next);
309 			}
310 		}
311 	} while (pud++, addr = next, addr != end);
312 
313 	if (stage2_pud_table_empty(kvm, start_pud))
314 		clear_stage2_p4d_entry(mmu, p4d, start_addr);
315 }
316 
317 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
318 		       phys_addr_t addr, phys_addr_t end)
319 {
320 	struct kvm *kvm = mmu->kvm;
321 	phys_addr_t next, start_addr = addr;
322 	p4d_t *p4d, *start_p4d;
323 
324 	start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
325 	do {
326 		next = stage2_p4d_addr_end(kvm, addr, end);
327 		if (!stage2_p4d_none(kvm, *p4d))
328 			unmap_stage2_puds(mmu, p4d, addr, next);
329 	} while (p4d++, addr = next, addr != end);
330 
331 	if (stage2_p4d_table_empty(kvm, start_p4d))
332 		clear_stage2_pgd_entry(mmu, pgd, start_addr);
333 }
334 
335 /**
336  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
337  * @kvm:   The VM pointer
338  * @start: The intermediate physical base address of the range to unmap
339  * @size:  The size of the area to unmap
340  *
341  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
342  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
343  * destroying the VM), otherwise another faulting VCPU may come in and mess
344  * with things behind our backs.
345  */
346 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
347 {
348 	struct kvm *kvm = mmu->kvm;
349 	pgd_t *pgd;
350 	phys_addr_t addr = start, end = start + size;
351 	phys_addr_t next;
352 
353 	assert_spin_locked(&kvm->mmu_lock);
354 	WARN_ON(size & ~PAGE_MASK);
355 
356 	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
357 	do {
358 		/*
359 		 * Make sure the page table is still active, as another thread
360 		 * could have possibly freed the page table, while we released
361 		 * the lock.
362 		 */
363 		if (!READ_ONCE(mmu->pgd))
364 			break;
365 		next = stage2_pgd_addr_end(kvm, addr, end);
366 		if (!stage2_pgd_none(kvm, *pgd))
367 			unmap_stage2_p4ds(mmu, pgd, addr, next);
368 		/*
369 		 * If the range is too large, release the kvm->mmu_lock
370 		 * to prevent starvation and lockup detector warnings.
371 		 */
372 		if (next != end)
373 			cond_resched_lock(&kvm->mmu_lock);
374 	} while (pgd++, addr = next, addr != end);
375 }
376 
377 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
378 			      phys_addr_t addr, phys_addr_t end)
379 {
380 	pte_t *pte;
381 
382 	pte = pte_offset_kernel(pmd, addr);
383 	do {
384 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
385 			kvm_flush_dcache_pte(*pte);
386 	} while (pte++, addr += PAGE_SIZE, addr != end);
387 }
388 
389 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
390 			      phys_addr_t addr, phys_addr_t end)
391 {
392 	struct kvm *kvm = mmu->kvm;
393 	pmd_t *pmd;
394 	phys_addr_t next;
395 
396 	pmd = stage2_pmd_offset(kvm, pud, addr);
397 	do {
398 		next = stage2_pmd_addr_end(kvm, addr, end);
399 		if (!pmd_none(*pmd)) {
400 			if (pmd_thp_or_huge(*pmd))
401 				kvm_flush_dcache_pmd(*pmd);
402 			else
403 				stage2_flush_ptes(mmu, pmd, addr, next);
404 		}
405 	} while (pmd++, addr = next, addr != end);
406 }
407 
408 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
409 			      phys_addr_t addr, phys_addr_t end)
410 {
411 	struct kvm *kvm = mmu->kvm;
412 	pud_t *pud;
413 	phys_addr_t next;
414 
415 	pud = stage2_pud_offset(kvm, p4d, addr);
416 	do {
417 		next = stage2_pud_addr_end(kvm, addr, end);
418 		if (!stage2_pud_none(kvm, *pud)) {
419 			if (stage2_pud_huge(kvm, *pud))
420 				kvm_flush_dcache_pud(*pud);
421 			else
422 				stage2_flush_pmds(mmu, pud, addr, next);
423 		}
424 	} while (pud++, addr = next, addr != end);
425 }
426 
427 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
428 			      phys_addr_t addr, phys_addr_t end)
429 {
430 	struct kvm *kvm = mmu->kvm;
431 	p4d_t *p4d;
432 	phys_addr_t next;
433 
434 	p4d = stage2_p4d_offset(kvm, pgd, addr);
435 	do {
436 		next = stage2_p4d_addr_end(kvm, addr, end);
437 		if (!stage2_p4d_none(kvm, *p4d))
438 			stage2_flush_puds(mmu, p4d, addr, next);
439 	} while (p4d++, addr = next, addr != end);
440 }
441 
442 static void stage2_flush_memslot(struct kvm *kvm,
443 				 struct kvm_memory_slot *memslot)
444 {
445 	struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
446 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
447 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
448 	phys_addr_t next;
449 	pgd_t *pgd;
450 
451 	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
452 	do {
453 		next = stage2_pgd_addr_end(kvm, addr, end);
454 		if (!stage2_pgd_none(kvm, *pgd))
455 			stage2_flush_p4ds(mmu, pgd, addr, next);
456 
457 		if (next != end)
458 			cond_resched_lock(&kvm->mmu_lock);
459 	} while (pgd++, addr = next, addr != end);
460 }
461 
462 /**
463  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
464  * @kvm: The struct kvm pointer
465  *
466  * Go through the stage 2 page tables and invalidate any cache lines
467  * backing memory already mapped to the VM.
468  */
469 static void stage2_flush_vm(struct kvm *kvm)
470 {
471 	struct kvm_memslots *slots;
472 	struct kvm_memory_slot *memslot;
473 	int idx;
474 
475 	idx = srcu_read_lock(&kvm->srcu);
476 	spin_lock(&kvm->mmu_lock);
477 
478 	slots = kvm_memslots(kvm);
479 	kvm_for_each_memslot(memslot, slots)
480 		stage2_flush_memslot(kvm, memslot);
481 
482 	spin_unlock(&kvm->mmu_lock);
483 	srcu_read_unlock(&kvm->srcu, idx);
484 }
485 
486 static void clear_hyp_pgd_entry(pgd_t *pgd)
487 {
488 	p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
489 	pgd_clear(pgd);
490 	p4d_free(NULL, p4d_table);
491 	put_page(virt_to_page(pgd));
492 }
493 
494 static void clear_hyp_p4d_entry(p4d_t *p4d)
495 {
496 	pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
497 	VM_BUG_ON(p4d_huge(*p4d));
498 	p4d_clear(p4d);
499 	pud_free(NULL, pud_table);
500 	put_page(virt_to_page(p4d));
501 }
502 
503 static void clear_hyp_pud_entry(pud_t *pud)
504 {
505 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
506 	VM_BUG_ON(pud_huge(*pud));
507 	pud_clear(pud);
508 	pmd_free(NULL, pmd_table);
509 	put_page(virt_to_page(pud));
510 }
511 
512 static void clear_hyp_pmd_entry(pmd_t *pmd)
513 {
514 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
515 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
516 	pmd_clear(pmd);
517 	pte_free_kernel(NULL, pte_table);
518 	put_page(virt_to_page(pmd));
519 }
520 
521 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
522 {
523 	pte_t *pte, *start_pte;
524 
525 	start_pte = pte = pte_offset_kernel(pmd, addr);
526 	do {
527 		if (!pte_none(*pte)) {
528 			kvm_set_pte(pte, __pte(0));
529 			put_page(virt_to_page(pte));
530 		}
531 	} while (pte++, addr += PAGE_SIZE, addr != end);
532 
533 	if (hyp_pte_table_empty(start_pte))
534 		clear_hyp_pmd_entry(pmd);
535 }
536 
537 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
538 {
539 	phys_addr_t next;
540 	pmd_t *pmd, *start_pmd;
541 
542 	start_pmd = pmd = pmd_offset(pud, addr);
543 	do {
544 		next = pmd_addr_end(addr, end);
545 		/* Hyp doesn't use huge pmds */
546 		if (!pmd_none(*pmd))
547 			unmap_hyp_ptes(pmd, addr, next);
548 	} while (pmd++, addr = next, addr != end);
549 
550 	if (hyp_pmd_table_empty(start_pmd))
551 		clear_hyp_pud_entry(pud);
552 }
553 
554 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
555 {
556 	phys_addr_t next;
557 	pud_t *pud, *start_pud;
558 
559 	start_pud = pud = pud_offset(p4d, addr);
560 	do {
561 		next = pud_addr_end(addr, end);
562 		/* Hyp doesn't use huge puds */
563 		if (!pud_none(*pud))
564 			unmap_hyp_pmds(pud, addr, next);
565 	} while (pud++, addr = next, addr != end);
566 
567 	if (hyp_pud_table_empty(start_pud))
568 		clear_hyp_p4d_entry(p4d);
569 }
570 
571 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
572 {
573 	phys_addr_t next;
574 	p4d_t *p4d, *start_p4d;
575 
576 	start_p4d = p4d = p4d_offset(pgd, addr);
577 	do {
578 		next = p4d_addr_end(addr, end);
579 		/* Hyp doesn't use huge p4ds */
580 		if (!p4d_none(*p4d))
581 			unmap_hyp_puds(p4d, addr, next);
582 	} while (p4d++, addr = next, addr != end);
583 
584 	if (hyp_p4d_table_empty(start_p4d))
585 		clear_hyp_pgd_entry(pgd);
586 }
587 
588 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
589 {
590 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
591 }
592 
593 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
594 			      phys_addr_t start, u64 size)
595 {
596 	pgd_t *pgd;
597 	phys_addr_t addr = start, end = start + size;
598 	phys_addr_t next;
599 
600 	/*
601 	 * We don't unmap anything from HYP, except at the hyp tear down.
