xref: /openbmc/linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 74de3792)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
21 static u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 */
272 	if (!cpu_if->vgic_sre) {
273 		write_gicreg(0, ICC_SRE_EL1);
274 		isb();
275 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
276 
277 
278 		if (has_vhe()) {
279 			/*
280 			 * Ensure that the write to the VMCR will have reached
281 			 * the (re)distributors. This ensure the guest will
282 			 * read the correct values from the memory-mapped
283 			 * interface.
284 			 */
285 			isb();
286 			dsb(sy);
287 		}
288 	}
289 
290 	/*
291 	 * Prevent the guest from touching the GIC system registers if
292 	 * SRE isn't enabled for GICv3 emulation.
293 	 */
294 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
295 		     ICC_SRE_EL2);
296 
297 	/*
298 	 * If we need to trap system registers, we must write
299 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
300 	 * injected,
301 	 */
302 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
303 	    cpu_if->its_vpe.its_vm)
304 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
305 }
306 
307 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
308 {
309 	u64 val;
310 
311 	if (!cpu_if->vgic_sre) {
312 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
313 	}
314 
315 	val = read_gicreg(ICC_SRE_EL2);
316 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
317 
318 	if (!cpu_if->vgic_sre) {
319 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
320 		isb();
321 		write_gicreg(1, ICC_SRE_EL1);
322 	}
323 
324 	/*
325 	 * If we were trapping system registers, we enabled the VGIC even if
326 	 * no interrupts were being injected, and we disable it again here.
327 	 */
328 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
329 	    cpu_if->its_vpe.its_vm)
330 		write_gicreg(0, ICH_HCR_EL2);
331 }
332 
333 void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
334 {
335 	u64 val;
336 	u32 nr_pre_bits;
337 
338 	val = read_gicreg(ICH_VTR_EL2);
339 	nr_pre_bits = vtr_to_nr_pre_bits(val);
340 
341 	switch (nr_pre_bits) {
342 	case 7:
343 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
344 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
345 		fallthrough;
346 	case 6:
347 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
348 		fallthrough;
349 	default:
350 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
351 	}
352 
353 	switch (nr_pre_bits) {
354 	case 7:
355 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
356 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
357 		fallthrough;
358 	case 6:
359 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
360 		fallthrough;
361 	default:
362 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
363 	}
364 }
365 
366 void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
367 {
368 	u64 val;
369 	u32 nr_pre_bits;
370 
371 	val = read_gicreg(ICH_VTR_EL2);
372 	nr_pre_bits = vtr_to_nr_pre_bits(val);
373 
374 	switch (nr_pre_bits) {
375 	case 7:
376 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
377 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
378 		fallthrough;
379 	case 6:
380 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
381 		fallthrough;
382 	default:
383 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
384 	}
385 
386 	switch (nr_pre_bits) {
387 	case 7:
388 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
389 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
390 		fallthrough;
391 	case 6:
392 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
393 		fallthrough;
394 	default:
395 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
396 	}
397 }
398 
399 void __vgic_v3_init_lrs(void)
400 {
401 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
402 	int i;
403 
404 	for (i = 0; i <= max_lr_idx; i++)
405 		__gic_v3_set_lr(0, i);
406 }
407 
408 /*
409  * Return the GIC CPU configuration:
410  * - [31:0]  ICH_VTR_EL2
411  * - [62:32] RES0
412  * - [63]    MMIO (GICv2) capable
413  */
414 u64 __vgic_v3_get_gic_config(void)
415 {
416 	u64 val, sre = read_gicreg(ICC_SRE_EL1);
417 	unsigned long flags = 0;
418 
419 	/*
420 	 * To check whether we have a MMIO-based (GICv2 compatible)
421 	 * CPU interface, we need to disable the system register
422 	 * view. To do that safely, we have to prevent any interrupt
423 	 * from firing (which would be deadly).
424 	 *
425 	 * Note that this only makes sense on VHE, as interrupts are
426 	 * already masked for nVHE as part of the exception entry to
427 	 * EL2.
