xref: /openbmc/linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision d9f6e12f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
21 static u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 */
272 	if (!cpu_if->vgic_sre) {
273 		write_gicreg(0, ICC_SRE_EL1);
274 		isb();
275 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
276 
277 
278 		if (has_vhe()) {
279 			/*
280 			 * Ensure that the write to the VMCR will have reached
281 			 * the (re)distributors. This ensure the guest will
282 			 * read the correct values from the memory-mapped
283 			 * interface.
284 			 */
285 			isb();
286 			dsb(sy);
287 		}
288 	}
289 
290 	/*
291 	 * Prevent the guest from touching the GIC system registers if
292 	 * SRE isn't enabled for GICv3 emulation.
293 	 */
294 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
295 		     ICC_SRE_EL2);
296 
297 	/*
298 	 * If we need to trap system registers, we must write
299 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
300 	 * injected,
301 	 */
302 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
303 	    cpu_if->its_vpe.its_vm)
304 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
305 }
306 
307 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
308 {
309 	u64 val;
310 
311 	if (!cpu_if->vgic_sre) {
312 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
313 	}
314 
315 	val = read_gicreg(ICC_SRE_EL2);
316 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
317 
318 	if (!cpu_if->vgic_sre) {
319 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
320 		isb();
321 		write_gicreg(1, ICC_SRE_EL1);
322 	}
323 
324 	/*
325 	 * If we were trapping system registers, we enabled the VGIC even if
326 	 * no interrupts were being injected, and we disable it again here.
327 	 */
328 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
329 	    cpu_if->its_vpe.its_vm)
330 		write_gicreg(0, ICH_HCR_EL2);
331 }
332 
333 void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
334 {
335 	u64 val;
336 	u32 nr_pre_bits;
337 
338 	val = read_gicreg(ICH_VTR_EL2);
339 	nr_pre_bits = vtr_to_nr_pre_bits(val);
340 
341 	switch (nr_pre_bits) {
342 	case 7:
343 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
344 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
345 		fallthrough;
346 	case 6:
347 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
348 		fallthrough;
349 	default:
350 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
351 	}
352 
353 	switch (nr_pre_bits) {
354 	case 7:
355 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
356 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
357 		fallthrough;
358 	case 6:
359 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
360 		fallthrough;
361 	default:
362 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
363 	}
364 }
365 
366 void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
367 {
368 	u64 val;
369 	u32 nr_pre_bits;
370 
371 	val = read_gicreg(ICH_VTR_EL2);
372 	nr_pre_bits = vtr_to_nr_pre_bits(val);
373 
374 	switch (nr_pre_bits) {
375 	case 7:
376 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
377 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
378 		fallthrough;
379 	case 6:
380 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
381 		fallthrough;
382 	default:
383 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
384 	}
385 
386 	switch (nr_pre_bits) {
387 	case 7:
388 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
389 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
390 		fallthrough;
391 	case 6:
392 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
393 		fallthrough;
394 	default:
395 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
396 	}
397 }
398 
399 void __vgic_v3_init_lrs(void)
400 {
401 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
402 	int i;
403 
404 	for (i = 0; i <= max_lr_idx; i++)
405 		__gic_v3_set_lr(0, i);
406 }
407 
408 /*
409  * Return the GIC CPU configuration:
410  * - [31:0]  ICH_VTR_EL2
411  * - [62:32] RES0
412  * - [63]    MMIO (GICv2) capable
413  */
414 u64 __vgic_v3_get_gic_config(void)
415 {
416 	u64 val, sre = read_gicreg(ICC_SRE_EL1);
417 	unsigned long flags = 0;
418 
419 	/*
420 	 * To check whether we have a MMIO-based (GICv2 compatible)
421 	 * CPU interface, we need to disable the system register
422 	 * view. To do that safely, we have to prevent any interrupt
423 	 * from firing (which would be deadly).
424 	 *
425 	 * Note that this only makes sense on VHE, as interrupts are
426 	 * already masked for nVHE as part of the exception entry to
427 	 * EL2.