602 	 * Hence, we don't have to invalidate the TLBs here.
603 	 */
604 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
605 	do {
606 		next = pgd_addr_end(addr, end);
607 		if (!pgd_none(*pgd))
608 			unmap_hyp_p4ds(pgd, addr, next);
609 	} while (pgd++, addr = next, addr != end);
610 }
611 
612 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
613 {
614 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
615 }
616 
617 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
618 {
619 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
620 }
621 
622 /**
623  * free_hyp_pgds - free Hyp-mode page tables
624  *
625  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
626  * therefore contains either mappings in the kernel memory area (above
627  * PAGE_OFFSET), or device mappings in the idmap range.
628  *
629  * boot_hyp_pgd should only map the idmap range, and is only used in
630  * the extended idmap case.
631  */
632 void free_hyp_pgds(void)
633 {
634 	pgd_t *id_pgd;
635 
636 	mutex_lock(&kvm_hyp_pgd_mutex);
637 
638 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
639 
640 	if (id_pgd) {
641 		/* In case we never called hyp_mmu_init() */
642 		if (!io_map_base)
643 			io_map_base = hyp_idmap_start;
644 		unmap_hyp_idmap_range(id_pgd, io_map_base,
645 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
646 	}
647 
648 	if (boot_hyp_pgd) {
649 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
650 		boot_hyp_pgd = NULL;
651 	}
652 
653 	if (hyp_pgd) {
654 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
655 				(uintptr_t)high_memory - PAGE_OFFSET);
656 
657 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
658 		hyp_pgd = NULL;
659 	}
660 	if (merged_hyp_pgd) {
661 		clear_page(merged_hyp_pgd);
662 		free_page((unsigned long)merged_hyp_pgd);
663 		merged_hyp_pgd = NULL;
664 	}
665 
666 	mutex_unlock(&kvm_hyp_pgd_mutex);
667 }
668 
669 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
670 				    unsigned long end, unsigned long pfn,
671 				    pgprot_t prot)
672 {
673 	pte_t *pte;
674 	unsigned long addr;
675 
676 	addr = start;
677 	do {
678 		pte = pte_offset_kernel(pmd, addr);
679 		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
680 		get_page(virt_to_page(pte));
681 		pfn++;
682 	} while (addr += PAGE_SIZE, addr != end);
683 }
684 
685 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
686 				   unsigned long end, unsigned long pfn,
687 				   pgprot_t prot)
688 {
689 	pmd_t *pmd;
690 	pte_t *pte;
691 	unsigned long addr, next;
692 
693 	addr = start;
694 	do {
695 		pmd = pmd_offset(pud, addr);
696 
697 		BUG_ON(pmd_sect(*pmd));
698 
699 		if (pmd_none(*pmd)) {
700 			pte = pte_alloc_one_kernel(NULL);
701 			if (!pte) {
702 				kvm_err("Cannot allocate Hyp pte\n");
703 				return -ENOMEM;
704 			}
705 			kvm_pmd_populate(pmd, pte);
706 			get_page(virt_to_page(pmd));
707 		}
708 
709 		next = pmd_addr_end(addr, end);
710 
711 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
712 		pfn += (next - addr) >> PAGE_SHIFT;
713 	} while (addr = next, addr != end);
714 
715 	return 0;
716 }
717 
718 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
719 				   unsigned long end, unsigned long pfn,
720 				   pgprot_t prot)
721 {
722 	pud_t *pud;
723 	pmd_t *pmd;
724 	unsigned long addr, next;
725 	int ret;
726 
727 	addr = start;
728 	do {
729 		pud = pud_offset(p4d, addr);
730 
731 		if (pud_none_or_clear_bad(pud)) {
732 			pmd = pmd_alloc_one(NULL, addr);
733 			if (!pmd) {
734 				kvm_err("Cannot allocate Hyp pmd\n");
735 				return -ENOMEM;
736 			}
737 			kvm_pud_populate(pud, pmd);
738 			get_page(virt_to_page(pud));
739 		}
740 
741 		next = pud_addr_end(addr, end);
742 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
743 		if (ret)
744 			return ret;
745 		pfn += (next - addr) >> PAGE_SHIFT;
746 	} while (addr = next, addr != end);
747 
748 	return 0;
749 }
750 
751 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
752 				   unsigned long end, unsigned long pfn,
753 				   pgprot_t prot)
754 {
755 	p4d_t *p4d;
756 	pud_t *pud;
757 	unsigned long addr, next;
758 	int ret;
759 
760 	addr = start;
761 	do {
762 		p4d = p4d_offset(pgd, addr);
763 
764 		if (p4d_none(*p4d)) {
765 			pud = pud_alloc_one(NULL, addr);
766 			if (!pud) {
767 				kvm_err("Cannot allocate Hyp pud\n");
768 				return -ENOMEM;
769 			}
770 			kvm_p4d_populate(p4d, pud);
771 			get_page(virt_to_page(p4d));
772 		}
773 
774 		next = p4d_addr_end(addr, end);
775 		ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
776 		if (ret)
777 			return ret;
778 		pfn += (next - addr) >> PAGE_SHIFT;
779 	} while (addr = next, addr != end);
780 
781 	return 0;
782 }
783 
784 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
785 				 unsigned long start, unsigned long end,
786 				 unsigned long pfn, pgprot_t prot)
787 {
788 	pgd_t *pgd;
789 	p4d_t *p4d;
790 	unsigned long addr, next;
791 	int err = 0;
792 
793 	mutex_lock(&kvm_hyp_pgd_mutex);
794 	addr = start & PAGE_MASK;
795 	end = PAGE_ALIGN(end);
796 	do {
797 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
798 
799 		if (pgd_none(*pgd)) {
800 			p4d = p4d_alloc_one(NULL, addr);
801 			if (!p4d) {
802 				kvm_err("Cannot allocate Hyp p4d\n");
803 				err = -ENOMEM;
804 				goto out;
805 			}
806 			kvm_pgd_populate(pgd, p4d);
807 			get_page(virt_to_page(pgd));
808 		}
809 
810 		next = pgd_addr_end(addr, end);
811 		err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
812 		if (err)
813 			goto out;
814 		pfn += (next - addr) >> PAGE_SHIFT;
815 	} while (addr = next, addr != end);
816 out:
817 	mutex_unlock(&kvm_hyp_pgd_mutex);
818 	return err;
819 }
820 
821 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
822 {
823 	if (!is_vmalloc_addr(kaddr)) {
824 		BUG_ON(!virt_addr_valid(kaddr));
825 		return __pa(kaddr);
826 	} else {
827 		return page_to_phys(vmalloc_to_page(kaddr)) +
828 		       offset_in_page(kaddr);
829 	}
830 }
831 
832 /**
833  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
834  * @from:	The virtual kernel start address of the range
835  * @to:		The virtual kernel end address of the range (exclusive)
836  * @prot:	The protection to be applied to this range
837  *
838  * The same virtual address as the kernel virtual address is also used
839  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
840  * physical pages.
841  */
842 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
843 {
844 	phys_addr_t phys_addr;
845 	unsigned long virt_addr;
846 	unsigned long start = kern_hyp_va((unsigned long)from);
847 	unsigned long end = kern_hyp_va((unsigned long)to);
848 
849 	if (is_kernel_in_hyp_mode())
850 		return 0;
851 
852 	start = start & PAGE_MASK;
853 	end = PAGE_ALIGN(end);
854 
855 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
856 		int err;
857 
858 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
859 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
860 					    virt_addr, virt_addr + PAGE_SIZE,
861 					    __phys_to_pfn(phys_addr),
862 					    prot);
863 		if (err)
864 			return err;
865 	}
866 
867 	return 0;
868 }
869 
870 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
871 					unsigned long *haddr, pgprot_t prot)
872 {
873 	pgd_t *pgd = hyp_pgd;
874 	unsigned long base;
875 	int ret = 0;
876 
877 	mutex_lock(&kvm_hyp_pgd_mutex);
878 
879 	/*
880 	 * This assumes that we have enough space below the idmap
881 	 * page to allocate our VAs. If not, the check below will
882 	 * kick. A potential alternative would be to detect that
883 	 * overflow and switch to an allocation above the idmap.
884 	 *
885 	 * The allocated size is always a multiple of PAGE_SIZE.
886 	 */
887 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
888 	base = io_map_base - size;
889 
890 	/*
891 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
892 	 * allocating the new area, as it would indicate we've
893 	 * overflowed the idmap/IO address range.
