1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35 phys_addr_t size)
36 {
37 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39 return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46 return __stage2_range_addr_end(addr, end, size);
47 }
48
49 /*
50 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53 * long will also starve other vCPUs. We have to also make sure that the page
54 * tables are not freed while we released the lock.
55 */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57 phys_addr_t end,
58 int (*fn)(struct kvm_pgtable *, u64, u64),
59 bool resched)
60 {
61 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62 int ret;
63 u64 next;
64
65 do {
66 struct kvm_pgtable *pgt = mmu->pgt;
67 if (!pgt)
68 return -EINVAL;
69
70 next = stage2_range_addr_end(addr, end);
71 ret = fn(pgt, addr, next - addr);
72 if (ret)
73 break;
74
75 if (resched && next != end)
76 cond_resched_rwlock_write(&kvm->mmu_lock);
77 } while (addr = next, addr != end);
78
79 return ret;
80 }
81
82 #define stage2_apply_range_resched(mmu, addr, end, fn) \
83 stage2_apply_range(mmu, addr, end, fn, true)
84
85 /*
86 * Get the maximum number of page-tables pages needed to split a range
87 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88 * mapped at level 2, or at level 1 if allowed.
89 */
kvm_mmu_split_nr_page_tables(u64 range)90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92 int n = 0;
93
94 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95 n += DIV_ROUND_UP(range, PUD_SIZE);
96 n += DIV_ROUND_UP(range, PMD_SIZE);
97 return n;
98 }
99
need_split_memcache_topup_or_resched(struct kvm * kvm)100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102 struct kvm_mmu_memory_cache *cache;
103 u64 chunk_size, min;
104
105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106 return true;
107
108 chunk_size = kvm->arch.mmu.split_page_chunk_size;
109 min = kvm_mmu_split_nr_page_tables(chunk_size);
110 cache = &kvm->arch.mmu.split_page_cache;
111 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115 phys_addr_t end)
116 {
117 struct kvm_mmu_memory_cache *cache;
118 struct kvm_pgtable *pgt;
119 int ret, cache_capacity;
120 u64 next, chunk_size;
121
122 lockdep_assert_held_write(&kvm->mmu_lock);
123
124 chunk_size = kvm->arch.mmu.split_page_chunk_size;
125 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127 if (chunk_size == 0)
128 return 0;
129
130 cache = &kvm->arch.mmu.split_page_cache;
131
132 do {
133 if (need_split_memcache_topup_or_resched(kvm)) {
134 write_unlock(&kvm->mmu_lock);
135 cond_resched();
136 /* Eager page splitting is best-effort. */
137 ret = __kvm_mmu_topup_memory_cache(cache,
138 cache_capacity,
139 cache_capacity);
140 write_lock(&kvm->mmu_lock);
141 if (ret)
142 break;
143 }
144
145 pgt = kvm->arch.mmu.pgt;
146 if (!pgt)
147 return -EINVAL;
148
149 next = __stage2_range_addr_end(addr, end, chunk_size);
150 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151 if (ret)
152 break;
153 } while (addr = next, addr != end);
154
155 return ret;
156 }
157
memslot_is_logging(struct kvm_memory_slot * memslot)158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162
163 /**
164 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165 * @kvm: pointer to kvm structure.
166 *
167 * Interface to HYP function to flush all VM TLB entries
168 */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172 return 0;
173 }
174
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176 gfn_t gfn, u64 nr_pages)
177 {
178 kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180 return 0;
181 }
182
kvm_is_device_pfn(unsigned long pfn)183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185 return !pfn_is_map_memory(pfn);
186 }
187
stage2_memcache_zalloc_page(void * arg)188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190 struct kvm_mmu_memory_cache *mc = arg;
191 void *virt;
192
193 /* Allocated with __GFP_ZERO, so no need to zero */
194 virt = kvm_mmu_memory_cache_alloc(mc);
195 if (virt)
196 kvm_account_pgtable_pages(virt, 1);
197 return virt;
198 }
199
kvm_host_zalloc_pages_exact(size_t size)200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204
kvm_s2_zalloc_pages_exact(size_t size)205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207 void *virt = kvm_host_zalloc_pages_exact(size);
208
209 if (virt)
210 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211 return virt;
212 }
213
kvm_s2_free_pages_exact(void * virt,size_t size)214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217 free_pages_exact(virt, size);
218 }
219
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224 struct page *page = container_of(head, struct page, rcu_head);
225 void *pgtable = page_to_virt(page);
226 u32 level = page_private(page);
227
228 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230
stage2_free_unlinked_table(void * addr,u32 level)231 static void stage2_free_unlinked_table(void *addr, u32 level)
232 {
233 struct page *page = virt_to_page(addr);
234
235 set_page_private(page, (unsigned long)level);
236 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238
kvm_host_get_page(void * addr)239 static void kvm_host_get_page(void *addr)
240 {
241 get_page(virt_to_page(addr));
242 }
243
kvm_host_put_page(void * addr)244 static void kvm_host_put_page(void *addr)
245 {
246 put_page(virt_to_page(addr));
247 }
248
kvm_s2_put_page(void * addr)249 static void kvm_s2_put_page(void *addr)
250 {
251 struct page *p = virt_to_page(addr);
252 /* Dropping last refcount, the page will be freed */
253 if (page_count(p) == 1)
254 kvm_account_pgtable_pages(addr, -1);
255 put_page(p);
256 }
257
kvm_host_page_count(void * addr)258 static int kvm_host_page_count(void *addr)
259 {
260 return page_count(virt_to_page(addr));
261 }
262
kvm_host_pa(void * addr)263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265 return __pa(addr);
266 }
267
kvm_host_va(phys_addr_t phys)268 static void *kvm_host_va(phys_addr_t phys)
269 {
270 return __va(phys);
271 }
272
clean_dcache_guest_page(void * va,size_t size)273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275 __clean_dcache_guest_page(va, size);
276 }
277
invalidate_icache_guest_page(void * va,size_t size)278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280 __invalidate_icache_guest_page(va, size);
281 }
282
283 /*
284 * Unmapping vs dcache management:
285 *
286 * If a guest maps certain memory pages as uncached, all writes will
287 * bypass the data cache and go directly to RAM. However, the CPUs
288 * can still speculate reads (not writes) and fill cache lines with
289 * data.
290 *
291 * Those cache lines will be *clean* cache lines though, so a
292 * clean+invalidate operation is equivalent to an invalidate
293 * operation, because no cache lines are marked dirty.
294 *
295 * Those clean cache lines could be filled prior to an uncached write
296 * by the guest, and the cache coherent IO subsystem would therefore
297 * end up writing old data to disk.
298 *
299 * This is why right after unmapping a page/section and invalidating
300 * the corresponding TLBs, we flush to make sure the IO subsystem will
301 * never hit in the cache.
302 *
303 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304 * we then fully enforce cacheability of RAM, no matter what the guest
305 * does.
306 */
307 /**
308 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309 * @mmu: The KVM stage-2 MMU pointer
310 * @start: The intermediate physical base address of the range to unmap
311 * @size: The size of the area to unmap
312 * @may_block: Whether or not we are permitted to block
313 *
314 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
315 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316 * destroying the VM), otherwise another faulting VCPU may come in and mess
317 * with things behind our backs.
318 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320 bool may_block)
321 {
322 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323 phys_addr_t end = start + size;
324
325 lockdep_assert_held_write(&kvm->mmu_lock);
326 WARN_ON(size & ~PAGE_MASK);
327 WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328 may_block));
329 }
330
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332 {
333 __unmap_stage2_range(mmu, start, size, true);
334 }
335
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)336 static void stage2_flush_memslot(struct kvm *kvm,
337 struct kvm_memory_slot *memslot)
338 {
339 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341
342 stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343 }
344
345 /**
346 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347 * @kvm: The struct kvm pointer
348 *
349 * Go through the stage 2 page tables and invalidate any cache lines
350 * backing memory already mapped to the VM.
