xref: /openbmc/linux/arch/arm64/kvm/inject_fault.c (revision 835fd614)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fault injection for both 32 and 64bit guests.
4  *
5  * Copyright (C) 2012,2013 - ARM Ltd
6  * Author: Marc Zyngier <marc.zyngier@arm.com>
7  *
8  * Based on arch/arm/kvm/emulate.c
9  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
10  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
11  */
12 
13 #include <linux/kvm_host.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/esr.h>
16 
17 #define CURRENT_EL_SP_EL0_VECTOR	0x0
18 #define CURRENT_EL_SP_ELx_VECTOR	0x200
19 #define LOWER_EL_AArch64_VECTOR		0x400
20 #define LOWER_EL_AArch32_VECTOR		0x600
21 
22 enum exception_type {
23 	except_type_sync	= 0,
24 	except_type_irq		= 0x80,
25 	except_type_fiq		= 0x100,
26 	except_type_serror	= 0x180,
27 };
28 
29 /*
30  * This performs the exception entry at a given EL (@target_mode), stashing PC
31  * and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE.
32  * The EL passed to this function *must* be a non-secure, privileged mode with
33  * bit 0 being set (PSTATE.SP == 1).
34  *
35  * When an exception is taken, most PSTATE fields are left unchanged in the
36  * handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all
37  * of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx
38  * layouts, so we don't need to shuffle these for exceptions from AArch32 EL0.
39  *
40  * For the SPSR_ELx layout for AArch64, see ARM DDI 0487E.a page C5-429.
41  * For the SPSR_ELx layout for AArch32, see ARM DDI 0487E.a page C5-426.
42  *
43  * Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from
44  * MSB to LSB.
45  */
46 static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
47 			      enum exception_type type)
48 {
49 	unsigned long sctlr, vbar, old, new, mode;
50 	u64 exc_offset;
51 
52 	mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
53 
54 	if      (mode == target_mode)
55 		exc_offset = CURRENT_EL_SP_ELx_VECTOR;
56 	else if ((mode | PSR_MODE_THREAD_BIT) == target_mode)
57 		exc_offset = CURRENT_EL_SP_EL0_VECTOR;
58 	else if (!(mode & PSR_MODE32_BIT))
59 		exc_offset = LOWER_EL_AArch64_VECTOR;
60 	else
61 		exc_offset = LOWER_EL_AArch32_VECTOR;
62 
63 	switch (target_mode) {
64 	case PSR_MODE_EL1h:
65 		vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
66 		sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
67 		vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1);
68 		break;
69 	default:
70 		/* Don't do that */
71 		BUG();
72 	}
73 
74 	*vcpu_pc(vcpu) = vbar + exc_offset + type;
75 
76 	old = *vcpu_cpsr(vcpu);
77 	new = 0;
78 
79 	new |= (old & PSR_N_BIT);
80 	new |= (old & PSR_Z_BIT);
81 	new |= (old & PSR_C_BIT);
82 	new |= (old & PSR_V_BIT);
83 
84 	// TODO: TCO (if/when ARMv8.5-MemTag is exposed to guests)
85 
86 	new |= (old & PSR_DIT_BIT);
87 
88 	// PSTATE.UAO is set to zero upon any exception to AArch64
89 	// See ARM DDI 0487E.a, page D5-2579.
90 
91 	// PSTATE.PAN is unchanged unless SCTLR_ELx.SPAN == 0b0
92 	// SCTLR_ELx.SPAN is RES1 when ARMv8.1-PAN is not implemented
93 	// See ARM DDI 0487E.a, page D5-2578.
94 	new |= (old & PSR_PAN_BIT);
95 	if (!(sctlr & SCTLR_EL1_SPAN))
96 		new |= PSR_PAN_BIT;
97 
98 	// PSTATE.SS is set to zero upon any exception to AArch64
99 	// See ARM DDI 0487E.a, page D2-2452.
100 
101 	// PSTATE.IL is set to zero upon any exception to AArch64
102 	// See ARM DDI 0487E.a, page D1-2306.
103 
104 	// PSTATE.SSBS is set to SCTLR_ELx.DSSBS upon any exception to AArch64
105 	// See ARM DDI 0487E.a, page D13-3258
106 	if (sctlr & SCTLR_ELx_DSSBS)
107 		new |= PSR_SSBS_BIT;
108 
109 	// PSTATE.BTYPE is set to zero upon any exception to AArch64
110 	// See ARM DDI 0487E.a, pages D1-2293 to D1-2294.