428 	 */
429 	if (has_vhe())
430 		flags = local_daif_save();
431 
432 	write_gicreg(0, ICC_SRE_EL1);
433 	isb();
434 
435 	val = read_gicreg(ICC_SRE_EL1);
436 
437 	write_gicreg(sre, ICC_SRE_EL1);
438 	isb();
439 
440 	if (has_vhe())
441 		local_daif_restore(flags);
442 
443 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
444 	val |= read_gicreg(ICH_VTR_EL2);
445 
446 	return val;
447 }
448 
449 u64 __vgic_v3_read_vmcr(void)
450 {
451 	return read_gicreg(ICH_VMCR_EL2);
452 }
453 
454 void __vgic_v3_write_vmcr(u32 vmcr)
455 {
456 	write_gicreg(vmcr, ICH_VMCR_EL2);
457 }
458 
459 static int __vgic_v3_bpr_min(void)
460 {
461 	/* See Pseudocode for VPriorityGroup */
462 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
463 }
464 
465 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
466 {
467 	u32 esr = kvm_vcpu_get_esr(vcpu);
468 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
469 
470 	return crm != 8;
471 }
472 
473 #define GICv3_IDLE_PRIORITY	0xff
474 
475 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
476 					 u64 *lr_val)
477 {
478 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
479 	u8 priority = GICv3_IDLE_PRIORITY;
480 	int i, lr = -1;
481 
482 	for (i = 0; i < used_lrs; i++) {
483 		u64 val = __gic_v3_get_lr(i);
484 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
485 
486 		/* Not pending in the state? */
487 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
488 			continue;
489 
490 		/* Group-0 interrupt, but Group-0 disabled? */
491 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
492 			continue;
493 
494 		/* Group-1 interrupt, but Group-1 disabled? */
495 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
496 			continue;
497 
498 		/* Not the highest priority? */
499 		if (lr_prio >= priority)
500 			continue;
501 
502 		/* This is a candidate */
503 		priority = lr_prio;
504 		*lr_val = val;
505 		lr = i;
506 	}
507 
508 	if (lr == -1)
509 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
510 
511 	return lr;
512 }
513 
514 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
515 				    u64 *lr_val)
516 {
517 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
518 	int i;
519 
520 	for (i = 0; i < used_lrs; i++) {
521 		u64 val = __gic_v3_get_lr(i);
522 
523 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
524 		    (val & ICH_LR_ACTIVE_BIT)) {
525 			*lr_val = val;
526 			return i;
527 		}
528 	}
529 
530 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
531 	return -1;
532 }
533 
534 static int __vgic_v3_get_highest_active_priority(void)
535 {
536 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
537 	u32 hap = 0;
538 	int i;
539 
540 	for (i = 0; i < nr_apr_regs; i++) {
541 		u32 val;
542 
543 		/*
544 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
545 		 * contain the active priority levels for this VCPU
546 		 * for the maximum number of supported priority
547 		 * levels, and we return the full priority level only
548 		 * if the BPR is programmed to its minimum, otherwise
549 		 * we return a combination of the priority level and
550 		 * subpriority, as determined by the setting of the
551 		 * BPR, but without the full subpriority.
552 		 */
553 		val  = __vgic_v3_read_ap0rn(i);
554 		val |= __vgic_v3_read_ap1rn(i);
555 		if (!val) {
556 			hap += 32;
557 			continue;
558 		}
559 
560 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
561 	}
562 
563 	return GICv3_IDLE_PRIORITY;
564 }
565 
566 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
567 {
568 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
569 }
570 
571 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
572 {
573 	unsigned int bpr;
574 
575 	if (vmcr & ICH_VMCR_CBPR_MASK) {
576 		bpr = __vgic_v3_get_bpr0(vmcr);
577 		if (bpr < 7)
578 			bpr++;
579 	} else {
580 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
581 	}
582 
583 	return bpr;
584 }
585 
586 /*
587  * Convert a priority to a preemption level, taking the relevant BPR
588  * into account by zeroing the sub-priority bits.