351 */
stage2_flush_vm(struct kvm * kvm)352 static void stage2_flush_vm(struct kvm *kvm)
353 {
354 struct kvm_memslots *slots;
355 struct kvm_memory_slot *memslot;
356 int idx, bkt;
357
358 idx = srcu_read_lock(&kvm->srcu);
359 write_lock(&kvm->mmu_lock);
360
361 slots = kvm_memslots(kvm);
362 kvm_for_each_memslot(memslot, bkt, slots)
363 stage2_flush_memslot(kvm, memslot);
364
365 write_unlock(&kvm->mmu_lock);
366 srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 /**
370 * free_hyp_pgds - free Hyp-mode page tables
371 */
free_hyp_pgds(void)372 void __init free_hyp_pgds(void)
373 {
374 mutex_lock(&kvm_hyp_pgd_mutex);
375 if (hyp_pgtable) {
376 kvm_pgtable_hyp_destroy(hyp_pgtable);
377 kfree(hyp_pgtable);
378 hyp_pgtable = NULL;
379 }
380 mutex_unlock(&kvm_hyp_pgd_mutex);
381 }
382
kvm_host_owns_hyp_mappings(void)383 static bool kvm_host_owns_hyp_mappings(void)
384 {
385 if (is_kernel_in_hyp_mode())
386 return false;
387
388 if (static_branch_likely(&kvm_protected_mode_initialized))
389 return false;
390
391 /*
392 * This can happen at boot time when __create_hyp_mappings() is called
393 * after the hyp protection has been enabled, but the static key has
394 * not been flipped yet.
395 */
396 if (!hyp_pgtable && is_protected_kvm_enabled())
397 return false;
398
399 WARN_ON(!hyp_pgtable);
400
401 return true;
402 }
403
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)404 int __create_hyp_mappings(unsigned long start, unsigned long size,
405 unsigned long phys, enum kvm_pgtable_prot prot)
406 {
407 int err;
408
409 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410 return -EINVAL;
411
412 mutex_lock(&kvm_hyp_pgd_mutex);
413 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414 mutex_unlock(&kvm_hyp_pgd_mutex);
415
416 return err;
417 }
418
kvm_kaddr_to_phys(void * kaddr)419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420 {
421 if (!is_vmalloc_addr(kaddr)) {
422 BUG_ON(!virt_addr_valid(kaddr));
423 return __pa(kaddr);
424 } else {
425 return page_to_phys(vmalloc_to_page(kaddr)) +
426 offset_in_page(kaddr);
427 }
428 }
429
430 struct hyp_shared_pfn {
431 u64 pfn;
432 int count;
433 struct rb_node node;
434 };
435
436 static DEFINE_MUTEX(hyp_shared_pfns_lock);
437 static struct rb_root hyp_shared_pfns = RB_ROOT;
438
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440 struct rb_node **parent)
441 {
442 struct hyp_shared_pfn *this;
443
444 *node = &hyp_shared_pfns.rb_node;
445 *parent = NULL;
446 while (**node) {
447 this = container_of(**node, struct hyp_shared_pfn, node);
448 *parent = **node;
449 if (this->pfn < pfn)
450 *node = &((**node)->rb_left);
451 else if (this->pfn > pfn)
452 *node = &((**node)->rb_right);
453 else
454 return this;
455 }
456
457 return NULL;
458 }
459
share_pfn_hyp(u64 pfn)460 static int share_pfn_hyp(u64 pfn)
461 {
462 struct rb_node **node, *parent;
463 struct hyp_shared_pfn *this;
464 int ret = 0;
465
466 mutex_lock(&hyp_shared_pfns_lock);
467 this = find_shared_pfn(pfn, &node, &parent);
468 if (this) {
469 this->count++;
470 goto unlock;
471 }
472
473 this = kzalloc(sizeof(*this), GFP_KERNEL);
474 if (!this) {
475 ret = -ENOMEM;
476 goto unlock;
477 }
478
479 this->pfn = pfn;
480 this->count = 1;
481 rb_link_node(&this->node, parent, node);
482 rb_insert_color(&this->node, &hyp_shared_pfns);
483 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484 unlock:
485 mutex_unlock(&hyp_shared_pfns_lock);
486
487 return ret;
488 }
489
unshare_pfn_hyp(u64 pfn)490 static int unshare_pfn_hyp(u64 pfn)
491 {
492 struct rb_node **node, *parent;
493 struct hyp_shared_pfn *this;
494 int ret = 0;
495
496 mutex_lock(&hyp_shared_pfns_lock);
497 this = find_shared_pfn(pfn, &node, &parent);
498 if (WARN_ON(!this)) {
499 ret = -ENOENT;
500 goto unlock;
501 }
502
503 this->count--;
504 if (this->count)
505 goto unlock;
506
507 rb_erase(&this->node, &hyp_shared_pfns);
508 kfree(this);
509 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510 unlock:
511 mutex_unlock(&hyp_shared_pfns_lock);
512
513 return ret;
514 }
515
kvm_share_hyp(void * from,void * to)516 int kvm_share_hyp(void *from, void *to)
517 {
518 phys_addr_t start, end, cur;
519 u64 pfn;
520 int ret;
521
522 if (is_kernel_in_hyp_mode())
523 return 0;
524
525 /*
526 * The share hcall maps things in the 'fixed-offset' region of the hyp
527 * VA space, so we can only share physically contiguous data-structures
528 * for now.
529 */
530 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
531 return -EINVAL;
532
533 if (kvm_host_owns_hyp_mappings())
534 return create_hyp_mappings(from, to, PAGE_HYP);
535
536 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537 end = PAGE_ALIGN(__pa(to));
538 for (cur = start; cur < end; cur += PAGE_SIZE) {
539 pfn = __phys_to_pfn(cur);
540 ret = share_pfn_hyp(pfn);
541 if (ret)
542 return ret;
543 }
544
545 return 0;
546 }
547
kvm_unshare_hyp(void * from,void * to)548 void kvm_unshare_hyp(void *from, void *to)
549 {
550 phys_addr_t start, end, cur;
551 u64 pfn;
552
553 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554 return;
555
556 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557 end = PAGE_ALIGN(__pa(to));
558 for (cur = start; cur < end; cur += PAGE_SIZE) {
559 pfn = __phys_to_pfn(cur);
560 WARN_ON(unshare_pfn_hyp(pfn));
561 }
562 }
563
564 /**
565 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566 * @from: The virtual kernel start address of the range
567 * @to: The virtual kernel end address of the range (exclusive)
568 * @prot: The protection to be applied to this range
569 *
570 * The same virtual address as the kernel virtual address is also used
571 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572 * physical pages.
573 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575 {
576 phys_addr_t phys_addr;
577 unsigned long virt_addr;
578 unsigned long start = kern_hyp_va((unsigned long)from);
579 unsigned long end = kern_hyp_va((unsigned long)to);
580
581 if (is_kernel_in_hyp_mode())
582 return 0;
583
584 if (!kvm_host_owns_hyp_mappings())
585 return -EPERM;
586
587 start = start & PAGE_MASK;
588 end = PAGE_ALIGN(end);
589
590 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591 int err;
592
593 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
594 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
595 prot);
596 if (err)
597 return err;
598 }
599
600 return 0;
601 }
602
__hyp_alloc_private_va_range(unsigned long base)603 static int __hyp_alloc_private_va_range(unsigned long base)
604 {
605 lockdep_assert_held(&kvm_hyp_pgd_mutex);
606
607 if (!PAGE_ALIGNED(base))
608 return -EINVAL;
609
610 /*
611 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612 * allocating the new area, as it would indicate we've
613 * overflowed the idmap/IO address range.