894 	 */
895 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
896 		ret = -ENOMEM;
897 	else
898 		io_map_base = base;
899 
900 	mutex_unlock(&kvm_hyp_pgd_mutex);
901 
902 	if (ret)
903 		goto out;
904 
905 	if (__kvm_cpu_uses_extended_idmap())
906 		pgd = boot_hyp_pgd;
907 
908 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
909 				    base, base + size,
910 				    __phys_to_pfn(phys_addr), prot);
911 	if (ret)
912 		goto out;
913 
914 	*haddr = base + offset_in_page(phys_addr);
915 
916 out:
917 	return ret;
918 }
919 
920 /**
921  * create_hyp_io_mappings - Map IO into both kernel and HYP
922  * @phys_addr:	The physical start address which gets mapped
923  * @size:	Size of the region being mapped
924  * @kaddr:	Kernel VA for this mapping
925  * @haddr:	HYP VA for this mapping
926  */
927 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
928 			   void __iomem **kaddr,
929 			   void __iomem **haddr)
930 {
931 	unsigned long addr;
932 	int ret;
933 
934 	*kaddr = ioremap(phys_addr, size);
935 	if (!*kaddr)
936 		return -ENOMEM;
937 
938 	if (is_kernel_in_hyp_mode()) {
939 		*haddr = *kaddr;
940 		return 0;
941 	}
942 
943 	ret = __create_hyp_private_mapping(phys_addr, size,
944 					   &addr, PAGE_HYP_DEVICE);
945 	if (ret) {
946 		iounmap(*kaddr);
947 		*kaddr = NULL;
948 		*haddr = NULL;
949 		return ret;
950 	}
951 
952 	*haddr = (void __iomem *)addr;
953 	return 0;
954 }
955 
956 /**
957  * create_hyp_exec_mappings - Map an executable range into HYP
958  * @phys_addr:	The physical start address which gets mapped
959  * @size:	Size of the region being mapped
960  * @haddr:	HYP VA for this mapping
961  */
962 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
963 			     void **haddr)
964 {
965 	unsigned long addr;
966 	int ret;
967 
968 	BUG_ON(is_kernel_in_hyp_mode());
969 
970 	ret = __create_hyp_private_mapping(phys_addr, size,
971 					   &addr, PAGE_HYP_EXEC);
972 	if (ret) {
973 		*haddr = NULL;
974 		return ret;
975 	}
976 
977 	*haddr = (void *)addr;
978 	return 0;
979 }
980 
981 /**
982  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
983  * @kvm:	The pointer to the KVM structure
984  * @mmu:	The pointer to the s2 MMU structure
985  *
986  * Allocates only the stage-2 HW PGD level table(s) of size defined by
987  * stage2_pgd_size(mmu->kvm).
988  *
989  * Note we don't need locking here as this is only called when the VM is
990  * created, which can only be done once.
991  */
992 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
993 {
994 	phys_addr_t pgd_phys;
995 	pgd_t *pgd;
996 	int cpu;
997 
998 	if (mmu->pgd != NULL) {
999 		kvm_err("kvm_arch already initialized?\n");
1000 		return -EINVAL;
1001 	}
1002 
1003 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
1004 	pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1005 	if (!pgd)
1006 		return -ENOMEM;
1007 
1008 	pgd_phys = virt_to_phys(pgd);
1009 	if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
1010 		return -EINVAL;
1011 
1012 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
1013 	if (!mmu->last_vcpu_ran) {
1014 		free_pages_exact(pgd, stage2_pgd_size(kvm));
1015 		return -ENOMEM;
1016 	}
1017 
1018 	for_each_possible_cpu(cpu)
1019 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1020 
1021 	mmu->kvm = kvm;
1022 	mmu->pgd = pgd;
1023 	mmu->pgd_phys = pgd_phys;
1024 	mmu->vmid.vmid_gen = 0;
1025 
1026 	return 0;
1027 }
1028 
1029 static void stage2_unmap_memslot(struct kvm *kvm,
1030 				 struct kvm_memory_slot *memslot)
1031 {
1032 	hva_t hva = memslot->userspace_addr;
1033 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1034 	phys_addr_t size = PAGE_SIZE * memslot->npages;
1035 	hva_t reg_end = hva + size;
1036 
1037 	/*
1038 	 * A memory region could potentially cover multiple VMAs, and any holes
1039 	 * between them, so iterate over all of them to find out if we should
1040 	 * unmap any of them.
1041 	 *
1042 	 *     +--------------------------------------------+
1043 	 * +---------------+----------------+   +----------------+
1044 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1045 	 * +---------------+----------------+   +----------------+
1046 	 *     |               memory region                |
1047 	 *     +--------------------------------------------+
1048 	 */
1049 	do {
1050 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1051 		hva_t vm_start, vm_end;
1052 
1053 		if (!vma || vma->vm_start >= reg_end)
1054 			break;
1055 
1056 		/*
1057 		 * Take the intersection of this VMA with the memory region
1058 		 */
1059 		vm_start = max(hva, vma->vm_start);
1060 		vm_end = min(reg_end, vma->vm_end);
1061 
1062 		if (!(vma->vm_flags & VM_PFNMAP)) {
1063 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1064 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1065 		}
1066 		hva = vm_end;
1067 	} while (hva < reg_end);
1068 }
1069 
1070 /**
1071  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1072  * @kvm: The struct kvm pointer
1073  *
1074  * Go through the memregions and unmap any regular RAM
1075  * backing memory already mapped to the VM.
1076  */
1077 void stage2_unmap_vm(struct kvm *kvm)
1078 {
1079 	struct kvm_memslots *slots;
1080 	struct kvm_memory_slot *memslot;
1081 	int idx;
1082 
1083 	idx = srcu_read_lock(&kvm->srcu);
1084 	mmap_read_lock(current->mm);
1085 	spin_lock(&kvm->mmu_lock);
1086 
1087 	slots = kvm_memslots(kvm);
1088 	kvm_for_each_memslot(memslot, slots)
1089 		stage2_unmap_memslot(kvm, memslot);
1090 
1091 	spin_unlock(&kvm->mmu_lock);
1092 	mmap_read_unlock(current->mm);
1093 	srcu_read_unlock(&kvm->srcu, idx);
1094 }
1095 
1096 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1097 {
1098 	struct kvm *kvm = mmu->kvm;
1099 	void *pgd = NULL;
1100 
1101 	spin_lock(&kvm->mmu_lock);
1102 	if (mmu->pgd) {
1103 		unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
1104 		pgd = READ_ONCE(mmu->pgd);
1105 		mmu->pgd = NULL;
1106 	}
1107 	spin_unlock(&kvm->mmu_lock);
1108 
1109 	/* Free the HW pgd, one page at a time */
1110 	if (pgd) {
1111 		free_pages_exact(pgd, stage2_pgd_size(kvm));
1112 		free_percpu(mmu->last_vcpu_ran);
1113 	}
1114 }
1115 
1116 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1117 			     phys_addr_t addr)
1118 {
1119 	struct kvm *kvm = mmu->kvm;
1120 	pgd_t *pgd;
1121 	p4d_t *p4d;
1122 
1123 	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1124 	if (stage2_pgd_none(kvm, *pgd)) {
1125 		if (!cache)
1126 			return NULL;
1127 		p4d = kvm_mmu_memory_cache_alloc(cache);
1128 		stage2_pgd_populate(kvm, pgd, p4d);
1129 		get_page(virt_to_page(pgd));
1130 	}
1131 
1132 	return stage2_p4d_offset(kvm, pgd, addr);
1133 }
1134 
1135 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1136 			     phys_addr_t addr)
1137 {
1138 	struct kvm *kvm = mmu->kvm;
1139 	p4d_t *p4d;
1140 	pud_t *pud;
1141 
1142 	p4d = stage2_get_p4d(mmu, cache, addr);
1143 	if (stage2_p4d_none(kvm, *p4d)) {
1144 		if (!cache)
1145 			return NULL;
1146 		pud = kvm_mmu_memory_cache_alloc(cache);
1147 		stage2_p4d_populate(kvm, p4d, pud);
1148 		get_page(virt_to_page(p4d));
1149 	}
1150 
1151 	return stage2_pud_offset(kvm, p4d, addr);
1152 }
1153 
1154 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1155 			     phys_addr_t addr)
1156 {
1157 	struct kvm *kvm = mmu->kvm;
1158 	pud_t *pud;
1159 	pmd_t *pmd;
1160 
1161 	pud = stage2_get_pud(mmu, cache, addr);
1162 	if (!pud || stage2_pud_huge(kvm, *pud))
1163 		return NULL;
1164 
1165 	if (stage2_pud_none(kvm, *pud)) {
1166 		if (!cache)
1167 			return NULL;
1168 		pmd = kvm_mmu_memory_cache_alloc(cache);
1169 		stage2_pud_populate(kvm, pud, pmd);
1170 		get_page(virt_to_page(pud));
1171 	}
1172 
1173 	return stage2_pmd_offset(kvm, pud, addr);
1174 }
1175 
1176 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
1177 			       struct kvm_mmu_memory_cache *cache,
1178 			       phys_addr_t addr, const pmd_t *new_pmd)
1179 {
1180 	pmd_t *pmd, old_pmd;
1181 
1182 retry:
1183 	pmd = stage2_get_pmd(mmu, cache, addr);
1184 	VM_BUG_ON(!pmd);
1185 
1186 	old_pmd = *pmd;
1187 	/*
1188 	 * Multiple vcpus faulting on the same PMD entry, can
1189 	 * lead to them sequentially updating the PMD with the
1190 	 * same value. Following the break-before-make
1191 	 * (pmd_clear() followed by tlb_flush()) process can
1192 	 * hinder forward progress due to refaults generated
1193 	 * on missing translations.