589  */
590 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
591 {
592 	unsigned int bpr;
593 
594 	if (!grp)
595 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
596 	else
597 		bpr = __vgic_v3_get_bpr1(vmcr);
598 
599 	return pri & (GENMASK(7, 0) << bpr);
600 }
601 
602 /*
603  * The priority value is independent of any of the BPR values, so we
604  * normalize it using the minimal BPR value. This guarantees that no
605  * matter what the guest does with its BPR, we can always set/get the
606  * same value of a priority.
607  */
608 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
609 {
610 	u8 pre, ap;
611 	u32 val;
612 	int apr;
613 
614 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
615 	ap = pre >> __vgic_v3_bpr_min();
616 	apr = ap / 32;
617 
618 	if (!grp) {
619 		val = __vgic_v3_read_ap0rn(apr);
620 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
621 	} else {
622 		val = __vgic_v3_read_ap1rn(apr);
623 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
624 	}
625 }
626 
627 static int __vgic_v3_clear_highest_active_priority(void)
628 {
629 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
630 	u32 hap = 0;
631 	int i;
632 
633 	for (i = 0; i < nr_apr_regs; i++) {
634 		u32 ap0, ap1;
635 		int c0, c1;
636 
637 		ap0 = __vgic_v3_read_ap0rn(i);
638 		ap1 = __vgic_v3_read_ap1rn(i);
639 		if (!ap0 && !ap1) {
640 			hap += 32;
641 			continue;
642 		}
643 
644 		c0 = ap0 ? __ffs(ap0) : 32;
645 		c1 = ap1 ? __ffs(ap1) : 32;
646 
647 		/* Always clear the LSB, which is the highest priority */
648 		if (c0 < c1) {
649 			ap0 &= ~BIT(c0);
650 			__vgic_v3_write_ap0rn(ap0, i);
651 			hap += c0;
652 		} else {
653 			ap1 &= ~BIT(c1);
654 			__vgic_v3_write_ap1rn(ap1, i);
655 			hap += c1;
656 		}
657 
658 		/* Rescale to 8 bits of priority */
659 		return hap << __vgic_v3_bpr_min();
660 	}
661 
662 	return GICv3_IDLE_PRIORITY;
663 }
664 
665 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
666 {
667 	u64 lr_val;
668 	u8 lr_prio, pmr;
669 	int lr, grp;
670 
671 	grp = __vgic_v3_get_group(vcpu);
672 
673 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
674 	if (lr < 0)
675 		goto spurious;
676 
677 	if (grp != !!(lr_val & ICH_LR_GROUP))
678 		goto spurious;
679 
680 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
681 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
682 	if (pmr <= lr_prio)
683 		goto spurious;
684 
685 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
686 		goto spurious;
687 
688 	lr_val &= ~ICH_LR_STATE;
689 	/* No active state for LPIs */
690 	if ((lr_val & ICH_LR_VIRTUAL_ID_MASK) <= VGIC_MAX_SPI)
691 		lr_val |= ICH_LR_ACTIVE_BIT;
692 	__gic_v3_set_lr(lr_val, lr);
693 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
694 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
695 	return;
696 
697 spurious:
698 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
699 }
700 
701 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
702 {
703 	lr_val &= ~ICH_LR_ACTIVE_BIT;
704 	if (lr_val & ICH_LR_HW) {
705 		u32 pid;
706 
707 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
708 		gic_write_dir(pid);
709 	}
710 
711 	__gic_v3_set_lr(lr_val, lr);
712 }
713 
714 static void __vgic_v3_bump_eoicount(void)
715 {
716 	u32 hcr;
717 
718 	hcr = read_gicreg(ICH_HCR_EL2);
719 	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
720 	write_gicreg(hcr, ICH_HCR_EL2);
721 }
722 