614 */
615 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616 return -ENOMEM;
617
618 io_map_base = base;
619
620 return 0;
621 }
622
623 /**
624 * hyp_alloc_private_va_range - Allocates a private VA range.
625 * @size: The size of the VA range to reserve.
626 * @haddr: The hypervisor virtual start address of the allocation.
627 *
628 * The private virtual address (VA) range is allocated below io_map_base
629 * and aligned based on the order of @size.
630 *
631 * Return: 0 on success or negative error code on failure.
632 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634 {
635 unsigned long base;
636 int ret = 0;
637
638 mutex_lock(&kvm_hyp_pgd_mutex);
639
640 /*
641 * This assumes that we have enough space below the idmap
642 * page to allocate our VAs. If not, the check in
643 * __hyp_alloc_private_va_range() will kick. A potential
644 * alternative would be to detect that overflow and switch
645 * to an allocation above the idmap.
646 *
647 * The allocated size is always a multiple of PAGE_SIZE.
648 */
649 size = PAGE_ALIGN(size);
650 base = io_map_base - size;
651 ret = __hyp_alloc_private_va_range(base);
652
653 mutex_unlock(&kvm_hyp_pgd_mutex);
654
655 if (!ret)
656 *haddr = base;
657
658 return ret;
659 }
660
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)661 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
662 unsigned long *haddr,
663 enum kvm_pgtable_prot prot)
664 {
665 unsigned long addr;
666 int ret = 0;
667
668 if (!kvm_host_owns_hyp_mappings()) {
669 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
670 phys_addr, size, prot);
671 if (IS_ERR_VALUE(addr))
672 return addr;
673 *haddr = addr;
674
675 return 0;
676 }
677
678 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
679 ret = hyp_alloc_private_va_range(size, &addr);
680 if (ret)
681 return ret;
682
683 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
684 if (ret)
685 return ret;
686
687 *haddr = addr + offset_in_page(phys_addr);
688 return ret;
689 }
690
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)691 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
692 {
693 unsigned long base;
694 size_t size;
695 int ret;
696
697 mutex_lock(&kvm_hyp_pgd_mutex);
698 /*
699 * Efficient stack verification using the PAGE_SHIFT bit implies
700 * an alignment of our allocation on the order of the size.
701 */
702 size = PAGE_SIZE * 2;
703 base = ALIGN_DOWN(io_map_base - size, size);
704
705 ret = __hyp_alloc_private_va_range(base);
706
707 mutex_unlock(&kvm_hyp_pgd_mutex);
708
709 if (ret) {
710 kvm_err("Cannot allocate hyp stack guard page\n");
711 return ret;
712 }
713
714 /*
715 * Since the stack grows downwards, map the stack to the page
716 * at the higher address and leave the lower guard page
717 * unbacked.
718 *
719 * Any valid stack address now has the PAGE_SHIFT bit as 1
720 * and addresses corresponding to the guard page have the
721 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
722 */
723 ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
724 PAGE_HYP);
725 if (ret)
726 kvm_err("Cannot map hyp stack\n");
727
728 *haddr = base + size;
729
730 return ret;
731 }
732
733 /**
734 * create_hyp_io_mappings - Map IO into both kernel and HYP
735 * @phys_addr: The physical start address which gets mapped
736 * @size: Size of the region being mapped
737 * @kaddr: Kernel VA for this mapping
738 * @haddr: HYP VA for this mapping
739 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)740 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
741 void __iomem **kaddr,
742 void __iomem **haddr)
743 {
744 unsigned long addr;
745 int ret;
746
747 if (is_protected_kvm_enabled())
748 return -EPERM;
749
750 *kaddr = ioremap(phys_addr, size);
751 if (!*kaddr)
752 return -ENOMEM;
753
754 if (is_kernel_in_hyp_mode()) {
755 *haddr = *kaddr;
756 return 0;
757 }
758
759 ret = __create_hyp_private_mapping(phys_addr, size,
760 &addr, PAGE_HYP_DEVICE);
761 if (ret) {
762 iounmap(*kaddr);
763 *kaddr = NULL;
764 *haddr = NULL;
765 return ret;
766 }
767
768 *haddr = (void __iomem *)addr;
769 return 0;
770 }
771
772 /**
773 * create_hyp_exec_mappings - Map an executable range into HYP
774 * @phys_addr: The physical start address which gets mapped
775 * @size: Size of the region being mapped
776 * @haddr: HYP VA for this mapping
777 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)778 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
779 void **haddr)
780 {
781 unsigned long addr;
782 int ret;
783
784 BUG_ON(is_kernel_in_hyp_mode());
785
786 ret = __create_hyp_private_mapping(phys_addr, size,
787 &addr, PAGE_HYP_EXEC);
788 if (ret) {
789 *haddr = NULL;
790 return ret;
791 }
792
793 *haddr = (void *)addr;
794 return 0;
795 }
796
797 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
798 /* We shouldn't need any other callback to walk the PT */
799 .phys_to_virt = kvm_host_va,
800 };
801
get_user_mapping_size(struct kvm * kvm,u64 addr)802 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
803 {
804 struct kvm_pgtable pgt = {
805 .pgd = (kvm_pteref_t)kvm->mm->pgd,
806 .ia_bits = vabits_actual,
807 .start_level = (KVM_PGTABLE_MAX_LEVELS -
808 CONFIG_PGTABLE_LEVELS),
809 .mm_ops = &kvm_user_mm_ops,
810 };
811 unsigned long flags;
812 kvm_pte_t pte = 0; /* Keep GCC quiet... */
813 u32 level = ~0;
814 int ret;
815
816 /*
817 * Disable IRQs so that we hazard against a concurrent
818 * teardown of the userspace page tables (which relies on
819 * IPI-ing threads).
820 */
821 local_irq_save(flags);
822 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
823 local_irq_restore(flags);
824
825 if (ret)
826 return ret;
827
828 /*
829 * Not seeing an error, but not updating level? Something went
830 * deeply wrong...
831 */
832 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
833 return -EFAULT;
834
835 /* Oops, the userspace PTs are gone... Replay the fault */
836 if (!kvm_pte_valid(pte))
837 return -EAGAIN;
838
839 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
840 }
841
842 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
843 .zalloc_page = stage2_memcache_zalloc_page,
844 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
845 .free_pages_exact = kvm_s2_free_pages_exact,
846 .free_unlinked_table = stage2_free_unlinked_table,
847 .get_page = kvm_host_get_page,
848 .put_page = kvm_s2_put_page,
849 .page_count = kvm_host_page_count,
850 .phys_to_virt = kvm_host_va,
851 .virt_to_phys = kvm_host_pa,
852 .dcache_clean_inval_poc = clean_dcache_guest_page,
853 .icache_inval_pou = invalidate_icache_guest_page,
854 };
855
856 /**
857 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
858 * @kvm: The pointer to the KVM structure
859 * @mmu: The pointer to the s2 MMU structure
860 * @type: The machine type of the virtual machine
861 *
862 * Allocates only the stage-2 HW PGD level table(s).
863 * Note we don't need locking here as this is only called when the VM is
864 * created, which can only be done once.