428 	 */
429 	if (has_vhe())
430 		flags = local_daif_save();
431 
432 	/*
433 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
434 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
435 	 * interrupt overrides must be set. You've got to love this.
436 	 */
437 	sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO);
438 	isb();
439 	write_gicreg(0, ICC_SRE_EL1);
440 	isb();
441 
442 	val = read_gicreg(ICC_SRE_EL1);
443 
444 	write_gicreg(sre, ICC_SRE_EL1);
445 	isb();
446 	sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0);
447 	isb();
448 
449 	if (has_vhe())
450 		local_daif_restore(flags);
451 
452 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
453 	val |= read_gicreg(ICH_VTR_EL2);
454 
455 	return val;
456 }
457 
458 u64 __vgic_v3_read_vmcr(void)
459 {
460 	return read_gicreg(ICH_VMCR_EL2);
461 }
462 
463 void __vgic_v3_write_vmcr(u32 vmcr)
464 {
465 	write_gicreg(vmcr, ICH_VMCR_EL2);
466 }
467 
468 static int __vgic_v3_bpr_min(void)
469 {
470 	/* See Pseudocode for VPriorityGroup */
471 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
472 }
473 
474 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
475 {
476 	u32 esr = kvm_vcpu_get_esr(vcpu);
477 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
478 
479 	return crm != 8;
480 }
481 
482 #define GICv3_IDLE_PRIORITY	0xff
483 
484 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
485 					 u64 *lr_val)
486 {
487 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
488 	u8 priority = GICv3_IDLE_PRIORITY;
489 	int i, lr = -1;
490 
491 	for (i = 0; i < used_lrs; i++) {
492 		u64 val = __gic_v3_get_lr(i);
493 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
494 
495 		/* Not pending in the state? */
496 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
497 			continue;
498 
499 		/* Group-0 interrupt, but Group-0 disabled? */
500 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
501 			continue;
502 
503 		/* Group-1 interrupt, but Group-1 disabled? */
504 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
505 			continue;
506 
507 		/* Not the highest priority? */
508 		if (lr_prio >= priority)
509 			continue;
510 
511 		/* This is a candidate */
512 		priority = lr_prio;
513 		*lr_val = val;
514 		lr = i;
515 	}
516 
517 	if (lr == -1)
518 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
519 
520 	return lr;
521 }
522 
523 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
524 				    u64 *lr_val)
525 {
526 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
527 	int i;
528 
529 	for (i = 0; i < used_lrs; i++) {
530 		u64 val = __gic_v3_get_lr(i);
531 
532 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
533 		    (val & ICH_LR_ACTIVE_BIT)) {
534 			*lr_val = val;
535 			return i;
536 		}
537 	}
538 
539 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
540 	return -1;
541 }
542 
543 static int __vgic_v3_get_highest_active_priority(void)
544 {
545 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
546 	u32 hap = 0;
547 	int i;
548 
549 	for (i = 0; i < nr_apr_regs; i++) {
550 		u32 val;
551 
552 		/*
553 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
554 		 * contain the active priority levels for this VCPU
555 		 * for the maximum number of supported priority
556 		 * levels, and we return the full priority level only
557 		 * if the BPR is programmed to its minimum, otherwise
558 		 * we return a combination of the priority level and
559 		 * subpriority, as determined by the setting of the
560 		 * BPR, but without the full subpriority.
561 		 */
562 		val  = __vgic_v3_read_ap0rn(i);
563 		val |= __vgic_v3_read_ap1rn(i);
564 		if (!val) {
565 			hap += 32;
566 			continue;
567 		}
568 
569 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
570 	}
571 
572 	return GICv3_IDLE_PRIORITY;
573 }
574 
575 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
576 {
577 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
578 }
579 
580 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
581 {
582 	unsigned int bpr;
583 
584 	if (vmcr & ICH_VMCR_CBPR_MASK) {
585 		bpr = __vgic_v3_get_bpr0(vmcr);
586 		if (bpr < 7)
587 			bpr++;
588 	} else {
589 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
590 	}
591 
592 	return bpr;
593 }
594 
595 /*
596  * Convert a priority to a preemption level, taking the relevant BPR
597  * into account by zeroing the sub-priority bits.