723 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
724 {
725 	u32 vid = vcpu_get_reg(vcpu, rt);
726 	u64 lr_val;
727 	int lr;
728 
729 	/* EOImode == 0, nothing to be done here */
730 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
731 		return;
732 
733 	/* No deactivate to be performed on an LPI */
734 	if (vid >= VGIC_MIN_LPI)
735 		return;
736 
737 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
738 	if (lr == -1) {
739 		__vgic_v3_bump_eoicount();
740 		return;
741 	}
742 
743 	__vgic_v3_clear_active_lr(lr, lr_val);
744 }
745 
746 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
747 {
748 	u32 vid = vcpu_get_reg(vcpu, rt);
749 	u64 lr_val;
750 	u8 lr_prio, act_prio;
751 	int lr, grp;
752 
753 	grp = __vgic_v3_get_group(vcpu);
754 
755 	/* Drop priority in any case */
756 	act_prio = __vgic_v3_clear_highest_active_priority();
757 
758 	/* If EOIing an LPI, no deactivate to be performed */
759 	if (vid >= VGIC_MIN_LPI)
760 		return;
761 
762 	/* EOImode == 1, nothing to be done here */
763 	if (vmcr & ICH_VMCR_EOIM_MASK)
764 		return;
765 
766 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
767 	if (lr == -1) {
768 		__vgic_v3_bump_eoicount();
769 		return;
770 	}
771 
772 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
773 
774 	/* If priorities or group do not match, the guest has fscked-up. */
775 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
776 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
777 		return;
778 
779 	/* Let's now perform the deactivation */
780 	__vgic_v3_clear_active_lr(lr, lr_val);
781 }
782 
783 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
784 {
785 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
786 }
787 
788 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
789 {
790 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
791 }
792 
793 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
794 {
795 	u64 val = vcpu_get_reg(vcpu, rt);
796 
797 	if (val & 1)
798 		vmcr |= ICH_VMCR_ENG0_MASK;
799 	else
800 		vmcr &= ~ICH_VMCR_ENG0_MASK;
801 
802 	__vgic_v3_write_vmcr(vmcr);
803 }
804 
805 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
806 {
807 	u64 val = vcpu_get_reg(vcpu, rt);
808 
809 	if (val & 1)
810 		vmcr |= ICH_VMCR_ENG1_MASK;
811 	else
812 		vmcr &= ~ICH_VMCR_ENG1_MASK;
813 
814 	__vgic_v3_write_vmcr(vmcr);
815 }
816 
817 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
818 {
819 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
820 }
821 
822 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
823 {
824 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
825 }
826 
827 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
828 {
829 	u64 val = vcpu_get_reg(vcpu, rt);
830 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
831 
832 	/* Enforce BPR limiting */
833 	if (val < bpr_min)
834 		val = bpr_min;
835 
836 	val <<= ICH_VMCR_BPR0_SHIFT;
837 	val &= ICH_VMCR_BPR0_MASK;
838 	vmcr &= ~ICH_VMCR_BPR0_MASK;
839 	vmcr |= val;
840 
841 	__vgic_v3_write_vmcr(vmcr);
842 }
843 
844 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
845 {
846 	u64 val = vcpu_get_reg(vcpu, rt);
847 	u8 bpr_min = __vgic_v3_bpr_min();
848 
849 	if (vmcr & ICH_VMCR_CBPR_MASK)
850 		return;
851 
852 	/* Enforce BPR limiting */
853 	if (val < bpr_min)
854 		val = bpr_min;
855 
856 	val <<= ICH_VMCR_BPR1_SHIFT;
857 	val &= ICH_VMCR_BPR1_MASK;
858 	vmcr &= ~ICH_VMCR_BPR1_MASK;