111 
112 	new |= PSR_D_BIT;
113 	new |= PSR_A_BIT;
114 	new |= PSR_I_BIT;
115 	new |= PSR_F_BIT;
116 
117 	new |= target_mode;
118 
119 	*vcpu_cpsr(vcpu) = new;
120 	vcpu_write_spsr(vcpu, old);
121 }
122 
123 static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
124 {
125 	unsigned long cpsr = *vcpu_cpsr(vcpu);
126 	bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
127 	u32 esr = 0;
128 
129 	enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
130 
131 	vcpu_write_sys_reg(vcpu, addr, FAR_EL1);
132 
133 	/*
134 	 * Build an {i,d}abort, depending on the level and the
135 	 * instruction set. Report an external synchronous abort.
136 	 */
137 	if (kvm_vcpu_trap_il_is32bit(vcpu))
138 		esr |= ESR_ELx_IL;
139 
140 	/*
141 	 * Here, the guest runs in AArch64 mode when in EL1. If we get
142 	 * an AArch32 fault, it means we managed to trap an EL0 fault.
143 	 */
144 	if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
145 		esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT);
146 	else
147 		esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT);
148 
149 	if (!is_iabt)
150 		esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT;
151 
152 	vcpu_write_sys_reg(vcpu, esr | ESR_ELx_FSC_EXTABT, ESR_EL1);
153 }
154 
155 static void inject_undef64(struct kvm_vcpu *vcpu)
156 {
157 	u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
158 
159 	enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
160 
161 	/*
162 	 * Build an unknown exception, depending on the instruction
163 	 * set.
164 	 */
165 	if (kvm_vcpu_trap_il_is32bit(vcpu))
166 		esr |= ESR_ELx_IL;
167 
168 	vcpu_write_sys_reg(vcpu, esr, ESR_EL1);
169 }
170 
171 /**
172  * kvm_inject_dabt - inject a data abort into the guest
173  * @vcpu: The VCPU to receive the data abort
174  * @addr: The address to report in the DFAR
175  *
176  * It is assumed that this code is called from the VCPU thread and that the
177  * VCPU therefore is not currently executing guest code.
178  */
179 void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
180 {
181 	if (vcpu_el1_is_32bit(vcpu))
182 		kvm_inject_dabt32(vcpu, addr);
183 	else
184 		inject_abt64(vcpu, false, addr);
185 }
186 
187 /**
188  * kvm_inject_pabt - inject a prefetch abort into the guest
189  * @vcpu: The VCPU to receive the prefetch abort
190  * @addr: The address to report in the DFAR
191  *
192  * It is assumed that this code is called from the VCPU thread and that the
193  * VCPU therefore is not currently executing guest code.
194  */
195 void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
196 {
197 	if (vcpu_el1_is_32bit(vcpu))
198 		kvm_inject_pabt32(vcpu, addr);
199 	else
200 		inject_abt64(vcpu, true, addr);
201 }
202 
203 /**
204  * kvm_inject_undefined - inject an undefined instruction into the guest
205  * @vcpu: The vCPU in which to inject the exception
206  *
207  * It is assumed that this code is called from the VCPU thread and that the
208  * VCPU therefore is not currently executing guest code.
209  */
210 void kvm_inject_undefined(struct kvm_vcpu *vcpu)
211 {
212 	if (vcpu_el1_is_32bit(vcpu))
213 		kvm_inject_undef32(vcpu);
214 	else
215 		inject_undef64(vcpu);
216 }
217 
218 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 esr)
219 {
220 	vcpu_set_vsesr(vcpu, esr & ESR_ELx_ISS_MASK);
221 	*vcpu_hcr(vcpu) |= HCR_VSE;
222 }
223 
224 /**
225  * kvm_inject_vabt - inject an async abort / SError into the guest
226  * @vcpu: The VCPU to receive the exception
227  *
228  * It is assumed that this code is called from the VCPU thread and that the
229  * VCPU therefore is not currently executing guest code.
230  *
231  * Systems with the RAS Extensions specify an imp-def ESR (ISV/IDS = 1) with
232  * the remaining ISS all-zeros so that this error is not interpreted as an
233  * uncategorized RAS error. Without the RAS Extensions we can't specify an ESR
234  * value, so the CPU generates an imp-def value.
235  */
236 void kvm_inject_vabt(struct kvm_vcpu *vcpu)
237 {
238 	kvm_set_sei_esr(vcpu, ESR_ELx_ISV);
239 }
240