598  */
599 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
600 {
601 	unsigned int bpr;
602 
603 	if (!grp)
604 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
605 	else
606 		bpr = __vgic_v3_get_bpr1(vmcr);
607 
608 	return pri & (GENMASK(7, 0) << bpr);
609 }
610 
611 /*
612  * The priority value is independent of any of the BPR values, so we
613  * normalize it using the minimal BPR value. This guarantees that no
614  * matter what the guest does with its BPR, we can always set/get the
615  * same value of a priority.
616  */
617 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
618 {
619 	u8 pre, ap;
620 	u32 val;
621 	int apr;
622 
623 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
624 	ap = pre >> __vgic_v3_bpr_min();
625 	apr = ap / 32;
626 
627 	if (!grp) {
628 		val = __vgic_v3_read_ap0rn(apr);
629 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
630 	} else {
631 		val = __vgic_v3_read_ap1rn(apr);
632 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
633 	}
634 }
635 
636 static int __vgic_v3_clear_highest_active_priority(void)
637 {
638 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
639 	u32 hap = 0;
640 	int i;
641 
642 	for (i = 0; i < nr_apr_regs; i++) {
643 		u32 ap0, ap1;
644 		int c0, c1;
645 
646 		ap0 = __vgic_v3_read_ap0rn(i);
647 		ap1 = __vgic_v3_read_ap1rn(i);
648 		if (!ap0 && !ap1) {
649 			hap += 32;
650 			continue;
651 		}
652 
653 		c0 = ap0 ? __ffs(ap0) : 32;
654 		c1 = ap1 ? __ffs(ap1) : 32;
655 
656 		/* Always clear the LSB, which is the highest priority */
657 		if (c0 < c1) {
658 			ap0 &= ~BIT(c0);
659 			__vgic_v3_write_ap0rn(ap0, i);
660 			hap += c0;
661 		} else {
662 			ap1 &= ~BIT(c1);
663 			__vgic_v3_write_ap1rn(ap1, i);
664 			hap += c1;
665 		}
666 
667 		/* Rescale to 8 bits of priority */
668 		return hap << __vgic_v3_bpr_min();
669 	}
670 
671 	return GICv3_IDLE_PRIORITY;
672 }
673 
674 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
675 {
676 	u64 lr_val;
677 	u8 lr_prio, pmr;
678 	int lr, grp;
679 
680 	grp = __vgic_v3_get_group(vcpu);
681 
682 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
683 	if (lr < 0)
684 		goto spurious;
685 
686 	if (grp != !!(lr_val & ICH_LR_GROUP))
687 		goto spurious;
688 
689 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
690 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
691 	if (pmr <= lr_prio)
692 		goto spurious;
693 
694 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
695 		goto spurious;
696 
697 	lr_val &= ~ICH_LR_STATE;
698 	lr_val |= ICH_LR_ACTIVE_BIT;
699 	__gic_v3_set_lr(lr_val, lr);
700 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
701 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
702 	return;
703 
704 spurious:
705 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
706 }
707 
708 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
709 {
710 	lr_val &= ~ICH_LR_ACTIVE_BIT;
711 	if (lr_val & ICH_LR_HW) {
712 		u32 pid;
713 
714 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
715 		gic_write_dir(pid);
716 	}
717 
718 	__gic_v3_set_lr(lr_val, lr);
719 }
720 
721 static void __vgic_v3_bump_eoicount(void)
722 {
723 	u32 hcr;
724 
725 	hcr = read_gicreg(ICH_HCR_EL2);
726 	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
727 	write_gicreg(hcr, ICH_HCR_EL2);
728 }
729 
730 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
731 {
732 	u32 vid = vcpu_get_reg(vcpu, rt);