859 	vmcr |= val;
860 
861 	__vgic_v3_write_vmcr(vmcr);
862 }
863 
864 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
865 {
866 	u32 val;
867 
868 	if (!__vgic_v3_get_group(vcpu))
869 		val = __vgic_v3_read_ap0rn(n);
870 	else
871 		val = __vgic_v3_read_ap1rn(n);
872 
873 	vcpu_set_reg(vcpu, rt, val);
874 }
875 
876 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
877 {
878 	u32 val = vcpu_get_reg(vcpu, rt);
879 
880 	if (!__vgic_v3_get_group(vcpu))
881 		__vgic_v3_write_ap0rn(val, n);
882 	else
883 		__vgic_v3_write_ap1rn(val, n);
884 }
885 
886 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
887 					    u32 vmcr, int rt)
888 {
889 	__vgic_v3_read_apxrn(vcpu, rt, 0);
890 }
891 
892 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
893 					    u32 vmcr, int rt)
894 {
895 	__vgic_v3_read_apxrn(vcpu, rt, 1);
896 }
897 
898 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
899 {
900 	__vgic_v3_read_apxrn(vcpu, rt, 2);
901 }
902 
903 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
904 {
905 	__vgic_v3_read_apxrn(vcpu, rt, 3);
906 }
907 
908 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
909 {
910 	__vgic_v3_write_apxrn(vcpu, rt, 0);
911 }
912 
913 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
914 {
915 	__vgic_v3_write_apxrn(vcpu, rt, 1);
916 }
917 
918 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
919 {
920 	__vgic_v3_write_apxrn(vcpu, rt, 2);
921 }
922 
923 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
924 {
925 	__vgic_v3_write_apxrn(vcpu, rt, 3);
926 }
927 
928 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
929 {
930 	u64 lr_val;
931 	int lr, lr_grp, grp;
932 
933 	grp = __vgic_v3_get_group(vcpu);
934 
935 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
936 	if (lr == -1)
937 		goto spurious;
938 
939 	lr_grp = !!(lr_val & ICH_LR_GROUP);
940 	if (lr_grp != grp)
941 		lr_val = ICC_IAR1_EL1_SPURIOUS;
942 
943 spurious:
944 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
945 }
946 
947 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
948 {
949 	vmcr &= ICH_VMCR_PMR_MASK;
950 	vmcr >>= ICH_VMCR_PMR_SHIFT;
951 	vcpu_set_reg(vcpu, rt, vmcr);
952 }
953 
954 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
955 {
956 	u32 val = vcpu_get_reg(vcpu, rt);
957 
958 	val <<= ICH_VMCR_PMR_SHIFT;
959 	val &= ICH_VMCR_PMR_MASK;
960 	vmcr &= ~ICH_VMCR_PMR_MASK;
961 	vmcr |= val;
962 
963 	write_gicreg(vmcr, ICH_VMCR_EL2);
964 }
965 
966 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
967 {
968 	u32 val = __vgic_v3_get_highest_active_priority();
969 	vcpu_set_reg(vcpu, rt, val);
970 }
971 
972 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
973 {
974 	u32 vtr, val;
975 
976 	vtr = read_gicreg(ICH_VTR_EL2);
977 	/* PRIbits */
978 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
979 	/* IDbits */
980 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
981 	/* SEIS */
982 	val |= ((vtr >> 22) & 1) << ICC_CTLR_EL1_SEIS_SHIFT;
983 	/* A3V */
984 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
985 	/* EOImode */
986 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
987 	/* CBPR */
988 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
989 
990 	vcpu_set_reg(vcpu, rt, val);
991 }
992 
993 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
994 {
995 	u32 val = vcpu_get_reg(vcpu, rt);
996 
997 	if (val & ICC_CTLR_EL1_CBPR_MASK)
998 		vmcr |= ICH_VMCR_CBPR_MASK;
