xref: /openbmc/linux/arch/arm64/kvm/hypercalls.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2019 Arm Ltd.
3 
4 #include <linux/arm-smccc.h>
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm_emulate.h>
8 
9 #include <kvm/arm_hypercalls.h>
10 #include <kvm/arm_psci.h>
11 
12 #define KVM_ARM_SMCCC_STD_FEATURES				\
13 	GENMASK(KVM_REG_ARM_STD_BMAP_BIT_COUNT - 1, 0)
14 #define KVM_ARM_SMCCC_STD_HYP_FEATURES				\
15 	GENMASK(KVM_REG_ARM_STD_HYP_BMAP_BIT_COUNT - 1, 0)
16 #define KVM_ARM_SMCCC_VENDOR_HYP_FEATURES			\
17 	GENMASK(KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_COUNT - 1, 0)
18 
19 static void kvm_ptp_get_time(struct kvm_vcpu *vcpu, u64 *val)
20 {
21 	struct system_time_snapshot systime_snapshot;
22 	u64 cycles = ~0UL;
23 	u32 feature;
24 
25 	/*
26 	 * system time and counter value must captured at the same
27 	 * time to keep consistency and precision.
28 	 */
29 	ktime_get_snapshot(&systime_snapshot);
30 
31 	/*
32 	 * This is only valid if the current clocksource is the
33 	 * architected counter, as this is the only one the guest
34 	 * can see.
35 	 */
36 	if (systime_snapshot.cs_id != CSID_ARM_ARCH_COUNTER)
37 		return;
38 
39 	/*
40 	 * The guest selects one of the two reference counters
41 	 * (virtual or physical) with the first argument of the SMCCC
42 	 * call. In case the identifier is not supported, error out.
43 	 */
44 	feature = smccc_get_arg1(vcpu);
45 	switch (feature) {
46 	case KVM_PTP_VIRT_COUNTER:
47 		cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.voffset;
48 		break;
49 	case KVM_PTP_PHYS_COUNTER:
50 		cycles = systime_snapshot.cycles - vcpu->kvm->arch.timer_data.poffset;
51 		break;
52 	default:
53 		return;
54 	}
55 
56 	/*
57 	 * This relies on the top bit of val[0] never being set for
58 	 * valid values of system time, because that is *really* far
59 	 * in the future (about 292 years from 1970, and at that stage
60 	 * nobody will give a damn about it).
61 	 */
62 	val[0] = upper_32_bits(systime_snapshot.real);
63 	val[1] = lower_32_bits(systime_snapshot.real);
64 	val[2] = upper_32_bits(cycles);
65 	val[3] = lower_32_bits(cycles);
66 }
67 
68 static bool kvm_smccc_default_allowed(u32 func_id)
69 {
70 	switch (func_id) {
71 	/*
72 	 * List of function-ids that are not gated with the bitmapped
73 	 * feature firmware registers, and are to be allowed for
74 	 * servicing the call by default.
