1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/mman.h> 8 #include <linux/kvm_host.h> 9 #include <linux/io.h> 10 #include <linux/hugetlb.h> 11 #include <linux/sched/signal.h> 12 #include <trace/events/kvm.h> 13 #include <asm/pgalloc.h> 14 #include <asm/cacheflush.h> 15 #include <asm/kvm_arm.h> 16 #include <asm/kvm_mmu.h> 17 #include <asm/kvm_pgtable.h> 18 #include <asm/kvm_ras.h> 19 #include <asm/kvm_asm.h> 20 #include <asm/kvm_emulate.h> 21 #include <asm/virt.h> 22 23 #include "trace.h" 24 25 static struct kvm_pgtable *hyp_pgtable; 26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex); 27 28 static unsigned long hyp_idmap_start; 29 static unsigned long hyp_idmap_end; 30 static phys_addr_t hyp_idmap_vector; 31 32 static unsigned long io_map_base; 33 34 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) 35 { 36 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); 37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size); 38 39 return (boundary - 1 < end - 1) ? boundary : end; 40 } 41 42 /* 43 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, 44 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, 45 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too 46 * long will also starve other vCPUs. We have to also make sure that the page 47 * tables are not freed while we released the lock. 48 */ 49 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, 50 phys_addr_t end, 51 int (*fn)(struct kvm_pgtable *, u64, u64), 52 bool resched) 53 { 54 int ret; 55 u64 next; 56 57 do { 58 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 59 if (!pgt) 60 return -EINVAL; 61 62 next = stage2_range_addr_end(addr, end); 63 ret = fn(pgt, addr, next - addr); 64 if (ret) 65 break; 66 67 if (resched && next != end) 68 cond_resched_rwlock_write(&kvm->mmu_lock); 69 } while (addr = next, addr != end); 70 71 return ret; 72 } 73 74 #define stage2_apply_range_resched(kvm, addr, end, fn) \ 75 stage2_apply_range(kvm, addr, end, fn, true) 76 77 static bool memslot_is_logging(struct kvm_memory_slot *memslot) 78 { 79 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); 80 } 81 82 /** 83 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 84 * @kvm: pointer to kvm structure. 85 * 86 * Interface to HYP function to flush all VM TLB entries 87 */ 88 void kvm_flush_remote_tlbs(struct kvm *kvm) 89 { 90 ++kvm->stat.generic.remote_tlb_flush_requests; 91 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); 92 } 93 94 static bool kvm_is_device_pfn(unsigned long pfn) 95 { 96 return !pfn_is_map_memory(pfn); 97 } 98 99 static void *stage2_memcache_zalloc_page(void *arg) 100 { 101 struct kvm_mmu_memory_cache *mc = arg; 102 void *virt; 103 104 /* Allocated with __GFP_ZERO, so no need to zero */ 105 virt = kvm_mmu_memory_cache_alloc(mc); 106 if (virt) 107 kvm_account_pgtable_pages(virt, 1); 108 return virt; 109 } 110 111 static void *kvm_host_zalloc_pages_exact(size_t size) 112 { 113 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 114 } 115 116 static void *kvm_s2_zalloc_pages_exact(size_t size) 117 { 118 void *virt = kvm_host_zalloc_pages_exact(size); 119 120 if (virt) 121 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT)); 122 return virt; 123 } 124 125 static void kvm_s2_free_pages_exact(void *virt, size_t size) 126 { 127 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT)); 128 free_pages_exact(virt, size); 129 } 130 131 static void kvm_host_get_page(void *addr) 132 { 133 get_page(virt_to_page(addr)); 134 } 135 136 static void kvm_host_put_page(void *addr) 137 { 138 put_page(virt_to_page(addr)); 139 } 140 141 static void kvm_s2_put_page(void *addr) 142 { 143 struct page *p = virt_to_page(addr); 144 /* Dropping last refcount, the page will be freed */ 145 if (page_count(p) == 1) 146 kvm_account_pgtable_pages(addr, -1); 147 put_page(p); 148 } 149 150 static int kvm_host_page_count(void *addr) 151 { 152 return page_count(virt_to_page(addr)); 153 } 154 155 static phys_addr_t kvm_host_pa(void *addr) 156 { 157 return __pa(addr); 158 } 159 160 static void *kvm_host_va(phys_addr_t phys) 161 { 162 return __va(phys); 163 } 164 165 static void clean_dcache_guest_page(void *va, size_t size) 166 { 167 __clean_dcache_guest_page(va, size); 168 } 169 170 static void invalidate_icache_guest_page(void *va, size_t size) 171 { 172 __invalidate_icache_guest_page(va, size); 173 } 174 175 /* 176 * Unmapping vs dcache management: 177 * 178 * If a guest maps certain memory pages as uncached, all writes will 179 * bypass the data cache and go directly to RAM. However, the CPUs 180 * can still speculate reads (not writes) and fill cache lines with 181 * data. 182 * 183 * Those cache lines will be *clean* cache lines though, so a 184 * clean+invalidate operation is equivalent to an invalidate 185 * operation, because no cache lines are marked dirty. 186 * 187 * Those clean cache lines could be filled prior to an uncached write 188 * by the guest, and the cache coherent IO subsystem would therefore 189 * end up writing old data to disk. 190 * 191 * This is why right after unmapping a page/section and invalidating 192 * the corresponding TLBs, we flush to make sure the IO subsystem will 193 * never hit in the cache. 194 * 195 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as 196 * we then fully enforce cacheability of RAM, no matter what the guest 197 * does. 198 */ 199 /** 200 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range 201 * @mmu: The KVM stage-2 MMU pointer 202 * @start: The intermediate physical base address of the range to unmap 203 * @size: The size of the area to unmap 204 * @may_block: Whether or not we are permitted to block 205 * 206 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must 207 * be called while holding mmu_lock (unless for freeing the stage2 pgd before 208 * destroying the VM), otherwise another faulting VCPU may come in and mess 209 * with things behind our backs. 