1194 	 *
1195 	 * Skip updating the page table if the entry is
1196 	 * unchanged.
1197 	 */
1198 	if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1199 		return 0;
1200 
1201 	if (pmd_present(old_pmd)) {
1202 		/*
1203 		 * If we already have PTE level mapping for this block,
1204 		 * we must unmap it to avoid inconsistent TLB state and
1205 		 * leaking the table page. We could end up in this situation
1206 		 * if the memory slot was marked for dirty logging and was
1207 		 * reverted, leaving PTE level mappings for the pages accessed
1208 		 * during the period. So, unmap the PTE level mapping for this
1209 		 * block and retry, as we could have released the upper level
1210 		 * table in the process.
1211 		 *
1212 		 * Normal THP split/merge follows mmu_notifier callbacks and do
1213 		 * get handled accordingly.
1214 		 */
1215 		if (!pmd_thp_or_huge(old_pmd)) {
1216 			unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
1217 			goto retry;
1218 		}
1219 		/*
1220 		 * Mapping in huge pages should only happen through a
1221 		 * fault.  If a page is merged into a transparent huge
1222 		 * page, the individual subpages of that huge page
1223 		 * should be unmapped through MMU notifiers before we
1224 		 * get here.
1225 		 *
1226 		 * Merging of CompoundPages is not supported; they
1227 		 * should become splitting first, unmapped, merged,
1228 		 * and mapped back in on-demand.
1229 		 */
1230 		WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1231 		pmd_clear(pmd);
1232 		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
1233 	} else {
1234 		get_page(virt_to_page(pmd));
1235 	}
1236 
1237 	kvm_set_pmd(pmd, *new_pmd);
1238 	return 0;
1239 }
1240 
1241 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
1242 			       struct kvm_mmu_memory_cache *cache,
1243 			       phys_addr_t addr, const pud_t *new_pudp)
1244 {
1245 	struct kvm *kvm = mmu->kvm;
1246 	pud_t *pudp, old_pud;
1247 
1248 retry:
1249 	pudp = stage2_get_pud(mmu, cache, addr);
1250 	VM_BUG_ON(!pudp);
1251 
1252 	old_pud = *pudp;
1253 
1254 	/*
1255 	 * A large number of vcpus faulting on the same stage 2 entry,
1256 	 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1257 	 * Skip updating the page tables if there is no change.
1258 	 */
1259 	if (pud_val(old_pud) == pud_val(*new_pudp))
1260 		return 0;
1261 
1262 	if (stage2_pud_present(kvm, old_pud)) {
1263 		/*
1264 		 * If we already have table level mapping for this block, unmap
1265 		 * the range for this block and retry.
1266 		 */
1267 		if (!stage2_pud_huge(kvm, old_pud)) {
1268 			unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
1269 			goto retry;
1270 		}
1271 
1272 		WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1273 		stage2_pud_clear(kvm, pudp);
1274 		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
1275 	} else {
1276 		get_page(virt_to_page(pudp));
1277 	}
1278 
1279 	kvm_set_pud(pudp, *new_pudp);
1280 	return 0;
1281 }
1282 
1283 /*
1284  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1285  * true if a valid and present leaf-entry is found. A pointer to the
1286  * leaf-entry is returned in the appropriate level variable - pudpp,
1287  * pmdpp, ptepp.
1288  */
1289 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
1290 				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1291 {
1292 	struct kvm *kvm = mmu->kvm;
1293 	pud_t *pudp;
1294 	pmd_t *pmdp;
1295 	pte_t *ptep;
1296 
1297 	*pudpp = NULL;
1298 	*pmdpp = NULL;
1299 	*ptepp = NULL;
1300 
1301 	pudp = stage2_get_pud(mmu, NULL, addr);
1302 	if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1303 		return false;
1304 
1305 	if (stage2_pud_huge(kvm, *pudp)) {
1306 		*pudpp = pudp;
1307 		return true;
1308 	}
1309 
1310 	pmdp = stage2_pmd_offset(kvm, pudp, addr);
1311 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1312 		return false;
1313 
1314 	if (pmd_thp_or_huge(*pmdp)) {
1315 		*pmdpp = pmdp;
1316 		return true;
1317 	}
1318 
1319 	ptep = pte_offset_kernel(pmdp, addr);
1320 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1321 		return false;
1322 
1323 	*ptepp = ptep;
1324 	return true;
1325 }
1326 
1327 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
1328 {
1329 	pud_t *pudp;
1330 	pmd_t *pmdp;
1331 	pte_t *ptep;
1332 	bool found;
1333 
1334 	found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
1335 	if (!found)
1336 		return false;
1337 
1338 	if (pudp)
1339 		return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1340 	else if (pmdp)
1341 		return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1342 	else
1343 		return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1344 }
1345 
1346 static int stage2_set_pte(struct kvm_s2_mmu *mmu,
1347 			  struct kvm_mmu_memory_cache *cache,
1348 			  phys_addr_t addr, const pte_t *new_pte,
1349 			  unsigned long flags)
1350 {
1351 	struct kvm *kvm = mmu->kvm;
1352 	pud_t *pud;
1353 	pmd_t *pmd;
1354 	pte_t *pte, old_pte;
1355 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1356 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1357 
1358 	VM_BUG_ON(logging_active && !cache);
1359 
1360 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1361 	pud = stage2_get_pud(mmu, cache, addr);
1362 	if (!pud) {
1363 		/*
1364 		 * Ignore calls from kvm_set_spte_hva for unallocated
1365 		 * address ranges.
1366 		 */
1367 		return 0;
1368 	}
1369 
1370 	/*
1371 	 * While dirty page logging - dissolve huge PUD, then continue
1372 	 * on to allocate page.
1373 	 */
1374 	if (logging_active)
1375 		stage2_dissolve_pud(mmu, addr, pud);
1376 
1377 	if (stage2_pud_none(kvm, *pud)) {
1378 		if (!cache)
1379 			return 0; /* ignore calls from kvm_set_spte_hva */
1380 		pmd = kvm_mmu_memory_cache_alloc(cache);
1381 		stage2_pud_populate(kvm, pud, pmd);
1382 		get_page(virt_to_page(pud));
1383 	}
1384 
1385 	pmd = stage2_pmd_offset(kvm, pud, addr);
1386 	if (!pmd) {
1387 		/*
1388 		 * Ignore calls from kvm_set_spte_hva for unallocated
1389 		 * address ranges.
1390 		 */
1391 		return 0;
1392 	}
1393 
1394 	/*
1395 	 * While dirty page logging - dissolve huge PMD, then continue on to
1396 	 * allocate page.