75 	 */
76 	case ARM_SMCCC_VERSION_FUNC_ID:
77 	case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
78 		return true;
79 	default:
80 		/* PSCI 0.2 and up is in the 0:0x1f range */
81 		if (ARM_SMCCC_OWNER_NUM(func_id) == ARM_SMCCC_OWNER_STANDARD &&
82 		    ARM_SMCCC_FUNC_NUM(func_id) <= 0x1f)
83 			return true;
84 
85 		/*
86 		 * KVM's PSCI 0.1 doesn't comply with SMCCC, and has
87 		 * its own function-id base and range
88 		 */
89 		if (func_id >= KVM_PSCI_FN(0) && func_id <= KVM_PSCI_FN(3))
90 			return true;
91 
92 		return false;
93 	}
94 }
95 
96 static bool kvm_smccc_test_fw_bmap(struct kvm_vcpu *vcpu, u32 func_id)
97 {
98 	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
99 
100 	switch (func_id) {
101 	case ARM_SMCCC_TRNG_VERSION:
102 	case ARM_SMCCC_TRNG_FEATURES:
103 	case ARM_SMCCC_TRNG_GET_UUID:
104 	case ARM_SMCCC_TRNG_RND32:
105 	case ARM_SMCCC_TRNG_RND64:
106 		return test_bit(KVM_REG_ARM_STD_BIT_TRNG_V1_0,
107 				&smccc_feat->std_bmap);
108 	case ARM_SMCCC_HV_PV_TIME_FEATURES:
109 	case ARM_SMCCC_HV_PV_TIME_ST:
110 		return test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
111 				&smccc_feat->std_hyp_bmap);
112 	case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
113 	case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
114 		return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_FUNC_FEAT,
115 				&smccc_feat->vendor_hyp_bmap);
116 	case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
117 		return test_bit(KVM_REG_ARM_VENDOR_HYP_BIT_PTP,
118 				&smccc_feat->vendor_hyp_bmap);
119 	default:
120 		return false;
121 	}
122 }
123 
124 #define SMC32_ARCH_RANGE_BEGIN	ARM_SMCCC_VERSION_FUNC_ID
125 #define SMC32_ARCH_RANGE_END	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
126 						   ARM_SMCCC_SMC_32,		\
127 						   0, ARM_SMCCC_FUNC_MASK)
128 
129 #define SMC64_ARCH_RANGE_BEGIN	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
130 						   ARM_SMCCC_SMC_64,		\
131 						   0, 0)
132 #define SMC64_ARCH_RANGE_END	ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL,		\
133 						   ARM_SMCCC_SMC_64,		\
134 						   0, ARM_SMCCC_FUNC_MASK)
135 
136 static void init_smccc_filter(struct kvm *kvm)
137 {
138 	int r;
139 
140 	mt_init(&kvm->arch.smccc_filter);
141 
142 	/*
143 	 * Prevent userspace from handling any SMCCC calls in the architecture
144 	 * range, avoiding the risk of misrepresenting Spectre mitigation status
145 	 * to the guest.
146 	 */
147 	r = mtree_insert_range(&kvm->arch.smccc_filter,
148 			       SMC32_ARCH_RANGE_BEGIN, SMC32_ARCH_RANGE_END,
149 			       xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
150 			       GFP_KERNEL_ACCOUNT);
151 	WARN_ON_ONCE(r);
152 
153 	r = mtree_insert_range(&kvm->arch.smccc_filter,
154 			       SMC64_ARCH_RANGE_BEGIN, SMC64_ARCH_RANGE_END,
155 			       xa_mk_value(KVM_SMCCC_FILTER_HANDLE),
156 			       GFP_KERNEL_ACCOUNT);
157 	WARN_ON_ONCE(r);
158 
159 }
160 
161 static int kvm_smccc_set_filter(struct kvm *kvm, struct kvm_smccc_filter __user *uaddr)
162 {
163 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
164 	struct kvm_smccc_filter filter;
165 	u32 start, end;
166 	int r;
167 
168 	if (copy_from_user(&filter, uaddr, sizeof(filter)))
169 		return -EFAULT;
170 
171 	if (memcmp(filter.pad, zero_page, sizeof(filter.pad)))
172 		return -EINVAL;
173 
174 	start = filter.base;
175 	end = start + filter.nr_functions - 1;
176 
177 	if (end < start || filter.action >= NR_SMCCC_FILTER_ACTIONS)
178 		return -EINVAL;
179 
180 	mutex_lock(&kvm->arch.config_lock);
181 
182 	if (kvm_vm_has_ran_once(kvm)) {
183 		r = -EBUSY;
184 		goto out_unlock;
185 	}
186 
187 	r = mtree_insert_range(&kvm->arch.smccc_filter, start, end,
188 			       xa_mk_value(filter.action), GFP_KERNEL_ACCOUNT);
189 	if (r)
190 		goto out_unlock;
191 
192 	set_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags);
193 
194 out_unlock:
195 	mutex_unlock(&kvm->arch.config_lock);
196 	return r;
197 }
198 
199 static u8 kvm_smccc_filter_get_action(struct kvm *kvm, u32 func_id)
200 {
201 	unsigned long idx = func_id;
202 	void *val;
203 
204 	if (!test_bit(KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED, &kvm->arch.flags))
205 		return KVM_SMCCC_FILTER_HANDLE;
206 
207 	/*
208 	 * But where's the error handling, you say?