865 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)866 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
867 {
868 u32 kvm_ipa_limit = get_kvm_ipa_limit();
869 int cpu, err;
870 struct kvm_pgtable *pgt;
871 u64 mmfr0, mmfr1;
872 u32 phys_shift;
873
874 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
875 return -EINVAL;
876
877 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
878 if (is_protected_kvm_enabled()) {
879 phys_shift = kvm_ipa_limit;
880 } else if (phys_shift) {
881 if (phys_shift > kvm_ipa_limit ||
882 phys_shift < ARM64_MIN_PARANGE_BITS)
883 return -EINVAL;
884 } else {
885 phys_shift = KVM_PHYS_SHIFT;
886 if (phys_shift > kvm_ipa_limit) {
887 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
888 current->comm);
889 return -EINVAL;
890 }
891 }
892
893 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
894 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
895 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
896
897 if (mmu->pgt != NULL) {
898 kvm_err("kvm_arch already initialized?\n");
899 return -EINVAL;
900 }
901
902 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
903 if (!pgt)
904 return -ENOMEM;
905
906 mmu->arch = &kvm->arch;
907 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
908 if (err)
909 goto out_free_pgtable;
910
911 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
912 if (!mmu->last_vcpu_ran) {
913 err = -ENOMEM;
914 goto out_destroy_pgtable;
915 }
916
917 for_each_possible_cpu(cpu)
918 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
919
920 /* The eager page splitting is disabled by default */
921 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
922 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
923
924 mmu->pgt = pgt;
925 mmu->pgd_phys = __pa(pgt->pgd);
926 return 0;
927
928 out_destroy_pgtable:
929 kvm_pgtable_stage2_destroy(pgt);
930 out_free_pgtable:
931 kfree(pgt);
932 return err;
933 }
934
kvm_uninit_stage2_mmu(struct kvm * kvm)935 void kvm_uninit_stage2_mmu(struct kvm *kvm)
936 {
937 kvm_free_stage2_pgd(&kvm->arch.mmu);
938 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
939 }
940
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)941 static void stage2_unmap_memslot(struct kvm *kvm,
942 struct kvm_memory_slot *memslot)
943 {
944 hva_t hva = memslot->userspace_addr;
945 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
946 phys_addr_t size = PAGE_SIZE * memslot->npages;
947 hva_t reg_end = hva + size;
948
949 /*
950 * A memory region could potentially cover multiple VMAs, and any holes
951 * between them, so iterate over all of them to find out if we should
952 * unmap any of them.
953 *
954 * +--------------------------------------------+
955 * +---------------+----------------+ +----------------+
956 * | : VMA 1 | VMA 2 | | VMA 3 : |
957 * +---------------+----------------+ +----------------+
958 * | memory region |
959 * +--------------------------------------------+
960 */
961 do {
962 struct vm_area_struct *vma;
963 hva_t vm_start, vm_end;
964
965 vma = find_vma_intersection(current->mm, hva, reg_end);
966 if (!vma)
967 break;
968
969 /*
970 * Take the intersection of this VMA with the memory region
971 */
972 vm_start = max(hva, vma->vm_start);
973 vm_end = min(reg_end, vma->vm_end);
974
975 if (!(vma->vm_flags & VM_PFNMAP)) {
976 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
977 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
978 }
979 hva = vm_end;
980 } while (hva < reg_end);
981 }
982
983 /**
984 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
985 * @kvm: The struct kvm pointer
986 *
987 * Go through the memregions and unmap any regular RAM
988 * backing memory already mapped to the VM.
989 */
stage2_unmap_vm(struct kvm * kvm)990 void stage2_unmap_vm(struct kvm *kvm)
991 {
992 struct kvm_memslots *slots;
993 struct kvm_memory_slot *memslot;
994 int idx, bkt;
995
996 idx = srcu_read_lock(&kvm->srcu);
997 mmap_read_lock(current->mm);
998 write_lock(&kvm->mmu_lock);
999
1000 slots = kvm_memslots(kvm);
1001 kvm_for_each_memslot(memslot, bkt, slots)
1002 stage2_unmap_memslot(kvm, memslot);
1003
1004 write_unlock(&kvm->mmu_lock);
1005 mmap_read_unlock(current->mm);
1006 srcu_read_unlock(&kvm->srcu, idx);
1007 }
1008
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1009 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1010 {
1011 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1012 struct kvm_pgtable *pgt = NULL;
1013
1014 write_lock(&kvm->mmu_lock);
1015 pgt = mmu->pgt;
1016 if (pgt) {
1017 mmu->pgd_phys = 0;
1018 mmu->pgt = NULL;
1019 free_percpu(mmu->last_vcpu_ran);
1020 }
1021 write_unlock(&kvm->mmu_lock);
1022
1023 if (pgt) {
1024 kvm_pgtable_stage2_destroy(pgt);
1025 kfree(pgt);
1026 }
1027 }
1028
hyp_mc_free_fn(void * addr,void * unused)1029 static void hyp_mc_free_fn(void *addr, void *unused)
1030 {
1031 free_page((unsigned long)addr);
1032 }
1033
hyp_mc_alloc_fn(void * unused)1034 static void *hyp_mc_alloc_fn(void *unused)
1035 {
1036 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1037 }
1038
free_hyp_memcache(struct kvm_hyp_memcache * mc)1039 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1040 {
1041 if (is_protected_kvm_enabled())
1042 __free_hyp_memcache(mc, hyp_mc_free_fn,
1043 kvm_host_va, NULL);
1044 }
1045
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1046 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1047 {
1048 if (!is_protected_kvm_enabled())
1049 return 0;
1050
1051 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1052 kvm_host_pa, NULL);
1053 }
1054
1055 /**
1056 * kvm_phys_addr_ioremap - map a device range to guest IPA
1057 *
1058 * @kvm: The KVM pointer
1059 * @guest_ipa: The IPA at which to insert the mapping
1060 * @pa: The physical address of the device
1061 * @size: The size of the mapping
1062 * @writable: Whether or not to create a writable mapping
1063 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1064 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1065 phys_addr_t pa, unsigned long size, bool writable)
1066 {
1067 phys_addr_t addr;
1068 int ret = 0;
1069 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1070 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
1071 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1072 KVM_PGTABLE_PROT_R |
1073 (writable ? KVM_PGTABLE_PROT_W : 0);
1074
1075 if (is_protected_kvm_enabled())
1076 return -EPERM;
1077
1078 size += offset_in_page(guest_ipa);
1079 guest_ipa &= PAGE_MASK;
1080
1081 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1082 ret = kvm_mmu_topup_memory_cache(&cache,
1083 kvm_mmu_cache_min_pages(kvm));
1084 if (ret)
1085 break;
1086
1087 write_lock(&kvm->mmu_lock);
1088 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1089 &cache, 0);
1090 write_unlock(&kvm->mmu_lock);
1091 if (ret)
1092 break;
1093
1094 pa += PAGE_SIZE;
1095 }
1096
1097 kvm_mmu_free_memory_cache(&cache);
1098 return ret;
1099 }
1100
1101 /**
1102 * stage2_wp_range() - write protect stage2 memory region range
1103 * @mmu: The KVM stage-2 MMU pointer
1104 * @addr: Start address of range
1105 * @end: End address of range
1106 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1107 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1108 {
1109 stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1110 }
1111
1112 /**
1113 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1114 * @kvm: The KVM pointer
1115 * @slot: The memory slot to write protect
1116 *
1117 * Called to start logging dirty pages after memory region
1118 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1119 * all present PUD, PMD and PTEs are write protected in the memory region.
1120 * Afterwards read of dirty page log can be called.
1121 *
1122 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1123 * serializing operations for VM memory regions.
1124 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1125 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1126 {
1127 struct kvm_memslots *slots = kvm_memslots(kvm);
1128 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1129 phys_addr_t start, end;
1130
1131 if (WARN_ON_ONCE(!memslot))
1132 return;
1133
1134 start = memslot->base_gfn << PAGE_SHIFT;
1135 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1136
1137 write_lock(&kvm->mmu_lock);
1138 stage2_wp_range(&kvm->arch.mmu, start, end);
1139 write_unlock(&kvm->mmu_lock);
1140 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1141 }
1142
1143 /**
1144 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1145 * pages for memory slot
1146 * @kvm: The KVM pointer
1147 * @slot: The memory slot to split
1148 *
1149 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1150 * serializing operations for VM memory regions.