1397 	 */
1398 	if (logging_active)
1399 		stage2_dissolve_pmd(mmu, addr, pmd);
1400 
1401 	/* Create stage-2 page mappings - Level 2 */
1402 	if (pmd_none(*pmd)) {
1403 		if (!cache)
1404 			return 0; /* ignore calls from kvm_set_spte_hva */
1405 		pte = kvm_mmu_memory_cache_alloc(cache);
1406 		kvm_pmd_populate(pmd, pte);
1407 		get_page(virt_to_page(pmd));
1408 	}
1409 
1410 	pte = pte_offset_kernel(pmd, addr);
1411 
1412 	if (iomap && pte_present(*pte))
1413 		return -EFAULT;
1414 
1415 	/* Create 2nd stage page table mapping - Level 3 */
1416 	old_pte = *pte;
1417 	if (pte_present(old_pte)) {
1418 		/* Skip page table update if there is no change */
1419 		if (pte_val(old_pte) == pte_val(*new_pte))
1420 			return 0;
1421 
1422 		kvm_set_pte(pte, __pte(0));
1423 		kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
1424 	} else {
1425 		get_page(virt_to_page(pte));
1426 	}
1427 
1428 	kvm_set_pte(pte, *new_pte);
1429 	return 0;
1430 }
1431 
1432 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1433 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1434 {
1435 	if (pte_young(*pte)) {
1436 		*pte = pte_mkold(*pte);
1437 		return 1;
1438 	}
1439 	return 0;
1440 }
1441 #else
1442 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1443 {
1444 	return __ptep_test_and_clear_young(pte);
1445 }
1446 #endif
1447 
1448 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1449 {
1450 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1451 }
1452 
1453 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1454 {
1455 	return stage2_ptep_test_and_clear_young((pte_t *)pud);
1456 }
1457 
1458 /**
1459  * kvm_phys_addr_ioremap - map a device range to guest IPA
1460  *
1461  * @kvm:	The KVM pointer
1462  * @guest_ipa:	The IPA at which to insert the mapping
1463  * @pa:		The physical address of the device
1464  * @size:	The size of the mapping
1465  */
1466 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1467 			  phys_addr_t pa, unsigned long size, bool writable)
1468 {
1469 	phys_addr_t addr, end;
1470 	int ret = 0;
1471 	unsigned long pfn;
1472 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1473 
1474 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1475 	pfn = __phys_to_pfn(pa);
1476 
1477 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1478 		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1479 
1480 		if (writable)
1481 			pte = kvm_s2pte_mkwrite(pte);
1482 
1483 		ret = kvm_mmu_topup_memory_cache(&cache,
1484 						 kvm_mmu_cache_min_pages(kvm));
1485 		if (ret)
1486 			goto out;
1487 		spin_lock(&kvm->mmu_lock);
1488 		ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
1489 				     KVM_S2PTE_FLAG_IS_IOMAP);
1490 		spin_unlock(&kvm->mmu_lock);
1491 		if (ret)
1492 			goto out;
1493 
1494 		pfn++;
1495 	}
1496 
1497 out:
1498 	kvm_mmu_free_memory_cache(&cache);
1499 	return ret;
1500 }
1501 
1502 /**
1503  * stage2_wp_ptes - write protect PMD range
1504  * @pmd:	pointer to pmd entry
1505  * @addr:	range start address
1506  * @end:	range end address
1507  */
1508 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1509 {
1510 	pte_t *pte;
1511 
1512 	pte = pte_offset_kernel(pmd, addr);
1513 	do {
1514 		if (!pte_none(*pte)) {
1515 			if (!kvm_s2pte_readonly(pte))
1516 				kvm_set_s2pte_readonly(pte);
1517 		}
1518 	} while (pte++, addr += PAGE_SIZE, addr != end);
1519 }
1520 
1521 /**
1522  * stage2_wp_pmds - write protect PUD range
1523  * kvm:		kvm instance for the VM
1524  * @pud:	pointer to pud entry
1525  * @addr:	range start address
1526  * @end:	range end address
1527  */
1528 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
1529 			   phys_addr_t addr, phys_addr_t end)
1530 {
1531 	struct kvm *kvm = mmu->kvm;
1532 	pmd_t *pmd;
1533 	phys_addr_t next;
1534 
1535 	pmd = stage2_pmd_offset(kvm, pud, addr);
1536 
1537 	do {
1538 		next = stage2_pmd_addr_end(kvm, addr, end);
1539 		if (!pmd_none(*pmd)) {
1540 			if (pmd_thp_or_huge(*pmd)) {
1541 				if (!kvm_s2pmd_readonly(pmd))
1542 					kvm_set_s2pmd_readonly(pmd);
1543 			} else {
1544 				stage2_wp_ptes(pmd, addr, next);
1545 			}
1546 		}
1547 	} while (pmd++, addr = next, addr != end);
1548 }
1549 
1550 /**
1551  * stage2_wp_puds - write protect P4D range
1552  * @p4d:	pointer to p4d entry
1553  * @addr:	range start address
1554  * @end:	range end address
1555  */
1556 static void  stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
1557 			    phys_addr_t addr, phys_addr_t end)
1558 {
1559 	struct kvm *kvm = mmu->kvm;
1560 	pud_t *pud;
1561 	phys_addr_t next;
1562 
1563 	pud = stage2_pud_offset(kvm, p4d, addr);
1564 	do {
1565 		next = stage2_pud_addr_end(kvm, addr, end);
1566 		if (!stage2_pud_none(kvm, *pud)) {
1567 			if (stage2_pud_huge(kvm, *pud)) {
1568 				if (!kvm_s2pud_readonly(pud))
1569 					kvm_set_s2pud_readonly(pud);
1570 			} else {
1571 				stage2_wp_pmds(mmu, pud, addr, next);
1572 			}
1573 		}
1574 	} while (pud++, addr = next, addr != end);
1575 }
1576 
1577 /**
1578  * stage2_wp_p4ds - write protect PGD range
1579  * @pgd:	pointer to pgd entry
1580  * @addr:	range start address
1581  * @end:	range end address
1582  */
1583 static void  stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
1584 			    phys_addr_t addr, phys_addr_t end)
1585 {
1586 	struct kvm *kvm = mmu->kvm;
1587 	p4d_t *p4d;
1588 	phys_addr_t next;
1589 
1590 	p4d = stage2_p4d_offset(kvm, pgd, addr);
1591 	do {
1592 		next = stage2_p4d_addr_end(kvm, addr, end);
1593 		if (!stage2_p4d_none(kvm, *p4d))
1594 			stage2_wp_puds(mmu, p4d, addr, next);
1595 	} while (p4d++, addr = next, addr != end);
1596 }
1597 
1598 /**
1599  * stage2_wp_range() - write protect stage2 memory region range
1600  * @kvm:	The KVM pointer
1601  * @addr:	Start address of range
1602  * @end:	End address of range
1603  */
1604 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1605 {
1606 	struct kvm *kvm = mmu->kvm;
1607 	pgd_t *pgd;
1608 	phys_addr_t next;
1609 
1610 	pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1611 	do {
1612 		/*
1613 		 * Release kvm_mmu_lock periodically if the memory region is
1614 		 * large. Otherwise, we may see kernel panics with
1615 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1616 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1617 		 * will also starve other vCPUs. We have to also make sure
1618 		 * that the page tables are not freed while we released
1619 		 * the lock.
1620 		 */
1621 		cond_resched_lock(&kvm->mmu_lock);
1622 		if (!READ_ONCE(mmu->pgd))
1623 			break;
1624 		next = stage2_pgd_addr_end(kvm, addr, end);
1625 		if (stage2_pgd_present(kvm, *pgd))
1626 			stage2_wp_p4ds(mmu, pgd, addr, next);
1627 	} while (pgd++, addr = next, addr != end);
1628 }
1629 
1630 /**
1631  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1632  * @kvm:	The KVM pointer
1633  * @slot:	The memory slot to write protect
1634  *
1635  * Called to start logging dirty pages after memory region
1636  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1637  * all present PUD, PMD and PTEs are write protected in the memory region.
1638  * Afterwards read of dirty page log can be called.
1639  *
1640  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1641  * serializing operations for VM memory regions.
1642  */
1643 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1644 {
1645 	struct kvm_memslots *slots = kvm_memslots(kvm);
1646 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1647 	phys_addr_t start, end;
1648 
1649 	if (WARN_ON_ONCE(!memslot))
1650 		return;
1651 
1652 	start = memslot->base_gfn << PAGE_SHIFT;
1653 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1654 
1655 	spin_lock(&kvm->mmu_lock);
1656 	stage2_wp_range(&kvm->arch.mmu, start, end);
1657 	spin_unlock(&kvm->mmu_lock);
1658 	kvm_flush_remote_tlbs(kvm);
1659 }
1660 
1661 /**
1662  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1663  * @kvm:	The KVM pointer
1664  * @slot:	The memory slot associated with mask
1665  * @gfn_offset:	The gfn offset in memory slot
1666  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1667  *		slot to be write protected
1668  *
1669  * Walks bits set in mask write protects the associated pte's. Caller must
1670  * acquire kvm_mmu_lock.
1671  */
1672 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1673 		struct kvm_memory_slot *slot,
1674 		gfn_t gfn_offset, unsigned long mask)
1675 {
1676 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1677 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1678 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1679 
1680 	stage2_wp_range(&kvm->arch.mmu, start, end);
1681 }
1682 
1683 /*
1684  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1685  * dirty pages.
1686  *
1687  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1688  * enable dirty logging for them.
1689  */
1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1691 		struct kvm_memory_slot *slot,
1692 		gfn_t gfn_offset, unsigned long mask)
1693 {
1694 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1695 }
1696 
1697 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1698 {
1699 	__clean_dcache_guest_page(pfn, size);
1700 }
1701 
1702 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1703 {
1704 	__invalidate_icache_guest_page(pfn, size);
1705 }
1706 
1707 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1708 {
1709 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1710 }
1711 
1712 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1713 					       unsigned long hva,
1714 					       unsigned long map_size)
1715 {
1716 	gpa_t gpa_start;
1717 	hva_t uaddr_start, uaddr_end;
1718 	size_t size;
1719 
1720 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1721 	if (map_size == PAGE_SIZE)
1722 		return true;
1723 
1724 	size = memslot->npages * PAGE_SIZE;
1725 
1726 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
1727 
1728 	uaddr_start = memslot->userspace_addr;
1729 	uaddr_end = uaddr_start + size;
1730 
1731 	/*
1732 	 * Pages belonging to memslots that don't have the same alignment
1733 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1734 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1735 	 *
1736 	 * Consider a layout like the following:
1737 	 *
1738 	 *    memslot->userspace_addr:
1739 	 *    +-----+--------------------+--------------------+---+
1740 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1741 	 *    +-----+--------------------+--------------------+---+
1742 	 *
1743 	 *    memslot->base_gfn << PAGE_SHIFT:
1744 	 *      +---+--------------------+--------------------+-----+
1745 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1746 	 *      +---+--------------------+--------------------+-----+
1747 	 *
1748 	 * If we create those stage-2 blocks, we'll end up with this incorrect
1749 	 * mapping:
1750 	 *   d -> f
1751 	 *   e -> g
1752 	 *   f -> h
1753 	 */
1754 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1755 		return false;
1756 
1757 	/*
1758 	 * Next, let's make sure we're not trying to map anything not covered
1759 	 * by the memslot. This means we have to prohibit block size mappings
1760 	 * for the beginning and end of a non-block aligned and non-block sized
1761 	 * memory slot (illustrated by the head and tail parts of the
1762 	 * userspace view above containing pages 'abcde' and 'xyz',
1763 	 * respectively).