733 	u64 lr_val;
734 	int lr;
735 
736 	/* EOImode == 0, nothing to be done here */
737 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
738 		return;
739 
740 	/* No deactivate to be performed on an LPI */
741 	if (vid >= VGIC_MIN_LPI)
742 		return;
743 
744 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
745 	if (lr == -1) {
746 		__vgic_v3_bump_eoicount();
747 		return;
748 	}
749 
750 	__vgic_v3_clear_active_lr(lr, lr_val);
751 }
752 
753 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
754 {
755 	u32 vid = vcpu_get_reg(vcpu, rt);
756 	u64 lr_val;
757 	u8 lr_prio, act_prio;
758 	int lr, grp;
759 
760 	grp = __vgic_v3_get_group(vcpu);
761 
762 	/* Drop priority in any case */
763 	act_prio = __vgic_v3_clear_highest_active_priority();
764 
765 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
766 	if (lr == -1) {
767 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
768 		if (!(vid >= VGIC_MIN_LPI))
769 			__vgic_v3_bump_eoicount();
770 		return;
771 	}
772 
773 	/* EOImode == 1 and not an LPI, nothing to be done here */
774 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
775 		return;
776 
777 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
778 
779 	/* If priorities or group do not match, the guest has fscked-up. */
780 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
781 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
782 		return;
783 
784 	/* Let's now perform the deactivation */
785 	__vgic_v3_clear_active_lr(lr, lr_val);
786 }
787 
788 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
789 {
790 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
791 }
792 
793 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
794 {
795 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
796 }
797 
798 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
799 {
800 	u64 val = vcpu_get_reg(vcpu, rt);
801 
802 	if (val & 1)
803 		vmcr |= ICH_VMCR_ENG0_MASK;
804 	else
805 		vmcr &= ~ICH_VMCR_ENG0_MASK;
806 
807 	__vgic_v3_write_vmcr(vmcr);
808 }
809 
810 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
811 {
812 	u64 val = vcpu_get_reg(vcpu, rt);
813 
814 	if (val & 1)
815 		vmcr |= ICH_VMCR_ENG1_MASK;
816 	else
817 		vmcr &= ~ICH_VMCR_ENG1_MASK;
818 
819 	__vgic_v3_write_vmcr(vmcr);
820 }
821 
822 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
823 {
824 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
825 }
826 
827 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
828 {
829 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
830 }
831 
832 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
833 {
834 	u64 val = vcpu_get_reg(vcpu, rt);
835 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
836 
837 	/* Enforce BPR limiting */
838 	if (val < bpr_min)
839 		val = bpr_min;
840 
841 	val <<= ICH_VMCR_BPR0_SHIFT;
842 	val &= ICH_VMCR_BPR0_MASK;
843 	vmcr &= ~ICH_VMCR_BPR0_MASK;
844 	vmcr |= val;
845 
846 	__vgic_v3_write_vmcr(vmcr);
847 }
848 
849 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
850 {
851 	u64 val = vcpu_get_reg(vcpu, rt);
852 	u8 bpr_min = __vgic_v3_bpr_min();
853 
854 	if (vmcr & ICH_VMCR_CBPR_MASK)
855 		return;
856 
857 	/* Enforce BPR limiting */
858 	if (val < bpr_min)
859 		val = bpr_min;
860 
861 	val <<= ICH_VMCR_BPR1_SHIFT;
862 	val &= ICH_VMCR_BPR1_MASK;
863 	vmcr &= ~ICH_VMCR_BPR1_MASK;
864 	vmcr |= val;
865 
866 	__vgic_v3_write_vmcr(vmcr);
867 }
868 