210 */ 211 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, 212 bool may_block) 213 { 214 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 215 phys_addr_t end = start + size; 216 217 lockdep_assert_held_write(&kvm->mmu_lock); 218 WARN_ON(size & ~PAGE_MASK); 219 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap, 220 may_block)); 221 } 222 223 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) 224 { 225 __unmap_stage2_range(mmu, start, size, true); 226 } 227 228 static void stage2_flush_memslot(struct kvm *kvm, 229 struct kvm_memory_slot *memslot) 230 { 231 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 232 phys_addr_t end = addr + PAGE_SIZE * memslot->npages; 233 234 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush); 235 } 236 237 /** 238 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 239 * @kvm: The struct kvm pointer 240 * 241 * Go through the stage 2 page tables and invalidate any cache lines 242 * backing memory already mapped to the VM. 243 */ 244 static void stage2_flush_vm(struct kvm *kvm) 245 { 246 struct kvm_memslots *slots; 247 struct kvm_memory_slot *memslot; 248 int idx, bkt; 249 250 idx = srcu_read_lock(&kvm->srcu); 251 write_lock(&kvm->mmu_lock); 252 253 slots = kvm_memslots(kvm); 254 kvm_for_each_memslot(memslot, bkt, slots) 255 stage2_flush_memslot(kvm, memslot); 256 257 write_unlock(&kvm->mmu_lock); 258 srcu_read_unlock(&kvm->srcu, idx); 259 } 260 261 /** 262 * free_hyp_pgds - free Hyp-mode page tables 263 */ 264 void free_hyp_pgds(void) 265 { 266 mutex_lock(&kvm_hyp_pgd_mutex); 267 if (hyp_pgtable) { 268 kvm_pgtable_hyp_destroy(hyp_pgtable); 269 kfree(hyp_pgtable); 270 hyp_pgtable = NULL; 271 } 272 mutex_unlock(&kvm_hyp_pgd_mutex); 273 } 274 275 static bool kvm_host_owns_hyp_mappings(void) 276 { 277 if (is_kernel_in_hyp_mode()) 278 return false; 279 280 if (static_branch_likely(&kvm_protected_mode_initialized)) 281 return false; 282 283 /* 284 * This can happen at boot time when __create_hyp_mappings() is called 285 * after the hyp protection has been enabled, but the static key has 286 * not been flipped yet. 287 */ 288 if (!hyp_pgtable && is_protected_kvm_enabled()) 289 return false; 290 291 WARN_ON(!hyp_pgtable); 292 293 return true; 294 } 295 296 int __create_hyp_mappings(unsigned long start, unsigned long size, 297 unsigned long phys, enum kvm_pgtable_prot prot) 298 { 299 int err; 300 301 if (WARN_ON(!kvm_host_owns_hyp_mappings())) 302 return -EINVAL; 303 304 mutex_lock(&kvm_hyp_pgd_mutex); 305 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot); 306 mutex_unlock(&kvm_hyp_pgd_mutex); 307 308 return err; 309 } 310 311 static phys_addr_t kvm_kaddr_to_phys(void *kaddr) 312 { 313 if (!is_vmalloc_addr(kaddr)) { 314 BUG_ON(!virt_addr_valid(kaddr)); 315 return __pa(kaddr); 316 } else { 317 return page_to_phys(vmalloc_to_page(kaddr)) + 318 offset_in_page(kaddr); 319 } 320 } 321 322 struct hyp_shared_pfn { 323 u64 pfn; 324 int count; 325 struct rb_node node; 326 }; 327 328 static DEFINE_MUTEX(hyp_shared_pfns_lock); 329 static struct rb_root hyp_shared_pfns = RB_ROOT; 330 331 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node, 332 struct rb_node **parent) 333 { 334 struct hyp_shared_pfn *this; 335 336 *node = &hyp_shared_pfns.rb_node; 337 *parent = NULL; 338 while (**node) { 339 this = container_of(**node, struct hyp_shared_pfn, node); 340 *parent = **node; 341 if (this->pfn < pfn) 342 *node = &((**node)->rb_left); 343 else if (this->pfn > pfn) 344 *node = &((**node)->rb_right); 345 else 346 return this; 347 } 348 349 return NULL; 350 } 351 352 static int share_pfn_hyp(u64 pfn) 353 { 354 struct rb_node **node, *parent; 355 struct hyp_shared_pfn *this; 356 int ret = 0; 357 358 mutex_lock(&hyp_shared_pfns_lock); 359 this = find_shared_pfn(pfn, &node, &parent); 360 if (this) { 361 this->count++; 362 goto unlock; 363 } 364 365 this = kzalloc(sizeof(*this), GFP_KERNEL); 366 if (!this) { 367 ret = -ENOMEM; 368 goto unlock; 369 } 370 371 this->pfn = pfn; 372 this->count = 1; 373 rb_link_node(&this->node, parent, node); 374 rb_insert_color(&this->node, &hyp_shared_pfns); 375 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1); 376 unlock: 377 mutex_unlock(&hyp_shared_pfns_lock); 378 379 return ret; 380 } 381 382 static int unshare_pfn_hyp(u64 pfn) 383 { 384 struct rb_node **node, *parent; 385 struct hyp_shared_pfn *this; 386 int ret = 0; 387 388 mutex_lock(&hyp_shared_pfns_lock); 389 this = find_shared_pfn(pfn, &node, &parent); 390 if (WARN_ON(!this)) { 391 ret = -ENOENT; 392 goto unlock; 393 } 394 395 this->count--; 396 if (this->count) 397 goto unlock; 398 399 rb_erase(&this->node, &hyp_shared_pfns); 400 kfree(this); 401 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1); 402 unlock: 403 mutex_unlock(&hyp_shared_pfns_lock); 404 405 return ret; 406 } 407 408 int kvm_share_hyp(void *from, void *to) 409 { 410 phys_addr_t start, end, cur; 411 u64 pfn; 412 int ret; 413 414 if (is_kernel_in_hyp_mode()) 415 return 0; 416 417 /* 418 * The share hcall maps things in the 'fixed-offset' region of the hyp 419 * VA space, so we can only share physically contiguous data-structures 420 * for now. 421 */ 422 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to)) 423 return -EINVAL; 424 425 if (kvm_host_owns_hyp_mappings()) 426 return create_hyp_mappings(from, to, PAGE_HYP); 427 428 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 429 end = PAGE_ALIGN(__pa(to)); 430 for (cur = start; cur < end; cur += PAGE_SIZE) { 431 pfn = __phys_to_pfn(cur); 432 ret = share_pfn_hyp(pfn); 433 if (ret) 434 return ret; 435 } 436 437 return 0; 438 } 439 440 void kvm_unshare_hyp(void *from, void *to) 441 { 442 phys_addr_t start, end, cur; 443 u64 pfn; 444 445 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from) 446 return; 447 448 start = ALIGN_DOWN(__pa(from), PAGE_SIZE); 449 end = PAGE_ALIGN(__pa(to)); 450 for (cur = start; cur < end; cur += PAGE_SIZE) { 451 pfn = __phys_to_pfn(cur); 452 WARN_ON(unshare_pfn_hyp(pfn)); 453 } 454 } 455 456 /** 457 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode 458 * @from: The virtual kernel start address of the range 459 * @to: The virtual kernel end address of the range (exclusive) 460 * @prot: The protection to be applied to this range 461 * 462 * The same virtual address as the kernel virtual address is also used 463 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying 464 * physical pages. 465 */ 466 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot) 467 { 468 phys_addr_t phys_addr; 469 unsigned long virt_addr; 470 unsigned long start = kern_hyp_va((unsigned long)from); 471 unsigned long end = kern_hyp_va((unsigned long)to); 472 473 if (is_kernel_in_hyp_mode()) 474 return 0; 475 476 if (!kvm_host_owns_hyp_mappings()) 477 return -EPERM; 478 479 start = start & PAGE_MASK; 480 end = PAGE_ALIGN(end); 481 482 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { 483 int err; 484 485 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); 486 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr, 487 prot); 488 if (err) 489 return err; 490 } 491 492 return 0; 493 } 494 495 496 /** 497 * hyp_alloc_private_va_range - Allocates a private VA range. 498 * @size: The size of the VA range to reserve. 499 * @haddr: The hypervisor virtual start address of the allocation. 500 * 501 * The private virtual address (VA) range is allocated below io_map_base 502 * and aligned based on the order of @size. 503 * 504 * Return: 0 on success or negative error code on failure. 505 */ 506 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr) 507 { 508 unsigned long base; 509 int ret = 0; 510 511 mutex_lock(&kvm_hyp_pgd_mutex); 512 513 /* 514 * This assumes that we have enough space below the idmap 515 * page to allocate our VAs. If not, the check below will 516 * kick. A potential alternative would be to detect that 517 * overflow and switch to an allocation above the idmap. 