xref: /openbmc/linux/arch/arm64/kvm/hyp/vhe/tlb.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/irqflags.h>
8 
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/tlbflush.h>
12 
13 struct tlb_inv_context {
14 	unsigned long	flags;
15 	u64		tcr;
16 	u64		sctlr;
17 };
18 
19 static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
20 				  struct tlb_inv_context *cxt)
21 {
22 	u64 val;
23 
24 	local_irq_save(cxt->flags);
25 
26 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
27 		/*
28 		 * For CPUs that are affected by ARM errata 1165522 or 1530923,
29 		 * we cannot trust stage-1 to be in a correct state at that
30 		 * point. Since we do not want to force a full load of the
31 		 * vcpu state, we prevent the EL1 page-table walker to
32 		 * allocate new TLBs. This is done by setting the EPD bits
33 		 * in the TCR_EL1 register. We also need to prevent it to
34 		 * allocate IPA->PA walks, so we enable the S1 MMU...
35 		 */
36 		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
37 		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
38 		write_sysreg_el1(val, SYS_TCR);
39 		val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
40 		val |= SCTLR_ELx_M;
41 		write_sysreg_el1(val, SYS_SCTLR);
42 	}
43 
44 	/*
45 	 * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
46 	 * most TLB operations target EL2/EL0. In order to affect the
47 	 * guest TLBs (EL1/EL0), we need to change one of these two
48 	 * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
49 	 * let's flip TGE before executing the TLB operation.
50 	 *
51 	 * ARM erratum 1165522 requires some special handling (again),
52 	 * as we need to make sure both stages of translation are in
53 	 * place before clearing TGE. __load_stage2() already
54 	 * has an ISB in order to deal with this.
55 	 */
56 	__load_stage2(mmu, mmu->arch);
57 	val = read_sysreg(hcr_el2);
58 	val &= ~HCR_TGE;
59 	write_sysreg(val, hcr_el2);
60 	isb();
61 }
62 
63 static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
64 {
65 	/*
66 	 * We're done with the TLB operation, let's restore the host's
67 	 * view of HCR_EL2.
68 	 */
69 	write_sysreg(0, vttbr_el2);
70 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
71 	isb();
72 
73 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
74 		/* Restore the registers to what they were */
75 		write_sysreg_el1(cxt->tcr, SYS_TCR);
76 		write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
77 	}
78 
79 	local_irq_restore(cxt->flags);
80 }
81 
82 void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
83 			      phys_addr_t ipa, int level)
84 {
85 	struct tlb_inv_context cxt;
86 
87 	dsb(ishst);
88 
89 	/* Switch to requested VMID */
90 	__tlb_switch_to_guest(mmu, &cxt);
91 
92 	/*
93 	 * We could do so much better if we had the VA as well.
94 	 * Instead, we invalidate Stage-2 for this IPA, and the
95 	 * whole of Stage-1. Weep...
96 	 */
97 	ipa >>= 12;
98 	__tlbi_level(ipas2e1is, ipa, level);
99 
100 	/*
101 	 * We have to ensure completion of the invalidation at Stage-2,
102 	 * since a table walk on another CPU could refill a TLB with a
103 	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
104 	 * the Stage-1 invalidation happened first.
105 	 */
106 	dsb(ish);
107 	__tlbi(vmalle1is);
108 	dsb(ish);
109 	isb();
110 
111 	__tlb_switch_to_host(&cxt);
112 }
113 
114 void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
115 				  phys_addr_t ipa, int level)
116 {
117 	struct tlb_inv_context cxt;
118 
119 	dsb(nshst);
120 
121 	/* Switch to requested VMID */
122 	__tlb_switch_to_guest(mmu, &cxt);
123 
124 	/*
125 	 * We could do so much better if we had the VA as well.
126 	 * Instead, we invalidate Stage-2 for this IPA, and the
127 	 * whole of Stage-1. Weep...
128 	 */
129 	ipa >>= 12;
130 	__tlbi_level(ipas2e1, ipa, level);
131 
132 	/*
133 	 * We have to ensure completion of the invalidation at Stage-2,
134 	 * since a table walk on another CPU could refill a TLB with a
135 	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
136 	 * the Stage-1 invalidation happened first.
137 	 */
138 	dsb(nsh);
139 	__tlbi(vmalle1);
140 	dsb(nsh);
141 	isb();
142 
143 	__tlb_switch_to_host(&cxt);
144 }
145 
146 void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
147 {
148 	struct tlb_inv_context cxt;
149 
150 	dsb(ishst);
151 
152 	/* Switch to requested VMID */
153 	__tlb_switch_to_guest(mmu, &cxt);
154 
155 	__tlbi(vmalls12e1is);
156 	dsb(ish);
157 	isb();
158 
159 	__tlb_switch_to_host(&cxt);
160 }
161 
162 void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
163 {
164 	struct tlb_inv_context cxt;
165 
166 	/* Switch to requested VMID */
167 	__tlb_switch_to_guest(mmu, &cxt);
168 
169 	__tlbi(vmalle1);
170 	asm volatile("ic iallu");
171 	dsb(nsh);
172 	isb();
173 
174 	__tlb_switch_to_host(&cxt);
175 }
176 
177 void __kvm_flush_vm_context(void)
178 {
179 	dsb(ishst);
180 	__tlbi(alle1is);
181 
182 	/*
183 	 * VIPT and PIPT caches are not affected by VMID, so no maintenance
184 	 * is necessary across a VMID rollover.
185 	 *
186 	 * VPIPT caches constrain lookup and maintenance to the active VMID,
187 	 * so we need to invalidate lines with a stale VMID to avoid an ABA
188 	 * race after multiple rollovers.
189 	 *
190 	 */
191 	if (icache_is_vpipt())
192 		asm volatile("ic ialluis");
193 
194 	dsb(ish);
195 }
196