869 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
870 {
871 	u32 val;
872 
873 	if (!__vgic_v3_get_group(vcpu))
874 		val = __vgic_v3_read_ap0rn(n);
875 	else
876 		val = __vgic_v3_read_ap1rn(n);
877 
878 	vcpu_set_reg(vcpu, rt, val);
879 }
880 
881 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
882 {
883 	u32 val = vcpu_get_reg(vcpu, rt);
884 
885 	if (!__vgic_v3_get_group(vcpu))
886 		__vgic_v3_write_ap0rn(val, n);
887 	else
888 		__vgic_v3_write_ap1rn(val, n);
889 }
890 
891 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
892 					    u32 vmcr, int rt)
893 {
894 	__vgic_v3_read_apxrn(vcpu, rt, 0);
895 }
896 
897 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
898 					    u32 vmcr, int rt)
899 {
900 	__vgic_v3_read_apxrn(vcpu, rt, 1);
901 }
902 
903 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
904 {
905 	__vgic_v3_read_apxrn(vcpu, rt, 2);
906 }
907 
908 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
909 {
910 	__vgic_v3_read_apxrn(vcpu, rt, 3);
911 }
912 
913 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
914 {
915 	__vgic_v3_write_apxrn(vcpu, rt, 0);
916 }
917 
918 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
919 {
920 	__vgic_v3_write_apxrn(vcpu, rt, 1);
921 }
922 
923 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
924 {
925 	__vgic_v3_write_apxrn(vcpu, rt, 2);
926 }
927 
928 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
929 {
930 	__vgic_v3_write_apxrn(vcpu, rt, 3);
931 }
932 
933 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
934 {
935 	u64 lr_val;
936 	int lr, lr_grp, grp;
937 
938 	grp = __vgic_v3_get_group(vcpu);
939 
940 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
941 	if (lr == -1)
942 		goto spurious;
943 
944 	lr_grp = !!(lr_val & ICH_LR_GROUP);
945 	if (lr_grp != grp)
946 		lr_val = ICC_IAR1_EL1_SPURIOUS;
947 
948 spurious:
949 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
950 }
951 
952 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
953 {
954 	vmcr &= ICH_VMCR_PMR_MASK;
955 	vmcr >>= ICH_VMCR_PMR_SHIFT;
956 	vcpu_set_reg(vcpu, rt, vmcr);
957 }
958 
959 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
960 {
961 	u32 val = vcpu_get_reg(vcpu, rt);
962 
963 	val <<= ICH_VMCR_PMR_SHIFT;
964 	val &= ICH_VMCR_PMR_MASK;
965 	vmcr &= ~ICH_VMCR_PMR_MASK;
966 	vmcr |= val;
967 
968 	write_gicreg(vmcr, ICH_VMCR_EL2);
969 }
970 
971 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
972 {
973 	u32 val = __vgic_v3_get_highest_active_priority();
974 	vcpu_set_reg(vcpu, rt, val);
975 }
976 
977 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
978 {
979 	u32 vtr, val;
980 
981 	vtr = read_gicreg(ICH_VTR_EL2);
982 	/* PRIbits */
983 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
984 	/* IDbits */
985 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
986 	/* SEIS */
987 	if (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK)
988 		val |= BIT(ICC_CTLR_EL1_SEIS_SHIFT);
989 	/* A3V */
990 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
991 	/* EOImode */
992 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
993 	/* CBPR */
994 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
995 
996 	vcpu_set_reg(vcpu, rt, val);
997 }
998 
999 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1000 {
1001 	u32 val = vcpu_get_reg(vcpu, rt);
1002 
1003 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1004 		vmcr |= ICH_VMCR_CBPR_MASK;