1764 	 *
1765 	 * Note that it doesn't matter if we do the check using the
1766 	 * userspace_addr or the base_gfn, as both are equally aligned (per
1767 	 * the check above) and equally sized.
1768 	 */
1769 	return (hva & ~(map_size - 1)) >= uaddr_start &&
1770 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1771 }
1772 
1773 /*
1774  * Check if the given hva is backed by a transparent huge page (THP) and
1775  * whether it can be mapped using block mapping in stage2. If so, adjust
1776  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1777  * supported. This will need to be updated to support other THP sizes.
1778  *
1779  * Returns the size of the mapping.
1780  */
1781 static unsigned long
1782 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1783 			    unsigned long hva, kvm_pfn_t *pfnp,
1784 			    phys_addr_t *ipap)
1785 {
1786 	kvm_pfn_t pfn = *pfnp;
1787 
1788 	/*
1789 	 * Make sure the adjustment is done only for THP pages. Also make
1790 	 * sure that the HVA and IPA are sufficiently aligned and that the
1791 	 * block map is contained within the memslot.
1792 	 */
1793 	if (kvm_is_transparent_hugepage(pfn) &&
1794 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1795 		/*
1796 		 * The address we faulted on is backed by a transparent huge
1797 		 * page.  However, because we map the compound huge page and
1798 		 * not the individual tail page, we need to transfer the
1799 		 * refcount to the head page.  We have to be careful that the
1800 		 * THP doesn't start to split while we are adjusting the
1801 		 * refcounts.
1802 		 *
1803 		 * We are sure this doesn't happen, because mmu_notifier_retry
1804 		 * was successful and we are holding the mmu_lock, so if this
1805 		 * THP is trying to split, it will be blocked in the mmu
1806 		 * notifier before touching any of the pages, specifically
1807 		 * before being able to call __split_huge_page_refcount().
1808 		 *
1809 		 * We can therefore safely transfer the refcount from PG_tail
1810 		 * to PG_head and switch the pfn from a tail page to the head
1811 		 * page accordingly.
1812 		 */
1813 		*ipap &= PMD_MASK;
1814 		kvm_release_pfn_clean(pfn);
1815 		pfn &= ~(PTRS_PER_PMD - 1);
1816 		kvm_get_pfn(pfn);
1817 		*pfnp = pfn;
1818 
1819 		return PMD_SIZE;
1820 	}
1821 
1822 	/* Use page mapping if we cannot use block mapping. */
1823 	return PAGE_SIZE;
1824 }
1825 
1826 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1827 			  struct kvm_memory_slot *memslot, unsigned long hva,
1828 			  unsigned long fault_status)
1829 {
1830 	int ret;
1831 	bool write_fault, writable, force_pte = false;
1832 	bool exec_fault, needs_exec;
1833 	unsigned long mmu_seq;
1834 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1835 	struct kvm *kvm = vcpu->kvm;
1836 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1837 	struct vm_area_struct *vma;
1838 	short vma_shift;
1839 	kvm_pfn_t pfn;
1840 	pgprot_t mem_type = PAGE_S2;
1841 	bool logging_active = memslot_is_logging(memslot);
1842 	unsigned long vma_pagesize, flags = 0;
1843 	struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1844 
1845 	write_fault = kvm_is_write_fault(vcpu);
1846 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1847 	VM_BUG_ON(write_fault && exec_fault);
1848 
1849 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1850 		kvm_err("Unexpected L2 read permission error\n");
1851 		return -EFAULT;
1852 	}
1853 
1854 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1855 	mmap_read_lock(current->mm);
1856 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1857 	if (unlikely(!vma)) {
1858 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1859 		mmap_read_unlock(current->mm);
1860 		return -EFAULT;
1861 	}
1862 
1863 	if (is_vm_hugetlb_page(vma))
1864 		vma_shift = huge_page_shift(hstate_vma(vma));
1865 	else
1866 		vma_shift = PAGE_SHIFT;
1867 
1868 	vma_pagesize = 1ULL << vma_shift;
1869 	if (logging_active ||
1870 	    (vma->vm_flags & VM_PFNMAP) ||
1871 	    !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1872 		force_pte = true;
1873 		vma_pagesize = PAGE_SIZE;
1874 	}
1875 
1876 	/*
1877 	 * The stage2 has a minimum of 2 level table (For arm64 see
1878 	 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1879 	 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1880 	 * As for PUD huge maps, we must make sure that we have at least
1881 	 * 3 levels, i.e, PMD is not folded.
1882 	 */
1883 	if (vma_pagesize == PMD_SIZE ||
1884 	    (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1885 		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1886 	mmap_read_unlock(current->mm);
1887 
1888 	/* We need minimum second+third level pages */
1889 	ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1890 	if (ret)
1891 		return ret;
1892 
1893 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1894 	/*
1895 	 * Ensure the read of mmu_notifier_seq happens before we call
1896 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1897 	 * the page we just got a reference to gets unmapped before we have a
1898 	 * chance to grab the mmu_lock, which ensure that if the page gets
1899 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1900 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1901 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1902 	 */
1903 	smp_rmb();
1904 
1905 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1906 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1907 		kvm_send_hwpoison_signal(hva, vma_shift);
1908 		return 0;
1909 	}
1910 	if (is_error_noslot_pfn(pfn))
1911 		return -EFAULT;
1912 
1913 	if (kvm_is_device_pfn(pfn)) {
1914 		mem_type = PAGE_S2_DEVICE;
1915 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1916 	} else if (logging_active) {
1917 		/*
1918 		 * Faults on pages in a memslot with logging enabled
1919 		 * should not be mapped with huge pages (it introduces churn
1920 		 * and performance degradation), so force a pte mapping.
1921 		 */
1922 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1923 
1924 		/*
1925 		 * Only actually map the page as writable if this was a write
1926 		 * fault.
1927 		 */
1928 		if (!write_fault)
1929 			writable = false;
1930 	}
1931 
1932 	if (exec_fault && is_iomap(flags))
1933 		return -ENOEXEC;
1934 
1935 	spin_lock(&kvm->mmu_lock);
1936 	if (mmu_notifier_retry(kvm, mmu_seq))
1937 		goto out_unlock;
1938 
1939 	/*
1940 	 * If we are not forced to use page mapping, check if we are
1941 	 * backed by a THP and thus use block mapping if possible.
1942 	 */
1943 	if (vma_pagesize == PAGE_SIZE && !force_pte)
1944 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1945 							   &pfn, &fault_ipa);
1946 	if (writable)
1947 		kvm_set_pfn_dirty(pfn);
1948 
1949 	if (fault_status != FSC_PERM && !is_iomap(flags))
1950 		clean_dcache_guest_page(pfn, vma_pagesize);
1951 
1952 	if (exec_fault)
1953 		invalidate_icache_guest_page(pfn, vma_pagesize);
1954 
1955 	/*
1956 	 * If we took an execution fault we have made the
1957 	 * icache/dcache coherent above and should now let the s2
1958 	 * mapping be executable.
1959 	 *
1960 	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1961 	 * execute permissions, and we preserve whatever we have.
1962 	 */
1963 	needs_exec = exec_fault ||
1964 		(fault_status == FSC_PERM &&
1965 		 stage2_is_exec(mmu, fault_ipa, vma_pagesize));
1966 
1967 	if (vma_pagesize == PUD_SIZE) {
1968 		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1969 
1970 		new_pud = kvm_pud_mkhuge(new_pud);
1971 		if (writable)
1972 			new_pud = kvm_s2pud_mkwrite(new_pud);
1973 
1974 		if (needs_exec)
1975 			new_pud = kvm_s2pud_mkexec(new_pud);
1976 
1977 		ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
1978 	} else if (vma_pagesize == PMD_SIZE) {
1979 		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1980 
1981 		new_pmd = kvm_pmd_mkhuge(new_pmd);
1982 
1983 		if (writable)
1984 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1985 
1986 		if (needs_exec)
1987 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1988 
1989 		ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
1990 	} else {
1991 		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1992 
1993 		if (writable) {
1994 			new_pte = kvm_s2pte_mkwrite(new_pte);
1995 			mark_page_dirty(kvm, gfn);
1996 		}
1997 
1998 		if (needs_exec)
1999 			new_pte = kvm_s2pte_mkexec(new_pte);
2000 
2001 		ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
2002 	}
2003 
2004 out_unlock:
2005 	spin_unlock(&kvm->mmu_lock);
2006 	kvm_set_pfn_accessed(pfn);
2007 	kvm_release_pfn_clean(pfn);
2008 	return ret;
2009 }
2010 
2011 /*
2012  * Resolve the access fault by making the page young again.