209 	 *
210 	 * mt_find() returns NULL if no entry was found, which just so happens
211 	 * to match KVM_SMCCC_FILTER_HANDLE.
212 	 */
213 	val = mt_find(&kvm->arch.smccc_filter, &idx, idx);
214 	return xa_to_value(val);
215 }
216 
217 static u8 kvm_smccc_get_action(struct kvm_vcpu *vcpu, u32 func_id)
218 {
219 	/*
220 	 * Intervening actions in the SMCCC filter take precedence over the
221 	 * pseudo-firmware register bitmaps.
222 	 */
223 	u8 action = kvm_smccc_filter_get_action(vcpu->kvm, func_id);
224 	if (action != KVM_SMCCC_FILTER_HANDLE)
225 		return action;
226 
227 	if (kvm_smccc_test_fw_bmap(vcpu, func_id) ||
228 	    kvm_smccc_default_allowed(func_id))
229 		return KVM_SMCCC_FILTER_HANDLE;
230 
231 	return KVM_SMCCC_FILTER_DENY;
232 }
233 
234 static void kvm_prepare_hypercall_exit(struct kvm_vcpu *vcpu, u32 func_id)
235 {
236 	u8 ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
237 	struct kvm_run *run = vcpu->run;
238 	u64 flags = 0;
239 
240 	if (ec == ESR_ELx_EC_SMC32 || ec == ESR_ELx_EC_SMC64)
241 		flags |= KVM_HYPERCALL_EXIT_SMC;
242 
243 	if (!kvm_vcpu_trap_il_is32bit(vcpu))
244 		flags |= KVM_HYPERCALL_EXIT_16BIT;
245 
246 	run->exit_reason = KVM_EXIT_HYPERCALL;
247 	run->hypercall = (typeof(run->hypercall)) {
248 		.nr	= func_id,
249 		.flags	= flags,
250 	};
251 }
252 
253 int kvm_smccc_call_handler(struct kvm_vcpu *vcpu)
254 {
255 	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
256 	u32 func_id = smccc_get_function(vcpu);
257 	u64 val[4] = {SMCCC_RET_NOT_SUPPORTED};
258 	u32 feature;
259 	u8 action;
260 	gpa_t gpa;
261 
262 	action = kvm_smccc_get_action(vcpu, func_id);
263 	switch (action) {
264 	case KVM_SMCCC_FILTER_HANDLE:
265 		break;
266 	case KVM_SMCCC_FILTER_DENY:
267 		goto out;
268 	case KVM_SMCCC_FILTER_FWD_TO_USER:
269 		kvm_prepare_hypercall_exit(vcpu, func_id);
270 		return 0;
271 	default:
272 		WARN_RATELIMIT(1, "Unhandled SMCCC filter action: %d\n", action);
273 		goto out;
274 	}
275 
276 	switch (func_id) {
277 	case ARM_SMCCC_VERSION_FUNC_ID:
278 		val[0] = ARM_SMCCC_VERSION_1_1;
279 		break;
280 	case ARM_SMCCC_ARCH_FEATURES_FUNC_ID:
281 		feature = smccc_get_arg1(vcpu);
282 		switch (feature) {
283 		case ARM_SMCCC_ARCH_WORKAROUND_1:
284 			switch (arm64_get_spectre_v2_state()) {
285 			case SPECTRE_VULNERABLE:
286 				break;
287 			case SPECTRE_MITIGATED:
288 				val[0] = SMCCC_RET_SUCCESS;
289 				break;
290 			case SPECTRE_UNAFFECTED:
291 				val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
292 				break;
293 			}
294 			break;
295 		case ARM_SMCCC_ARCH_WORKAROUND_2:
296 			switch (arm64_get_spectre_v4_state()) {
297 			case SPECTRE_VULNERABLE:
298 				break;
299 			case SPECTRE_MITIGATED:
300 				/*
301 				 * SSBS everywhere: Indicate no firmware
302 				 * support, as the SSBS support will be
303 				 * indicated to the guest and the default is
304 				 * safe.