999 	else
1000 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1001 
1002 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1003 		vmcr |= ICH_VMCR_EOIM_MASK;
1004 	else
1005 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1006 
1007 	write_gicreg(vmcr, ICH_VMCR_EL2);
1008 }
1009 
1010 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1011 {
1012 	int rt;
1013 	u32 esr;
1014 	u32 vmcr;
1015 	void (*fn)(struct kvm_vcpu *, u32, int);
1016 	bool is_read;
1017 	u32 sysreg;
1018 
1019 	esr = kvm_vcpu_get_esr(vcpu);
1020 	if (vcpu_mode_is_32bit(vcpu)) {
1021 		if (!kvm_condition_valid(vcpu)) {
1022 			__kvm_skip_instr(vcpu);
1023 			return 1;
1024 		}
1025 
1026 		sysreg = esr_cp15_to_sysreg(esr);
1027 	} else {
1028 		sysreg = esr_sys64_to_sysreg(esr);
1029 	}
1030 
1031 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1032 
1033 	switch (sysreg) {
1034 	case SYS_ICC_IAR0_EL1:
1035 	case SYS_ICC_IAR1_EL1:
1036 		if (unlikely(!is_read))
1037 			return 0;
1038 		fn = __vgic_v3_read_iar;
1039 		break;
1040 	case SYS_ICC_EOIR0_EL1:
1041 	case SYS_ICC_EOIR1_EL1:
1042 		if (unlikely(is_read))
1043 			return 0;
1044 		fn = __vgic_v3_write_eoir;
1045 		break;
1046 	case SYS_ICC_IGRPEN1_EL1:
1047 		if (is_read)
1048 			fn = __vgic_v3_read_igrpen1;
1049 		else
1050 			fn = __vgic_v3_write_igrpen1;
1051 		break;
1052 	case SYS_ICC_BPR1_EL1:
1053 		if (is_read)
1054 			fn = __vgic_v3_read_bpr1;
1055 		else
1056 			fn = __vgic_v3_write_bpr1;
1057 		break;
1058 	case SYS_ICC_AP0Rn_EL1(0):
1059 	case SYS_ICC_AP1Rn_EL1(0):
1060 		if (is_read)
1061 			fn = __vgic_v3_read_apxr0;
1062 		else
1063 			fn = __vgic_v3_write_apxr0;
1064 		break;
1065 	case SYS_ICC_AP0Rn_EL1(1):
1066 	case SYS_ICC_AP1Rn_EL1(1):
1067 		if (is_read)
1068 			fn = __vgic_v3_read_apxr1;
1069 		else
1070 			fn = __vgic_v3_write_apxr1;
1071 		break;
1072 	case SYS_ICC_AP0Rn_EL1(2):
1073 	case SYS_ICC_AP1Rn_EL1(2):
1074 		if (is_read)
1075 			fn = __vgic_v3_read_apxr2;
1076 		else
1077 			fn = __vgic_v3_write_apxr2;
1078 		break;
1079 	case SYS_ICC_AP0Rn_EL1(3):
1080 	case SYS_ICC_AP1Rn_EL1(3):
1081 		if (is_read)
1082 			fn = __vgic_v3_read_apxr3;
1083 		else
1084 			fn = __vgic_v3_write_apxr3;
1085 		break;
1086 	case SYS_ICC_HPPIR0_EL1:
1087 	case SYS_ICC_HPPIR1_EL1:
1088 		if (unlikely(!is_read))
1089 			return 0;
1090 		fn = __vgic_v3_read_hppir;
1091 		break;
1092 	case SYS_ICC_IGRPEN0_EL1:
1093 		if (is_read)
1094 			fn = __vgic_v3_read_igrpen0;
1095 		else
1096 			fn = __vgic_v3_write_igrpen0;
1097 		break;
1098 	case SYS_ICC_BPR0_EL1:
1099 		if (is_read)
1100 			fn = __vgic_v3_read_bpr0;
1101 		else
1102 			fn = __vgic_v3_write_bpr0;
1103 		break;
1104 	case SYS_ICC_DIR_EL1:
1105 		if (unlikely(is_read))
1106 			return 0;
1107 		fn = __vgic_v3_write_dir;
1108 		break;
1109 	case SYS_ICC_RPR_EL1:
1110 		if (unlikely(!is_read))
1111 			return 0;
1112 		fn = __vgic_v3_read_rpr;
1113 		break;
1114 	case SYS_ICC_CTLR_EL1:
1115 		if (is_read)
1116 			fn = __vgic_v3_read_ctlr;
1117 		else
1118 			fn = __vgic_v3_write_ctlr;
1119 		break;
1120 	case SYS_ICC_PMR_EL1:
1121 		if (is_read)
1122 			fn = __vgic_v3_read_pmr;
1123 		else
1124 			fn = __vgic_v3_write_pmr;
1125 		break;
1126 	default:
1127 		return 0;
1128 	}
1129 
1130 	vmcr = __vgic_v3_read_vmcr();
1131 	rt = kvm_vcpu_sys_get_rt(vcpu);
1132 	fn(vcpu, vmcr, rt);
1133 
1134 	__kvm_skip_instr(vcpu);
1135 
1136 	return 1;
1137 }
1138