2013  * Note that because the faulting entry is guaranteed not to be
2014  * cached in the TLB, we don't need to invalidate anything.
2015  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
2016  * so there is no need for atomic (pte|pmd)_mkyoung operations.
2017  */
2018 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
2019 {
2020 	pud_t *pud;
2021 	pmd_t *pmd;
2022 	pte_t *pte;
2023 	kvm_pfn_t pfn;
2024 	bool pfn_valid = false;
2025 
2026 	trace_kvm_access_fault(fault_ipa);
2027 
2028 	spin_lock(&vcpu->kvm->mmu_lock);
2029 
2030 	if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
2031 		goto out;
2032 
2033 	if (pud) {		/* HugeTLB */
2034 		*pud = kvm_s2pud_mkyoung(*pud);
2035 		pfn = kvm_pud_pfn(*pud);
2036 		pfn_valid = true;
2037 	} else	if (pmd) {	/* THP, HugeTLB */
2038 		*pmd = pmd_mkyoung(*pmd);
2039 		pfn = pmd_pfn(*pmd);
2040 		pfn_valid = true;
2041 	} else {
2042 		*pte = pte_mkyoung(*pte);	/* Just a page... */
2043 		pfn = pte_pfn(*pte);
2044 		pfn_valid = true;
2045 	}
2046 
2047 out:
2048 	spin_unlock(&vcpu->kvm->mmu_lock);
2049 	if (pfn_valid)
2050 		kvm_set_pfn_accessed(pfn);
2051 }
2052 
2053 /**
2054  * kvm_handle_guest_abort - handles all 2nd stage aborts
2055  * @vcpu:	the VCPU pointer
2056  *
2057  * Any abort that gets to the host is almost guaranteed to be caused by a
2058  * missing second stage translation table entry, which can mean that either the
2059  * guest simply needs more memory and we must allocate an appropriate page or it
2060  * can mean that the guest tried to access I/O memory, which is emulated by user
2061  * space. The distinction is based on the IPA causing the fault and whether this
2062  * memory region has been registered as standard RAM by user space.
2063  */
2064 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2065 {
2066 	unsigned long fault_status;
2067 	phys_addr_t fault_ipa;
2068 	struct kvm_memory_slot *memslot;
2069 	unsigned long hva;
2070 	bool is_iabt, write_fault, writable;
2071 	gfn_t gfn;
2072 	int ret, idx;
2073 
2074 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2075 
2076 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2077 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2078 
2079 	/* Synchronous External Abort? */
2080 	if (kvm_vcpu_abt_issea(vcpu)) {
2081 		/*
2082 		 * For RAS the host kernel may handle this abort.
2083 		 * There is no need to pass the error into the guest.
2084 		 */
2085 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2086 			kvm_inject_vabt(vcpu);
2087 
2088 		return 1;
2089 	}
2090 
2091 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2092 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
2093 
2094 	/* Check the stage-2 fault is trans. fault or write fault */
2095 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2096 	    fault_status != FSC_ACCESS) {
2097 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2098 			kvm_vcpu_trap_get_class(vcpu),
2099 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2100 			(unsigned long)kvm_vcpu_get_esr(vcpu));
2101 		return -EFAULT;
2102 	}
2103 
2104 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2105 
2106 	gfn = fault_ipa >> PAGE_SHIFT;
2107 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
2108 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2109 	write_fault = kvm_is_write_fault(vcpu);
2110 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2111 		/*
2112 		 * The guest has put either its instructions or its page-tables
2113 		 * somewhere it shouldn't have. Userspace won't be able to do
2114 		 * anything about this (there's no syndrome for a start), so
2115 		 * re-inject the abort back into the guest.
2116 		 */
2117 		if (is_iabt) {
2118 			ret = -ENOEXEC;
2119 			goto out;
2120 		}
2121 
2122 		if (kvm_vcpu_dabt_iss1tw(vcpu)) {
2123 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2124 			ret = 1;
2125 			goto out_unlock;
2126 		}
2127 
2128 		/*
2129 		 * Check for a cache maintenance operation. Since we
2130 		 * ended-up here, we know it is outside of any memory
2131 		 * slot. But we can't find out if that is for a device,
2132 		 * or if the guest is just being stupid. The only thing
2133 		 * we know for sure is that this range cannot be cached.
2134 		 *
2135 		 * So let's assume that the guest is just being
2136 		 * cautious, and skip the instruction.
2137 		 */
2138 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2139 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2140 			ret = 1;
2141 			goto out_unlock;
2142 		}
2143 
2144 		/*
2145 		 * The IPA is reported as [MAX:12], so we need to
2146 		 * complement it with the bottom 12 bits from the
2147 		 * faulting VA. This is always 12 bits, irrespective
2148 		 * of the page size.
2149 		 */
2150 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2151 		ret = io_mem_abort(vcpu, fault_ipa);
2152 		goto out_unlock;
2153 	}
2154 
2155 	/* Userspace should not be able to register out-of-bounds IPAs */
2156 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2157 
2158 	if (fault_status == FSC_ACCESS) {
2159 		handle_access_fault(vcpu, fault_ipa);
2160 		ret = 1;
2161 		goto out_unlock;
2162 	}
2163 
2164 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2165 	if (ret == 0)
2166 		ret = 1;
2167 out:
2168 	if (ret == -ENOEXEC) {
2169 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2170 		ret = 1;
2171 	}
2172 out_unlock:
2173 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2174 	return ret;
2175 }
2176 
2177 static int handle_hva_to_gpa(struct kvm *kvm,
2178 			     unsigned long start,
2179 			     unsigned long end,
2180 			     int (*handler)(struct kvm *kvm,
2181 					    gpa_t gpa, u64 size,
2182 					    void *data),
2183 			     void *data)
2184 {
2185 	struct kvm_memslots *slots;
2186 	struct kvm_memory_slot *memslot;
2187 	int ret = 0;
2188 
2189 	slots = kvm_memslots(kvm);
2190 
2191 	/* we only care about the pages that the guest sees */
2192 	kvm_for_each_memslot(memslot, slots) {
2193 		unsigned long hva_start, hva_end;
2194 		gfn_t gpa;
2195 
2196 		hva_start = max(start, memslot->userspace_addr);
2197 		hva_end = min(end, memslot->userspace_addr +
2198 					(memslot->npages << PAGE_SHIFT));
2199 		if (hva_start >= hva_end)
2200 			continue;
2201 
2202 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2203 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2204 	}
2205 
2206 	return ret;
2207 }
2208 
2209 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2210 {
2211 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2212 	return 0;
2213 }
2214 
2215 int kvm_unmap_hva_range(struct kvm *kvm,
2216 			unsigned long start, unsigned long end)
2217 {
2218 	if (!kvm->arch.mmu.pgd)
2219 		return 0;
2220 
2221 	trace_kvm_unmap_hva_range(start, end);
2222 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2223 	return 0;
2224 }
2225 
2226 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2227 {
2228 	pte_t *pte = (pte_t *)data;
2229 
2230 	WARN_ON(size != PAGE_SIZE);
2231 	/*
2232 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2233 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
2234 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2235 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
2236 	 * through this calling path.
2237 	 */
2238 	stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
2239 	return 0;
2240 }
2241 
2242 
2243 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2244 {
2245 	unsigned long end = hva + PAGE_SIZE;
2246 	kvm_pfn_t pfn = pte_pfn(pte);
2247 	pte_t stage2_pte;
2248 
2249 	if (!kvm->arch.mmu.pgd)
2250 		return 0;
2251 
2252 	trace_kvm_set_spte_hva(hva);
2253 
2254 	/*
2255 	 * We've moved a page around, probably through CoW, so let's treat it
2256 	 * just like a translation fault and clean the cache to the PoC.
2257 	 */
2258 	clean_dcache_guest_page(pfn, PAGE_SIZE);
2259 	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2260 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2261 
2262 	return 0;
2263 }
2264 
2265 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2266 {
2267 	pud_t *pud;
2268 	pmd_t *pmd;
2269 	pte_t *pte;
2270 
2271 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2272 	if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2273 		return 0;
2274 
2275 	if (pud)
2276 		return stage2_pudp_test_and_clear_young(pud);
2277 	else if (pmd)
2278 		return stage2_pmdp_test_and_clear_young(pmd);
2279 	else
2280 		return stage2_ptep_test_and_clear_young(pte);
2281 }
2282 
2283 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2284 {
2285 	pud_t *pud;
2286 	pmd_t *pmd;
2287 	pte_t *pte;
2288 
2289 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2290 	if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2291 		return 0;
2292 
2293 	if (pud)
2294 		return kvm_s2pud_young(*pud);
2295 	else if (pmd)
2296 		return pmd_young(*pmd);
2297 	else
2298 		return pte_young(*pte);
2299 }
2300 
2301 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2302 {
2303 	if (!kvm->arch.mmu.pgd)
2304 		return 0;
2305 	trace_kvm_age_hva(start, end);
2306 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2307 }
2308 
2309 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2310 {
2311 	if (!kvm->arch.mmu.pgd)
2312 		return 0;
2313 	trace_kvm_test_age_hva(hva);
2314 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2315 				 kvm_test_age_hva_handler, NULL);
2316 }
2317 
2318 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2319 {
2320 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2321 }
2322 
2323 phys_addr_t kvm_mmu_get_httbr(void)
2324 {
2325 	if (__kvm_cpu_uses_extended_idmap())
2326 		return virt_to_phys(merged_hyp_pgd);
2327 	else
2328 		return virt_to_phys(hyp_pgd);
2329 }
2330 
2331 phys_addr_t kvm_get_idmap_vector(void)
2332 {
2333 	return hyp_idmap_vector;
2334 }
2335 
2336 static int kvm_map_idmap_text(pgd_t *pgd)
2337 {
2338 	int err;
2339 
2340 	/* Create the idmap in the boot page tables */
2341 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2342 				      hyp_idmap_start, hyp_idmap_end,
2343 				      __phys_to_pfn(hyp_idmap_start),
2344 				      PAGE_HYP_EXEC);
2345 	if (err)
2346 		kvm_err("Failed to idmap %lx-%lx\n",
2347 			hyp_idmap_start, hyp_idmap_end);
2348 
2349 	return err;
2350 }
2351 
2352 int kvm_mmu_init(void)
2353 {
2354 	int err;
2355 
2356 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2357 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2358 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2359 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2360 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2361 
2362 	/*
2363 	 * We rely on the linker script to ensure at build time that the HYP
2364 	 * init code does not cross a page boundary.