1151 */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1152 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1153 {
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 phys_addr_t start, end;
1157
1158 lockdep_assert_held(&kvm->slots_lock);
1159
1160 slots = kvm_memslots(kvm);
1161 memslot = id_to_memslot(slots, slot);
1162
1163 start = memslot->base_gfn << PAGE_SHIFT;
1164 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1165
1166 write_lock(&kvm->mmu_lock);
1167 kvm_mmu_split_huge_pages(kvm, start, end);
1168 write_unlock(&kvm->mmu_lock);
1169 }
1170
1171 /*
1172 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1173 * @kvm: The KVM pointer
1174 * @slot: The memory slot associated with mask
1175 * @gfn_offset: The gfn offset in memory slot
1176 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1177 * slot to enable dirty logging on
1178 *
1179 * Writes protect selected pages to enable dirty logging, and then
1180 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1181 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1182 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1183 struct kvm_memory_slot *slot,
1184 gfn_t gfn_offset, unsigned long mask)
1185 {
1186 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1187 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1188 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1189
1190 lockdep_assert_held_write(&kvm->mmu_lock);
1191
1192 stage2_wp_range(&kvm->arch.mmu, start, end);
1193
1194 /*
1195 * Eager-splitting is done when manual-protect is set. We
1196 * also check for initially-all-set because we can avoid
1197 * eager-splitting if initially-all-set is false.
1198 * Initially-all-set equal false implies that huge-pages were
1199 * already split when enabling dirty logging: no need to do it
1200 * again.
1201 */
1202 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1203 kvm_mmu_split_huge_pages(kvm, start, end);
1204 }
1205
kvm_send_hwpoison_signal(unsigned long address,short lsb)1206 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1207 {
1208 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1209 }
1210
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1211 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1212 unsigned long hva,
1213 unsigned long map_size)
1214 {
1215 gpa_t gpa_start;
1216 hva_t uaddr_start, uaddr_end;
1217 size_t size;
1218
1219 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1220 if (map_size == PAGE_SIZE)
1221 return true;
1222
1223 size = memslot->npages * PAGE_SIZE;
1224
1225 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1226
1227 uaddr_start = memslot->userspace_addr;
1228 uaddr_end = uaddr_start + size;
1229
1230 /*
1231 * Pages belonging to memslots that don't have the same alignment
1232 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1233 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1234 *
1235 * Consider a layout like the following:
1236 *
1237 * memslot->userspace_addr:
1238 * +-----+--------------------+--------------------+---+
1239 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1240 * +-----+--------------------+--------------------+---+
1241 *
1242 * memslot->base_gfn << PAGE_SHIFT:
1243 * +---+--------------------+--------------------+-----+
1244 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1245 * +---+--------------------+--------------------+-----+
1246 *
1247 * If we create those stage-2 blocks, we'll end up with this incorrect
1248 * mapping:
1249 * d -> f
1250 * e -> g
1251 * f -> h
1252 */
1253 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1254 return false;
1255
1256 /*
1257 * Next, let's make sure we're not trying to map anything not covered
1258 * by the memslot. This means we have to prohibit block size mappings
1259 * for the beginning and end of a non-block aligned and non-block sized
1260 * memory slot (illustrated by the head and tail parts of the
1261 * userspace view above containing pages 'abcde' and 'xyz',
1262 * respectively).
1263 *
1264 * Note that it doesn't matter if we do the check using the
1265 * userspace_addr or the base_gfn, as both are equally aligned (per
1266 * the check above) and equally sized.
1267 */
1268 return (hva & ~(map_size - 1)) >= uaddr_start &&
1269 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1270 }
1271
1272 /*
1273 * Check if the given hva is backed by a transparent huge page (THP) and
1274 * whether it can be mapped using block mapping in stage2. If so, adjust
1275 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1276 * supported. This will need to be updated to support other THP sizes.
1277 *
1278 * Returns the size of the mapping.
1279 */
1280 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1281 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1282 unsigned long hva, kvm_pfn_t *pfnp,
1283 phys_addr_t *ipap)
1284 {
1285 kvm_pfn_t pfn = *pfnp;
1286
1287 /*
1288 * Make sure the adjustment is done only for THP pages. Also make
1289 * sure that the HVA and IPA are sufficiently aligned and that the
1290 * block map is contained within the memslot.
1291 */
1292 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1293 int sz = get_user_mapping_size(kvm, hva);
1294
1295 if (sz < 0)
1296 return sz;
1297
1298 if (sz < PMD_SIZE)
1299 return PAGE_SIZE;
1300
1301 /*
1302 * The address we faulted on is backed by a transparent huge
1303 * page. However, because we map the compound huge page and
1304 * not the individual tail page, we need to transfer the
1305 * refcount to the head page. We have to be careful that the
1306 * THP doesn't start to split while we are adjusting the
1307 * refcounts.
1308 *
1309 * We are sure this doesn't happen, because mmu_invalidate_retry
1310 * was successful and we are holding the mmu_lock, so if this
1311 * THP is trying to split, it will be blocked in the mmu
1312 * notifier before touching any of the pages, specifically
1313 * before being able to call __split_huge_page_refcount().
1314 *
1315 * We can therefore safely transfer the refcount from PG_tail
1316 * to PG_head and switch the pfn from a tail page to the head
1317 * page accordingly.
1318 */
1319 *ipap &= PMD_MASK;
1320 kvm_release_pfn_clean(pfn);
1321 pfn &= ~(PTRS_PER_PMD - 1);
1322 get_page(pfn_to_page(pfn));
1323 *pfnp = pfn;
1324
1325 return PMD_SIZE;
1326 }
1327
1328 /* Use page mapping if we cannot use block mapping. */
1329 return PAGE_SIZE;
1330 }
1331
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1332 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1333 {
1334 unsigned long pa;
1335
1336 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1337 return huge_page_shift(hstate_vma(vma));
1338
1339 if (!(vma->vm_flags & VM_PFNMAP))
1340 return PAGE_SHIFT;
1341
1342 VM_BUG_ON(is_vm_hugetlb_page(vma));
1343
1344 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1345
1346 #ifndef __PAGETABLE_PMD_FOLDED
1347 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1348 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1349 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1350 return PUD_SHIFT;
1351 #endif
1352
1353 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1354 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1355 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1356 return PMD_SHIFT;
1357
1358 return PAGE_SHIFT;
1359 }
1360
1361 /*
1362 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1363 * able to see the page's tags and therefore they must be initialised first. If
1364 * PG_mte_tagged is set, tags have already been initialised.
1365 *
1366 * The race in the test/set of the PG_mte_tagged flag is handled by:
1367 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1368 * racing to santise the same page
1369 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1370 * an mprotect() to add VM_MTE
1371 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1372 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1373 unsigned long size)
1374 {
1375 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1376 struct page *page = pfn_to_page(pfn);
1377
1378 if (!kvm_has_mte(kvm))
1379 return;
1380
1381 for (i = 0; i < nr_pages; i++, page++) {
1382 if (try_page_mte_tagging(page)) {
1383 mte_clear_page_tags(page_address(page));
1384 set_page_mte_tagged(page);
1385 }
1386 }
1387 }
1388
kvm_vma_mte_allowed(struct vm_area_struct * vma)1389 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1390 {
1391 return vma->vm_flags & VM_MTE_ALLOWED;
1392 }
1393
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1394 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1395 struct kvm_memory_slot *memslot, unsigned long hva,
1396 unsigned long fault_status)
1397 {
1398 int ret = 0;
1399 bool write_fault, writable, force_pte = false;
1400 bool exec_fault, mte_allowed;
1401 bool device = false;
1402 unsigned long mmu_seq;
1403 struct kvm *kvm = vcpu->kvm;
1404 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1405 struct vm_area_struct *vma;
1406 short vma_shift;
1407 gfn_t gfn;
1408 kvm_pfn_t pfn;
1409 bool logging_active = memslot_is_logging(memslot);
1410 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1411 long vma_pagesize, fault_granule;
1412 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1413 struct kvm_pgtable *pgt;
1414
1415 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1416 write_fault = kvm_is_write_fault(vcpu);
1417 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1418 VM_BUG_ON(write_fault && exec_fault);
1419
1420 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1421 kvm_err("Unexpected L2 read permission error\n");
1422 return -EFAULT;
1423 }
1424
1425 /*
1426 * Permission faults just need to update the existing leaf entry,
1427 * and so normally don't require allocations from the memcache. The
1428 * only exception to this is when dirty logging is enabled at runtime
1429 * and a write fault needs to collapse a block entry into a table.