518 * 519 * The allocated size is always a multiple of PAGE_SIZE. 520 */ 521 base = io_map_base - PAGE_ALIGN(size); 522 523 /* Align the allocation based on the order of its size */ 524 base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size)); 525 526 /* 527 * Verify that BIT(VA_BITS - 1) hasn't been flipped by 528 * allocating the new area, as it would indicate we've 529 * overflowed the idmap/IO address range. 530 */ 531 if ((base ^ io_map_base) & BIT(VA_BITS - 1)) 532 ret = -ENOMEM; 533 else 534 *haddr = io_map_base = base; 535 536 mutex_unlock(&kvm_hyp_pgd_mutex); 537 538 return ret; 539 } 540 541 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, 542 unsigned long *haddr, 543 enum kvm_pgtable_prot prot) 544 { 545 unsigned long addr; 546 int ret = 0; 547 548 if (!kvm_host_owns_hyp_mappings()) { 549 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping, 550 phys_addr, size, prot); 551 if (IS_ERR_VALUE(addr)) 552 return addr; 553 *haddr = addr; 554 555 return 0; 556 } 557 558 size = PAGE_ALIGN(size + offset_in_page(phys_addr)); 559 ret = hyp_alloc_private_va_range(size, &addr); 560 if (ret) 561 return ret; 562 563 ret = __create_hyp_mappings(addr, size, phys_addr, prot); 564 if (ret) 565 return ret; 566 567 *haddr = addr + offset_in_page(phys_addr); 568 return ret; 569 } 570 571 /** 572 * create_hyp_io_mappings - Map IO into both kernel and HYP 573 * @phys_addr: The physical start address which gets mapped 574 * @size: Size of the region being mapped 575 * @kaddr: Kernel VA for this mapping 576 * @haddr: HYP VA for this mapping 577 */ 578 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 579 void __iomem **kaddr, 580 void __iomem **haddr) 581 { 582 unsigned long addr; 583 int ret; 584 585 if (is_protected_kvm_enabled()) 586 return -EPERM; 587 588 *kaddr = ioremap(phys_addr, size); 589 if (!*kaddr) 590 return -ENOMEM; 591 592 if (is_kernel_in_hyp_mode()) { 593 *haddr = *kaddr; 594 return 0; 595 } 596 597 ret = __create_hyp_private_mapping(phys_addr, size, 598 &addr, PAGE_HYP_DEVICE); 599 if (ret) { 600 iounmap(*kaddr); 601 *kaddr = NULL; 602 *haddr = NULL; 603 return ret; 604 } 605 606 *haddr = (void __iomem *)addr; 607 return 0; 608 } 609 610 /** 611 * create_hyp_exec_mappings - Map an executable range into HYP 612 * @phys_addr: The physical start address which gets mapped 613 * @size: Size of the region being mapped 614 * @haddr: HYP VA for this mapping 615 */ 616 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 617 void **haddr) 618 { 619 unsigned long addr; 620 int ret; 621 622 BUG_ON(is_kernel_in_hyp_mode()); 623 624 ret = __create_hyp_private_mapping(phys_addr, size, 625 &addr, PAGE_HYP_EXEC); 626 if (ret) { 627 *haddr = NULL; 628 return ret; 629 } 630 631 *haddr = (void *)addr; 632 return 0; 633 } 634 635 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = { 636 /* We shouldn't need any other callback to walk the PT */ 637 .phys_to_virt = kvm_host_va, 638 }; 639 640 static int get_user_mapping_size(struct kvm *kvm, u64 addr) 641 { 642 struct kvm_pgtable pgt = { 643 .pgd = (kvm_pte_t *)kvm->mm->pgd, 644 .ia_bits = VA_BITS, 645 .start_level = (KVM_PGTABLE_MAX_LEVELS - 646 CONFIG_PGTABLE_LEVELS), 647 .mm_ops = &kvm_user_mm_ops, 648 }; 649 kvm_pte_t pte = 0; /* Keep GCC quiet... */ 650 u32 level = ~0; 651 int ret; 652 653 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level); 654 VM_BUG_ON(ret); 655 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS); 656 VM_BUG_ON(!(pte & PTE_VALID)); 657 658 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)); 659 } 660 661 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = { 662 .zalloc_page = stage2_memcache_zalloc_page, 663 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact, 664 .free_pages_exact = kvm_s2_free_pages_exact, 665 .get_page = kvm_host_get_page, 666 .put_page = kvm_s2_put_page, 667 .page_count = kvm_host_page_count, 668 .phys_to_virt = kvm_host_va, 669 .virt_to_phys = kvm_host_pa, 670 .dcache_clean_inval_poc = clean_dcache_guest_page, 671 .icache_inval_pou = invalidate_icache_guest_page, 672 }; 673 674 /** 675 * kvm_init_stage2_mmu - Initialise a S2 MMU structure 676 * @kvm: The pointer to the KVM structure 677 * @mmu: The pointer to the s2 MMU structure 678 * 679 * Allocates only the stage-2 HW PGD level table(s). 680 * Note we don't need locking here as this is only called when the VM is 681 * created, which can only be done once. 682 */ 683 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) 684 { 685 int cpu, err; 686 struct kvm_pgtable *pgt; 687 688 if (mmu->pgt != NULL) { 689 kvm_err("kvm_arch already initialized?\n"); 690 return -EINVAL; 691 } 692 693 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT); 694 if (!pgt) 695 return -ENOMEM; 696 697 mmu->arch = &kvm->arch; 698 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops); 699 if (err) 700 goto out_free_pgtable; 701 702 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); 703 if (!mmu->last_vcpu_ran) { 704 err = -ENOMEM; 705 goto out_destroy_pgtable; 706 } 707 708 for_each_possible_cpu(cpu) 709 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; 710 711 mmu->pgt = pgt; 712 mmu->pgd_phys = __pa(pgt->pgd); 713 return 0; 714 715 out_destroy_pgtable: 716 kvm_pgtable_stage2_destroy(pgt); 717 out_free_pgtable: 718 kfree(pgt); 719 return err; 720 } 721 722 static void stage2_unmap_memslot(struct kvm *kvm, 723 struct kvm_memory_slot *memslot) 724 { 725 hva_t hva = memslot->userspace_addr; 726 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; 727 phys_addr_t size = PAGE_SIZE * memslot->npages; 728 hva_t reg_end = hva + size; 729 730 /* 731 * A memory region could potentially cover multiple VMAs, and any holes 732 * between them, so iterate over all of them to find out if we should 733 * unmap any of them. 734 * 735 * +--------------------------------------------+ 736 * +---------------+----------------+ +----------------+ 737 * | : VMA 1 | VMA 2 | | VMA 3 : | 738 * +---------------+----------------+ +----------------+ 739 * | memory region | 740 * +--------------------------------------------+ 741 */ 742 do { 743 struct vm_area_struct *vma; 744 hva_t vm_start, vm_end; 745 746 vma = find_vma_intersection(current->mm, hva, reg_end); 747 if (!vma) 748 break; 749 750 /* 751 * Take the intersection of this VMA with the memory region 752 */ 753 vm_start = max(hva, vma->vm_start); 754 vm_end = min(reg_end, vma->vm_end); 755 756 if (!