2365 	 */
2366 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2367 
2368 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2369 	kvm_debug("HYP VA range: %lx:%lx\n",
2370 		  kern_hyp_va(PAGE_OFFSET),
2371 		  kern_hyp_va((unsigned long)high_memory - 1));
2372 
2373 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2374 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2375 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2376 		/*
2377 		 * The idmap page is intersecting with the VA space,
2378 		 * it is not safe to continue further.
2379 		 */
2380 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2381 		err = -EINVAL;
2382 		goto out;
2383 	}
2384 
2385 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2386 	if (!hyp_pgd) {
2387 		kvm_err("Hyp mode PGD not allocated\n");
2388 		err = -ENOMEM;
2389 		goto out;
2390 	}
2391 
2392 	if (__kvm_cpu_uses_extended_idmap()) {
2393 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2394 							 hyp_pgd_order);
2395 		if (!boot_hyp_pgd) {
2396 			kvm_err("Hyp boot PGD not allocated\n");
2397 			err = -ENOMEM;
2398 			goto out;
2399 		}
2400 
2401 		err = kvm_map_idmap_text(boot_hyp_pgd);
2402 		if (err)
2403 			goto out;
2404 
2405 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2406 		if (!merged_hyp_pgd) {
2407 			kvm_err("Failed to allocate extra HYP pgd\n");
2408 			goto out;
2409 		}
2410 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2411 				    hyp_idmap_start);
2412 	} else {
2413 		err = kvm_map_idmap_text(hyp_pgd);
2414 		if (err)
2415 			goto out;
2416 	}
2417 
2418 	io_map_base = hyp_idmap_start;
2419 	return 0;
2420 out:
2421 	free_hyp_pgds();
2422 	return err;
2423 }
2424 
2425 void kvm_arch_commit_memory_region(struct kvm *kvm,
2426 				   const struct kvm_userspace_memory_region *mem,
2427 				   struct kvm_memory_slot *old,
2428 				   const struct kvm_memory_slot *new,
2429 				   enum kvm_mr_change change)
2430 {
2431 	/*
2432 	 * At this point memslot has been committed and there is an
2433 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
2434 	 * memory slot is write protected.
2435 	 */
2436 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2437 		/*
2438 		 * If we're with initial-all-set, we don't need to write
2439 		 * protect any pages because they're all reported as dirty.
2440 		 * Huge pages and normal pages will be write protect gradually.
2441 		 */
2442 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2443 			kvm_mmu_wp_memory_region(kvm, mem->slot);
2444 		}
2445 	}
2446 }
2447 
2448 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2449 				   struct kvm_memory_slot *memslot,
2450 				   const struct kvm_userspace_memory_region *mem,
2451 				   enum kvm_mr_change change)
2452 {
2453 	hva_t hva = mem->userspace_addr;
2454 	hva_t reg_end = hva + mem->memory_size;
2455 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2456 	int ret = 0;
2457 
2458 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2459 			change != KVM_MR_FLAGS_ONLY)
2460 		return 0;
2461 
2462 	/*
2463 	 * Prevent userspace from creating a memory region outside of the IPA
2464 	 * space addressable by the KVM guest IPA space.
2465 	 */
2466 	if (memslot->base_gfn + memslot->npages >=
2467 	    (kvm_phys_size(kvm) >> PAGE_SHIFT))
2468 		return -EFAULT;
2469 
2470 	mmap_read_lock(current->mm);
2471 	/*
2472 	 * A memory region could potentially cover multiple VMAs, and any holes
2473 	 * between them, so iterate over all of them to find out if we can map
2474 	 * any of them right now.
2475 	 *
2476 	 *     +--------------------------------------------+
2477 	 * +---------------+----------------+   +----------------+
2478 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2479 	 * +---------------+----------------+   +----------------+
2480 	 *     |               memory region                |
2481 	 *     +--------------------------------------------+
2482 	 */
2483 	do {
2484 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2485 		hva_t vm_start, vm_end;
2486 
2487 		if (!vma || vma->vm_start >= reg_end)
2488 			break;
2489 
2490 		/*
2491 		 * Take the intersection of this VMA with the memory region
2492 		 */
2493 		vm_start = max(hva, vma->vm_start);
2494 		vm_end = min(reg_end, vma->vm_end);
2495 
2496 		if (vma->vm_flags & VM_PFNMAP) {
2497 			gpa_t gpa = mem->guest_phys_addr +
2498 				    (vm_start - mem->userspace_addr);
2499 			phys_addr_t pa;
2500 
2501 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2502 			pa += vm_start - vma->vm_start;
2503 
2504 			/* IO region dirty page logging not allowed */
2505 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2506 				ret = -EINVAL;
2507 				goto out;
2508 			}
2509 
2510 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2511 						    vm_end - vm_start,
2512 						    writable);
2513 			if (ret)
2514 				break;
2515 		}
2516 		hva = vm_end;
2517 	} while (hva < reg_end);
2518 
2519 	if (change == KVM_MR_FLAGS_ONLY)
2520 		goto out;
2521 
2522 	spin_lock(&kvm->mmu_lock);
2523 	if (ret)
2524 		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
2525 	else
2526 		stage2_flush_memslot(kvm, memslot);
2527 	spin_unlock(&kvm->mmu_lock);
2528 out:
2529 	mmap_read_unlock(current->mm);
2530 	return ret;
2531 }
2532 
2533 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2534 {
2535 }
2536 
2537 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2538 {
2539 }
2540 
2541 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2542 {
2543 	kvm_free_stage2_pgd(&kvm->arch.mmu);
2544 }
2545 
2546 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2547 				   struct kvm_memory_slot *slot)
2548 {
2549 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2550 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2551 
2552 	spin_lock(&kvm->mmu_lock);
2553 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2554 	spin_unlock(&kvm->mmu_lock);
2555 }
2556 
2557 /*
2558  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2559  *
2560  * Main problems:
2561  * - S/W ops are local to a CPU (not broadcast)
2562  * - We have line migration behind our back (speculation)
2563  * - System caches don't support S/W at all (damn!)
2564  *
2565  * In the face of the above, the best we can do is to try and convert
2566  * S/W ops to VA ops. Because the guest is not allowed to infer the
2567  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2568  * which is a rather good thing for us.
2569  *
2570  * Also, it is only used when turning caches on/off ("The expected
2571  * usage of the cache maintenance instructions that operate by set/way
2572  * is associated with the cache maintenance instructions associated
2573  * with the powerdown and powerup of caches, if this is required by
2574  * the implementation.").
2575  *
2576  * We use the following policy:
2577  *
2578  * - If we trap a S/W operation, we enable VM trapping to detect
2579  *   caches being turned on/off, and do a full clean.
2580  *
2581  * - We flush the caches on both caches being turned on and off.
2582  *
2583  * - Once the caches are enabled, we stop trapping VM ops.
2584  */
2585 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2586 {
2587 	unsigned long hcr = *vcpu_hcr(vcpu);
2588 
2589 	/*
2590 	 * If this is the first time we do a S/W operation
2591 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2592 	 * VM trapping.
2593 	 *
2594 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2595 	 * Caches to be turned off. At that point, we'll be able to
2596 	 * clean the caches again.
2597 	 */
2598 	if (!(hcr & HCR_TVM)) {
2599 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2600 					vcpu_has_cache_enabled(vcpu));
2601 		stage2_flush_vm(vcpu->kvm);
2602 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2603 	}
2604 }
2605 
2606 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2607 {
2608 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2609 
2610 	/*
2611 	 * If switching the MMU+caches on, need to invalidate the caches.
2612 	 * If switching it off, need to clean the caches.
2613 	 * Clean + invalidate does the trick always.
2614 	 */
2615 	if (now_enabled != was_enabled)
2616 		stage2_flush_vm(vcpu->kvm);
2617 
2618 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2619 	if (now_enabled)
2620 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2621 
2622 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2623 }
2624