1430 */
1431 if (fault_status != ESR_ELx_FSC_PERM ||
1432 (logging_active && write_fault)) {
1433 ret = kvm_mmu_topup_memory_cache(memcache,
1434 kvm_mmu_cache_min_pages(kvm));
1435 if (ret)
1436 return ret;
1437 }
1438
1439 /*
1440 * Let's check if we will get back a huge page backed by hugetlbfs, or
1441 * get block mapping for device MMIO region.
1442 */
1443 mmap_read_lock(current->mm);
1444 vma = vma_lookup(current->mm, hva);
1445 if (unlikely(!vma)) {
1446 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1447 mmap_read_unlock(current->mm);
1448 return -EFAULT;
1449 }
1450
1451 /*
1452 * logging_active is guaranteed to never be true for VM_PFNMAP
1453 * memslots.
1454 */
1455 if (logging_active) {
1456 force_pte = true;
1457 vma_shift = PAGE_SHIFT;
1458 } else {
1459 vma_shift = get_vma_page_shift(vma, hva);
1460 }
1461
1462 switch (vma_shift) {
1463 #ifndef __PAGETABLE_PMD_FOLDED
1464 case PUD_SHIFT:
1465 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1466 break;
1467 fallthrough;
1468 #endif
1469 case CONT_PMD_SHIFT:
1470 vma_shift = PMD_SHIFT;
1471 fallthrough;
1472 case PMD_SHIFT:
1473 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1474 break;
1475 fallthrough;
1476 case CONT_PTE_SHIFT:
1477 vma_shift = PAGE_SHIFT;
1478 force_pte = true;
1479 fallthrough;
1480 case PAGE_SHIFT:
1481 break;
1482 default:
1483 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1484 }
1485
1486 vma_pagesize = 1UL << vma_shift;
1487 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1488 fault_ipa &= ~(vma_pagesize - 1);
1489
1490 gfn = fault_ipa >> PAGE_SHIFT;
1491 mte_allowed = kvm_vma_mte_allowed(vma);
1492
1493 /* Don't use the VMA after the unlock -- it may have vanished */
1494 vma = NULL;
1495
1496 /*
1497 * Read mmu_invalidate_seq so that KVM can detect if the results of
1498 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1499 * acquiring kvm->mmu_lock.
1500 *
1501 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1502 * with the smp_wmb() in kvm_mmu_invalidate_end().
1503 */
1504 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1505 mmap_read_unlock(current->mm);
1506
1507 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1508 write_fault, &writable, NULL);
1509 if (pfn == KVM_PFN_ERR_HWPOISON) {
1510 kvm_send_hwpoison_signal(hva, vma_shift);
1511 return 0;
1512 }
1513 if (is_error_noslot_pfn(pfn))
1514 return -EFAULT;
1515
1516 if (kvm_is_device_pfn(pfn)) {
1517 /*
1518 * If the page was identified as device early by looking at
1519 * the VMA flags, vma_pagesize is already representing the
1520 * largest quantity we can map. If instead it was mapped
1521 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1522 * and must not be upgraded.
1523 *
1524 * In both cases, we don't let transparent_hugepage_adjust()
1525 * change things at the last minute.
1526 */
1527 device = true;
1528 } else if (logging_active && !write_fault) {
1529 /*
1530 * Only actually map the page as writable if this was a write
1531 * fault.
1532 */
1533 writable = false;
1534 }
1535
1536 if (exec_fault && device)
1537 return -ENOEXEC;
1538
1539 read_lock(&kvm->mmu_lock);
1540 pgt = vcpu->arch.hw_mmu->pgt;
1541 if (mmu_invalidate_retry(kvm, mmu_seq))
1542 goto out_unlock;
1543
1544 /*
1545 * If we are not forced to use page mapping, check if we are
1546 * backed by a THP and thus use block mapping if possible.
1547 */
1548 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1549 if (fault_status == ESR_ELx_FSC_PERM &&
1550 fault_granule > PAGE_SIZE)
1551 vma_pagesize = fault_granule;
1552 else
1553 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1554 hva, &pfn,
1555 &fault_ipa);
1556
1557 if (vma_pagesize < 0) {
1558 ret = vma_pagesize;
1559 goto out_unlock;
1560 }
1561 }
1562
1563 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1564 /* Check the VMM hasn't introduced a new disallowed VMA */
1565 if (mte_allowed) {
1566 sanitise_mte_tags(kvm, pfn, vma_pagesize);
1567 } else {
1568 ret = -EFAULT;
1569 goto out_unlock;
1570 }
1571 }
1572
1573 if (writable)
1574 prot |= KVM_PGTABLE_PROT_W;
1575
1576 if (exec_fault)
1577 prot |= KVM_PGTABLE_PROT_X;
1578
1579 if (device)
1580 prot |= KVM_PGTABLE_PROT_DEVICE;
1581 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1582 prot |= KVM_PGTABLE_PROT_X;
1583
1584 /*
1585 * Under the premise of getting a FSC_PERM fault, we just need to relax
1586 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1587 * kvm_pgtable_stage2_map() should be called to change block size.
1588 */
1589 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1590 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1591 else
1592 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1593 __pfn_to_phys(pfn), prot,
1594 memcache,
1595 KVM_PGTABLE_WALK_HANDLE_FAULT |
1596 KVM_PGTABLE_WALK_SHARED);
1597
1598 /* Mark the page dirty only if the fault is handled successfully */
1599 if (writable && !ret) {
1600 kvm_set_pfn_dirty(pfn);
1601 mark_page_dirty_in_slot(kvm, memslot, gfn);
1602 }
1603
1604 out_unlock:
1605 read_unlock(&kvm->mmu_lock);
1606 kvm_release_pfn_clean(pfn);
1607 return ret != -EAGAIN ? ret : 0;
1608 }
1609
1610 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1611 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1612 {
1613 kvm_pte_t pte;
1614 struct kvm_s2_mmu *mmu;
1615
1616 trace_kvm_access_fault(fault_ipa);
1617
1618 read_lock(&vcpu->kvm->mmu_lock);
1619 mmu = vcpu->arch.hw_mmu;
1620 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1621 read_unlock(&vcpu->kvm->mmu_lock);
1622
1623 if (kvm_pte_valid(pte))
1624 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1625 }
1626
1627 /**
1628 * kvm_handle_guest_abort - handles all 2nd stage aborts
1629 * @vcpu: the VCPU pointer
1630 *
1631 * Any abort that gets to the host is almost guaranteed to be caused by a
1632 * missing second stage translation table entry, which can mean that either the
1633 * guest simply needs more memory and we must allocate an appropriate page or it
1634 * can mean that the guest tried to access I/O memory, which is emulated by user
1635 * space. The distinction is based on the IPA causing the fault and whether this
1636 * memory region has been registered as standard RAM by user space.