305 				 *
306 				 * Otherwise, expose a permanent mitigation
307 				 * to the guest, and hide SSBS so that the
308 				 * guest stays protected.
309 				 */
310 				if (cpus_have_final_cap(ARM64_SSBS))
311 					break;
312 				fallthrough;
313 			case SPECTRE_UNAFFECTED:
314 				val[0] = SMCCC_RET_NOT_REQUIRED;
315 				break;
316 			}
317 			break;
318 		case ARM_SMCCC_ARCH_WORKAROUND_3:
319 			switch (arm64_get_spectre_bhb_state()) {
320 			case SPECTRE_VULNERABLE:
321 				break;
322 			case SPECTRE_MITIGATED:
323 				val[0] = SMCCC_RET_SUCCESS;
324 				break;
325 			case SPECTRE_UNAFFECTED:
326 				val[0] = SMCCC_ARCH_WORKAROUND_RET_UNAFFECTED;
327 				break;
328 			}
329 			break;
330 		case ARM_SMCCC_HV_PV_TIME_FEATURES:
331 			if (test_bit(KVM_REG_ARM_STD_HYP_BIT_PV_TIME,
332 				     &smccc_feat->std_hyp_bmap))
333 				val[0] = SMCCC_RET_SUCCESS;
334 			break;
335 		}
336 		break;
337 	case ARM_SMCCC_HV_PV_TIME_FEATURES:
338 		val[0] = kvm_hypercall_pv_features(vcpu);
339 		break;
340 	case ARM_SMCCC_HV_PV_TIME_ST:
341 		gpa = kvm_init_stolen_time(vcpu);
342 		if (gpa != INVALID_GPA)
343 			val[0] = gpa;
344 		break;
345 	case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
346 		val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
347 		val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
348 		val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
349 		val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
350 		break;
351 	case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
352 		val[0] = smccc_feat->vendor_hyp_bmap;
353 		break;
354 	case ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID:
355 		kvm_ptp_get_time(vcpu, val);
356 		break;
357 	case ARM_SMCCC_TRNG_VERSION:
358 	case ARM_SMCCC_TRNG_FEATURES:
359 	case ARM_SMCCC_TRNG_GET_UUID:
360 	case ARM_SMCCC_TRNG_RND32:
361 	case ARM_SMCCC_TRNG_RND64:
362 		return kvm_trng_call(vcpu);
363 	default:
364 		return kvm_psci_call(vcpu);
365 	}
366 
367 out:
368 	smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
369 	return 1;
370 }
371 
372 static const u64 kvm_arm_fw_reg_ids[] = {
373 	KVM_REG_ARM_PSCI_VERSION,
374 	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1,
375 	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2,
376 	KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3,
377 	KVM_REG_ARM_STD_BMAP,
378 	KVM_REG_ARM_STD_HYP_BMAP,
379 	KVM_REG_ARM_VENDOR_HYP_BMAP,
380 };
381 
382 void kvm_arm_init_hypercalls(struct kvm *kvm)
383 {
384 	struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;
385 
386 	smccc_feat->std_bmap = KVM_ARM_SMCCC_STD_FEATURES;
387 	smccc_feat->std_hyp_bmap = KVM_ARM_SMCCC_STD_HYP_FEATURES;
388 	smccc_feat->vendor_hyp_bmap = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;
389 
390 	init_smccc_filter(kvm);
391 }
392 
393 void kvm_arm_teardown_hypercalls(struct kvm *kvm)
394 {
395 	mtree_destroy(&kvm->arch.smccc_filter);
396 }
397 
398 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
399 {
400 	return ARRAY_SIZE(kvm_arm_fw_reg_ids);
401 }
402 
403 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(kvm_arm_fw_reg_ids); i++) {
408 		if (put_user(kvm_arm_fw_reg_ids[i], uindices++))
409 			return -EFAULT;
410 	}
411 
412 	return 0;
413 }
414 
415 #define KVM_REG_FEATURE_LEVEL_MASK	GENMASK(3, 0)
416 
417 /*
418  * Convert the workaround level into an easy-to-compare number, where higher
419  * values mean better protection.