(vma->vm_flags & VM_PFNMAP)) { 757 gpa_t gpa = addr + (vm_start - memslot->userspace_addr); 758 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); 759 } 760 hva = vm_end; 761 } while (hva < reg_end); 762 } 763 764 /** 765 * stage2_unmap_vm - Unmap Stage-2 RAM mappings 766 * @kvm: The struct kvm pointer 767 * 768 * Go through the memregions and unmap any regular RAM 769 * backing memory already mapped to the VM. 770 */ 771 void stage2_unmap_vm(struct kvm *kvm) 772 { 773 struct kvm_memslots *slots; 774 struct kvm_memory_slot *memslot; 775 int idx, bkt; 776 777 idx = srcu_read_lock(&kvm->srcu); 778 mmap_read_lock(current->mm); 779 write_lock(&kvm->mmu_lock); 780 781 slots = kvm_memslots(kvm); 782 kvm_for_each_memslot(memslot, bkt, slots) 783 stage2_unmap_memslot(kvm, memslot); 784 785 write_unlock(&kvm->mmu_lock); 786 mmap_read_unlock(current->mm); 787 srcu_read_unlock(&kvm->srcu, idx); 788 } 789 790 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) 791 { 792 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 793 struct kvm_pgtable *pgt = NULL; 794 795 write_lock(&kvm->mmu_lock); 796 pgt = mmu->pgt; 797 if (pgt) { 798 mmu->pgd_phys = 0; 799 mmu->pgt = NULL; 800 free_percpu(mmu->last_vcpu_ran); 801 } 802 write_unlock(&kvm->mmu_lock); 803 804 if (pgt) { 805 kvm_pgtable_stage2_destroy(pgt); 806 kfree(pgt); 807 } 808 } 809 810 /** 811 * kvm_phys_addr_ioremap - map a device range to guest IPA 812 * 813 * @kvm: The KVM pointer 814 * @guest_ipa: The IPA at which to insert the mapping 815 * @pa: The physical address of the device 816 * @size: The size of the mapping 817 * @writable: Whether or not to create a writable mapping 818 */ 819 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 820 phys_addr_t pa, unsigned long size, bool writable) 821 { 822 phys_addr_t addr; 823 int ret = 0; 824 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO }; 825 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt; 826 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE | 827 KVM_PGTABLE_PROT_R | 828 (writable ? KVM_PGTABLE_PROT_W : 0); 829 830 if (is_protected_kvm_enabled()) 831 return -EPERM; 832 833 size += offset_in_page(guest_ipa); 834 guest_ipa &= PAGE_MASK; 835 836 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) { 837 ret = kvm_mmu_topup_memory_cache(&cache, 838 kvm_mmu_cache_min_pages(kvm)); 839 if (ret) 840 break; 841 842 write_lock(&kvm->mmu_lock); 843 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot, 844 &cache); 845 write_unlock(&kvm->mmu_lock); 846 if (ret) 847 break; 848 849 pa += PAGE_SIZE; 850 } 851 852 kvm_mmu_free_memory_cache(&cache); 853 return ret; 854 } 855 856 /** 857 * stage2_wp_range() - write protect stage2 memory region range 858 * @mmu: The KVM stage-2 MMU pointer 859 * @addr: Start address of range 860 * @end: End address of range 861 */ 862 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) 863 { 864 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); 865 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect); 866 } 867 868 /** 869 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot 870 * @kvm: The KVM pointer 871 * @slot: The memory slot to write protect 872 * 873 * Called to start logging dirty pages after memory region 874 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns 875 * all present PUD, PMD and PTEs are write protected in the memory region. 876 * Afterwards read of dirty page log can be called. 877 * 878 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, 879 * serializing operations for VM memory regions. 880 */ 881 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) 882 { 883 struct kvm_memslots *slots = kvm_memslots(kvm); 884 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); 885 phys_addr_t start, end; 886 887 if (WARN_ON_ONCE(!memslot)) 888 return; 889 890 start = memslot->base_gfn << PAGE_SHIFT; 891 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; 892 893 write_lock(&kvm->mmu_lock); 894 stage2_wp_range(&kvm->arch.mmu, start, end); 895 write_unlock(&kvm->mmu_lock); 896 kvm_flush_remote_tlbs(kvm); 897 } 898 899 /** 900 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages 901 * @kvm: The KVM pointer 902 * @slot: The memory slot associated with mask 903 * @gfn_offset: The gfn offset in memory slot 904 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 905 * slot to be write protected 906 * 907 * Walks bits set in mask write protects the associated pte's. Caller must 908 * acquire kvm_mmu_lock. 909 */ 910 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 911 struct kvm_memory_slot *slot, 912 gfn_t gfn_offset, unsigned long mask) 913 { 914 phys_addr_t base_gfn = slot->base_gfn + gfn_offset; 915 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; 916 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; 917 918 stage2_wp_range(&kvm->arch.mmu, start, end); 919 } 920 921 /* 922 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 923 * dirty pages. 924 * 925 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 926 * enable dirty logging for them. 927 */ 928 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 929 struct kvm_memory_slot *slot, 930 gfn_t gfn_offset, unsigned long mask) 931 { 932 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 933 } 934 935 static void kvm_send_hwpoison_signal(unsigned long address, short lsb) 936 { 937 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); 938 } 939 940 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, 941 unsigned long hva, 942 unsigned long map_size) 943 { 944 gpa_t gpa_start; 945 hva_t uaddr_start, uaddr_end; 946 size_t size; 947 948 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ 949 if (map_size == PAGE_SIZE) 950 return true; 951 952 size = memslot->npages * PAGE_SIZE; 953 954 gpa_start = memslot->base_gfn << PAGE_SHIFT; 955 956 uaddr_start = memslot->userspace_addr; 957 uaddr_end = uaddr_start + size; 958 959 /* 960 * Pages belonging to memslots that don't have the same alignment 961 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 962 * PMD/PUD entries, because we'll end up mapping the wrong pages. 963 * 964 * Consider a layout like the following: 965 * 966 * memslot->userspace_addr: 967 * +-----+--------------------+--------------------+---+ 968 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| 969 * +-----+--------------------+--------------------+---+ 970 * 971 * memslot->base_gfn << PAGE_SHIFT: 972 * +---+--------------------+--------------------+-----+ 973 * |abc|def Stage-2 block | Stage-2 block |tvxyz| 974 * +---+--------------------+--------------------+-----+ 975 * 976 * If we create those stage-2 blocks, we'll end up with this incorrect 977 * mapping: 978 * d -> f 979 * e -> g 980 * f -> h 981 */ 982 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) 983 return false; 984 985 /* 986 * Next, let's make sure we're not trying to map anything not covered 987 * by the memslot. This means we have to prohibit block size mappings 988 * for the beginning and end of a non-block aligned and non-block sized 989 * memory slot (illustrated by the head and tail parts of the 990 * userspace view above containing pages 'abcde' and 'xyz', 991 * respectively). 