1005 	else
1006 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1007 
1008 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1009 		vmcr |= ICH_VMCR_EOIM_MASK;
1010 	else
1011 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1012 
1013 	write_gicreg(vmcr, ICH_VMCR_EL2);
1014 }
1015 
1016 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1017 {
1018 	int rt;
1019 	u32 esr;
1020 	u32 vmcr;
1021 	void (*fn)(struct kvm_vcpu *, u32, int);
1022 	bool is_read;
1023 	u32 sysreg;
1024 
1025 	esr = kvm_vcpu_get_esr(vcpu);
1026 	if (vcpu_mode_is_32bit(vcpu)) {
1027 		if (!kvm_condition_valid(vcpu)) {
1028 			__kvm_skip_instr(vcpu);
1029 			return 1;
1030 		}
1031 
1032 		sysreg = esr_cp15_to_sysreg(esr);
1033 	} else {
1034 		sysreg = esr_sys64_to_sysreg(esr);
1035 	}
1036 
1037 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1038 
1039 	switch (sysreg) {
1040 	case SYS_ICC_IAR0_EL1:
1041 	case SYS_ICC_IAR1_EL1:
1042 		if (unlikely(!is_read))
1043 			return 0;
1044 		fn = __vgic_v3_read_iar;
1045 		break;
1046 	case SYS_ICC_EOIR0_EL1:
1047 	case SYS_ICC_EOIR1_EL1:
1048 		if (unlikely(is_read))
1049 			return 0;
1050 		fn = __vgic_v3_write_eoir;
1051 		break;
1052 	case SYS_ICC_IGRPEN1_EL1:
1053 		if (is_read)
1054 			fn = __vgic_v3_read_igrpen1;
1055 		else
1056 			fn = __vgic_v3_write_igrpen1;
1057 		break;
1058 	case SYS_ICC_BPR1_EL1:
1059 		if (is_read)
1060 			fn = __vgic_v3_read_bpr1;
1061 		else
1062 			fn = __vgic_v3_write_bpr1;
1063 		break;
1064 	case SYS_ICC_AP0Rn_EL1(0):
1065 	case SYS_ICC_AP1Rn_EL1(0):
1066 		if (is_read)
1067 			fn = __vgic_v3_read_apxr0;
1068 		else
1069 			fn = __vgic_v3_write_apxr0;
1070 		break;
1071 	case SYS_ICC_AP0Rn_EL1(1):
1072 	case SYS_ICC_AP1Rn_EL1(1):
1073 		if (is_read)
1074 			fn = __vgic_v3_read_apxr1;
1075 		else
1076 			fn = __vgic_v3_write_apxr1;
1077 		break;
1078 	case SYS_ICC_AP0Rn_EL1(2):
1079 	case SYS_ICC_AP1Rn_EL1(2):
1080 		if (is_read)
1081 			fn = __vgic_v3_read_apxr2;
1082 		else
1083 			fn = __vgic_v3_write_apxr2;
1084 		break;
1085 	case SYS_ICC_AP0Rn_EL1(3):
1086 	case SYS_ICC_AP1Rn_EL1(3):
1087 		if (is_read)
1088 			fn = __vgic_v3_read_apxr3;
1089 		else
1090 			fn = __vgic_v3_write_apxr3;
1091 		break;
1092 	case SYS_ICC_HPPIR0_EL1:
1093 	case SYS_ICC_HPPIR1_EL1:
1094 		if (unlikely(!is_read))
1095 			return 0;
1096 		fn = __vgic_v3_read_hppir;
1097 		break;
1098 	case SYS_ICC_IGRPEN0_EL1:
1099 		if (is_read)
1100 			fn = __vgic_v3_read_igrpen0;
1101 		else
1102 			fn = __vgic_v3_write_igrpen0;
1103 		break;
1104 	case SYS_ICC_BPR0_EL1:
1105 		if (is_read)
1106 			fn = __vgic_v3_read_bpr0;
1107 		else
1108 			fn = __vgic_v3_write_bpr0;
1109 		break;
1110 	case SYS_ICC_DIR_EL1:
1111 		if (unlikely(is_read))
1112 			return 0;
1113 		fn = __vgic_v3_write_dir;
1114 		break;
1115 	case SYS_ICC_RPR_EL1:
1116 		if (unlikely(!is_read))
1117 			return 0;
1118 		fn = __vgic_v3_read_rpr;
1119 		break;
1120 	case SYS_ICC_CTLR_EL1:
1121 		if (is_read)
1122 			fn = __vgic_v3_read_ctlr;
1123 		else
1124 			fn = __vgic_v3_write_ctlr;
1125 		break;
1126 	case SYS_ICC_PMR_EL1:
1127 		if (is_read)
1128 			fn = __vgic_v3_read_pmr;
1129 		else
1130 			fn = __vgic_v3_write_pmr;
1131 		break;
1132 	default:
1133 		return 0;
1134 	}
1135 
1136 	vmcr = __vgic_v3_read_vmcr();
1137 	rt = kvm_vcpu_sys_get_rt(vcpu);
1138 	fn(vcpu, vmcr, rt);
1139 
1140 	__kvm_skip_instr(vcpu);
1141 
1142 	return 1;
1143 }
1144