420  */
421 static int get_kernel_wa_level(u64 regid)
422 {
423 	switch (regid) {
424 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
425 		switch (arm64_get_spectre_v2_state()) {
426 		case SPECTRE_VULNERABLE:
427 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
428 		case SPECTRE_MITIGATED:
429 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
430 		case SPECTRE_UNAFFECTED:
431 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
432 		}
433 		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
434 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
435 		switch (arm64_get_spectre_v4_state()) {
436 		case SPECTRE_MITIGATED:
437 			/*
438 			 * As for the hypercall discovery, we pretend we
439 			 * don't have any FW mitigation if SSBS is there at
440 			 * all times.
441 			 */
442 			if (cpus_have_final_cap(ARM64_SSBS))
443 				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
444 			fallthrough;
445 		case SPECTRE_UNAFFECTED:
446 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
447 		case SPECTRE_VULNERABLE:
448 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
449 		}
450 		break;
451 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
452 		switch (arm64_get_spectre_bhb_state()) {
453 		case SPECTRE_VULNERABLE:
454 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
455 		case SPECTRE_MITIGATED:
456 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL;
457 		case SPECTRE_UNAFFECTED:
458 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED;
459 		}
460 		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
461 	}
462 
463 	return -EINVAL;
464 }
465 
466 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
467 {
468 	struct kvm_smccc_features *smccc_feat = &vcpu->kvm->arch.smccc_feat;
469 	void __user *uaddr = (void __user *)(long)reg->addr;
470 	u64 val;
471 
472 	switch (reg->id) {
473 	case KVM_REG_ARM_PSCI_VERSION:
474 		val = kvm_psci_version(vcpu);
475 		break;
476 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
477 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
478 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
479 		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
480 		break;
481 	case KVM_REG_ARM_STD_BMAP:
482 		val = READ_ONCE(smccc_feat->std_bmap);
483 		break;
484 	case KVM_REG_ARM_STD_HYP_BMAP:
485 		val = READ_ONCE(smccc_feat->std_hyp_bmap);
486 		break;
487 	case KVM_REG_ARM_VENDOR_HYP_BMAP:
488 		val = READ_ONCE(smccc_feat->vendor_hyp_bmap);
489 		break;
490 	default:
491 		return -ENOENT;
492 	}
493 
494 	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
495 		return -EFAULT;
496 
497 	return 0;
498 }
499 
500 static int kvm_arm_set_fw_reg_bmap(struct kvm_vcpu *vcpu, u64 reg_id, u64 val)
501 {
502 	int ret = 0;
503 	struct kvm *kvm = vcpu->kvm;
504 	struct kvm_smccc_features *smccc_feat = &kvm->arch.smccc_feat;
505 	unsigned long *fw_reg_bmap, fw_reg_features;
506 
507 	switch (reg_id) {
508 	case KVM_REG_ARM_STD_BMAP:
509 		fw_reg_bmap = &smccc_feat->std_bmap;
510 		fw_reg_features = KVM_ARM_SMCCC_STD_FEATURES;
511 		break;
512 	case KVM_REG_ARM_STD_HYP_BMAP:
513 		fw_reg_bmap = &smccc_feat->std_hyp_bmap;
514 		fw_reg_features = KVM_ARM_SMCCC_STD_HYP_FEATURES;
515 		break;
516 	case KVM_REG_ARM_VENDOR_HYP_BMAP:
517 		fw_reg_bmap = &smccc_feat->vendor_hyp_bmap;
518 		fw_reg_features = KVM_ARM_SMCCC_VENDOR_HYP_FEATURES;
519 		break;
520 	default:
521 		return -ENOENT;
522 	}
523 
524 	/* Check for unsupported bit */