992 * 993 * Note that it doesn't matter if we do the check using the 994 * userspace_addr or the base_gfn, as both are equally aligned (per 995 * the check above) and equally sized. 996 */ 997 return (hva & ~(map_size - 1)) >= uaddr_start && 998 (hva & ~(map_size - 1)) + map_size <= uaddr_end; 999 } 1000 1001 /* 1002 * Check if the given hva is backed by a transparent huge page (THP) and 1003 * whether it can be mapped using block mapping in stage2. If so, adjust 1004 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently 1005 * supported. This will need to be updated to support other THP sizes. 1006 * 1007 * Returns the size of the mapping. 1008 */ 1009 static unsigned long 1010 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot, 1011 unsigned long hva, kvm_pfn_t *pfnp, 1012 phys_addr_t *ipap) 1013 { 1014 kvm_pfn_t pfn = *pfnp; 1015 1016 /* 1017 * Make sure the adjustment is done only for THP pages. Also make 1018 * sure that the HVA and IPA are sufficiently aligned and that the 1019 * block map is contained within the memslot. 1020 */ 1021 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && 1022 get_user_mapping_size(kvm, hva) >= PMD_SIZE) { 1023 /* 1024 * The address we faulted on is backed by a transparent huge 1025 * page. However, because we map the compound huge page and 1026 * not the individual tail page, we need to transfer the 1027 * refcount to the head page. We have to be careful that the 1028 * THP doesn't start to split while we are adjusting the 1029 * refcounts. 1030 * 1031 * We are sure this doesn't happen, because mmu_invalidate_retry 1032 * was successful and we are holding the mmu_lock, so if this 1033 * THP is trying to split, it will be blocked in the mmu 1034 * notifier before touching any of the pages, specifically 1035 * before being able to call __split_huge_page_refcount(). 1036 * 1037 * We can therefore safely transfer the refcount from PG_tail 1038 * to PG_head and switch the pfn from a tail page to the head 1039 * page accordingly. 1040 */ 1041 *ipap &= PMD_MASK; 1042 kvm_release_pfn_clean(pfn); 1043 pfn &= ~(PTRS_PER_PMD - 1); 1044 get_page(pfn_to_page(pfn)); 1045 *pfnp = pfn; 1046 1047 return PMD_SIZE; 1048 } 1049 1050 /* Use page mapping if we cannot use block mapping. */ 1051 return PAGE_SIZE; 1052 } 1053 1054 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva) 1055 { 1056 unsigned long pa; 1057 1058 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP)) 1059 return huge_page_shift(hstate_vma(vma)); 1060 1061 if (!(vma->vm_flags & VM_PFNMAP)) 1062 return PAGE_SHIFT; 1063 1064 VM_BUG_ON(is_vm_hugetlb_page(vma)); 1065 1066 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start); 1067 1068 #ifndef __PAGETABLE_PMD_FOLDED 1069 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) && 1070 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start && 1071 ALIGN(hva, PUD_SIZE) <= vma->vm_end) 1072 return PUD_SHIFT; 1073 #endif 1074 1075 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) && 1076 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start && 1077 ALIGN(hva, PMD_SIZE) <= vma->vm_end) 1078 return PMD_SHIFT; 1079 1080 return PAGE_SHIFT; 1081 } 1082 1083 /* 1084 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be 1085 * able to see the page's tags and therefore they must be initialised first. If 1086 * PG_mte_tagged is set, tags have already been initialised. 1087 * 1088 * The race in the test/set of the PG_mte_tagged flag is handled by: 1089 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs 1090 * racing to santise the same page 1091 * - mmap_lock protects between a VM faulting a page in and the VMM performing 1092 * an mprotect() to add VM_MTE 1093 */ 1094 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn, 1095 unsigned long size) 1096 { 1097 unsigned long i, nr_pages = size >> PAGE_SHIFT; 1098 struct page *page; 1099 1100 if (!kvm_has_mte(kvm)) 1101 return 0; 1102 1103 /* 1104 * pfn_to_online_page() is used to reject ZONE_DEVICE pages 1105 * that may not support tags. 1106 */ 1107 page = pfn_to_online_page(pfn); 1108 1109 if (!page) 1110 return -EFAULT; 1111 1112 for (i = 0; i < nr_pages; i++, page++) { 1113 if (!test_bit(PG_mte_tagged, &page->flags)) { 1114 mte_clear_page_tags(page_address(page)); 1115 set_bit(PG_mte_tagged, &page->flags); 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, 1123 struct kvm_memory_slot *memslot, unsigned long hva, 1124 unsigned long fault_status) 1125 { 1126 int ret = 0; 1127 bool write_fault, writable, force_pte = false; 1128 bool exec_fault; 1129 bool device = false; 1130 bool shared; 1131 unsigned long mmu_seq; 1132 struct kvm *kvm = vcpu->kvm; 1133 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 1134 struct vm_area_struct *vma; 1135 short vma_shift; 1136 gfn_t gfn; 1137 kvm_pfn_t pfn; 1138 bool logging_active = memslot_is_logging(memslot); 1139 bool use_read_lock = false; 1140 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu); 1141 unsigned long vma_pagesize, fault_granule; 1142 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R; 1143 struct kvm_pgtable *pgt; 1144 1145 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level); 1146 write_fault = kvm_is_write_fault(vcpu); 1147 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); 1148 VM_BUG_ON(write_fault && exec_fault); 1149 1150 if (fault_status == FSC_PERM && !write_fault && !exec_fault) { 1151 kvm_err("Unexpected L2 read permission error\n"); 1152 return -EFAULT; 1153 } 1154 1155 /* 1156 * Let's check if we will get back a huge page backed by hugetlbfs, or 1157 * get block mapping for device MMIO region. 1158 */ 1159 mmap_read_lock(current->mm); 1160 vma = vma_lookup(current->mm, hva); 1161 if (unlikely(!vma)) { 1162 kvm_err("Failed to find VMA for hva 0x%lx\n", hva); 1163 mmap_read_unlock(current->mm); 1164 return -EFAULT; 1165 } 1166 1167 /* 1168 * logging_active is guaranteed to never be true for VM_PFNMAP 1169 * memslots. 1170 */ 1171 if (logging_active) { 1172 force_pte = true; 1173 vma_shift = PAGE_SHIFT; 1174 use_read_lock = (fault_status == FSC_PERM && write_fault && 1175 fault_granule == PAGE_SIZE); 1176 } else { 1177 vma_shift = get_vma_page_shift(vma, hva); 1178 } 1179 1180 shared = (vma->vm_flags & VM_SHARED); 1181 1182 switch (vma_shift) { 1183 #ifndef __PAGETABLE_PMD_FOLDED 1184 case PUD_SHIFT: 1185 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE)) 1186 break; 1187 fallthrough; 1188 #endif 1189 case CONT_PMD_SHIFT: 1190 vma_shift = PMD_SHIFT; 1191 fallthrough; 1192 case PMD_SHIFT: 1193 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) 1194 break; 1195 fallthrough; 1196 case CONT_PTE_SHIFT: 1197 vma_shift = PAGE_SHIFT; 1198 force_pte = true; 1199 fallthrough; 1200 case PAGE_SHIFT: 1201 break; 1202 default: 1203 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift); 1204 } 1205 1206 vma_pagesize = 1UL << vma_shift; 1207 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) 1208 fault_ipa &= ~(vma_pagesize - 1); 1209 1210 gfn = fault_ipa >> PAGE_SHIFT; 1211 mmap_read_unlock(current->mm); 1212 1213 /* 1214 * Permission faults just need to update the existing leaf entry, 1215 * and so normally don't require allocations from the memcache. The 1216 * only exception to this is when dirty logging is enabled at runtime 1217 * and a write fault needs to collapse a block entry into a table. 