1637 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1638 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1639 {
1640 unsigned long fault_status;
1641 phys_addr_t fault_ipa;
1642 struct kvm_memory_slot *memslot;
1643 unsigned long hva;
1644 bool is_iabt, write_fault, writable;
1645 gfn_t gfn;
1646 int ret, idx;
1647
1648 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1649
1650 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1651 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1652
1653 if (fault_status == ESR_ELx_FSC_FAULT) {
1654 /* Beyond sanitised PARange (which is the IPA limit) */
1655 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1656 kvm_inject_size_fault(vcpu);
1657 return 1;
1658 }
1659
1660 /* Falls between the IPA range and the PARange? */
1661 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1662 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1663
1664 if (is_iabt)
1665 kvm_inject_pabt(vcpu, fault_ipa);
1666 else
1667 kvm_inject_dabt(vcpu, fault_ipa);
1668 return 1;
1669 }
1670 }
1671
1672 /* Synchronous External Abort? */
1673 if (kvm_vcpu_abt_issea(vcpu)) {
1674 /*
1675 * For RAS the host kernel may handle this abort.
1676 * There is no need to pass the error into the guest.
1677 */
1678 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1679 kvm_inject_vabt(vcpu);
1680
1681 return 1;
1682 }
1683
1684 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1685 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1686
1687 /* Check the stage-2 fault is trans. fault or write fault */
1688 if (fault_status != ESR_ELx_FSC_FAULT &&
1689 fault_status != ESR_ELx_FSC_PERM &&
1690 fault_status != ESR_ELx_FSC_ACCESS) {
1691 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1692 kvm_vcpu_trap_get_class(vcpu),
1693 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1694 (unsigned long)kvm_vcpu_get_esr(vcpu));
1695 return -EFAULT;
1696 }
1697
1698 idx = srcu_read_lock(&vcpu->kvm->srcu);
1699
1700 gfn = fault_ipa >> PAGE_SHIFT;
1701 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1702 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1703 write_fault = kvm_is_write_fault(vcpu);
1704 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1705 /*
1706 * The guest has put either its instructions or its page-tables
1707 * somewhere it shouldn't have. Userspace won't be able to do
1708 * anything about this (there's no syndrome for a start), so
1709 * re-inject the abort back into the guest.
1710 */
1711 if (is_iabt) {
1712 ret = -ENOEXEC;
1713 goto out;
1714 }
1715
1716 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1717 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1718 ret = 1;
1719 goto out_unlock;
1720 }
1721
1722 /*
1723 * Check for a cache maintenance operation. Since we
1724 * ended-up here, we know it is outside of any memory
1725 * slot. But we can't find out if that is for a device,
1726 * or if the guest is just being stupid. The only thing
1727 * we know for sure is that this range cannot be cached.
1728 *
1729 * So let's assume that the guest is just being
1730 * cautious, and skip the instruction.
1731 */
1732 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1733 kvm_incr_pc(vcpu);
1734 ret = 1;
1735 goto out_unlock;
1736 }
1737
1738 /*
1739 * The IPA is reported as [MAX:12], so we need to
1740 * complement it with the bottom 12 bits from the
1741 * faulting VA. This is always 12 bits, irrespective
1742 * of the page size.
1743 */
1744 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1745 ret = io_mem_abort(vcpu, fault_ipa);
1746 goto out_unlock;
1747 }
1748
1749 /* Userspace should not be able to register out-of-bounds IPAs */
1750 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1751
1752 if (fault_status == ESR_ELx_FSC_ACCESS) {
1753 handle_access_fault(vcpu, fault_ipa);
1754 ret = 1;
1755 goto out_unlock;
1756 }
1757
1758 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1759 if (ret == 0)
1760 ret = 1;
1761 out:
1762 if (ret == -ENOEXEC) {
1763 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1764 ret = 1;
1765 }
1766 out_unlock:
1767 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1768 return ret;
1769 }
1770
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1771 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1772 {
1773 if (!kvm->arch.mmu.pgt)
1774 return false;
1775
1776 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1777 (range->end - range->start) << PAGE_SHIFT,
1778 range->may_block);
1779
1780 return false;
1781 }
1782
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1783 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1784 {
1785 kvm_pfn_t pfn = pte_pfn(range->arg.pte);
1786
1787 if (!kvm->arch.mmu.pgt)
1788 return false;
1789
1790 WARN_ON(range->end - range->start != 1);
1791
1792 /*
1793 * If the page isn't tagged, defer to user_mem_abort() for sanitising
1794 * the MTE tags. The S2 pte should have been unmapped by
1795 * mmu_notifier_invalidate_range_end().
1796 */
1797 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1798 return false;
1799
1800 /*
1801 * We've moved a page around, probably through CoW, so let's treat
1802 * it just like a translation fault and the map handler will clean
1803 * the cache to the PoC.
1804 *
1805 * The MMU notifiers will have unmapped a huge PMD before calling
1806 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1807 * therefore we never need to clear out a huge PMD through this
1808 * calling path and a memcache is not required.
1809 */
1810 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1811 PAGE_SIZE, __pfn_to_phys(pfn),
1812 KVM_PGTABLE_PROT_R, NULL, 0);
1813
1814 return false;
1815 }
1816
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1817 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1818 {
1819 u64 size = (range->end - range->start) << PAGE_SHIFT;
1820
1821 if (!kvm->arch.mmu.pgt)
1822 return false;
1823
1824 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1825 range->start << PAGE_SHIFT,
1826 size, true);
1827 }
1828
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1829 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1830 {
1831 u64 size = (range->end - range->start) << PAGE_SHIFT;
1832
1833 if (!kvm->arch.mmu.pgt)
1834 return false;
1835
1836 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1837 range->start << PAGE_SHIFT,
1838 size, false);
1839 }
1840
kvm_mmu_get_httbr(void)1841 phys_addr_t kvm_mmu_get_httbr(void)
1842 {
1843 return __pa(hyp_pgtable->pgd);
1844 }
1845
kvm_get_idmap_vector(void)1846 phys_addr_t kvm_get_idmap_vector(void)
1847 {
1848 return hyp_idmap_vector;
1849 }
1850
kvm_map_idmap_text(void)1851 static int kvm_map_idmap_text(void)
1852 {
1853 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1854 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1855 PAGE_HYP_EXEC);
1856 if (err)
1857 kvm_err("Failed to idmap %lx-%lx\n",
1858 hyp_idmap_start, hyp_idmap_end);
1859
1860 return err;
1861 }
1862
kvm_hyp_zalloc_page(void * arg)1863 static void *kvm_hyp_zalloc_page(void *arg)
1864 {
1865 return (void *)get_zeroed_page(GFP_KERNEL);
1866 }
1867
1868 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1869 .zalloc_page = kvm_hyp_zalloc_page,
1870 .get_page = kvm_host_get_page,
1871 .put_page = kvm_host_put_page,
1872 .phys_to_virt = kvm_host_va,
1873 .virt_to_phys = kvm_host_pa,
1874 };
1875
kvm_mmu_init(u32 * hyp_va_bits)1876 int __init kvm_mmu_init(u32 *hyp_va_bits)
1877 {
1878 int err;
1879 u32 idmap_bits;
1880 u32 kernel_bits;
1881
1882 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1883 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1884 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1885 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1886 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1887
1888 /*
1889 * We rely on the linker script to ensure at build time that the HYP
1890 * init code does not cross a page boundary.
1891 */
1892 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1893
1894 /*
1895 * The ID map may be configured to use an extended virtual address
1896 * range. This is only the case if system RAM is out of range for the
1897 * currently configured page size and VA_BITS_MIN, in which case we will
1898 * also need the extended virtual range for the HYP ID map, or we won't
1899 * be able to enable the EL2 MMU.