525 	if (val & ~fw_reg_features)
526 		return -EINVAL;
527 
528 	mutex_lock(&kvm->arch.config_lock);
529 
530 	if (kvm_vm_has_ran_once(kvm) && val != *fw_reg_bmap) {
531 		ret = -EBUSY;
532 		goto out;
533 	}
534 
535 	WRITE_ONCE(*fw_reg_bmap, val);
536 out:
537 	mutex_unlock(&kvm->arch.config_lock);
538 	return ret;
539 }
540 
541 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
542 {
543 	void __user *uaddr = (void __user *)(long)reg->addr;
544 	u64 val;
545 	int wa_level;
546 
547 	if (KVM_REG_SIZE(reg->id) != sizeof(val))
548 		return -ENOENT;
549 	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
550 		return -EFAULT;
551 
552 	switch (reg->id) {
553 	case KVM_REG_ARM_PSCI_VERSION:
554 	{
555 		bool wants_02;
556 
557 		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
558 
559 		switch (val) {
560 		case KVM_ARM_PSCI_0_1:
561 			if (wants_02)
562 				return -EINVAL;
563 			vcpu->kvm->arch.psci_version = val;
564 			return 0;
565 		case KVM_ARM_PSCI_0_2:
566 		case KVM_ARM_PSCI_1_0:
567 		case KVM_ARM_PSCI_1_1:
568 			if (!wants_02)
569 				return -EINVAL;
570 			vcpu->kvm->arch.psci_version = val;
571 			return 0;
572 		}
573 		break;
574 	}
575 
576 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
577 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
578 		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
579 			return -EINVAL;
580 
581 		if (get_kernel_wa_level(reg->id) < val)
582 			return -EINVAL;
583 
584 		return 0;
585 
586 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
587 		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
588 			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
589 			return -EINVAL;
590 
591 		/* The enabled bit must not be set unless the level is AVAIL. */
592 		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
593 		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
594 			return -EINVAL;
595 
596 		/*
597 		 * Map all the possible incoming states to the only two we
598 		 * really want to deal with.
599 		 */
600 		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
601 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
602 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
603 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
604 			break;
605 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
606 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
607 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
608 			break;
609 		default:
610 			return -EINVAL;
611 		}
612 
613 		/*
614 		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
615 		 * other way around.
616 		 */
617 		if (get_kernel_wa_level(reg->id) < wa_level)
618 			return -EINVAL;
619 
620 		return 0;
621 	case KVM_REG_ARM_STD_BMAP:
622 	case KVM_REG_ARM_STD_HYP_BMAP:
623 	case KVM_REG_ARM_VENDOR_HYP_BMAP:
624 		return kvm_arm_set_fw_reg_bmap(vcpu, reg->id, val);
625 	default:
626 		return -ENOENT;
627 	}
628 
629 	return -EINVAL;
630 }
631 
632 int kvm_vm_smccc_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
633 {
634 	switch (attr->attr) {
635 	case KVM_ARM_VM_SMCCC_FILTER:
636 		return 0;
637 	default:
638 		return -ENXIO;
639 	}
640 }
641 
642 int kvm_vm_smccc_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
643 {
644 	void __user *uaddr = (void __user *)attr->addr;
645 
646 	switch (attr->attr) {
647 	case KVM_ARM_VM_SMCCC_FILTER:
648 		return kvm_smccc_set_filter(kvm, uaddr);
649 	default:
650 		return -ENXIO;
651 	}
652 }
653