1218 */ 1219 if (fault_status != FSC_PERM || (logging_active && write_fault)) { 1220 ret = kvm_mmu_topup_memory_cache(memcache, 1221 kvm_mmu_cache_min_pages(kvm)); 1222 if (ret) 1223 return ret; 1224 } 1225 1226 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 1227 /* 1228 * Ensure the read of mmu_invalidate_seq happens before we call 1229 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk 1230 * the page we just got a reference to gets unmapped before we have a 1231 * chance to grab the mmu_lock, which ensure that if the page gets 1232 * unmapped afterwards, the call to kvm_unmap_gfn will take it away 1233 * from us again properly. This smp_rmb() interacts with the smp_wmb() 1234 * in kvm_mmu_notifier_invalidate_<page|range_end>. 1235 * 1236 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is 1237 * used to avoid unnecessary overhead introduced to locate the memory 1238 * slot because it's always fixed even @gfn is adjusted for huge pages. 1239 */ 1240 smp_rmb(); 1241 1242 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 1243 write_fault, &writable, NULL); 1244 if (pfn == KVM_PFN_ERR_HWPOISON) { 1245 kvm_send_hwpoison_signal(hva, vma_shift); 1246 return 0; 1247 } 1248 if (is_error_noslot_pfn(pfn)) 1249 return -EFAULT; 1250 1251 if (kvm_is_device_pfn(pfn)) { 1252 /* 1253 * If the page was identified as device early by looking at 1254 * the VMA flags, vma_pagesize is already representing the 1255 * largest quantity we can map. If instead it was mapped 1256 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE 1257 * and must not be upgraded. 1258 * 1259 * In both cases, we don't let transparent_hugepage_adjust() 1260 * change things at the last minute. 1261 */ 1262 device = true; 1263 } else if (logging_active && !write_fault) { 1264 /* 1265 * Only actually map the page as writable if this was a write 1266 * fault. 1267 */ 1268 writable = false; 1269 } 1270 1271 if (exec_fault && device) 1272 return -ENOEXEC; 1273 1274 /* 1275 * To reduce MMU contentions and enhance concurrency during dirty 1276 * logging dirty logging, only acquire read lock for permission 1277 * relaxation. 1278 */ 1279 if (use_read_lock) 1280 read_lock(&kvm->mmu_lock); 1281 else 1282 write_lock(&kvm->mmu_lock); 1283 pgt = vcpu->arch.hw_mmu->pgt; 1284 if (mmu_invalidate_retry(kvm, mmu_seq)) 1285 goto out_unlock; 1286 1287 /* 1288 * If we are not forced to use page mapping, check if we are 1289 * backed by a THP and thus use block mapping if possible. 1290 */ 1291 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) { 1292 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE) 1293 vma_pagesize = fault_granule; 1294 else 1295 vma_pagesize = transparent_hugepage_adjust(kvm, memslot, 1296 hva, &pfn, 1297 &fault_ipa); 1298 } 1299 1300 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) { 1301 /* Check the VMM hasn't introduced a new VM_SHARED VMA */ 1302 if (!shared) 1303 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize); 1304 else 1305 ret = -EFAULT; 1306 if (ret) 1307 goto out_unlock; 1308 } 1309 1310 if (writable) 1311 prot |= KVM_PGTABLE_PROT_W; 1312 1313 if (exec_fault) 1314 prot |= KVM_PGTABLE_PROT_X; 1315 1316 if (device) 1317 prot |= KVM_PGTABLE_PROT_DEVICE; 1318 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC)) 1319 prot |= KVM_PGTABLE_PROT_X; 1320 1321 /* 1322 * Under the premise of getting a FSC_PERM fault, we just need to relax 1323 * permissions only if vma_pagesize equals fault_granule. Otherwise, 1324 * kvm_pgtable_stage2_map() should be called to change block size. 1325 */ 1326 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) { 1327 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot); 1328 } else { 1329 WARN_ONCE(use_read_lock, "Attempted stage-2 map outside of write lock\n"); 1330 1331 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize, 1332 __pfn_to_phys(pfn), prot, 1333 memcache); 1334 } 1335 1336 /* Mark the page dirty only if the fault is handled successfully */ 1337 if (writable && !ret) { 1338 kvm_set_pfn_dirty(pfn); 1339 mark_page_dirty_in_slot(kvm, memslot, gfn); 1340 } 1341 1342 out_unlock: 1343 if (use_read_lock) 1344 read_unlock(&kvm->mmu_lock); 1345 else 1346 write_unlock(&kvm->mmu_lock); 1347 kvm_set_pfn_accessed(pfn); 1348 kvm_release_pfn_clean(pfn); 1349 return ret != -EAGAIN ? ret : 0; 1350 } 1351 1352 /* Resolve the access fault by making the page young again. */ 1353 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) 1354 { 1355 pte_t pte; 1356 kvm_pte_t kpte; 1357 struct kvm_s2_mmu *mmu; 1358 1359 trace_kvm_access_fault(fault_ipa); 1360 1361 write_lock(&vcpu->kvm->mmu_lock); 1362 mmu = vcpu->arch.hw_mmu; 1363 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa); 1364 write_unlock(&vcpu->kvm->mmu_lock); 1365 1366 pte = __pte(kpte); 1367 if (pte_valid(pte)) 1368 kvm_set_pfn_accessed(pte_pfn(pte)); 1369 } 1370 1371 /** 1372 * kvm_handle_guest_abort - handles all 2nd stage aborts 1373 * @vcpu: the VCPU pointer 1374 * 1375 * Any abort that gets to the host is almost guaranteed to be caused by a 1376 * missing second stage translation table entry, which can mean that either the 1377 * guest simply needs more memory and we must allocate an appropriate page or it 1378 * can mean that the guest tried to access I/O memory, which is emulated by user 1379 * space. The distinction is based on the IPA causing the fault and whether this 1380 * memory region has been registered as standard RAM by user space. 1381 */ 1382 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) 1383 { 1384 unsigned long fault_status; 1385 phys_addr_t fault_ipa; 1386 struct kvm_memory_slot *memslot; 1387 unsigned long hva; 1388 bool is_iabt, write_fault, writable; 1389 gfn_t gfn; 1390 int ret, idx; 1391 1392 fault_status = kvm_vcpu_trap_get_fault_type(vcpu); 1393 1394 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); 1395 is_iabt = kvm_vcpu_trap_is_iabt(vcpu); 1396 1397 if (fault_status == FSC_FAULT) { 1398 /* Beyond sanitised PARange (which is the IPA limit) */ 1399 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) { 1400 kvm_inject_size_fault(vcpu); 1401 return 1; 1402 } 1403 1404 /* Falls between the IPA range and the PARange? */ 1405 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) { 1406 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0); 1407 1408 if (is_iabt) 1409 kvm_inject_pabt(vcpu, fault_ipa); 1410 else 1411 kvm_inject_dabt(vcpu, fault_ipa); 1412 return 1; 1413 } 1414 } 1415 1416 /* Synchronous External Abort? */ 1417 if (kvm_vcpu_abt_issea(vcpu)) { 1418 /* 1419 * For RAS the host kernel may handle this abort. 