1900 *
1901 * However, in some cases the ID map may be configured for fewer than
1902 * the number of VA bits used by the regular kernel stage 1. This
1903 * happens when VA_BITS=52 and the kernel image is placed in PA space
1904 * below 48 bits.
1905 *
1906 * At EL2, there is only one TTBR register, and we can't switch between
1907 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1908 * line: we need to use the extended range with *both* our translation
1909 * tables.
1910 *
1911 * So use the maximum of the idmap VA bits and the regular kernel stage
1912 * 1 VA bits to assure that the hypervisor can both ID map its code page
1913 * and map any kernel memory.
1914 */
1915 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1916 kernel_bits = vabits_actual;
1917 *hyp_va_bits = max(idmap_bits, kernel_bits);
1918
1919 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1920 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1921 kvm_debug("HYP VA range: %lx:%lx\n",
1922 kern_hyp_va(PAGE_OFFSET),
1923 kern_hyp_va((unsigned long)high_memory - 1));
1924
1925 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1926 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1927 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1928 /*
1929 * The idmap page is intersecting with the VA space,
1930 * it is not safe to continue further.
1931 */
1932 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1933 err = -EINVAL;
1934 goto out;
1935 }
1936
1937 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1938 if (!hyp_pgtable) {
1939 kvm_err("Hyp mode page-table not allocated\n");
1940 err = -ENOMEM;
1941 goto out;
1942 }
1943
1944 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1945 if (err)
1946 goto out_free_pgtable;
1947
1948 err = kvm_map_idmap_text();
1949 if (err)
1950 goto out_destroy_pgtable;
1951
1952 io_map_base = hyp_idmap_start;
1953 return 0;
1954
1955 out_destroy_pgtable:
1956 kvm_pgtable_hyp_destroy(hyp_pgtable);
1957 out_free_pgtable:
1958 kfree(hyp_pgtable);
1959 hyp_pgtable = NULL;
1960 out:
1961 return err;
1962 }
1963
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1964 void kvm_arch_commit_memory_region(struct kvm *kvm,
1965 struct kvm_memory_slot *old,
1966 const struct kvm_memory_slot *new,
1967 enum kvm_mr_change change)
1968 {
1969 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1970
1971 /*
1972 * At this point memslot has been committed and there is an
1973 * allocated dirty_bitmap[], dirty pages will be tracked while the
1974 * memory slot is write protected.
1975 */
1976 if (log_dirty_pages) {
1977
1978 if (change == KVM_MR_DELETE)
1979 return;
1980
1981 /*
1982 * Huge and normal pages are write-protected and split
1983 * on either of these two cases:
1984 *
1985 * 1. with initial-all-set: gradually with CLEAR ioctls,
1986 */
1987 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1988 return;
1989 /*
1990 * or
1991 * 2. without initial-all-set: all in one shot when
1992 * enabling dirty logging.
1993 */
1994 kvm_mmu_wp_memory_region(kvm, new->id);
1995 kvm_mmu_split_memory_region(kvm, new->id);
1996 } else {
1997 /*
1998 * Free any leftovers from the eager page splitting cache. Do
1999 * this when deleting, moving, disabling dirty logging, or
2000 * creating the memslot (a nop). Doing it for deletes makes
2001 * sure we don't leak memory, and there's no need to keep the
2002 * cache around for any of the other cases.
2003 */
2004 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2005 }
2006 }
2007
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2008 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2009 const struct kvm_memory_slot *old,
2010 struct kvm_memory_slot *new,
2011 enum kvm_mr_change change)
2012 {
2013 hva_t hva, reg_end;
2014 int ret = 0;
2015
2016 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2017 change != KVM_MR_FLAGS_ONLY)
2018 return 0;
2019
2020 /*
2021 * Prevent userspace from creating a memory region outside of the IPA
2022 * space addressable by the KVM guest IPA space.
2023 */
2024 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
2025 return -EFAULT;
2026
2027 hva = new->userspace_addr;
2028 reg_end = hva + (new->npages << PAGE_SHIFT);
2029
2030 mmap_read_lock(current->mm);
2031 /*
2032 * A memory region could potentially cover multiple VMAs, and any holes
2033 * between them, so iterate over all of them.
2034 *
2035 * +--------------------------------------------+
2036 * +---------------+----------------+ +----------------+
2037 * | : VMA 1 | VMA 2 | | VMA 3 : |
2038 * +---------------+----------------+ +----------------+
2039 * | memory region |
2040 * +--------------------------------------------+
2041 */
2042 do {
2043 struct vm_area_struct *vma;
2044
2045 vma = find_vma_intersection(current->mm, hva, reg_end);
2046 if (!vma)
2047 break;
2048
2049 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2050 ret = -EINVAL;
2051 break;
2052 }
2053
2054 if (vma->vm_flags & VM_PFNMAP) {
2055 /* IO region dirty page logging not allowed */
2056 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2057 ret = -EINVAL;
2058 break;
2059 }
2060 }
2061 hva = min(reg_end, vma->vm_end);
2062 } while (hva < reg_end);
2063
2064 mmap_read_unlock(current->mm);
2065 return ret;
2066 }
2067
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2068 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2069 {
2070 }
2071
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2072 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2073 {
2074 }
2075
kvm_arch_flush_shadow_all(struct kvm * kvm)2076 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2077 {
2078 kvm_uninit_stage2_mmu(kvm);
2079 }
2080
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2081 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2082 struct kvm_memory_slot *slot)
2083 {
2084 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2085 phys_addr_t size = slot->npages << PAGE_SHIFT;
2086
2087 write_lock(&kvm->mmu_lock);
2088 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2089 write_unlock(&kvm->mmu_lock);
2090 }
2091
2092 /*
2093 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2094 *
2095 * Main problems:
2096 * - S/W ops are local to a CPU (not broadcast)
2097 * - We have line migration behind our back (speculation)
2098 * - System caches don't support S/W at all (damn!)
2099 *
2100 * In the face of the above, the best we can do is to try and convert
2101 * S/W ops to VA ops. Because the guest is not allowed to infer the
2102 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2103 * which is a rather good thing for us.
2104 *
2105 * Also, it is only used when turning caches on/off ("The expected
2106 * usage of the cache maintenance instructions that operate by set/way
2107 * is associated with the cache maintenance instructions associated
2108 * with the powerdown and powerup of caches, if this is required by
2109 * the implementation.").
2110 *
2111 * We use the following policy:
2112 *
2113 * - If we trap a S/W operation, we enable VM trapping to detect
2114 * caches being turned on/off, and do a full clean.
2115 *
2116 * - We flush the caches on both caches being turned on and off.
2117 *
2118 * - Once the caches are enabled, we stop trapping VM ops.
2119 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2120 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2121 {
2122 unsigned long hcr = *vcpu_hcr(vcpu);
2123
2124 /*
2125 * If this is the first time we do a S/W operation
2126 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2127 * VM trapping.
2128 *
2129 * Otherwise, rely on the VM trapping to wait for the MMU +
2130 * Caches to be turned off. At that point, we'll be able to
2131 * clean the caches again.
2132 */
2133 if (!(hcr & HCR_TVM)) {
2134 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2135 vcpu_has_cache_enabled(vcpu));
2136 stage2_flush_vm(vcpu->kvm);
2137 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2138 }
2139 }
2140
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2141 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2142 {
2143 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2144
2145 /*
2146 * If switching the MMU+caches on, need to invalidate the caches.
2147 * If switching it off, need to clean the caches.
2148 * Clean + invalidate does the trick always.
2149 */
2150 if (now_enabled != was_enabled)
2151 stage2_flush_vm(vcpu->kvm);
2152
2153 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2154 if (now_enabled)
2155 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2156
2157 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2158 }
2159