1420 * There is no need to pass the error into the guest. 1421 */ 1422 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) 1423 kvm_inject_vabt(vcpu); 1424 1425 return 1; 1426 } 1427 1428 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), 1429 kvm_vcpu_get_hfar(vcpu), fault_ipa); 1430 1431 /* Check the stage-2 fault is trans. fault or write fault */ 1432 if (fault_status != FSC_FAULT && fault_status != FSC_PERM && 1433 fault_status != FSC_ACCESS) { 1434 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", 1435 kvm_vcpu_trap_get_class(vcpu), 1436 (unsigned long)kvm_vcpu_trap_get_fault(vcpu), 1437 (unsigned long)kvm_vcpu_get_esr(vcpu)); 1438 return -EFAULT; 1439 } 1440 1441 idx = srcu_read_lock(&vcpu->kvm->srcu); 1442 1443 gfn = fault_ipa >> PAGE_SHIFT; 1444 memslot = gfn_to_memslot(vcpu->kvm, gfn); 1445 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); 1446 write_fault = kvm_is_write_fault(vcpu); 1447 if (kvm_is_error_hva(hva) || (write_fault && !writable)) { 1448 /* 1449 * The guest has put either its instructions or its page-tables 1450 * somewhere it shouldn't have. Userspace won't be able to do 1451 * anything about this (there's no syndrome for a start), so 1452 * re-inject the abort back into the guest. 1453 */ 1454 if (is_iabt) { 1455 ret = -ENOEXEC; 1456 goto out; 1457 } 1458 1459 if (kvm_vcpu_abt_iss1tw(vcpu)) { 1460 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1461 ret = 1; 1462 goto out_unlock; 1463 } 1464 1465 /* 1466 * Check for a cache maintenance operation. Since we 1467 * ended-up here, we know it is outside of any memory 1468 * slot. But we can't find out if that is for a device, 1469 * or if the guest is just being stupid. The only thing 1470 * we know for sure is that this range cannot be cached. 1471 * 1472 * So let's assume that the guest is just being 1473 * cautious, and skip the instruction. 1474 */ 1475 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { 1476 kvm_incr_pc(vcpu); 1477 ret = 1; 1478 goto out_unlock; 1479 } 1480 1481 /* 1482 * The IPA is reported as [MAX:12], so we need to 1483 * complement it with the bottom 12 bits from the 1484 * faulting VA. This is always 12 bits, irrespective 1485 * of the page size. 1486 */ 1487 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); 1488 ret = io_mem_abort(vcpu, fault_ipa); 1489 goto out_unlock; 1490 } 1491 1492 /* Userspace should not be able to register out-of-bounds IPAs */ 1493 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); 1494 1495 if (fault_status == FSC_ACCESS) { 1496 handle_access_fault(vcpu, fault_ipa); 1497 ret = 1; 1498 goto out_unlock; 1499 } 1500 1501 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); 1502 if (ret == 0) 1503 ret = 1; 1504 out: 1505 if (ret == -ENOEXEC) { 1506 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 1507 ret = 1; 1508 } 1509 out_unlock: 1510 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1511 return ret; 1512 } 1513 1514 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1515 { 1516 if (!kvm->arch.mmu.pgt) 1517 return false; 1518 1519 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT, 1520 (range->end - range->start) << PAGE_SHIFT, 1521 range->may_block); 1522 1523 return false; 1524 } 1525 1526 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1527 { 1528 kvm_pfn_t pfn = pte_pfn(range->pte); 1529 int ret; 1530 1531 if (!kvm->arch.mmu.pgt) 1532 return false; 1533 1534 WARN_ON(range->end - range->start != 1); 1535 1536 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE); 1537 if (ret) 1538 return false; 1539 1540 /* 1541 * We've moved a page around, probably through CoW, so let's treat 1542 * it just like a translation fault and the map handler will clean 1543 * the cache to the PoC. 1544 * 1545 * The MMU notifiers will have unmapped a huge PMD before calling 1546 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and 1547 * therefore we never need to clear out a huge PMD through this 1548 * calling path and a memcache is not required. 1549 */ 1550 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT, 1551 PAGE_SIZE, __pfn_to_phys(pfn), 1552 KVM_PGTABLE_PROT_R, NULL); 1553 1554 return false; 1555 } 1556 1557 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1558 { 1559 u64 size = (range->end - range->start) << PAGE_SHIFT; 1560 kvm_pte_t kpte; 1561 pte_t pte; 1562 1563 if (!kvm->arch.mmu.pgt) 1564 return false; 1565 1566 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); 1567 1568 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, 1569 range->start << PAGE_SHIFT); 1570 pte = __pte(kpte); 1571 return pte_valid(pte) && pte_young(pte); 1572 } 1573 1574 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1575 { 1576 if (!kvm->arch.mmu.pgt) 1577 return false; 1578 1579 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, 1580 range->start << PAGE_SHIFT); 1581 } 1582 1583 phys_addr_t kvm_mmu_get_httbr(void) 1584 { 1585 return __pa(hyp_pgtable->pgd); 1586 } 1587 1588 phys_addr_t kvm_get_idmap_vector(void) 1589 { 1590 return hyp_idmap_vector; 1591 } 1592 1593 static int kvm_map_idmap_text(void) 1594 { 1595 unsigned long size = hyp_idmap_end - hyp_idmap_start; 1596 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start, 1597 PAGE_HYP_EXEC); 1598 if (err) 1599 kvm_err("Failed to idmap %lx-%lx\n", 1600 hyp_idmap_start, hyp_idmap_end); 1601 1602 return err; 1603 } 1604 1605 static void *kvm_hyp_zalloc_page(void *arg) 1606 { 1607 return (void *)get_zeroed_page(GFP_KERNEL); 1608 } 1609 1610 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = { 1611 .zalloc_page = kvm_hyp_zalloc_page, 1612 .get_page = kvm_host_get_page, 1613 .put_page = kvm_host_put_page, 1614 .phys_to_virt = kvm_host_va, 1615 .virt_to_phys = kvm_host_pa, 1616 }; 1617 1618 int kvm_mmu_init(u32 *hyp_va_bits) 1619 { 1620 int err; 1621 1622 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); 1623 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); 1624 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); 1625 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); 1626 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); 1627 1628 /* 1629 * We rely on the linker script to ensure at build time that the HYP 1630 * init code does not cross a page boundary. 1631 */ 1632 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); 1633 1634 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET); 1635 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits); 1636 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); 1637 kvm_debug("HYP VA range: %lx:%lx\n", 1638 kern_hyp_va(PAGE_OFFSET), 1639 kern_hyp_va((unsigned long)high_memory - 1)); 1640 1641 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && 1642 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && 1643 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { 1644 /* 1645 * The idmap page is intersecting with the VA space, 1646 * it is not safe to continue further. 1647 */ 1648 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); 1649 err = -EINVAL; 1650 goto out; 1651 } 1652 1653 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL); 1654 if (!hyp_pgtable) { 1655 kvm_err("Hyp mode page-table not allocated\n"); 1656 err = -ENOMEM; 1657 goto out; 1658 } 1659 1660 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops); 1661 if (err) 1662 goto out_free_pgtable; 1663 1664 err = kvm_map_idmap_text(); 1665 if (err) 1666 goto out_destroy_pgtable; 1667 1668 io_map_base = hyp_idmap_start; 1669 return 0; 1670 1671 out_destroy_pgtable: 1672 kvm_pgtable_hyp_destroy(hyp_pgtable); 1673 out_free_pgtable: 1674 kfree(hyp_pgtable); 1675 hyp_pgtable = NULL; 1676 out: 1677 return err; 1678 } 1679 1680 void kvm_arch_commit_memory_region(struct kvm *kvm, 1681 struct kvm_memory_slot *old, 1682 const struct kvm_memory_slot *new, 1683 enum kvm_mr_change change) 1684 { 1685 /* 1686 * At this point memslot has been committed and there is an 1687 * allocated dirty_bitmap[], dirty pages will be tracked while the 1688 * memory slot is write protected. 1689 */ 1690 if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1691 /* 1692 * If we're with initial-all-set, we don't need to write 1693 * protect any pages because they're all reported as dirty. 1694 * Huge pages and normal pages will be write protect gradually. 1695 */ 1696 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1697 kvm_mmu_wp_memory_region(kvm, new->id); 1698 } 1699 } 1700 } 1701 1702 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1703 const struct kvm_memory_slot *old, 1704 struct kvm_memory_slot *new, 1705 enum kvm_mr_change change) 1706 { 1707 hva_t hva, reg_end; 1708 int ret = 0; 1709 1710 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && 1711 change != KVM_MR_FLAGS_ONLY) 1712 return 0; 1713 1714 /* 1715 * Prevent userspace from creating a memory region outside of the IPA 1716 * space addressable by the KVM guest IPA space. 1717 */ 1718 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) 1719 return -EFAULT; 1720 1721 hva = new->userspace_addr; 1722 reg_end = hva + (new->npages << PAGE_SHIFT); 1723 1724 mmap_read_lock(current->mm); 1725 /* 1726 * A memory region could potentially cover multiple VMAs, and any holes 1727 * between them, so iterate over all of them. 1728 * 1729 * +--------------------------------------------+ 1730 * +---------------+----------------+ +----------------+ 1731 * | : VMA 1 | VMA 2 | | VMA 3 : | 1732 * +---------------+----------------+ +----------------+ 1733 * | memory region | 1734 * +--------------------------------------------+ 1735 */ 1736 do { 1737 struct vm_area_struct *vma; 1738 1739 vma = find_vma_intersection(current->mm, hva, reg_end); 1740 if (!vma) 1741 break; 1742 1743 /* 1744 * VM_SHARED mappings are not allowed with MTE to avoid races 1745 * when updating the PG_mte_tagged page flag, see 1746 * sanitise_mte_tags for more details. 1747 */ 1748 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) { 1749 ret = -EINVAL; 1750 break; 1751 } 1752 1753 if (vma->vm_flags & VM_PFNMAP) { 1754 /* IO region dirty page logging not allowed */ 1755 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1756 ret = -EINVAL; 1757 break; 1758 } 1759 } 1760 hva = min(reg_end, vma->vm_end); 1761 } while (hva < reg_end); 1762 1763 mmap_read_unlock(current->mm); 1764 return ret; 1765 } 1766 1767 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 1768 { 1769 } 1770 1771 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 1772 { 1773 } 1774 1775 void kvm_arch_flush_shadow_all(struct kvm *kvm) 1776 { 1777 kvm_free_stage2_pgd(&kvm->arch.mmu); 1778 } 1779 1780 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1781 struct kvm_memory_slot *slot) 1782 { 1783 gpa_t gpa = slot->base_gfn << PAGE_SHIFT; 1784 phys_addr_t size = slot->npages << PAGE_SHIFT; 1785 1786 write_lock(&kvm->mmu_lock); 1787 unmap_stage2_range(&kvm->arch.mmu, gpa, size); 1788 write_unlock(&kvm->mmu_lock); 1789 } 1790 1791 /* 1792 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 1793 * 1794 * Main problems: 1795 * - S/W ops are local to a CPU (not broadcast) 1796 * - We have line migration behind our back (speculation) 1797 * - System caches don't support S/W at all (damn!) 1798 * 1799 * In the face of the above, the best we can do is to try and convert 1800 * S/W ops to VA ops. Because the guest is not allowed to infer the 1801 * S/W to PA mapping, it can only use S/W to nuke the whole cache, 1802 * which is a rather good thing for us. 1803 * 1804 * Also, it is only used when turning caches on/off ("The expected 1805 * usage of the cache maintenance instructions that operate by set/way 1806 * is associated with the cache maintenance instructions associated 1807 * with the powerdown and powerup of caches, if this is required by 1808 * the implementation."). 1809 * 1810 * We use the following policy: 1811 * 1812 * - If we trap a S/W operation, we enable VM trapping to detect 1813 * caches being turned on/off, and do a full clean. 1814 * 1815 * - We flush the caches on both caches being turned on and off. 1816 * 1817 * - Once the caches are enabled, we stop trapping VM ops. 1818 */ 1819 void kvm_set_way_flush(struct kvm_vcpu *vcpu) 1820 { 1821 unsigned long hcr = *vcpu_hcr(vcpu); 1822 1823 /* 1824 * If this is the first time we do a S/W operation 1825 * (i.e. HCR_TVM not set) flush the whole memory, and set the 1826 * VM trapping. 1827 * 1828 * Otherwise, rely on the VM trapping to wait for the MMU + 1829 * Caches to be turned off. At that point, we'll be able to 1830 * clean the caches again. 1831 */ 1832 if (!(hcr & HCR_TVM)) { 1833 trace_kvm_set_way_flush(*vcpu_pc(vcpu), 1834 vcpu_has_cache_enabled(vcpu)); 1835 stage2_flush_vm(vcpu->kvm); 1836 *vcpu_hcr(vcpu) = hcr | HCR_TVM; 1837 } 1838 } 1839 1840 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) 1841 { 1842 bool now_enabled = vcpu_has_cache_enabled(vcpu); 1843 1844 /* 1845 * If switching the MMU+caches on, need to invalidate the caches. 1846 * If switching it off, need to clean the caches. 1847 * Clean + invalidate does the trick always. 1848 */ 1849 if (now_enabled != was_enabled) 1850 stage2_flush_vm(vcpu->kvm); 1851 1852 /* Caches are now on, stop trapping VM ops (until a S/W op) */ 1853 if (now_enabled) 1854 *vcpu_hcr(vcpu) &= ~HCR_TVM; 1855 1856 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); 1857 } 1858